1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "CGOpenCLRuntime.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/GlobalVariable.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 
33 void CodeGenFunction::EmitDecl(const Decl &D) {
34   switch (D.getKind()) {
35   case Decl::TranslationUnit:
36   case Decl::Namespace:
37   case Decl::UnresolvedUsingTypename:
38   case Decl::ClassTemplateSpecialization:
39   case Decl::ClassTemplatePartialSpecialization:
40   case Decl::TemplateTypeParm:
41   case Decl::UnresolvedUsingValue:
42   case Decl::NonTypeTemplateParm:
43   case Decl::CXXMethod:
44   case Decl::CXXConstructor:
45   case Decl::CXXDestructor:
46   case Decl::CXXConversion:
47   case Decl::Field:
48   case Decl::IndirectField:
49   case Decl::ObjCIvar:
50   case Decl::ObjCAtDefsField:
51   case Decl::ParmVar:
52   case Decl::ImplicitParam:
53   case Decl::ClassTemplate:
54   case Decl::FunctionTemplate:
55   case Decl::TypeAliasTemplate:
56   case Decl::TemplateTemplateParm:
57   case Decl::ObjCMethod:
58   case Decl::ObjCCategory:
59   case Decl::ObjCProtocol:
60   case Decl::ObjCInterface:
61   case Decl::ObjCCategoryImpl:
62   case Decl::ObjCImplementation:
63   case Decl::ObjCProperty:
64   case Decl::ObjCCompatibleAlias:
65   case Decl::AccessSpec:
66   case Decl::LinkageSpec:
67   case Decl::ObjCPropertyImpl:
68   case Decl::FileScopeAsm:
69   case Decl::Friend:
70   case Decl::FriendTemplate:
71   case Decl::Block:
72   case Decl::ClassScopeFunctionSpecialization:
73     llvm_unreachable("Declaration should not be in declstmts!");
74   case Decl::Function:  // void X();
75   case Decl::Record:    // struct/union/class X;
76   case Decl::Enum:      // enum X;
77   case Decl::EnumConstant: // enum ? { X = ? }
78   case Decl::CXXRecord: // struct/union/class X; [C++]
79   case Decl::Using:          // using X; [C++]
80   case Decl::UsingShadow:
81   case Decl::UsingDirective: // using namespace X; [C++]
82   case Decl::NamespaceAlias:
83   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84   case Decl::Label:        // __label__ x;
85   case Decl::Import:
86     // None of these decls require codegen support.
87     return;
88 
89   case Decl::Var: {
90     const VarDecl &VD = cast<VarDecl>(D);
91     assert(VD.isLocalVarDecl() &&
92            "Should not see file-scope variables inside a function!");
93     return EmitVarDecl(VD);
94   }
95 
96   case Decl::Typedef:      // typedef int X;
97   case Decl::TypeAlias: {  // using X = int; [C++0x]
98     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
99     QualType Ty = TD.getUnderlyingType();
100 
101     if (Ty->isVariablyModifiedType())
102       EmitVariablyModifiedType(Ty);
103   }
104   }
105 }
106 
107 /// EmitVarDecl - This method handles emission of any variable declaration
108 /// inside a function, including static vars etc.
109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
110   switch (D.getStorageClass()) {
111   case SC_None:
112   case SC_Auto:
113   case SC_Register:
114     return EmitAutoVarDecl(D);
115   case SC_Static: {
116     llvm::GlobalValue::LinkageTypes Linkage =
117       llvm::GlobalValue::InternalLinkage;
118 
119     // If the function definition has some sort of weak linkage, its
120     // static variables should also be weak so that they get properly
121     // uniqued.  We can't do this in C, though, because there's no
122     // standard way to agree on which variables are the same (i.e.
123     // there's no mangling).
124     if (getContext().getLangOptions().CPlusPlus)
125       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
126         Linkage = CurFn->getLinkage();
127 
128     return EmitStaticVarDecl(D, Linkage);
129   }
130   case SC_Extern:
131   case SC_PrivateExtern:
132     // Don't emit it now, allow it to be emitted lazily on its first use.
133     return;
134   case SC_OpenCLWorkGroupLocal:
135     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
136   }
137 
138   llvm_unreachable("Unknown storage class");
139 }
140 
141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
142                                      const char *Separator) {
143   CodeGenModule &CGM = CGF.CGM;
144   if (CGF.getContext().getLangOptions().CPlusPlus) {
145     StringRef Name = CGM.getMangledName(&D);
146     return Name.str();
147   }
148 
149   std::string ContextName;
150   if (!CGF.CurFuncDecl) {
151     // Better be in a block declared in global scope.
152     const NamedDecl *ND = cast<NamedDecl>(&D);
153     const DeclContext *DC = ND->getDeclContext();
154     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
155       MangleBuffer Name;
156       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
157       ContextName = Name.getString();
158     }
159     else
160       llvm_unreachable("Unknown context for block static var decl");
161   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
162     StringRef Name = CGM.getMangledName(FD);
163     ContextName = Name.str();
164   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
165     ContextName = CGF.CurFn->getName();
166   else
167     llvm_unreachable("Unknown context for static var decl");
168 
169   return ContextName + Separator + D.getNameAsString();
170 }
171 
172 llvm::GlobalVariable *
173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
174                                      const char *Separator,
175                                      llvm::GlobalValue::LinkageTypes Linkage) {
176   QualType Ty = D.getType();
177   assert(Ty->isConstantSizeType() && "VLAs can't be static");
178 
179   // Use the label if the variable is renamed with the asm-label extension.
180   std::string Name;
181   if (D.hasAttr<AsmLabelAttr>())
182     Name = CGM.getMangledName(&D);
183   else
184     Name = GetStaticDeclName(*this, D, Separator);
185 
186   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
187   llvm::GlobalVariable *GV =
188     new llvm::GlobalVariable(CGM.getModule(), LTy,
189                              Ty.isConstant(getContext()), Linkage,
190                              CGM.EmitNullConstant(D.getType()), Name, 0,
191                              D.isThreadSpecified(),
192                              CGM.getContext().getTargetAddressSpace(Ty));
193   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
194   if (Linkage != llvm::GlobalValue::InternalLinkage)
195     GV->setVisibility(CurFn->getVisibility());
196   return GV;
197 }
198 
199 /// hasNontrivialDestruction - Determine whether a type's destruction is
200 /// non-trivial. If so, and the variable uses static initialization, we must
201 /// register its destructor to run on exit.
202 static bool hasNontrivialDestruction(QualType T) {
203   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
204   return RD && !RD->hasTrivialDestructor();
205 }
206 
207 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
208 /// global variable that has already been created for it.  If the initializer
209 /// has a different type than GV does, this may free GV and return a different
210 /// one.  Otherwise it just returns GV.
211 llvm::GlobalVariable *
212 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
213                                                llvm::GlobalVariable *GV) {
214   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
215 
216   // If constant emission failed, then this should be a C++ static
217   // initializer.
218   if (!Init) {
219     if (!getContext().getLangOptions().CPlusPlus)
220       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
221     else if (Builder.GetInsertBlock()) {
222       // Since we have a static initializer, this global variable can't
223       // be constant.
224       GV->setConstant(false);
225 
226       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
227     }
228     return GV;
229   }
230 
231   // The initializer may differ in type from the global. Rewrite
232   // the global to match the initializer.  (We have to do this
233   // because some types, like unions, can't be completely represented
234   // in the LLVM type system.)
235   if (GV->getType()->getElementType() != Init->getType()) {
236     llvm::GlobalVariable *OldGV = GV;
237 
238     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
239                                   OldGV->isConstant(),
240                                   OldGV->getLinkage(), Init, "",
241                                   /*InsertBefore*/ OldGV,
242                                   D.isThreadSpecified(),
243                            CGM.getContext().getTargetAddressSpace(D.getType()));
244     GV->setVisibility(OldGV->getVisibility());
245 
246     // Steal the name of the old global
247     GV->takeName(OldGV);
248 
249     // Replace all uses of the old global with the new global
250     llvm::Constant *NewPtrForOldDecl =
251     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
252     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
253 
254     // Erase the old global, since it is no longer used.
255     OldGV->eraseFromParent();
256   }
257 
258   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
259   GV->setInitializer(Init);
260 
261   if (hasNontrivialDestruction(D.getType())) {
262     // We have a constant initializer, but a nontrivial destructor. We still
263     // need to perform a guarded "initialization" in order to register the
264     // destructor.
265     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
266   }
267 
268   return GV;
269 }
270 
271 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
272                                       llvm::GlobalValue::LinkageTypes Linkage) {
273   llvm::Value *&DMEntry = LocalDeclMap[&D];
274   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
275 
276   llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
277 
278   // Store into LocalDeclMap before generating initializer to handle
279   // circular references.
280   DMEntry = GV;
281 
282   // We can't have a VLA here, but we can have a pointer to a VLA,
283   // even though that doesn't really make any sense.
284   // Make sure to evaluate VLA bounds now so that we have them for later.
285   if (D.getType()->isVariablyModifiedType())
286     EmitVariablyModifiedType(D.getType());
287 
288   // Local static block variables must be treated as globals as they may be
289   // referenced in their RHS initializer block-literal expresion.
290   CGM.setStaticLocalDeclAddress(&D, GV);
291 
292   // If this value has an initializer, emit it.
293   if (D.getInit())
294     GV = AddInitializerToStaticVarDecl(D, GV);
295 
296   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
297 
298   if (D.hasAttr<AnnotateAttr>())
299     CGM.AddGlobalAnnotations(&D, GV);
300 
301   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
302     GV->setSection(SA->getName());
303 
304   if (D.hasAttr<UsedAttr>())
305     CGM.AddUsedGlobal(GV);
306 
307   // We may have to cast the constant because of the initializer
308   // mismatch above.
309   //
310   // FIXME: It is really dangerous to store this in the map; if anyone
311   // RAUW's the GV uses of this constant will be invalid.
312   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
313   llvm::Type *LPtrTy =
314     LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
315   DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
316 
317   // Emit global variable debug descriptor for static vars.
318   CGDebugInfo *DI = getDebugInfo();
319   if (DI) {
320     DI->setLocation(D.getLocation());
321     DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
322   }
323 }
324 
325 namespace {
326   struct DestroyObject : EHScopeStack::Cleanup {
327     DestroyObject(llvm::Value *addr, QualType type,
328                   CodeGenFunction::Destroyer *destroyer,
329                   bool useEHCleanupForArray)
330       : addr(addr), type(type), destroyer(destroyer),
331         useEHCleanupForArray(useEHCleanupForArray) {}
332 
333     llvm::Value *addr;
334     QualType type;
335     CodeGenFunction::Destroyer *destroyer;
336     bool useEHCleanupForArray;
337 
338     void Emit(CodeGenFunction &CGF, Flags flags) {
339       // Don't use an EH cleanup recursively from an EH cleanup.
340       bool useEHCleanupForArray =
341         flags.isForNormalCleanup() && this->useEHCleanupForArray;
342 
343       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
344     }
345   };
346 
347   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
348     DestroyNRVOVariable(llvm::Value *addr,
349                         const CXXDestructorDecl *Dtor,
350                         llvm::Value *NRVOFlag)
351       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
352 
353     const CXXDestructorDecl *Dtor;
354     llvm::Value *NRVOFlag;
355     llvm::Value *Loc;
356 
357     void Emit(CodeGenFunction &CGF, Flags flags) {
358       // Along the exceptions path we always execute the dtor.
359       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
360 
361       llvm::BasicBlock *SkipDtorBB = 0;
362       if (NRVO) {
363         // If we exited via NRVO, we skip the destructor call.
364         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
365         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
366         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
367         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
368         CGF.EmitBlock(RunDtorBB);
369       }
370 
371       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
372                                 /*ForVirtualBase=*/false, Loc);
373 
374       if (NRVO) CGF.EmitBlock(SkipDtorBB);
375     }
376   };
377 
378   struct CallStackRestore : EHScopeStack::Cleanup {
379     llvm::Value *Stack;
380     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
381     void Emit(CodeGenFunction &CGF, Flags flags) {
382       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
383       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
384       CGF.Builder.CreateCall(F, V);
385     }
386   };
387 
388   struct ExtendGCLifetime : EHScopeStack::Cleanup {
389     const VarDecl &Var;
390     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
391 
392     void Emit(CodeGenFunction &CGF, Flags flags) {
393       // Compute the address of the local variable, in case it's a
394       // byref or something.
395       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
396                       SourceLocation());
397       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
398       CGF.EmitExtendGCLifetime(value);
399     }
400   };
401 
402   struct CallCleanupFunction : EHScopeStack::Cleanup {
403     llvm::Constant *CleanupFn;
404     const CGFunctionInfo &FnInfo;
405     const VarDecl &Var;
406 
407     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
408                         const VarDecl *Var)
409       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
410 
411     void Emit(CodeGenFunction &CGF, Flags flags) {
412       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
413                       SourceLocation());
414       // Compute the address of the local variable, in case it's a byref
415       // or something.
416       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
417 
418       // In some cases, the type of the function argument will be different from
419       // the type of the pointer. An example of this is
420       // void f(void* arg);
421       // __attribute__((cleanup(f))) void *g;
422       //
423       // To fix this we insert a bitcast here.
424       QualType ArgTy = FnInfo.arg_begin()->type;
425       llvm::Value *Arg =
426         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
427 
428       CallArgList Args;
429       Args.add(RValue::get(Arg),
430                CGF.getContext().getPointerType(Var.getType()));
431       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
432     }
433   };
434 }
435 
436 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
437 /// variable with lifetime.
438 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
439                                     llvm::Value *addr,
440                                     Qualifiers::ObjCLifetime lifetime) {
441   switch (lifetime) {
442   case Qualifiers::OCL_None:
443     llvm_unreachable("present but none");
444 
445   case Qualifiers::OCL_ExplicitNone:
446     // nothing to do
447     break;
448 
449   case Qualifiers::OCL_Strong: {
450     CodeGenFunction::Destroyer *destroyer =
451       (var.hasAttr<ObjCPreciseLifetimeAttr>()
452        ? CodeGenFunction::destroyARCStrongPrecise
453        : CodeGenFunction::destroyARCStrongImprecise);
454 
455     CleanupKind cleanupKind = CGF.getARCCleanupKind();
456     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
457                     cleanupKind & EHCleanup);
458     break;
459   }
460   case Qualifiers::OCL_Autoreleasing:
461     // nothing to do
462     break;
463 
464   case Qualifiers::OCL_Weak:
465     // __weak objects always get EH cleanups; otherwise, exceptions
466     // could cause really nasty crashes instead of mere leaks.
467     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
468                     CodeGenFunction::destroyARCWeak,
469                     /*useEHCleanup*/ true);
470     break;
471   }
472 }
473 
474 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
475   if (const Expr *e = dyn_cast<Expr>(s)) {
476     // Skip the most common kinds of expressions that make
477     // hierarchy-walking expensive.
478     s = e = e->IgnoreParenCasts();
479 
480     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
481       return (ref->getDecl() == &var);
482   }
483 
484   for (Stmt::const_child_range children = s->children(); children; ++children)
485     // children might be null; as in missing decl or conditional of an if-stmt.
486     if ((*children) && isAccessedBy(var, *children))
487       return true;
488 
489   return false;
490 }
491 
492 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
493   if (!decl) return false;
494   if (!isa<VarDecl>(decl)) return false;
495   const VarDecl *var = cast<VarDecl>(decl);
496   return isAccessedBy(*var, e);
497 }
498 
499 static void drillIntoBlockVariable(CodeGenFunction &CGF,
500                                    LValue &lvalue,
501                                    const VarDecl *var) {
502   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
503 }
504 
505 void CodeGenFunction::EmitScalarInit(const Expr *init,
506                                      const ValueDecl *D,
507                                      LValue lvalue,
508                                      bool capturedByInit) {
509   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
510   if (!lifetime) {
511     llvm::Value *value = EmitScalarExpr(init);
512     if (capturedByInit)
513       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
514     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
515     return;
516   }
517 
518   // If we're emitting a value with lifetime, we have to do the
519   // initialization *before* we leave the cleanup scopes.
520   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
521     enterFullExpression(ewc);
522     init = ewc->getSubExpr();
523   }
524   CodeGenFunction::RunCleanupsScope Scope(*this);
525 
526   // We have to maintain the illusion that the variable is
527   // zero-initialized.  If the variable might be accessed in its
528   // initializer, zero-initialize before running the initializer, then
529   // actually perform the initialization with an assign.
530   bool accessedByInit = false;
531   if (lifetime != Qualifiers::OCL_ExplicitNone)
532     accessedByInit = (capturedByInit || isAccessedBy(D, init));
533   if (accessedByInit) {
534     LValue tempLV = lvalue;
535     // Drill down to the __block object if necessary.
536     if (capturedByInit) {
537       // We can use a simple GEP for this because it can't have been
538       // moved yet.
539       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
540                                    getByRefValueLLVMField(cast<VarDecl>(D))));
541     }
542 
543     llvm::PointerType *ty
544       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
545     ty = cast<llvm::PointerType>(ty->getElementType());
546 
547     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
548 
549     // If __weak, we want to use a barrier under certain conditions.
550     if (lifetime == Qualifiers::OCL_Weak)
551       EmitARCInitWeak(tempLV.getAddress(), zero);
552 
553     // Otherwise just do a simple store.
554     else
555       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
556   }
557 
558   // Emit the initializer.
559   llvm::Value *value = 0;
560 
561   switch (lifetime) {
562   case Qualifiers::OCL_None:
563     llvm_unreachable("present but none");
564 
565   case Qualifiers::OCL_ExplicitNone:
566     // nothing to do
567     value = EmitScalarExpr(init);
568     break;
569 
570   case Qualifiers::OCL_Strong: {
571     value = EmitARCRetainScalarExpr(init);
572     break;
573   }
574 
575   case Qualifiers::OCL_Weak: {
576     // No way to optimize a producing initializer into this.  It's not
577     // worth optimizing for, because the value will immediately
578     // disappear in the common case.
579     value = EmitScalarExpr(init);
580 
581     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
582     if (accessedByInit)
583       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
584     else
585       EmitARCInitWeak(lvalue.getAddress(), value);
586     return;
587   }
588 
589   case Qualifiers::OCL_Autoreleasing:
590     value = EmitARCRetainAutoreleaseScalarExpr(init);
591     break;
592   }
593 
594   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
595 
596   // If the variable might have been accessed by its initializer, we
597   // might have to initialize with a barrier.  We have to do this for
598   // both __weak and __strong, but __weak got filtered out above.
599   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
600     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
601     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
602     EmitARCRelease(oldValue, /*precise*/ false);
603     return;
604   }
605 
606   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
607 }
608 
609 /// EmitScalarInit - Initialize the given lvalue with the given object.
610 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
611   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
612   if (!lifetime)
613     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
614 
615   switch (lifetime) {
616   case Qualifiers::OCL_None:
617     llvm_unreachable("present but none");
618 
619   case Qualifiers::OCL_ExplicitNone:
620     // nothing to do
621     break;
622 
623   case Qualifiers::OCL_Strong:
624     init = EmitARCRetain(lvalue.getType(), init);
625     break;
626 
627   case Qualifiers::OCL_Weak:
628     // Initialize and then skip the primitive store.
629     EmitARCInitWeak(lvalue.getAddress(), init);
630     return;
631 
632   case Qualifiers::OCL_Autoreleasing:
633     init = EmitARCRetainAutorelease(lvalue.getType(), init);
634     break;
635   }
636 
637   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
638 }
639 
640 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
641 /// non-zero parts of the specified initializer with equal or fewer than
642 /// NumStores scalar stores.
643 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
644                                                 unsigned &NumStores) {
645   // Zero and Undef never requires any extra stores.
646   if (isa<llvm::ConstantAggregateZero>(Init) ||
647       isa<llvm::ConstantPointerNull>(Init) ||
648       isa<llvm::UndefValue>(Init))
649     return true;
650   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
651       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
652       isa<llvm::ConstantExpr>(Init))
653     return Init->isNullValue() || NumStores--;
654 
655   // See if we can emit each element.
656   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
657     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
658       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
659       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
660         return false;
661     }
662     return true;
663   }
664 
665   if (llvm::ConstantDataSequential *CDS =
666         dyn_cast<llvm::ConstantDataSequential>(Init)) {
667     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
668       llvm::Constant *Elt = CDS->getElementAsConstant(i);
669       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
670         return false;
671     }
672     return true;
673   }
674 
675   // Anything else is hard and scary.
676   return false;
677 }
678 
679 /// emitStoresForInitAfterMemset - For inits that
680 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
681 /// stores that would be required.
682 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
683                                          bool isVolatile, CGBuilderTy &Builder) {
684   // Zero doesn't require a store.
685   if (Init->isNullValue() || isa<llvm::UndefValue>(Init))
686     return;
687 
688   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
689       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
690       isa<llvm::ConstantExpr>(Init)) {
691     Builder.CreateStore(Init, Loc, isVolatile);
692     return;
693   }
694 
695   if (llvm::ConstantDataSequential *CDS =
696         dyn_cast<llvm::ConstantDataSequential>(Init)) {
697     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
698       llvm::Constant *Elt = CDS->getElementAsConstant(i);
699 
700       // Get a pointer to the element and emit it.
701       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
702                                    isVolatile, Builder);
703     }
704     return;
705   }
706 
707   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
708          "Unknown value type!");
709 
710   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
711     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
712     // Get a pointer to the element and emit it.
713     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
714                                  isVolatile, Builder);
715   }
716 }
717 
718 
719 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
720 /// plus some stores to initialize a local variable instead of using a memcpy
721 /// from a constant global.  It is beneficial to use memset if the global is all
722 /// zeros, or mostly zeros and large.
723 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
724                                                   uint64_t GlobalSize) {
725   // If a global is all zeros, always use a memset.
726   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
727 
728 
729   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
730   // do it if it will require 6 or fewer scalar stores.
731   // TODO: Should budget depends on the size?  Avoiding a large global warrants
732   // plopping in more stores.
733   unsigned StoreBudget = 6;
734   uint64_t SizeLimit = 32;
735 
736   return GlobalSize > SizeLimit &&
737          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
738 }
739 
740 
741 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
742 /// variable declaration with auto, register, or no storage class specifier.
743 /// These turn into simple stack objects, or GlobalValues depending on target.
744 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
745   AutoVarEmission emission = EmitAutoVarAlloca(D);
746   EmitAutoVarInit(emission);
747   EmitAutoVarCleanups(emission);
748 }
749 
750 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
751 /// local variable.  Does not emit initalization or destruction.
752 CodeGenFunction::AutoVarEmission
753 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
754   QualType Ty = D.getType();
755 
756   AutoVarEmission emission(D);
757 
758   bool isByRef = D.hasAttr<BlocksAttr>();
759   emission.IsByRef = isByRef;
760 
761   CharUnits alignment = getContext().getDeclAlign(&D);
762   emission.Alignment = alignment;
763 
764   // If the type is variably-modified, emit all the VLA sizes for it.
765   if (Ty->isVariablyModifiedType())
766     EmitVariablyModifiedType(Ty);
767 
768   llvm::Value *DeclPtr;
769   if (Ty->isConstantSizeType()) {
770     if (!Target.useGlobalsForAutomaticVariables()) {
771       bool NRVO = getContext().getLangOptions().ElideConstructors &&
772                   D.isNRVOVariable();
773 
774       // If this value is a POD array or struct with a statically
775       // determinable constant initializer, there are optimizations we can do.
776       //
777       // TODO: We should constant-evaluate the initializer of any variable,
778       // as long as it is initialized by a constant expression. Currently,
779       // isConstantInitializer produces wrong answers for structs with
780       // reference or bitfield members, and a few other cases, and checking
781       // for POD-ness protects us from some of these.
782       if (D.getInit() &&
783           (Ty->isArrayType() || Ty->isRecordType()) &&
784           (Ty.isPODType(getContext()) ||
785            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
786           D.getInit()->isConstantInitializer(getContext(), false)) {
787 
788         // If the variable's a const type, and it's neither an NRVO
789         // candidate nor a __block variable and has no mutable members,
790         // emit it as a global instead.
791         if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
792             CGM.isTypeConstant(Ty, true)) {
793           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
794 
795           emission.Address = 0; // signal this condition to later callbacks
796           assert(emission.wasEmittedAsGlobal());
797           return emission;
798         }
799 
800         // Otherwise, tell the initialization code that we're in this case.
801         emission.IsConstantAggregate = true;
802       }
803 
804       // A normal fixed sized variable becomes an alloca in the entry block,
805       // unless it's an NRVO variable.
806       llvm::Type *LTy = ConvertTypeForMem(Ty);
807 
808       if (NRVO) {
809         // The named return value optimization: allocate this variable in the
810         // return slot, so that we can elide the copy when returning this
811         // variable (C++0x [class.copy]p34).
812         DeclPtr = ReturnValue;
813 
814         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
815           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
816             // Create a flag that is used to indicate when the NRVO was applied
817             // to this variable. Set it to zero to indicate that NRVO was not
818             // applied.
819             llvm::Value *Zero = Builder.getFalse();
820             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
821             EnsureInsertPoint();
822             Builder.CreateStore(Zero, NRVOFlag);
823 
824             // Record the NRVO flag for this variable.
825             NRVOFlags[&D] = NRVOFlag;
826             emission.NRVOFlag = NRVOFlag;
827           }
828         }
829       } else {
830         if (isByRef)
831           LTy = BuildByRefType(&D);
832 
833         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
834         Alloc->setName(D.getName());
835 
836         CharUnits allocaAlignment = alignment;
837         if (isByRef)
838           allocaAlignment = std::max(allocaAlignment,
839               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
840         Alloc->setAlignment(allocaAlignment.getQuantity());
841         DeclPtr = Alloc;
842       }
843     } else {
844       // Targets that don't support recursion emit locals as globals.
845       const char *Class =
846         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
847       DeclPtr = CreateStaticVarDecl(D, Class,
848                                     llvm::GlobalValue::InternalLinkage);
849     }
850   } else {
851     EnsureInsertPoint();
852 
853     if (!DidCallStackSave) {
854       // Save the stack.
855       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
856 
857       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
858       llvm::Value *V = Builder.CreateCall(F);
859 
860       Builder.CreateStore(V, Stack);
861 
862       DidCallStackSave = true;
863 
864       // Push a cleanup block and restore the stack there.
865       // FIXME: in general circumstances, this should be an EH cleanup.
866       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
867     }
868 
869     llvm::Value *elementCount;
870     QualType elementType;
871     llvm::tie(elementCount, elementType) = getVLASize(Ty);
872 
873     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
874 
875     // Allocate memory for the array.
876     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
877     vla->setAlignment(alignment.getQuantity());
878 
879     DeclPtr = vla;
880   }
881 
882   llvm::Value *&DMEntry = LocalDeclMap[&D];
883   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
884   DMEntry = DeclPtr;
885   emission.Address = DeclPtr;
886 
887   // Emit debug info for local var declaration.
888   if (HaveInsertPoint())
889     if (CGDebugInfo *DI = getDebugInfo()) {
890       DI->setLocation(D.getLocation());
891       if (Target.useGlobalsForAutomaticVariables()) {
892         DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
893       } else
894         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
895     }
896 
897   if (D.hasAttr<AnnotateAttr>())
898       EmitVarAnnotations(&D, emission.Address);
899 
900   return emission;
901 }
902 
903 /// Determines whether the given __block variable is potentially
904 /// captured by the given expression.
905 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
906   // Skip the most common kinds of expressions that make
907   // hierarchy-walking expensive.
908   e = e->IgnoreParenCasts();
909 
910   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
911     const BlockDecl *block = be->getBlockDecl();
912     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
913            e = block->capture_end(); i != e; ++i) {
914       if (i->getVariable() == &var)
915         return true;
916     }
917 
918     // No need to walk into the subexpressions.
919     return false;
920   }
921 
922   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
923     const CompoundStmt *CS = SE->getSubStmt();
924     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
925 	   BE = CS->body_end(); BI != BE; ++BI)
926       if (Expr *E = dyn_cast<Expr>((*BI))) {
927         if (isCapturedBy(var, E))
928             return true;
929       }
930       else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
931           // special case declarations
932           for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
933                I != E; ++I) {
934               if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
935                 Expr *Init = VD->getInit();
936                 if (Init && isCapturedBy(var, Init))
937                   return true;
938               }
939           }
940       }
941       else
942         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
943         // Later, provide code to poke into statements for capture analysis.
944         return true;
945     return false;
946   }
947 
948   for (Stmt::const_child_range children = e->children(); children; ++children)
949     if (isCapturedBy(var, cast<Expr>(*children)))
950       return true;
951 
952   return false;
953 }
954 
955 /// \brief Determine whether the given initializer is trivial in the sense
956 /// that it requires no code to be generated.
957 static bool isTrivialInitializer(const Expr *Init) {
958   if (!Init)
959     return true;
960 
961   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
962     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
963       if (Constructor->isTrivial() &&
964           Constructor->isDefaultConstructor() &&
965           !Construct->requiresZeroInitialization())
966         return true;
967 
968   return false;
969 }
970 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
971   assert(emission.Variable && "emission was not valid!");
972 
973   // If this was emitted as a global constant, we're done.
974   if (emission.wasEmittedAsGlobal()) return;
975 
976   const VarDecl &D = *emission.Variable;
977   QualType type = D.getType();
978 
979   // If this local has an initializer, emit it now.
980   const Expr *Init = D.getInit();
981 
982   // If we are at an unreachable point, we don't need to emit the initializer
983   // unless it contains a label.
984   if (!HaveInsertPoint()) {
985     if (!Init || !ContainsLabel(Init)) return;
986     EnsureInsertPoint();
987   }
988 
989   // Initialize the structure of a __block variable.
990   if (emission.IsByRef)
991     emitByrefStructureInit(emission);
992 
993   if (isTrivialInitializer(Init))
994     return;
995 
996   CharUnits alignment = emission.Alignment;
997 
998   // Check whether this is a byref variable that's potentially
999   // captured and moved by its own initializer.  If so, we'll need to
1000   // emit the initializer first, then copy into the variable.
1001   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1002 
1003   llvm::Value *Loc =
1004     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1005 
1006   llvm::Constant *constant = 0;
1007   if (emission.IsConstantAggregate) {
1008     assert(!capturedByInit && "constant init contains a capturing block?");
1009     constant = CGM.EmitConstantInit(D, this);
1010   }
1011 
1012   if (!constant) {
1013     LValue lv = MakeAddrLValue(Loc, type, alignment);
1014     lv.setNonGC(true);
1015     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1016   }
1017 
1018   // If this is a simple aggregate initialization, we can optimize it
1019   // in various ways.
1020   bool isVolatile = type.isVolatileQualified();
1021 
1022   llvm::Value *SizeVal =
1023     llvm::ConstantInt::get(IntPtrTy,
1024                            getContext().getTypeSizeInChars(type).getQuantity());
1025 
1026   llvm::Type *BP = Int8PtrTy;
1027   if (Loc->getType() != BP)
1028     Loc = Builder.CreateBitCast(Loc, BP);
1029 
1030   // If the initializer is all or mostly zeros, codegen with memset then do
1031   // a few stores afterward.
1032   if (shouldUseMemSetPlusStoresToInitialize(constant,
1033                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
1034     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1035                          alignment.getQuantity(), isVolatile);
1036     if (!constant->isNullValue()) {
1037       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1038       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1039     }
1040   } else {
1041     // Otherwise, create a temporary global with the initializer then
1042     // memcpy from the global to the alloca.
1043     std::string Name = GetStaticDeclName(*this, D, ".");
1044     llvm::GlobalVariable *GV =
1045       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1046                                llvm::GlobalValue::PrivateLinkage,
1047                                constant, Name, 0, false, 0);
1048     GV->setAlignment(alignment.getQuantity());
1049     GV->setUnnamedAddr(true);
1050 
1051     llvm::Value *SrcPtr = GV;
1052     if (SrcPtr->getType() != BP)
1053       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1054 
1055     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1056                          isVolatile);
1057   }
1058 }
1059 
1060 /// Emit an expression as an initializer for a variable at the given
1061 /// location.  The expression is not necessarily the normal
1062 /// initializer for the variable, and the address is not necessarily
1063 /// its normal location.
1064 ///
1065 /// \param init the initializing expression
1066 /// \param var the variable to act as if we're initializing
1067 /// \param loc the address to initialize; its type is a pointer
1068 ///   to the LLVM mapping of the variable's type
1069 /// \param alignment the alignment of the address
1070 /// \param capturedByInit true if the variable is a __block variable
1071 ///   whose address is potentially changed by the initializer
1072 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1073                                      const ValueDecl *D,
1074                                      LValue lvalue,
1075                                      bool capturedByInit) {
1076   QualType type = D->getType();
1077 
1078   if (type->isReferenceType()) {
1079     RValue rvalue = EmitReferenceBindingToExpr(init, D);
1080     if (capturedByInit)
1081       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1082     EmitStoreThroughLValue(rvalue, lvalue, true);
1083   } else if (!hasAggregateLLVMType(type)) {
1084     EmitScalarInit(init, D, lvalue, capturedByInit);
1085   } else if (type->isAnyComplexType()) {
1086     ComplexPairTy complex = EmitComplexExpr(init);
1087     if (capturedByInit)
1088       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1089     StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1090   } else {
1091     // TODO: how can we delay here if D is captured by its initializer?
1092     EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1093                                               AggValueSlot::IsDestructed,
1094                                          AggValueSlot::DoesNotNeedGCBarriers,
1095                                               AggValueSlot::IsNotAliased));
1096     MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init);
1097   }
1098 }
1099 
1100 /// Enter a destroy cleanup for the given local variable.
1101 void CodeGenFunction::emitAutoVarTypeCleanup(
1102                             const CodeGenFunction::AutoVarEmission &emission,
1103                             QualType::DestructionKind dtorKind) {
1104   assert(dtorKind != QualType::DK_none);
1105 
1106   // Note that for __block variables, we want to destroy the
1107   // original stack object, not the possibly forwarded object.
1108   llvm::Value *addr = emission.getObjectAddress(*this);
1109 
1110   const VarDecl *var = emission.Variable;
1111   QualType type = var->getType();
1112 
1113   CleanupKind cleanupKind = NormalAndEHCleanup;
1114   CodeGenFunction::Destroyer *destroyer = 0;
1115 
1116   switch (dtorKind) {
1117   case QualType::DK_none:
1118     llvm_unreachable("no cleanup for trivially-destructible variable");
1119 
1120   case QualType::DK_cxx_destructor:
1121     // If there's an NRVO flag on the emission, we need a different
1122     // cleanup.
1123     if (emission.NRVOFlag) {
1124       assert(!type->isArrayType());
1125       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1126       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1127                                                emission.NRVOFlag);
1128       return;
1129     }
1130     break;
1131 
1132   case QualType::DK_objc_strong_lifetime:
1133     // Suppress cleanups for pseudo-strong variables.
1134     if (var->isARCPseudoStrong()) return;
1135 
1136     // Otherwise, consider whether to use an EH cleanup or not.
1137     cleanupKind = getARCCleanupKind();
1138 
1139     // Use the imprecise destroyer by default.
1140     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1141       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1142     break;
1143 
1144   case QualType::DK_objc_weak_lifetime:
1145     break;
1146   }
1147 
1148   // If we haven't chosen a more specific destroyer, use the default.
1149   if (!destroyer) destroyer = getDestroyer(dtorKind);
1150 
1151   // Use an EH cleanup in array destructors iff the destructor itself
1152   // is being pushed as an EH cleanup.
1153   bool useEHCleanup = (cleanupKind & EHCleanup);
1154   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1155                                      useEHCleanup);
1156 }
1157 
1158 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1159   assert(emission.Variable && "emission was not valid!");
1160 
1161   // If this was emitted as a global constant, we're done.
1162   if (emission.wasEmittedAsGlobal()) return;
1163 
1164   const VarDecl &D = *emission.Variable;
1165 
1166   // Check the type for a cleanup.
1167   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1168     emitAutoVarTypeCleanup(emission, dtorKind);
1169 
1170   // In GC mode, honor objc_precise_lifetime.
1171   if (getLangOptions().getGC() != LangOptions::NonGC &&
1172       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1173     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1174   }
1175 
1176   // Handle the cleanup attribute.
1177   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1178     const FunctionDecl *FD = CA->getFunctionDecl();
1179 
1180     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1181     assert(F && "Could not find function!");
1182 
1183     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1184     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1185   }
1186 
1187   // If this is a block variable, call _Block_object_destroy
1188   // (on the unforwarded address).
1189   if (emission.IsByRef)
1190     enterByrefCleanup(emission);
1191 }
1192 
1193 CodeGenFunction::Destroyer *
1194 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1195   switch (kind) {
1196   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1197   case QualType::DK_cxx_destructor:
1198     return destroyCXXObject;
1199   case QualType::DK_objc_strong_lifetime:
1200     return destroyARCStrongPrecise;
1201   case QualType::DK_objc_weak_lifetime:
1202     return destroyARCWeak;
1203   }
1204   llvm_unreachable("Unknown DestructionKind");
1205 }
1206 
1207 /// pushDestroy - Push the standard destructor for the given type.
1208 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1209                                   llvm::Value *addr, QualType type) {
1210   assert(dtorKind && "cannot push destructor for trivial type");
1211 
1212   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1213   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1214               cleanupKind & EHCleanup);
1215 }
1216 
1217 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1218                                   QualType type, Destroyer *destroyer,
1219                                   bool useEHCleanupForArray) {
1220   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1221                                      destroyer, useEHCleanupForArray);
1222 }
1223 
1224 /// emitDestroy - Immediately perform the destruction of the given
1225 /// object.
1226 ///
1227 /// \param addr - the address of the object; a type*
1228 /// \param type - the type of the object; if an array type, all
1229 ///   objects are destroyed in reverse order
1230 /// \param destroyer - the function to call to destroy individual
1231 ///   elements
1232 /// \param useEHCleanupForArray - whether an EH cleanup should be
1233 ///   used when destroying array elements, in case one of the
1234 ///   destructions throws an exception
1235 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1236                                   Destroyer *destroyer,
1237                                   bool useEHCleanupForArray) {
1238   const ArrayType *arrayType = getContext().getAsArrayType(type);
1239   if (!arrayType)
1240     return destroyer(*this, addr, type);
1241 
1242   llvm::Value *begin = addr;
1243   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1244 
1245   // Normally we have to check whether the array is zero-length.
1246   bool checkZeroLength = true;
1247 
1248   // But if the array length is constant, we can suppress that.
1249   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1250     // ...and if it's constant zero, we can just skip the entire thing.
1251     if (constLength->isZero()) return;
1252     checkZeroLength = false;
1253   }
1254 
1255   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1256   emitArrayDestroy(begin, end, type, destroyer,
1257                    checkZeroLength, useEHCleanupForArray);
1258 }
1259 
1260 /// emitArrayDestroy - Destroys all the elements of the given array,
1261 /// beginning from last to first.  The array cannot be zero-length.
1262 ///
1263 /// \param begin - a type* denoting the first element of the array
1264 /// \param end - a type* denoting one past the end of the array
1265 /// \param type - the element type of the array
1266 /// \param destroyer - the function to call to destroy elements
1267 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1268 ///   the remaining elements in case the destruction of a single
1269 ///   element throws
1270 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1271                                        llvm::Value *end,
1272                                        QualType type,
1273                                        Destroyer *destroyer,
1274                                        bool checkZeroLength,
1275                                        bool useEHCleanup) {
1276   assert(!type->isArrayType());
1277 
1278   // The basic structure here is a do-while loop, because we don't
1279   // need to check for the zero-element case.
1280   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1281   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1282 
1283   if (checkZeroLength) {
1284     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1285                                                 "arraydestroy.isempty");
1286     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1287   }
1288 
1289   // Enter the loop body, making that address the current address.
1290   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1291   EmitBlock(bodyBB);
1292   llvm::PHINode *elementPast =
1293     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1294   elementPast->addIncoming(end, entryBB);
1295 
1296   // Shift the address back by one element.
1297   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1298   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1299                                                    "arraydestroy.element");
1300 
1301   if (useEHCleanup)
1302     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1303 
1304   // Perform the actual destruction there.
1305   destroyer(*this, element, type);
1306 
1307   if (useEHCleanup)
1308     PopCleanupBlock();
1309 
1310   // Check whether we've reached the end.
1311   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1312   Builder.CreateCondBr(done, doneBB, bodyBB);
1313   elementPast->addIncoming(element, Builder.GetInsertBlock());
1314 
1315   // Done.
1316   EmitBlock(doneBB);
1317 }
1318 
1319 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1320 /// emitArrayDestroy, the element type here may still be an array type.
1321 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1322                                     llvm::Value *begin, llvm::Value *end,
1323                                     QualType type,
1324                                     CodeGenFunction::Destroyer *destroyer) {
1325   // If the element type is itself an array, drill down.
1326   unsigned arrayDepth = 0;
1327   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1328     // VLAs don't require a GEP index to walk into.
1329     if (!isa<VariableArrayType>(arrayType))
1330       arrayDepth++;
1331     type = arrayType->getElementType();
1332   }
1333 
1334   if (arrayDepth) {
1335     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1336 
1337     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1338     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1339     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1340   }
1341 
1342   // Destroy the array.  We don't ever need an EH cleanup because we
1343   // assume that we're in an EH cleanup ourselves, so a throwing
1344   // destructor causes an immediate terminate.
1345   CGF.emitArrayDestroy(begin, end, type, destroyer,
1346                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1347 }
1348 
1349 namespace {
1350   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1351   /// array destroy where the end pointer is regularly determined and
1352   /// does not need to be loaded from a local.
1353   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1354     llvm::Value *ArrayBegin;
1355     llvm::Value *ArrayEnd;
1356     QualType ElementType;
1357     CodeGenFunction::Destroyer *Destroyer;
1358   public:
1359     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1360                                QualType elementType,
1361                                CodeGenFunction::Destroyer *destroyer)
1362       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1363         ElementType(elementType), Destroyer(destroyer) {}
1364 
1365     void Emit(CodeGenFunction &CGF, Flags flags) {
1366       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1367                               ElementType, Destroyer);
1368     }
1369   };
1370 
1371   /// IrregularPartialArrayDestroy - a cleanup which performs a
1372   /// partial array destroy where the end pointer is irregularly
1373   /// determined and must be loaded from a local.
1374   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1375     llvm::Value *ArrayBegin;
1376     llvm::Value *ArrayEndPointer;
1377     QualType ElementType;
1378     CodeGenFunction::Destroyer *Destroyer;
1379   public:
1380     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1381                                  llvm::Value *arrayEndPointer,
1382                                  QualType elementType,
1383                                  CodeGenFunction::Destroyer *destroyer)
1384       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1385         ElementType(elementType), Destroyer(destroyer) {}
1386 
1387     void Emit(CodeGenFunction &CGF, Flags flags) {
1388       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1389       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1390                               ElementType, Destroyer);
1391     }
1392   };
1393 }
1394 
1395 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1396 /// already-constructed elements of the given array.  The cleanup
1397 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1398 ///
1399 /// \param elementType - the immediate element type of the array;
1400 ///   possibly still an array type
1401 /// \param array - a value of type elementType*
1402 /// \param destructionKind - the kind of destruction required
1403 /// \param initializedElementCount - a value of type size_t* holding
1404 ///   the number of successfully-constructed elements
1405 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1406                                                  llvm::Value *arrayEndPointer,
1407                                                        QualType elementType,
1408                                                        Destroyer *destroyer) {
1409   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1410                                                     arrayBegin, arrayEndPointer,
1411                                                     elementType, destroyer);
1412 }
1413 
1414 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1415 /// already-constructed elements of the given array.  The cleanup
1416 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1417 ///
1418 /// \param elementType - the immediate element type of the array;
1419 ///   possibly still an array type
1420 /// \param array - a value of type elementType*
1421 /// \param destructionKind - the kind of destruction required
1422 /// \param initializedElementCount - a value of type size_t* holding
1423 ///   the number of successfully-constructed elements
1424 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1425                                                      llvm::Value *arrayEnd,
1426                                                      QualType elementType,
1427                                                      Destroyer *destroyer) {
1428   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1429                                                   arrayBegin, arrayEnd,
1430                                                   elementType, destroyer);
1431 }
1432 
1433 namespace {
1434   /// A cleanup to perform a release of an object at the end of a
1435   /// function.  This is used to balance out the incoming +1 of a
1436   /// ns_consumed argument when we can't reasonably do that just by
1437   /// not doing the initial retain for a __block argument.
1438   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1439     ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1440 
1441     llvm::Value *Param;
1442 
1443     void Emit(CodeGenFunction &CGF, Flags flags) {
1444       CGF.EmitARCRelease(Param, /*precise*/ false);
1445     }
1446   };
1447 }
1448 
1449 /// Emit an alloca (or GlobalValue depending on target)
1450 /// for the specified parameter and set up LocalDeclMap.
1451 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1452                                    unsigned ArgNo) {
1453   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1454   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1455          "Invalid argument to EmitParmDecl");
1456 
1457   Arg->setName(D.getName());
1458 
1459   // Use better IR generation for certain implicit parameters.
1460   if (isa<ImplicitParamDecl>(D)) {
1461     // The only implicit argument a block has is its literal.
1462     if (BlockInfo) {
1463       LocalDeclMap[&D] = Arg;
1464 
1465       if (CGDebugInfo *DI = getDebugInfo()) {
1466         DI->setLocation(D.getLocation());
1467         DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1468       }
1469 
1470       return;
1471     }
1472   }
1473 
1474   QualType Ty = D.getType();
1475 
1476   llvm::Value *DeclPtr;
1477   // If this is an aggregate or variable sized value, reuse the input pointer.
1478   if (!Ty->isConstantSizeType() ||
1479       CodeGenFunction::hasAggregateLLVMType(Ty)) {
1480     DeclPtr = Arg;
1481   } else {
1482     // Otherwise, create a temporary to hold the value.
1483     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1484                                                D.getName() + ".addr");
1485     Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1486     DeclPtr = Alloc;
1487 
1488     bool doStore = true;
1489 
1490     Qualifiers qs = Ty.getQualifiers();
1491 
1492     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1493       // We honor __attribute__((ns_consumed)) for types with lifetime.
1494       // For __strong, it's handled by just skipping the initial retain;
1495       // otherwise we have to balance out the initial +1 with an extra
1496       // cleanup to do the release at the end of the function.
1497       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1498 
1499       // 'self' is always formally __strong, but if this is not an
1500       // init method then we don't want to retain it.
1501       if (D.isARCPseudoStrong()) {
1502         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1503         assert(&D == method->getSelfDecl());
1504         assert(lt == Qualifiers::OCL_Strong);
1505         assert(qs.hasConst());
1506         assert(method->getMethodFamily() != OMF_init);
1507         (void) method;
1508         lt = Qualifiers::OCL_ExplicitNone;
1509       }
1510 
1511       if (lt == Qualifiers::OCL_Strong) {
1512         if (!isConsumed)
1513           // Don't use objc_retainBlock for block pointers, because we
1514           // don't want to Block_copy something just because we got it
1515           // as a parameter.
1516           Arg = EmitARCRetainNonBlock(Arg);
1517       } else {
1518         // Push the cleanup for a consumed parameter.
1519         if (isConsumed)
1520           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1521 
1522         if (lt == Qualifiers::OCL_Weak) {
1523           EmitARCInitWeak(DeclPtr, Arg);
1524           doStore = false; // The weak init is a store, no need to do two.
1525         }
1526       }
1527 
1528       // Enter the cleanup scope.
1529       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1530     }
1531 
1532     // Store the initial value into the alloca.
1533     if (doStore) {
1534       LValue lv = MakeAddrLValue(DeclPtr, Ty,
1535                                  getContext().getDeclAlign(&D));
1536       EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1537     }
1538   }
1539 
1540   llvm::Value *&DMEntry = LocalDeclMap[&D];
1541   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1542   DMEntry = DeclPtr;
1543 
1544   // Emit debug info for param declaration.
1545   if (CGDebugInfo *DI = getDebugInfo())
1546     DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1547 
1548   if (D.hasAttr<AnnotateAttr>())
1549       EmitVarAnnotations(&D, DeclPtr);
1550 }
1551