1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "CGOpenCLRuntime.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Type.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 33 void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::IndirectField: 49 case Decl::ObjCIvar: 50 case Decl::ObjCAtDefsField: 51 case Decl::ParmVar: 52 case Decl::ImplicitParam: 53 case Decl::ClassTemplate: 54 case Decl::FunctionTemplate: 55 case Decl::TypeAliasTemplate: 56 case Decl::TemplateTemplateParm: 57 case Decl::ObjCMethod: 58 case Decl::ObjCCategory: 59 case Decl::ObjCProtocol: 60 case Decl::ObjCInterface: 61 case Decl::ObjCCategoryImpl: 62 case Decl::ObjCImplementation: 63 case Decl::ObjCProperty: 64 case Decl::ObjCCompatibleAlias: 65 case Decl::AccessSpec: 66 case Decl::LinkageSpec: 67 case Decl::ObjCPropertyImpl: 68 case Decl::FileScopeAsm: 69 case Decl::Friend: 70 case Decl::FriendTemplate: 71 case Decl::Block: 72 case Decl::ClassScopeFunctionSpecialization: 73 llvm_unreachable("Declaration should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 case Decl::Import: 86 // None of these decls require codegen support. 87 return; 88 89 case Decl::Var: { 90 const VarDecl &VD = cast<VarDecl>(D); 91 assert(VD.isLocalVarDecl() && 92 "Should not see file-scope variables inside a function!"); 93 return EmitVarDecl(VD); 94 } 95 96 case Decl::Typedef: // typedef int X; 97 case Decl::TypeAlias: { // using X = int; [C++0x] 98 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 99 QualType Ty = TD.getUnderlyingType(); 100 101 if (Ty->isVariablyModifiedType()) 102 EmitVariablyModifiedType(Ty); 103 } 104 } 105 } 106 107 /// EmitVarDecl - This method handles emission of any variable declaration 108 /// inside a function, including static vars etc. 109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 110 switch (D.getStorageClass()) { 111 case SC_None: 112 case SC_Auto: 113 case SC_Register: 114 return EmitAutoVarDecl(D); 115 case SC_Static: { 116 llvm::GlobalValue::LinkageTypes Linkage = 117 llvm::GlobalValue::InternalLinkage; 118 119 // If the function definition has some sort of weak linkage, its 120 // static variables should also be weak so that they get properly 121 // uniqued. We can't do this in C, though, because there's no 122 // standard way to agree on which variables are the same (i.e. 123 // there's no mangling). 124 if (getContext().getLangOptions().CPlusPlus) 125 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 126 Linkage = CurFn->getLinkage(); 127 128 return EmitStaticVarDecl(D, Linkage); 129 } 130 case SC_Extern: 131 case SC_PrivateExtern: 132 // Don't emit it now, allow it to be emitted lazily on its first use. 133 return; 134 case SC_OpenCLWorkGroupLocal: 135 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 136 } 137 138 llvm_unreachable("Unknown storage class"); 139 } 140 141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 142 const char *Separator) { 143 CodeGenModule &CGM = CGF.CGM; 144 if (CGF.getContext().getLangOptions().CPlusPlus) { 145 StringRef Name = CGM.getMangledName(&D); 146 return Name.str(); 147 } 148 149 std::string ContextName; 150 if (!CGF.CurFuncDecl) { 151 // Better be in a block declared in global scope. 152 const NamedDecl *ND = cast<NamedDecl>(&D); 153 const DeclContext *DC = ND->getDeclContext(); 154 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 155 MangleBuffer Name; 156 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 157 ContextName = Name.getString(); 158 } 159 else 160 llvm_unreachable("Unknown context for block static var decl"); 161 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 162 StringRef Name = CGM.getMangledName(FD); 163 ContextName = Name.str(); 164 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 165 ContextName = CGF.CurFn->getName(); 166 else 167 llvm_unreachable("Unknown context for static var decl"); 168 169 return ContextName + Separator + D.getNameAsString(); 170 } 171 172 llvm::GlobalVariable * 173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 174 const char *Separator, 175 llvm::GlobalValue::LinkageTypes Linkage) { 176 QualType Ty = D.getType(); 177 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 178 179 // Use the label if the variable is renamed with the asm-label extension. 180 std::string Name; 181 if (D.hasAttr<AsmLabelAttr>()) 182 Name = CGM.getMangledName(&D); 183 else 184 Name = GetStaticDeclName(*this, D, Separator); 185 186 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 187 llvm::GlobalVariable *GV = 188 new llvm::GlobalVariable(CGM.getModule(), LTy, 189 Ty.isConstant(getContext()), Linkage, 190 CGM.EmitNullConstant(D.getType()), Name, 0, 191 D.isThreadSpecified(), 192 CGM.getContext().getTargetAddressSpace(Ty)); 193 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 194 if (Linkage != llvm::GlobalValue::InternalLinkage) 195 GV->setVisibility(CurFn->getVisibility()); 196 return GV; 197 } 198 199 /// hasNontrivialDestruction - Determine whether a type's destruction is 200 /// non-trivial. If so, and the variable uses static initialization, we must 201 /// register its destructor to run on exit. 202 static bool hasNontrivialDestruction(QualType T) { 203 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 204 return RD && !RD->hasTrivialDestructor(); 205 } 206 207 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 208 /// global variable that has already been created for it. If the initializer 209 /// has a different type than GV does, this may free GV and return a different 210 /// one. Otherwise it just returns GV. 211 llvm::GlobalVariable * 212 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 213 llvm::GlobalVariable *GV) { 214 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 215 216 // If constant emission failed, then this should be a C++ static 217 // initializer. 218 if (!Init) { 219 if (!getContext().getLangOptions().CPlusPlus) 220 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 221 else if (Builder.GetInsertBlock()) { 222 // Since we have a static initializer, this global variable can't 223 // be constant. 224 GV->setConstant(false); 225 226 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 227 } 228 return GV; 229 } 230 231 // The initializer may differ in type from the global. Rewrite 232 // the global to match the initializer. (We have to do this 233 // because some types, like unions, can't be completely represented 234 // in the LLVM type system.) 235 if (GV->getType()->getElementType() != Init->getType()) { 236 llvm::GlobalVariable *OldGV = GV; 237 238 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 239 OldGV->isConstant(), 240 OldGV->getLinkage(), Init, "", 241 /*InsertBefore*/ OldGV, 242 D.isThreadSpecified(), 243 CGM.getContext().getTargetAddressSpace(D.getType())); 244 GV->setVisibility(OldGV->getVisibility()); 245 246 // Steal the name of the old global 247 GV->takeName(OldGV); 248 249 // Replace all uses of the old global with the new global 250 llvm::Constant *NewPtrForOldDecl = 251 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 252 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 253 254 // Erase the old global, since it is no longer used. 255 OldGV->eraseFromParent(); 256 } 257 258 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 259 GV->setInitializer(Init); 260 261 if (hasNontrivialDestruction(D.getType())) { 262 // We have a constant initializer, but a nontrivial destructor. We still 263 // need to perform a guarded "initialization" in order to register the 264 // destructor. 265 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 266 } 267 268 return GV; 269 } 270 271 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 272 llvm::GlobalValue::LinkageTypes Linkage) { 273 llvm::Value *&DMEntry = LocalDeclMap[&D]; 274 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 275 276 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 277 278 // Store into LocalDeclMap before generating initializer to handle 279 // circular references. 280 DMEntry = GV; 281 282 // We can't have a VLA here, but we can have a pointer to a VLA, 283 // even though that doesn't really make any sense. 284 // Make sure to evaluate VLA bounds now so that we have them for later. 285 if (D.getType()->isVariablyModifiedType()) 286 EmitVariablyModifiedType(D.getType()); 287 288 // Local static block variables must be treated as globals as they may be 289 // referenced in their RHS initializer block-literal expresion. 290 CGM.setStaticLocalDeclAddress(&D, GV); 291 292 // If this value has an initializer, emit it. 293 if (D.getInit()) 294 GV = AddInitializerToStaticVarDecl(D, GV); 295 296 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 297 298 if (D.hasAttr<AnnotateAttr>()) 299 CGM.AddGlobalAnnotations(&D, GV); 300 301 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 302 GV->setSection(SA->getName()); 303 304 if (D.hasAttr<UsedAttr>()) 305 CGM.AddUsedGlobal(GV); 306 307 // We may have to cast the constant because of the initializer 308 // mismatch above. 309 // 310 // FIXME: It is really dangerous to store this in the map; if anyone 311 // RAUW's the GV uses of this constant will be invalid. 312 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 313 llvm::Type *LPtrTy = 314 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 315 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 316 317 // Emit global variable debug descriptor for static vars. 318 CGDebugInfo *DI = getDebugInfo(); 319 if (DI) { 320 DI->setLocation(D.getLocation()); 321 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 322 } 323 } 324 325 namespace { 326 struct DestroyObject : EHScopeStack::Cleanup { 327 DestroyObject(llvm::Value *addr, QualType type, 328 CodeGenFunction::Destroyer *destroyer, 329 bool useEHCleanupForArray) 330 : addr(addr), type(type), destroyer(destroyer), 331 useEHCleanupForArray(useEHCleanupForArray) {} 332 333 llvm::Value *addr; 334 QualType type; 335 CodeGenFunction::Destroyer *destroyer; 336 bool useEHCleanupForArray; 337 338 void Emit(CodeGenFunction &CGF, Flags flags) { 339 // Don't use an EH cleanup recursively from an EH cleanup. 340 bool useEHCleanupForArray = 341 flags.isForNormalCleanup() && this->useEHCleanupForArray; 342 343 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 344 } 345 }; 346 347 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 348 DestroyNRVOVariable(llvm::Value *addr, 349 const CXXDestructorDecl *Dtor, 350 llvm::Value *NRVOFlag) 351 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 352 353 const CXXDestructorDecl *Dtor; 354 llvm::Value *NRVOFlag; 355 llvm::Value *Loc; 356 357 void Emit(CodeGenFunction &CGF, Flags flags) { 358 // Along the exceptions path we always execute the dtor. 359 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 360 361 llvm::BasicBlock *SkipDtorBB = 0; 362 if (NRVO) { 363 // If we exited via NRVO, we skip the destructor call. 364 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 365 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 366 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 367 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 368 CGF.EmitBlock(RunDtorBB); 369 } 370 371 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 372 /*ForVirtualBase=*/false, Loc); 373 374 if (NRVO) CGF.EmitBlock(SkipDtorBB); 375 } 376 }; 377 378 struct CallStackRestore : EHScopeStack::Cleanup { 379 llvm::Value *Stack; 380 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 381 void Emit(CodeGenFunction &CGF, Flags flags) { 382 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 383 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 384 CGF.Builder.CreateCall(F, V); 385 } 386 }; 387 388 struct ExtendGCLifetime : EHScopeStack::Cleanup { 389 const VarDecl &Var; 390 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 391 392 void Emit(CodeGenFunction &CGF, Flags flags) { 393 // Compute the address of the local variable, in case it's a 394 // byref or something. 395 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 396 SourceLocation()); 397 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 398 CGF.EmitExtendGCLifetime(value); 399 } 400 }; 401 402 struct CallCleanupFunction : EHScopeStack::Cleanup { 403 llvm::Constant *CleanupFn; 404 const CGFunctionInfo &FnInfo; 405 const VarDecl &Var; 406 407 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 408 const VarDecl *Var) 409 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 410 411 void Emit(CodeGenFunction &CGF, Flags flags) { 412 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 413 SourceLocation()); 414 // Compute the address of the local variable, in case it's a byref 415 // or something. 416 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 417 418 // In some cases, the type of the function argument will be different from 419 // the type of the pointer. An example of this is 420 // void f(void* arg); 421 // __attribute__((cleanup(f))) void *g; 422 // 423 // To fix this we insert a bitcast here. 424 QualType ArgTy = FnInfo.arg_begin()->type; 425 llvm::Value *Arg = 426 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 427 428 CallArgList Args; 429 Args.add(RValue::get(Arg), 430 CGF.getContext().getPointerType(Var.getType())); 431 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 432 } 433 }; 434 } 435 436 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 437 /// variable with lifetime. 438 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 439 llvm::Value *addr, 440 Qualifiers::ObjCLifetime lifetime) { 441 switch (lifetime) { 442 case Qualifiers::OCL_None: 443 llvm_unreachable("present but none"); 444 445 case Qualifiers::OCL_ExplicitNone: 446 // nothing to do 447 break; 448 449 case Qualifiers::OCL_Strong: { 450 CodeGenFunction::Destroyer *destroyer = 451 (var.hasAttr<ObjCPreciseLifetimeAttr>() 452 ? CodeGenFunction::destroyARCStrongPrecise 453 : CodeGenFunction::destroyARCStrongImprecise); 454 455 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 456 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 457 cleanupKind & EHCleanup); 458 break; 459 } 460 case Qualifiers::OCL_Autoreleasing: 461 // nothing to do 462 break; 463 464 case Qualifiers::OCL_Weak: 465 // __weak objects always get EH cleanups; otherwise, exceptions 466 // could cause really nasty crashes instead of mere leaks. 467 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 468 CodeGenFunction::destroyARCWeak, 469 /*useEHCleanup*/ true); 470 break; 471 } 472 } 473 474 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 475 if (const Expr *e = dyn_cast<Expr>(s)) { 476 // Skip the most common kinds of expressions that make 477 // hierarchy-walking expensive. 478 s = e = e->IgnoreParenCasts(); 479 480 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 481 return (ref->getDecl() == &var); 482 } 483 484 for (Stmt::const_child_range children = s->children(); children; ++children) 485 // children might be null; as in missing decl or conditional of an if-stmt. 486 if ((*children) && isAccessedBy(var, *children)) 487 return true; 488 489 return false; 490 } 491 492 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 493 if (!decl) return false; 494 if (!isa<VarDecl>(decl)) return false; 495 const VarDecl *var = cast<VarDecl>(decl); 496 return isAccessedBy(*var, e); 497 } 498 499 static void drillIntoBlockVariable(CodeGenFunction &CGF, 500 LValue &lvalue, 501 const VarDecl *var) { 502 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 503 } 504 505 void CodeGenFunction::EmitScalarInit(const Expr *init, 506 const ValueDecl *D, 507 LValue lvalue, 508 bool capturedByInit) { 509 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 510 if (!lifetime) { 511 llvm::Value *value = EmitScalarExpr(init); 512 if (capturedByInit) 513 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 514 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 515 return; 516 } 517 518 // If we're emitting a value with lifetime, we have to do the 519 // initialization *before* we leave the cleanup scopes. 520 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 521 enterFullExpression(ewc); 522 init = ewc->getSubExpr(); 523 } 524 CodeGenFunction::RunCleanupsScope Scope(*this); 525 526 // We have to maintain the illusion that the variable is 527 // zero-initialized. If the variable might be accessed in its 528 // initializer, zero-initialize before running the initializer, then 529 // actually perform the initialization with an assign. 530 bool accessedByInit = false; 531 if (lifetime != Qualifiers::OCL_ExplicitNone) 532 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 533 if (accessedByInit) { 534 LValue tempLV = lvalue; 535 // Drill down to the __block object if necessary. 536 if (capturedByInit) { 537 // We can use a simple GEP for this because it can't have been 538 // moved yet. 539 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 540 getByRefValueLLVMField(cast<VarDecl>(D)))); 541 } 542 543 llvm::PointerType *ty 544 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 545 ty = cast<llvm::PointerType>(ty->getElementType()); 546 547 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 548 549 // If __weak, we want to use a barrier under certain conditions. 550 if (lifetime == Qualifiers::OCL_Weak) 551 EmitARCInitWeak(tempLV.getAddress(), zero); 552 553 // Otherwise just do a simple store. 554 else 555 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 556 } 557 558 // Emit the initializer. 559 llvm::Value *value = 0; 560 561 switch (lifetime) { 562 case Qualifiers::OCL_None: 563 llvm_unreachable("present but none"); 564 565 case Qualifiers::OCL_ExplicitNone: 566 // nothing to do 567 value = EmitScalarExpr(init); 568 break; 569 570 case Qualifiers::OCL_Strong: { 571 value = EmitARCRetainScalarExpr(init); 572 break; 573 } 574 575 case Qualifiers::OCL_Weak: { 576 // No way to optimize a producing initializer into this. It's not 577 // worth optimizing for, because the value will immediately 578 // disappear in the common case. 579 value = EmitScalarExpr(init); 580 581 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 582 if (accessedByInit) 583 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 584 else 585 EmitARCInitWeak(lvalue.getAddress(), value); 586 return; 587 } 588 589 case Qualifiers::OCL_Autoreleasing: 590 value = EmitARCRetainAutoreleaseScalarExpr(init); 591 break; 592 } 593 594 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 595 596 // If the variable might have been accessed by its initializer, we 597 // might have to initialize with a barrier. We have to do this for 598 // both __weak and __strong, but __weak got filtered out above. 599 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 600 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 601 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 602 EmitARCRelease(oldValue, /*precise*/ false); 603 return; 604 } 605 606 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 607 } 608 609 /// EmitScalarInit - Initialize the given lvalue with the given object. 610 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 611 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 612 if (!lifetime) 613 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 614 615 switch (lifetime) { 616 case Qualifiers::OCL_None: 617 llvm_unreachable("present but none"); 618 619 case Qualifiers::OCL_ExplicitNone: 620 // nothing to do 621 break; 622 623 case Qualifiers::OCL_Strong: 624 init = EmitARCRetain(lvalue.getType(), init); 625 break; 626 627 case Qualifiers::OCL_Weak: 628 // Initialize and then skip the primitive store. 629 EmitARCInitWeak(lvalue.getAddress(), init); 630 return; 631 632 case Qualifiers::OCL_Autoreleasing: 633 init = EmitARCRetainAutorelease(lvalue.getType(), init); 634 break; 635 } 636 637 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 638 } 639 640 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 641 /// non-zero parts of the specified initializer with equal or fewer than 642 /// NumStores scalar stores. 643 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 644 unsigned &NumStores) { 645 // Zero and Undef never requires any extra stores. 646 if (isa<llvm::ConstantAggregateZero>(Init) || 647 isa<llvm::ConstantPointerNull>(Init) || 648 isa<llvm::UndefValue>(Init)) 649 return true; 650 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 651 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 652 isa<llvm::ConstantExpr>(Init)) 653 return Init->isNullValue() || NumStores--; 654 655 // See if we can emit each element. 656 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 657 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 658 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 659 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 660 return false; 661 } 662 return true; 663 } 664 665 if (llvm::ConstantDataSequential *CDS = 666 dyn_cast<llvm::ConstantDataSequential>(Init)) { 667 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 668 llvm::Constant *Elt = CDS->getElementAsConstant(i); 669 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 670 return false; 671 } 672 return true; 673 } 674 675 // Anything else is hard and scary. 676 return false; 677 } 678 679 /// emitStoresForInitAfterMemset - For inits that 680 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 681 /// stores that would be required. 682 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 683 bool isVolatile, CGBuilderTy &Builder) { 684 // Zero doesn't require a store. 685 if (Init->isNullValue() || isa<llvm::UndefValue>(Init)) 686 return; 687 688 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 689 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 690 isa<llvm::ConstantExpr>(Init)) { 691 Builder.CreateStore(Init, Loc, isVolatile); 692 return; 693 } 694 695 if (llvm::ConstantDataSequential *CDS = 696 dyn_cast<llvm::ConstantDataSequential>(Init)) { 697 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 698 llvm::Constant *Elt = CDS->getElementAsConstant(i); 699 700 // Get a pointer to the element and emit it. 701 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 702 isVolatile, Builder); 703 } 704 return; 705 } 706 707 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 708 "Unknown value type!"); 709 710 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 711 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 712 // Get a pointer to the element and emit it. 713 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 714 isVolatile, Builder); 715 } 716 } 717 718 719 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 720 /// plus some stores to initialize a local variable instead of using a memcpy 721 /// from a constant global. It is beneficial to use memset if the global is all 722 /// zeros, or mostly zeros and large. 723 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 724 uint64_t GlobalSize) { 725 // If a global is all zeros, always use a memset. 726 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 727 728 729 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 730 // do it if it will require 6 or fewer scalar stores. 731 // TODO: Should budget depends on the size? Avoiding a large global warrants 732 // plopping in more stores. 733 unsigned StoreBudget = 6; 734 uint64_t SizeLimit = 32; 735 736 return GlobalSize > SizeLimit && 737 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 738 } 739 740 741 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 742 /// variable declaration with auto, register, or no storage class specifier. 743 /// These turn into simple stack objects, or GlobalValues depending on target. 744 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 745 AutoVarEmission emission = EmitAutoVarAlloca(D); 746 EmitAutoVarInit(emission); 747 EmitAutoVarCleanups(emission); 748 } 749 750 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 751 /// local variable. Does not emit initalization or destruction. 752 CodeGenFunction::AutoVarEmission 753 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 754 QualType Ty = D.getType(); 755 756 AutoVarEmission emission(D); 757 758 bool isByRef = D.hasAttr<BlocksAttr>(); 759 emission.IsByRef = isByRef; 760 761 CharUnits alignment = getContext().getDeclAlign(&D); 762 emission.Alignment = alignment; 763 764 // If the type is variably-modified, emit all the VLA sizes for it. 765 if (Ty->isVariablyModifiedType()) 766 EmitVariablyModifiedType(Ty); 767 768 llvm::Value *DeclPtr; 769 if (Ty->isConstantSizeType()) { 770 if (!Target.useGlobalsForAutomaticVariables()) { 771 bool NRVO = getContext().getLangOptions().ElideConstructors && 772 D.isNRVOVariable(); 773 774 // If this value is a POD array or struct with a statically 775 // determinable constant initializer, there are optimizations we can do. 776 // 777 // TODO: We should constant-evaluate the initializer of any variable, 778 // as long as it is initialized by a constant expression. Currently, 779 // isConstantInitializer produces wrong answers for structs with 780 // reference or bitfield members, and a few other cases, and checking 781 // for POD-ness protects us from some of these. 782 if (D.getInit() && 783 (Ty->isArrayType() || Ty->isRecordType()) && 784 (Ty.isPODType(getContext()) || 785 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 786 D.getInit()->isConstantInitializer(getContext(), false)) { 787 788 // If the variable's a const type, and it's neither an NRVO 789 // candidate nor a __block variable and has no mutable members, 790 // emit it as a global instead. 791 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 792 CGM.isTypeConstant(Ty, true)) { 793 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 794 795 emission.Address = 0; // signal this condition to later callbacks 796 assert(emission.wasEmittedAsGlobal()); 797 return emission; 798 } 799 800 // Otherwise, tell the initialization code that we're in this case. 801 emission.IsConstantAggregate = true; 802 } 803 804 // A normal fixed sized variable becomes an alloca in the entry block, 805 // unless it's an NRVO variable. 806 llvm::Type *LTy = ConvertTypeForMem(Ty); 807 808 if (NRVO) { 809 // The named return value optimization: allocate this variable in the 810 // return slot, so that we can elide the copy when returning this 811 // variable (C++0x [class.copy]p34). 812 DeclPtr = ReturnValue; 813 814 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 815 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 816 // Create a flag that is used to indicate when the NRVO was applied 817 // to this variable. Set it to zero to indicate that NRVO was not 818 // applied. 819 llvm::Value *Zero = Builder.getFalse(); 820 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 821 EnsureInsertPoint(); 822 Builder.CreateStore(Zero, NRVOFlag); 823 824 // Record the NRVO flag for this variable. 825 NRVOFlags[&D] = NRVOFlag; 826 emission.NRVOFlag = NRVOFlag; 827 } 828 } 829 } else { 830 if (isByRef) 831 LTy = BuildByRefType(&D); 832 833 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 834 Alloc->setName(D.getName()); 835 836 CharUnits allocaAlignment = alignment; 837 if (isByRef) 838 allocaAlignment = std::max(allocaAlignment, 839 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 840 Alloc->setAlignment(allocaAlignment.getQuantity()); 841 DeclPtr = Alloc; 842 } 843 } else { 844 // Targets that don't support recursion emit locals as globals. 845 const char *Class = 846 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 847 DeclPtr = CreateStaticVarDecl(D, Class, 848 llvm::GlobalValue::InternalLinkage); 849 } 850 } else { 851 EnsureInsertPoint(); 852 853 if (!DidCallStackSave) { 854 // Save the stack. 855 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 856 857 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 858 llvm::Value *V = Builder.CreateCall(F); 859 860 Builder.CreateStore(V, Stack); 861 862 DidCallStackSave = true; 863 864 // Push a cleanup block and restore the stack there. 865 // FIXME: in general circumstances, this should be an EH cleanup. 866 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 867 } 868 869 llvm::Value *elementCount; 870 QualType elementType; 871 llvm::tie(elementCount, elementType) = getVLASize(Ty); 872 873 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 874 875 // Allocate memory for the array. 876 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 877 vla->setAlignment(alignment.getQuantity()); 878 879 DeclPtr = vla; 880 } 881 882 llvm::Value *&DMEntry = LocalDeclMap[&D]; 883 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 884 DMEntry = DeclPtr; 885 emission.Address = DeclPtr; 886 887 // Emit debug info for local var declaration. 888 if (HaveInsertPoint()) 889 if (CGDebugInfo *DI = getDebugInfo()) { 890 DI->setLocation(D.getLocation()); 891 if (Target.useGlobalsForAutomaticVariables()) { 892 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 893 } else 894 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 895 } 896 897 if (D.hasAttr<AnnotateAttr>()) 898 EmitVarAnnotations(&D, emission.Address); 899 900 return emission; 901 } 902 903 /// Determines whether the given __block variable is potentially 904 /// captured by the given expression. 905 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 906 // Skip the most common kinds of expressions that make 907 // hierarchy-walking expensive. 908 e = e->IgnoreParenCasts(); 909 910 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 911 const BlockDecl *block = be->getBlockDecl(); 912 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 913 e = block->capture_end(); i != e; ++i) { 914 if (i->getVariable() == &var) 915 return true; 916 } 917 918 // No need to walk into the subexpressions. 919 return false; 920 } 921 922 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 923 const CompoundStmt *CS = SE->getSubStmt(); 924 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 925 BE = CS->body_end(); BI != BE; ++BI) 926 if (Expr *E = dyn_cast<Expr>((*BI))) { 927 if (isCapturedBy(var, E)) 928 return true; 929 } 930 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 931 // special case declarations 932 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 933 I != E; ++I) { 934 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 935 Expr *Init = VD->getInit(); 936 if (Init && isCapturedBy(var, Init)) 937 return true; 938 } 939 } 940 } 941 else 942 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 943 // Later, provide code to poke into statements for capture analysis. 944 return true; 945 return false; 946 } 947 948 for (Stmt::const_child_range children = e->children(); children; ++children) 949 if (isCapturedBy(var, cast<Expr>(*children))) 950 return true; 951 952 return false; 953 } 954 955 /// \brief Determine whether the given initializer is trivial in the sense 956 /// that it requires no code to be generated. 957 static bool isTrivialInitializer(const Expr *Init) { 958 if (!Init) 959 return true; 960 961 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 962 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 963 if (Constructor->isTrivial() && 964 Constructor->isDefaultConstructor() && 965 !Construct->requiresZeroInitialization()) 966 return true; 967 968 return false; 969 } 970 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 971 assert(emission.Variable && "emission was not valid!"); 972 973 // If this was emitted as a global constant, we're done. 974 if (emission.wasEmittedAsGlobal()) return; 975 976 const VarDecl &D = *emission.Variable; 977 QualType type = D.getType(); 978 979 // If this local has an initializer, emit it now. 980 const Expr *Init = D.getInit(); 981 982 // If we are at an unreachable point, we don't need to emit the initializer 983 // unless it contains a label. 984 if (!HaveInsertPoint()) { 985 if (!Init || !ContainsLabel(Init)) return; 986 EnsureInsertPoint(); 987 } 988 989 // Initialize the structure of a __block variable. 990 if (emission.IsByRef) 991 emitByrefStructureInit(emission); 992 993 if (isTrivialInitializer(Init)) 994 return; 995 996 CharUnits alignment = emission.Alignment; 997 998 // Check whether this is a byref variable that's potentially 999 // captured and moved by its own initializer. If so, we'll need to 1000 // emit the initializer first, then copy into the variable. 1001 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1002 1003 llvm::Value *Loc = 1004 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1005 1006 llvm::Constant *constant = 0; 1007 if (emission.IsConstantAggregate) { 1008 assert(!capturedByInit && "constant init contains a capturing block?"); 1009 constant = CGM.EmitConstantInit(D, this); 1010 } 1011 1012 if (!constant) { 1013 LValue lv = MakeAddrLValue(Loc, type, alignment); 1014 lv.setNonGC(true); 1015 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1016 } 1017 1018 // If this is a simple aggregate initialization, we can optimize it 1019 // in various ways. 1020 bool isVolatile = type.isVolatileQualified(); 1021 1022 llvm::Value *SizeVal = 1023 llvm::ConstantInt::get(IntPtrTy, 1024 getContext().getTypeSizeInChars(type).getQuantity()); 1025 1026 llvm::Type *BP = Int8PtrTy; 1027 if (Loc->getType() != BP) 1028 Loc = Builder.CreateBitCast(Loc, BP); 1029 1030 // If the initializer is all or mostly zeros, codegen with memset then do 1031 // a few stores afterward. 1032 if (shouldUseMemSetPlusStoresToInitialize(constant, 1033 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 1034 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1035 alignment.getQuantity(), isVolatile); 1036 if (!constant->isNullValue()) { 1037 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1038 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1039 } 1040 } else { 1041 // Otherwise, create a temporary global with the initializer then 1042 // memcpy from the global to the alloca. 1043 std::string Name = GetStaticDeclName(*this, D, "."); 1044 llvm::GlobalVariable *GV = 1045 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1046 llvm::GlobalValue::PrivateLinkage, 1047 constant, Name, 0, false, 0); 1048 GV->setAlignment(alignment.getQuantity()); 1049 GV->setUnnamedAddr(true); 1050 1051 llvm::Value *SrcPtr = GV; 1052 if (SrcPtr->getType() != BP) 1053 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1054 1055 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1056 isVolatile); 1057 } 1058 } 1059 1060 /// Emit an expression as an initializer for a variable at the given 1061 /// location. The expression is not necessarily the normal 1062 /// initializer for the variable, and the address is not necessarily 1063 /// its normal location. 1064 /// 1065 /// \param init the initializing expression 1066 /// \param var the variable to act as if we're initializing 1067 /// \param loc the address to initialize; its type is a pointer 1068 /// to the LLVM mapping of the variable's type 1069 /// \param alignment the alignment of the address 1070 /// \param capturedByInit true if the variable is a __block variable 1071 /// whose address is potentially changed by the initializer 1072 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1073 const ValueDecl *D, 1074 LValue lvalue, 1075 bool capturedByInit) { 1076 QualType type = D->getType(); 1077 1078 if (type->isReferenceType()) { 1079 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1080 if (capturedByInit) 1081 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1082 EmitStoreThroughLValue(rvalue, lvalue, true); 1083 } else if (!hasAggregateLLVMType(type)) { 1084 EmitScalarInit(init, D, lvalue, capturedByInit); 1085 } else if (type->isAnyComplexType()) { 1086 ComplexPairTy complex = EmitComplexExpr(init); 1087 if (capturedByInit) 1088 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1089 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile()); 1090 } else { 1091 // TODO: how can we delay here if D is captured by its initializer? 1092 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1093 AggValueSlot::IsDestructed, 1094 AggValueSlot::DoesNotNeedGCBarriers, 1095 AggValueSlot::IsNotAliased)); 1096 MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init); 1097 } 1098 } 1099 1100 /// Enter a destroy cleanup for the given local variable. 1101 void CodeGenFunction::emitAutoVarTypeCleanup( 1102 const CodeGenFunction::AutoVarEmission &emission, 1103 QualType::DestructionKind dtorKind) { 1104 assert(dtorKind != QualType::DK_none); 1105 1106 // Note that for __block variables, we want to destroy the 1107 // original stack object, not the possibly forwarded object. 1108 llvm::Value *addr = emission.getObjectAddress(*this); 1109 1110 const VarDecl *var = emission.Variable; 1111 QualType type = var->getType(); 1112 1113 CleanupKind cleanupKind = NormalAndEHCleanup; 1114 CodeGenFunction::Destroyer *destroyer = 0; 1115 1116 switch (dtorKind) { 1117 case QualType::DK_none: 1118 llvm_unreachable("no cleanup for trivially-destructible variable"); 1119 1120 case QualType::DK_cxx_destructor: 1121 // If there's an NRVO flag on the emission, we need a different 1122 // cleanup. 1123 if (emission.NRVOFlag) { 1124 assert(!type->isArrayType()); 1125 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1126 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1127 emission.NRVOFlag); 1128 return; 1129 } 1130 break; 1131 1132 case QualType::DK_objc_strong_lifetime: 1133 // Suppress cleanups for pseudo-strong variables. 1134 if (var->isARCPseudoStrong()) return; 1135 1136 // Otherwise, consider whether to use an EH cleanup or not. 1137 cleanupKind = getARCCleanupKind(); 1138 1139 // Use the imprecise destroyer by default. 1140 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1141 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1142 break; 1143 1144 case QualType::DK_objc_weak_lifetime: 1145 break; 1146 } 1147 1148 // If we haven't chosen a more specific destroyer, use the default. 1149 if (!destroyer) destroyer = getDestroyer(dtorKind); 1150 1151 // Use an EH cleanup in array destructors iff the destructor itself 1152 // is being pushed as an EH cleanup. 1153 bool useEHCleanup = (cleanupKind & EHCleanup); 1154 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1155 useEHCleanup); 1156 } 1157 1158 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1159 assert(emission.Variable && "emission was not valid!"); 1160 1161 // If this was emitted as a global constant, we're done. 1162 if (emission.wasEmittedAsGlobal()) return; 1163 1164 const VarDecl &D = *emission.Variable; 1165 1166 // Check the type for a cleanup. 1167 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1168 emitAutoVarTypeCleanup(emission, dtorKind); 1169 1170 // In GC mode, honor objc_precise_lifetime. 1171 if (getLangOptions().getGC() != LangOptions::NonGC && 1172 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1173 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1174 } 1175 1176 // Handle the cleanup attribute. 1177 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1178 const FunctionDecl *FD = CA->getFunctionDecl(); 1179 1180 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1181 assert(F && "Could not find function!"); 1182 1183 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1184 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1185 } 1186 1187 // If this is a block variable, call _Block_object_destroy 1188 // (on the unforwarded address). 1189 if (emission.IsByRef) 1190 enterByrefCleanup(emission); 1191 } 1192 1193 CodeGenFunction::Destroyer * 1194 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1195 switch (kind) { 1196 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1197 case QualType::DK_cxx_destructor: 1198 return destroyCXXObject; 1199 case QualType::DK_objc_strong_lifetime: 1200 return destroyARCStrongPrecise; 1201 case QualType::DK_objc_weak_lifetime: 1202 return destroyARCWeak; 1203 } 1204 llvm_unreachable("Unknown DestructionKind"); 1205 } 1206 1207 /// pushDestroy - Push the standard destructor for the given type. 1208 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1209 llvm::Value *addr, QualType type) { 1210 assert(dtorKind && "cannot push destructor for trivial type"); 1211 1212 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1213 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1214 cleanupKind & EHCleanup); 1215 } 1216 1217 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1218 QualType type, Destroyer *destroyer, 1219 bool useEHCleanupForArray) { 1220 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1221 destroyer, useEHCleanupForArray); 1222 } 1223 1224 /// emitDestroy - Immediately perform the destruction of the given 1225 /// object. 1226 /// 1227 /// \param addr - the address of the object; a type* 1228 /// \param type - the type of the object; if an array type, all 1229 /// objects are destroyed in reverse order 1230 /// \param destroyer - the function to call to destroy individual 1231 /// elements 1232 /// \param useEHCleanupForArray - whether an EH cleanup should be 1233 /// used when destroying array elements, in case one of the 1234 /// destructions throws an exception 1235 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1236 Destroyer *destroyer, 1237 bool useEHCleanupForArray) { 1238 const ArrayType *arrayType = getContext().getAsArrayType(type); 1239 if (!arrayType) 1240 return destroyer(*this, addr, type); 1241 1242 llvm::Value *begin = addr; 1243 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1244 1245 // Normally we have to check whether the array is zero-length. 1246 bool checkZeroLength = true; 1247 1248 // But if the array length is constant, we can suppress that. 1249 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1250 // ...and if it's constant zero, we can just skip the entire thing. 1251 if (constLength->isZero()) return; 1252 checkZeroLength = false; 1253 } 1254 1255 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1256 emitArrayDestroy(begin, end, type, destroyer, 1257 checkZeroLength, useEHCleanupForArray); 1258 } 1259 1260 /// emitArrayDestroy - Destroys all the elements of the given array, 1261 /// beginning from last to first. The array cannot be zero-length. 1262 /// 1263 /// \param begin - a type* denoting the first element of the array 1264 /// \param end - a type* denoting one past the end of the array 1265 /// \param type - the element type of the array 1266 /// \param destroyer - the function to call to destroy elements 1267 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1268 /// the remaining elements in case the destruction of a single 1269 /// element throws 1270 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1271 llvm::Value *end, 1272 QualType type, 1273 Destroyer *destroyer, 1274 bool checkZeroLength, 1275 bool useEHCleanup) { 1276 assert(!type->isArrayType()); 1277 1278 // The basic structure here is a do-while loop, because we don't 1279 // need to check for the zero-element case. 1280 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1281 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1282 1283 if (checkZeroLength) { 1284 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1285 "arraydestroy.isempty"); 1286 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1287 } 1288 1289 // Enter the loop body, making that address the current address. 1290 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1291 EmitBlock(bodyBB); 1292 llvm::PHINode *elementPast = 1293 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1294 elementPast->addIncoming(end, entryBB); 1295 1296 // Shift the address back by one element. 1297 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1298 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1299 "arraydestroy.element"); 1300 1301 if (useEHCleanup) 1302 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1303 1304 // Perform the actual destruction there. 1305 destroyer(*this, element, type); 1306 1307 if (useEHCleanup) 1308 PopCleanupBlock(); 1309 1310 // Check whether we've reached the end. 1311 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1312 Builder.CreateCondBr(done, doneBB, bodyBB); 1313 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1314 1315 // Done. 1316 EmitBlock(doneBB); 1317 } 1318 1319 /// Perform partial array destruction as if in an EH cleanup. Unlike 1320 /// emitArrayDestroy, the element type here may still be an array type. 1321 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1322 llvm::Value *begin, llvm::Value *end, 1323 QualType type, 1324 CodeGenFunction::Destroyer *destroyer) { 1325 // If the element type is itself an array, drill down. 1326 unsigned arrayDepth = 0; 1327 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1328 // VLAs don't require a GEP index to walk into. 1329 if (!isa<VariableArrayType>(arrayType)) 1330 arrayDepth++; 1331 type = arrayType->getElementType(); 1332 } 1333 1334 if (arrayDepth) { 1335 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1336 1337 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1338 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1339 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1340 } 1341 1342 // Destroy the array. We don't ever need an EH cleanup because we 1343 // assume that we're in an EH cleanup ourselves, so a throwing 1344 // destructor causes an immediate terminate. 1345 CGF.emitArrayDestroy(begin, end, type, destroyer, 1346 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1347 } 1348 1349 namespace { 1350 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1351 /// array destroy where the end pointer is regularly determined and 1352 /// does not need to be loaded from a local. 1353 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1354 llvm::Value *ArrayBegin; 1355 llvm::Value *ArrayEnd; 1356 QualType ElementType; 1357 CodeGenFunction::Destroyer *Destroyer; 1358 public: 1359 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1360 QualType elementType, 1361 CodeGenFunction::Destroyer *destroyer) 1362 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1363 ElementType(elementType), Destroyer(destroyer) {} 1364 1365 void Emit(CodeGenFunction &CGF, Flags flags) { 1366 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1367 ElementType, Destroyer); 1368 } 1369 }; 1370 1371 /// IrregularPartialArrayDestroy - a cleanup which performs a 1372 /// partial array destroy where the end pointer is irregularly 1373 /// determined and must be loaded from a local. 1374 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1375 llvm::Value *ArrayBegin; 1376 llvm::Value *ArrayEndPointer; 1377 QualType ElementType; 1378 CodeGenFunction::Destroyer *Destroyer; 1379 public: 1380 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1381 llvm::Value *arrayEndPointer, 1382 QualType elementType, 1383 CodeGenFunction::Destroyer *destroyer) 1384 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1385 ElementType(elementType), Destroyer(destroyer) {} 1386 1387 void Emit(CodeGenFunction &CGF, Flags flags) { 1388 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1389 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1390 ElementType, Destroyer); 1391 } 1392 }; 1393 } 1394 1395 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1396 /// already-constructed elements of the given array. The cleanup 1397 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1398 /// 1399 /// \param elementType - the immediate element type of the array; 1400 /// possibly still an array type 1401 /// \param array - a value of type elementType* 1402 /// \param destructionKind - the kind of destruction required 1403 /// \param initializedElementCount - a value of type size_t* holding 1404 /// the number of successfully-constructed elements 1405 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1406 llvm::Value *arrayEndPointer, 1407 QualType elementType, 1408 Destroyer *destroyer) { 1409 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1410 arrayBegin, arrayEndPointer, 1411 elementType, destroyer); 1412 } 1413 1414 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1415 /// already-constructed elements of the given array. The cleanup 1416 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1417 /// 1418 /// \param elementType - the immediate element type of the array; 1419 /// possibly still an array type 1420 /// \param array - a value of type elementType* 1421 /// \param destructionKind - the kind of destruction required 1422 /// \param initializedElementCount - a value of type size_t* holding 1423 /// the number of successfully-constructed elements 1424 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1425 llvm::Value *arrayEnd, 1426 QualType elementType, 1427 Destroyer *destroyer) { 1428 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1429 arrayBegin, arrayEnd, 1430 elementType, destroyer); 1431 } 1432 1433 namespace { 1434 /// A cleanup to perform a release of an object at the end of a 1435 /// function. This is used to balance out the incoming +1 of a 1436 /// ns_consumed argument when we can't reasonably do that just by 1437 /// not doing the initial retain for a __block argument. 1438 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1439 ConsumeARCParameter(llvm::Value *param) : Param(param) {} 1440 1441 llvm::Value *Param; 1442 1443 void Emit(CodeGenFunction &CGF, Flags flags) { 1444 CGF.EmitARCRelease(Param, /*precise*/ false); 1445 } 1446 }; 1447 } 1448 1449 /// Emit an alloca (or GlobalValue depending on target) 1450 /// for the specified parameter and set up LocalDeclMap. 1451 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1452 unsigned ArgNo) { 1453 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1454 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1455 "Invalid argument to EmitParmDecl"); 1456 1457 Arg->setName(D.getName()); 1458 1459 // Use better IR generation for certain implicit parameters. 1460 if (isa<ImplicitParamDecl>(D)) { 1461 // The only implicit argument a block has is its literal. 1462 if (BlockInfo) { 1463 LocalDeclMap[&D] = Arg; 1464 1465 if (CGDebugInfo *DI = getDebugInfo()) { 1466 DI->setLocation(D.getLocation()); 1467 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 1468 } 1469 1470 return; 1471 } 1472 } 1473 1474 QualType Ty = D.getType(); 1475 1476 llvm::Value *DeclPtr; 1477 // If this is an aggregate or variable sized value, reuse the input pointer. 1478 if (!Ty->isConstantSizeType() || 1479 CodeGenFunction::hasAggregateLLVMType(Ty)) { 1480 DeclPtr = Arg; 1481 } else { 1482 // Otherwise, create a temporary to hold the value. 1483 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1484 D.getName() + ".addr"); 1485 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1486 DeclPtr = Alloc; 1487 1488 bool doStore = true; 1489 1490 Qualifiers qs = Ty.getQualifiers(); 1491 1492 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1493 // We honor __attribute__((ns_consumed)) for types with lifetime. 1494 // For __strong, it's handled by just skipping the initial retain; 1495 // otherwise we have to balance out the initial +1 with an extra 1496 // cleanup to do the release at the end of the function. 1497 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1498 1499 // 'self' is always formally __strong, but if this is not an 1500 // init method then we don't want to retain it. 1501 if (D.isARCPseudoStrong()) { 1502 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1503 assert(&D == method->getSelfDecl()); 1504 assert(lt == Qualifiers::OCL_Strong); 1505 assert(qs.hasConst()); 1506 assert(method->getMethodFamily() != OMF_init); 1507 (void) method; 1508 lt = Qualifiers::OCL_ExplicitNone; 1509 } 1510 1511 if (lt == Qualifiers::OCL_Strong) { 1512 if (!isConsumed) 1513 // Don't use objc_retainBlock for block pointers, because we 1514 // don't want to Block_copy something just because we got it 1515 // as a parameter. 1516 Arg = EmitARCRetainNonBlock(Arg); 1517 } else { 1518 // Push the cleanup for a consumed parameter. 1519 if (isConsumed) 1520 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg); 1521 1522 if (lt == Qualifiers::OCL_Weak) { 1523 EmitARCInitWeak(DeclPtr, Arg); 1524 doStore = false; // The weak init is a store, no need to do two. 1525 } 1526 } 1527 1528 // Enter the cleanup scope. 1529 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1530 } 1531 1532 // Store the initial value into the alloca. 1533 if (doStore) { 1534 LValue lv = MakeAddrLValue(DeclPtr, Ty, 1535 getContext().getDeclAlign(&D)); 1536 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1537 } 1538 } 1539 1540 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1541 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1542 DMEntry = DeclPtr; 1543 1544 // Emit debug info for param declaration. 1545 if (CGDebugInfo *DI = getDebugInfo()) 1546 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1547 1548 if (D.hasAttr<AnnotateAttr>()) 1549 EmitVarAnnotations(&D, DeclPtr); 1550 } 1551