1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CodeGenModule.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Type.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 void CodeGenFunction::EmitDecl(const Decl &D) { 37 switch (D.getKind()) { 38 case Decl::BuiltinTemplate: 39 case Decl::TranslationUnit: 40 case Decl::ExternCContext: 41 case Decl::Namespace: 42 case Decl::UnresolvedUsingTypename: 43 case Decl::ClassTemplateSpecialization: 44 case Decl::ClassTemplatePartialSpecialization: 45 case Decl::VarTemplateSpecialization: 46 case Decl::VarTemplatePartialSpecialization: 47 case Decl::TemplateTypeParm: 48 case Decl::UnresolvedUsingValue: 49 case Decl::NonTypeTemplateParm: 50 case Decl::CXXMethod: 51 case Decl::CXXConstructor: 52 case Decl::CXXDestructor: 53 case Decl::CXXConversion: 54 case Decl::Field: 55 case Decl::MSProperty: 56 case Decl::IndirectField: 57 case Decl::ObjCIvar: 58 case Decl::ObjCAtDefsField: 59 case Decl::ParmVar: 60 case Decl::ImplicitParam: 61 case Decl::ClassTemplate: 62 case Decl::VarTemplate: 63 case Decl::FunctionTemplate: 64 case Decl::TypeAliasTemplate: 65 case Decl::TemplateTemplateParm: 66 case Decl::ObjCMethod: 67 case Decl::ObjCCategory: 68 case Decl::ObjCProtocol: 69 case Decl::ObjCInterface: 70 case Decl::ObjCCategoryImpl: 71 case Decl::ObjCImplementation: 72 case Decl::ObjCProperty: 73 case Decl::ObjCCompatibleAlias: 74 case Decl::AccessSpec: 75 case Decl::LinkageSpec: 76 case Decl::ObjCPropertyImpl: 77 case Decl::FileScopeAsm: 78 case Decl::Friend: 79 case Decl::FriendTemplate: 80 case Decl::Block: 81 case Decl::Captured: 82 case Decl::ClassScopeFunctionSpecialization: 83 case Decl::UsingShadow: 84 case Decl::ObjCTypeParam: 85 llvm_unreachable("Declaration should not be in declstmts!"); 86 case Decl::Function: // void X(); 87 case Decl::Record: // struct/union/class X; 88 case Decl::Enum: // enum X; 89 case Decl::EnumConstant: // enum ? { X = ? } 90 case Decl::CXXRecord: // struct/union/class X; [C++] 91 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 92 case Decl::Label: // __label__ x; 93 case Decl::Import: 94 case Decl::OMPThreadPrivate: 95 case Decl::Empty: 96 // None of these decls require codegen support. 97 return; 98 99 case Decl::NamespaceAlias: 100 if (CGDebugInfo *DI = getDebugInfo()) 101 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 102 return; 103 case Decl::Using: // using X; [C++] 104 if (CGDebugInfo *DI = getDebugInfo()) 105 DI->EmitUsingDecl(cast<UsingDecl>(D)); 106 return; 107 case Decl::UsingDirective: // using namespace X; [C++] 108 if (CGDebugInfo *DI = getDebugInfo()) 109 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 110 return; 111 case Decl::Var: { 112 const VarDecl &VD = cast<VarDecl>(D); 113 assert(VD.isLocalVarDecl() && 114 "Should not see file-scope variables inside a function!"); 115 return EmitVarDecl(VD); 116 } 117 118 case Decl::Typedef: // typedef int X; 119 case Decl::TypeAlias: { // using X = int; [C++0x] 120 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 121 QualType Ty = TD.getUnderlyingType(); 122 123 if (Ty->isVariablyModifiedType()) 124 EmitVariablyModifiedType(Ty); 125 } 126 } 127 } 128 129 /// EmitVarDecl - This method handles emission of any variable declaration 130 /// inside a function, including static vars etc. 131 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 132 if (D.isStaticLocal()) { 133 llvm::GlobalValue::LinkageTypes Linkage = 134 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 135 136 // FIXME: We need to force the emission/use of a guard variable for 137 // some variables even if we can constant-evaluate them because 138 // we can't guarantee every translation unit will constant-evaluate them. 139 140 return EmitStaticVarDecl(D, Linkage); 141 } 142 143 if (D.hasExternalStorage()) 144 // Don't emit it now, allow it to be emitted lazily on its first use. 145 return; 146 147 if (D.getType().getAddressSpace() == LangAS::opencl_local) 148 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 149 150 assert(D.hasLocalStorage()); 151 return EmitAutoVarDecl(D); 152 } 153 154 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 155 if (CGM.getLangOpts().CPlusPlus) 156 return CGM.getMangledName(&D).str(); 157 158 // If this isn't C++, we don't need a mangled name, just a pretty one. 159 assert(!D.isExternallyVisible() && "name shouldn't matter"); 160 std::string ContextName; 161 const DeclContext *DC = D.getDeclContext(); 162 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 163 DC = cast<DeclContext>(CD->getNonClosureContext()); 164 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 165 ContextName = CGM.getMangledName(FD); 166 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 167 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 168 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 169 ContextName = OMD->getSelector().getAsString(); 170 else 171 llvm_unreachable("Unknown context for static var decl"); 172 173 ContextName += "." + D.getNameAsString(); 174 return ContextName; 175 } 176 177 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 178 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 179 // In general, we don't always emit static var decls once before we reference 180 // them. It is possible to reference them before emitting the function that 181 // contains them, and it is possible to emit the containing function multiple 182 // times. 183 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 184 return ExistingGV; 185 186 QualType Ty = D.getType(); 187 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 188 189 // Use the label if the variable is renamed with the asm-label extension. 190 std::string Name; 191 if (D.hasAttr<AsmLabelAttr>()) 192 Name = getMangledName(&D); 193 else 194 Name = getStaticDeclName(*this, D); 195 196 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 197 unsigned AddrSpace = 198 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 199 200 // Local address space cannot have an initializer. 201 llvm::Constant *Init = nullptr; 202 if (Ty.getAddressSpace() != LangAS::opencl_local) 203 Init = EmitNullConstant(Ty); 204 else 205 Init = llvm::UndefValue::get(LTy); 206 207 llvm::GlobalVariable *GV = 208 new llvm::GlobalVariable(getModule(), LTy, 209 Ty.isConstant(getContext()), Linkage, 210 Init, Name, nullptr, 211 llvm::GlobalVariable::NotThreadLocal, 212 AddrSpace); 213 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 214 setGlobalVisibility(GV, &D); 215 216 if (supportsCOMDAT() && GV->isWeakForLinker()) 217 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 218 219 if (D.getTLSKind()) 220 setTLSMode(GV, D); 221 222 if (D.isExternallyVisible()) { 223 if (D.hasAttr<DLLImportAttr>()) 224 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 225 else if (D.hasAttr<DLLExportAttr>()) 226 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 227 } 228 229 // Make sure the result is of the correct type. 230 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 231 llvm::Constant *Addr = GV; 232 if (AddrSpace != ExpectedAddrSpace) { 233 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 234 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 235 } 236 237 setStaticLocalDeclAddress(&D, Addr); 238 239 // Ensure that the static local gets initialized by making sure the parent 240 // function gets emitted eventually. 241 const Decl *DC = cast<Decl>(D.getDeclContext()); 242 243 // We can't name blocks or captured statements directly, so try to emit their 244 // parents. 245 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 246 DC = DC->getNonClosureContext(); 247 // FIXME: Ensure that global blocks get emitted. 248 if (!DC) 249 return Addr; 250 } 251 252 GlobalDecl GD; 253 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 254 GD = GlobalDecl(CD, Ctor_Base); 255 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 256 GD = GlobalDecl(DD, Dtor_Base); 257 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 258 GD = GlobalDecl(FD); 259 else { 260 // Don't do anything for Obj-C method decls or global closures. We should 261 // never defer them. 262 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 263 } 264 if (GD.getDecl()) 265 (void)GetAddrOfGlobal(GD); 266 267 return Addr; 268 } 269 270 /// hasNontrivialDestruction - Determine whether a type's destruction is 271 /// non-trivial. If so, and the variable uses static initialization, we must 272 /// register its destructor to run on exit. 273 static bool hasNontrivialDestruction(QualType T) { 274 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 275 return RD && !RD->hasTrivialDestructor(); 276 } 277 278 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 279 /// global variable that has already been created for it. If the initializer 280 /// has a different type than GV does, this may free GV and return a different 281 /// one. Otherwise it just returns GV. 282 llvm::GlobalVariable * 283 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 284 llvm::GlobalVariable *GV) { 285 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 286 287 // If constant emission failed, then this should be a C++ static 288 // initializer. 289 if (!Init) { 290 if (!getLangOpts().CPlusPlus) 291 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 292 else if (Builder.GetInsertBlock()) { 293 // Since we have a static initializer, this global variable can't 294 // be constant. 295 GV->setConstant(false); 296 297 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 298 } 299 return GV; 300 } 301 302 // The initializer may differ in type from the global. Rewrite 303 // the global to match the initializer. (We have to do this 304 // because some types, like unions, can't be completely represented 305 // in the LLVM type system.) 306 if (GV->getType()->getElementType() != Init->getType()) { 307 llvm::GlobalVariable *OldGV = GV; 308 309 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 310 OldGV->isConstant(), 311 OldGV->getLinkage(), Init, "", 312 /*InsertBefore*/ OldGV, 313 OldGV->getThreadLocalMode(), 314 CGM.getContext().getTargetAddressSpace(D.getType())); 315 GV->setVisibility(OldGV->getVisibility()); 316 GV->setComdat(OldGV->getComdat()); 317 318 // Steal the name of the old global 319 GV->takeName(OldGV); 320 321 // Replace all uses of the old global with the new global 322 llvm::Constant *NewPtrForOldDecl = 323 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 324 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 325 326 // Erase the old global, since it is no longer used. 327 OldGV->eraseFromParent(); 328 } 329 330 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 331 GV->setInitializer(Init); 332 333 if (hasNontrivialDestruction(D.getType())) { 334 // We have a constant initializer, but a nontrivial destructor. We still 335 // need to perform a guarded "initialization" in order to register the 336 // destructor. 337 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 338 } 339 340 return GV; 341 } 342 343 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 344 llvm::GlobalValue::LinkageTypes Linkage) { 345 // Check to see if we already have a global variable for this 346 // declaration. This can happen when double-emitting function 347 // bodies, e.g. with complete and base constructors. 348 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 349 CharUnits alignment = getContext().getDeclAlign(&D); 350 351 // Store into LocalDeclMap before generating initializer to handle 352 // circular references. 353 setAddrOfLocalVar(&D, Address(addr, alignment)); 354 355 // We can't have a VLA here, but we can have a pointer to a VLA, 356 // even though that doesn't really make any sense. 357 // Make sure to evaluate VLA bounds now so that we have them for later. 358 if (D.getType()->isVariablyModifiedType()) 359 EmitVariablyModifiedType(D.getType()); 360 361 // Save the type in case adding the initializer forces a type change. 362 llvm::Type *expectedType = addr->getType(); 363 364 llvm::GlobalVariable *var = 365 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 366 // If this value has an initializer, emit it. 367 if (D.getInit()) 368 var = AddInitializerToStaticVarDecl(D, var); 369 370 var->setAlignment(alignment.getQuantity()); 371 372 if (D.hasAttr<AnnotateAttr>()) 373 CGM.AddGlobalAnnotations(&D, var); 374 375 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 376 var->setSection(SA->getName()); 377 378 if (D.hasAttr<UsedAttr>()) 379 CGM.addUsedGlobal(var); 380 381 // We may have to cast the constant because of the initializer 382 // mismatch above. 383 // 384 // FIXME: It is really dangerous to store this in the map; if anyone 385 // RAUW's the GV uses of this constant will be invalid. 386 llvm::Constant *castedAddr = 387 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 388 if (var != castedAddr) 389 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 390 CGM.setStaticLocalDeclAddress(&D, castedAddr); 391 392 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 393 394 // Emit global variable debug descriptor for static vars. 395 CGDebugInfo *DI = getDebugInfo(); 396 if (DI && 397 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 398 DI->setLocation(D.getLocation()); 399 DI->EmitGlobalVariable(var, &D); 400 } 401 } 402 403 namespace { 404 struct DestroyObject final : EHScopeStack::Cleanup { 405 DestroyObject(Address addr, QualType type, 406 CodeGenFunction::Destroyer *destroyer, 407 bool useEHCleanupForArray) 408 : addr(addr), type(type), destroyer(destroyer), 409 useEHCleanupForArray(useEHCleanupForArray) {} 410 411 Address addr; 412 QualType type; 413 CodeGenFunction::Destroyer *destroyer; 414 bool useEHCleanupForArray; 415 416 void Emit(CodeGenFunction &CGF, Flags flags) override { 417 // Don't use an EH cleanup recursively from an EH cleanup. 418 bool useEHCleanupForArray = 419 flags.isForNormalCleanup() && this->useEHCleanupForArray; 420 421 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 422 } 423 }; 424 425 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 426 DestroyNRVOVariable(Address addr, 427 const CXXDestructorDecl *Dtor, 428 llvm::Value *NRVOFlag) 429 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 430 431 const CXXDestructorDecl *Dtor; 432 llvm::Value *NRVOFlag; 433 Address Loc; 434 435 void Emit(CodeGenFunction &CGF, Flags flags) override { 436 // Along the exceptions path we always execute the dtor. 437 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 438 439 llvm::BasicBlock *SkipDtorBB = nullptr; 440 if (NRVO) { 441 // If we exited via NRVO, we skip the destructor call. 442 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 443 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 444 llvm::Value *DidNRVO = 445 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 446 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 447 CGF.EmitBlock(RunDtorBB); 448 } 449 450 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 451 /*ForVirtualBase=*/false, 452 /*Delegating=*/false, 453 Loc); 454 455 if (NRVO) CGF.EmitBlock(SkipDtorBB); 456 } 457 }; 458 459 struct CallStackRestore final : EHScopeStack::Cleanup { 460 Address Stack; 461 CallStackRestore(Address Stack) : Stack(Stack) {} 462 void Emit(CodeGenFunction &CGF, Flags flags) override { 463 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 464 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 465 CGF.Builder.CreateCall(F, V); 466 } 467 }; 468 469 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 470 const VarDecl &Var; 471 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 472 473 void Emit(CodeGenFunction &CGF, Flags flags) override { 474 // Compute the address of the local variable, in case it's a 475 // byref or something. 476 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 477 Var.getType(), VK_LValue, SourceLocation()); 478 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 479 SourceLocation()); 480 CGF.EmitExtendGCLifetime(value); 481 } 482 }; 483 484 struct CallCleanupFunction final : EHScopeStack::Cleanup { 485 llvm::Constant *CleanupFn; 486 const CGFunctionInfo &FnInfo; 487 const VarDecl &Var; 488 489 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 490 const VarDecl *Var) 491 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 492 493 void Emit(CodeGenFunction &CGF, Flags flags) override { 494 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 495 Var.getType(), VK_LValue, SourceLocation()); 496 // Compute the address of the local variable, in case it's a byref 497 // or something. 498 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 499 500 // In some cases, the type of the function argument will be different from 501 // the type of the pointer. An example of this is 502 // void f(void* arg); 503 // __attribute__((cleanup(f))) void *g; 504 // 505 // To fix this we insert a bitcast here. 506 QualType ArgTy = FnInfo.arg_begin()->type; 507 llvm::Value *Arg = 508 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 509 510 CallArgList Args; 511 Args.add(RValue::get(Arg), 512 CGF.getContext().getPointerType(Var.getType())); 513 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 514 } 515 }; 516 517 /// A cleanup to call @llvm.lifetime.end. 518 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 519 llvm::Value *Addr; 520 llvm::Value *Size; 521 public: 522 CallLifetimeEnd(Address addr, llvm::Value *size) 523 : Addr(addr.getPointer()), Size(size) {} 524 525 void Emit(CodeGenFunction &CGF, Flags flags) override { 526 CGF.EmitLifetimeEnd(Size, Addr); 527 } 528 }; 529 } 530 531 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 532 /// variable with lifetime. 533 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 534 Address addr, 535 Qualifiers::ObjCLifetime lifetime) { 536 switch (lifetime) { 537 case Qualifiers::OCL_None: 538 llvm_unreachable("present but none"); 539 540 case Qualifiers::OCL_ExplicitNone: 541 // nothing to do 542 break; 543 544 case Qualifiers::OCL_Strong: { 545 CodeGenFunction::Destroyer *destroyer = 546 (var.hasAttr<ObjCPreciseLifetimeAttr>() 547 ? CodeGenFunction::destroyARCStrongPrecise 548 : CodeGenFunction::destroyARCStrongImprecise); 549 550 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 551 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 552 cleanupKind & EHCleanup); 553 break; 554 } 555 case Qualifiers::OCL_Autoreleasing: 556 // nothing to do 557 break; 558 559 case Qualifiers::OCL_Weak: 560 // __weak objects always get EH cleanups; otherwise, exceptions 561 // could cause really nasty crashes instead of mere leaks. 562 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 563 CodeGenFunction::destroyARCWeak, 564 /*useEHCleanup*/ true); 565 break; 566 } 567 } 568 569 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 570 if (const Expr *e = dyn_cast<Expr>(s)) { 571 // Skip the most common kinds of expressions that make 572 // hierarchy-walking expensive. 573 s = e = e->IgnoreParenCasts(); 574 575 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 576 return (ref->getDecl() == &var); 577 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 578 const BlockDecl *block = be->getBlockDecl(); 579 for (const auto &I : block->captures()) { 580 if (I.getVariable() == &var) 581 return true; 582 } 583 } 584 } 585 586 for (const Stmt *SubStmt : s->children()) 587 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 588 if (SubStmt && isAccessedBy(var, SubStmt)) 589 return true; 590 591 return false; 592 } 593 594 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 595 if (!decl) return false; 596 if (!isa<VarDecl>(decl)) return false; 597 const VarDecl *var = cast<VarDecl>(decl); 598 return isAccessedBy(*var, e); 599 } 600 601 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 602 const LValue &destLV, const Expr *init) { 603 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 604 switch (castExpr->getCastKind()) { 605 // Look through casts that don't require representation changes. 606 case CK_NoOp: 607 case CK_BitCast: 608 case CK_BlockPointerToObjCPointerCast: 609 break; 610 611 // If we find an l-value to r-value cast from a __weak variable, 612 // emit this operation as a copy or move. 613 case CK_LValueToRValue: { 614 const Expr *srcExpr = castExpr->getSubExpr(); 615 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 616 return false; 617 618 // Emit the source l-value. 619 LValue srcLV = CGF.EmitLValue(srcExpr); 620 621 // If it was an l-value, use objc_copyWeak. 622 if (srcExpr->getValueKind() == VK_LValue) { 623 CGF.EmitARCCopyWeak(destLV.getAddress(), srcLV.getAddress()); 624 } else { 625 assert(srcExpr->getValueKind() == VK_XValue); 626 CGF.EmitARCMoveWeak(destLV.getAddress(), srcLV.getAddress()); 627 } 628 return true; 629 } 630 631 // Stop at anything else. 632 default: 633 return false; 634 } 635 636 init = castExpr->getSubExpr(); 637 continue; 638 } 639 return false; 640 } 641 642 static void drillIntoBlockVariable(CodeGenFunction &CGF, 643 LValue &lvalue, 644 const VarDecl *var) { 645 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 646 } 647 648 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 649 LValue lvalue, bool capturedByInit) { 650 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 651 if (!lifetime) { 652 llvm::Value *value = EmitScalarExpr(init); 653 if (capturedByInit) 654 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 655 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 656 return; 657 } 658 659 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 660 init = DIE->getExpr(); 661 662 // If we're emitting a value with lifetime, we have to do the 663 // initialization *before* we leave the cleanup scopes. 664 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 665 enterFullExpression(ewc); 666 init = ewc->getSubExpr(); 667 } 668 CodeGenFunction::RunCleanupsScope Scope(*this); 669 670 // We have to maintain the illusion that the variable is 671 // zero-initialized. If the variable might be accessed in its 672 // initializer, zero-initialize before running the initializer, then 673 // actually perform the initialization with an assign. 674 bool accessedByInit = false; 675 if (lifetime != Qualifiers::OCL_ExplicitNone) 676 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 677 if (accessedByInit) { 678 LValue tempLV = lvalue; 679 // Drill down to the __block object if necessary. 680 if (capturedByInit) { 681 // We can use a simple GEP for this because it can't have been 682 // moved yet. 683 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 684 cast<VarDecl>(D), 685 /*follow*/ false)); 686 } 687 688 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 689 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 690 691 // If __weak, we want to use a barrier under certain conditions. 692 if (lifetime == Qualifiers::OCL_Weak) 693 EmitARCInitWeak(tempLV.getAddress(), zero); 694 695 // Otherwise just do a simple store. 696 else 697 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 698 } 699 700 // Emit the initializer. 701 llvm::Value *value = nullptr; 702 703 switch (lifetime) { 704 case Qualifiers::OCL_None: 705 llvm_unreachable("present but none"); 706 707 case Qualifiers::OCL_ExplicitNone: 708 // nothing to do 709 value = EmitScalarExpr(init); 710 break; 711 712 case Qualifiers::OCL_Strong: { 713 value = EmitARCRetainScalarExpr(init); 714 break; 715 } 716 717 case Qualifiers::OCL_Weak: { 718 // If it's not accessed by the initializer, try to emit the 719 // initialization with a copy or move. 720 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 721 return; 722 } 723 724 // No way to optimize a producing initializer into this. It's not 725 // worth optimizing for, because the value will immediately 726 // disappear in the common case. 727 value = EmitScalarExpr(init); 728 729 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 730 if (accessedByInit) 731 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 732 else 733 EmitARCInitWeak(lvalue.getAddress(), value); 734 return; 735 } 736 737 case Qualifiers::OCL_Autoreleasing: 738 value = EmitARCRetainAutoreleaseScalarExpr(init); 739 break; 740 } 741 742 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 743 744 // If the variable might have been accessed by its initializer, we 745 // might have to initialize with a barrier. We have to do this for 746 // both __weak and __strong, but __weak got filtered out above. 747 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 748 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 749 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 750 EmitARCRelease(oldValue, ARCImpreciseLifetime); 751 return; 752 } 753 754 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 755 } 756 757 /// EmitScalarInit - Initialize the given lvalue with the given object. 758 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 759 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 760 if (!lifetime) 761 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 762 763 switch (lifetime) { 764 case Qualifiers::OCL_None: 765 llvm_unreachable("present but none"); 766 767 case Qualifiers::OCL_ExplicitNone: 768 // nothing to do 769 break; 770 771 case Qualifiers::OCL_Strong: 772 init = EmitARCRetain(lvalue.getType(), init); 773 break; 774 775 case Qualifiers::OCL_Weak: 776 // Initialize and then skip the primitive store. 777 EmitARCInitWeak(lvalue.getAddress(), init); 778 return; 779 780 case Qualifiers::OCL_Autoreleasing: 781 init = EmitARCRetainAutorelease(lvalue.getType(), init); 782 break; 783 } 784 785 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 786 } 787 788 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 789 /// non-zero parts of the specified initializer with equal or fewer than 790 /// NumStores scalar stores. 791 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 792 unsigned &NumStores) { 793 // Zero and Undef never requires any extra stores. 794 if (isa<llvm::ConstantAggregateZero>(Init) || 795 isa<llvm::ConstantPointerNull>(Init) || 796 isa<llvm::UndefValue>(Init)) 797 return true; 798 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 799 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 800 isa<llvm::ConstantExpr>(Init)) 801 return Init->isNullValue() || NumStores--; 802 803 // See if we can emit each element. 804 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 805 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 806 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 807 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 808 return false; 809 } 810 return true; 811 } 812 813 if (llvm::ConstantDataSequential *CDS = 814 dyn_cast<llvm::ConstantDataSequential>(Init)) { 815 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 816 llvm::Constant *Elt = CDS->getElementAsConstant(i); 817 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 818 return false; 819 } 820 return true; 821 } 822 823 // Anything else is hard and scary. 824 return false; 825 } 826 827 /// emitStoresForInitAfterMemset - For inits that 828 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 829 /// stores that would be required. 830 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 831 bool isVolatile, CGBuilderTy &Builder) { 832 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 833 "called emitStoresForInitAfterMemset for zero or undef value."); 834 835 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 836 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 837 isa<llvm::ConstantExpr>(Init)) { 838 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 839 return; 840 } 841 842 if (llvm::ConstantDataSequential *CDS = 843 dyn_cast<llvm::ConstantDataSequential>(Init)) { 844 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 845 llvm::Constant *Elt = CDS->getElementAsConstant(i); 846 847 // If necessary, get a pointer to the element and emit it. 848 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 849 emitStoresForInitAfterMemset( 850 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 851 isVolatile, Builder); 852 } 853 return; 854 } 855 856 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 857 "Unknown value type!"); 858 859 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 860 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 861 862 // If necessary, get a pointer to the element and emit it. 863 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 864 emitStoresForInitAfterMemset( 865 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 866 isVolatile, Builder); 867 } 868 } 869 870 871 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 872 /// plus some stores to initialize a local variable instead of using a memcpy 873 /// from a constant global. It is beneficial to use memset if the global is all 874 /// zeros, or mostly zeros and large. 875 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 876 uint64_t GlobalSize) { 877 // If a global is all zeros, always use a memset. 878 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 879 880 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 881 // do it if it will require 6 or fewer scalar stores. 882 // TODO: Should budget depends on the size? Avoiding a large global warrants 883 // plopping in more stores. 884 unsigned StoreBudget = 6; 885 uint64_t SizeLimit = 32; 886 887 return GlobalSize > SizeLimit && 888 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 889 } 890 891 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 892 /// variable declaration with auto, register, or no storage class specifier. 893 /// These turn into simple stack objects, or GlobalValues depending on target. 894 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 895 AutoVarEmission emission = EmitAutoVarAlloca(D); 896 EmitAutoVarInit(emission); 897 EmitAutoVarCleanups(emission); 898 } 899 900 /// Emit a lifetime.begin marker if some criteria are satisfied. 901 /// \return a pointer to the temporary size Value if a marker was emitted, null 902 /// otherwise 903 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 904 llvm::Value *Addr) { 905 // For now, only in optimized builds. 906 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 907 return nullptr; 908 909 // Disable lifetime markers in msan builds. 910 // FIXME: Remove this when msan works with lifetime markers. 911 if (getLangOpts().Sanitize.has(SanitizerKind::Memory)) 912 return nullptr; 913 914 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 915 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 916 llvm::CallInst *C = 917 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 918 C->setDoesNotThrow(); 919 return SizeV; 920 } 921 922 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 923 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 924 llvm::CallInst *C = 925 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 926 C->setDoesNotThrow(); 927 } 928 929 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 930 /// local variable. Does not emit initialization or destruction. 931 CodeGenFunction::AutoVarEmission 932 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 933 QualType Ty = D.getType(); 934 935 AutoVarEmission emission(D); 936 937 bool isByRef = D.hasAttr<BlocksAttr>(); 938 emission.IsByRef = isByRef; 939 940 CharUnits alignment = getContext().getDeclAlign(&D); 941 942 // If the type is variably-modified, emit all the VLA sizes for it. 943 if (Ty->isVariablyModifiedType()) 944 EmitVariablyModifiedType(Ty); 945 946 Address address = Address::invalid(); 947 if (Ty->isConstantSizeType()) { 948 bool NRVO = getLangOpts().ElideConstructors && 949 D.isNRVOVariable(); 950 951 // If this value is an array or struct with a statically determinable 952 // constant initializer, there are optimizations we can do. 953 // 954 // TODO: We should constant-evaluate the initializer of any variable, 955 // as long as it is initialized by a constant expression. Currently, 956 // isConstantInitializer produces wrong answers for structs with 957 // reference or bitfield members, and a few other cases, and checking 958 // for POD-ness protects us from some of these. 959 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 960 (D.isConstexpr() || 961 ((Ty.isPODType(getContext()) || 962 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 963 D.getInit()->isConstantInitializer(getContext(), false)))) { 964 965 // If the variable's a const type, and it's neither an NRVO 966 // candidate nor a __block variable and has no mutable members, 967 // emit it as a global instead. 968 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 969 CGM.isTypeConstant(Ty, true)) { 970 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 971 972 // Signal this condition to later callbacks. 973 emission.Addr = Address::invalid(); 974 assert(emission.wasEmittedAsGlobal()); 975 return emission; 976 } 977 978 // Otherwise, tell the initialization code that we're in this case. 979 emission.IsConstantAggregate = true; 980 } 981 982 // A normal fixed sized variable becomes an alloca in the entry block, 983 // unless it's an NRVO variable. 984 985 if (NRVO) { 986 // The named return value optimization: allocate this variable in the 987 // return slot, so that we can elide the copy when returning this 988 // variable (C++0x [class.copy]p34). 989 address = ReturnValue; 990 991 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 992 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 993 // Create a flag that is used to indicate when the NRVO was applied 994 // to this variable. Set it to zero to indicate that NRVO was not 995 // applied. 996 llvm::Value *Zero = Builder.getFalse(); 997 Address NRVOFlag = 998 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 999 EnsureInsertPoint(); 1000 Builder.CreateStore(Zero, NRVOFlag); 1001 1002 // Record the NRVO flag for this variable. 1003 NRVOFlags[&D] = NRVOFlag.getPointer(); 1004 emission.NRVOFlag = NRVOFlag.getPointer(); 1005 } 1006 } 1007 } else { 1008 CharUnits allocaAlignment; 1009 llvm::Type *allocaTy; 1010 if (isByRef) { 1011 auto &byrefInfo = getBlockByrefInfo(&D); 1012 allocaTy = byrefInfo.Type; 1013 allocaAlignment = byrefInfo.ByrefAlignment; 1014 } else { 1015 allocaTy = ConvertTypeForMem(Ty); 1016 allocaAlignment = alignment; 1017 } 1018 1019 // Create the alloca. Note that we set the name separately from 1020 // building the instruction so that it's there even in no-asserts 1021 // builds. 1022 address = CreateTempAlloca(allocaTy, allocaAlignment); 1023 address.getPointer()->setName(D.getName()); 1024 1025 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1026 // the catch parameter starts in the catchpad instruction, and we can't 1027 // insert code in those basic blocks. 1028 bool IsMSCatchParam = 1029 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1030 1031 // Emit a lifetime intrinsic if meaningful. There's no point 1032 // in doing this if we don't have a valid insertion point (?). 1033 if (HaveInsertPoint() && !IsMSCatchParam) { 1034 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1035 emission.SizeForLifetimeMarkers = 1036 EmitLifetimeStart(size, address.getPointer()); 1037 } else { 1038 assert(!emission.useLifetimeMarkers()); 1039 } 1040 } 1041 } else { 1042 EnsureInsertPoint(); 1043 1044 if (!DidCallStackSave) { 1045 // Save the stack. 1046 Address Stack = 1047 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1048 1049 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1050 llvm::Value *V = Builder.CreateCall(F); 1051 Builder.CreateStore(V, Stack); 1052 1053 DidCallStackSave = true; 1054 1055 // Push a cleanup block and restore the stack there. 1056 // FIXME: in general circumstances, this should be an EH cleanup. 1057 pushStackRestore(NormalCleanup, Stack); 1058 } 1059 1060 llvm::Value *elementCount; 1061 QualType elementType; 1062 std::tie(elementCount, elementType) = getVLASize(Ty); 1063 1064 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1065 1066 // Allocate memory for the array. 1067 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 1068 vla->setAlignment(alignment.getQuantity()); 1069 1070 address = Address(vla, alignment); 1071 } 1072 1073 setAddrOfLocalVar(&D, address); 1074 emission.Addr = address; 1075 1076 // Emit debug info for local var declaration. 1077 if (HaveInsertPoint()) 1078 if (CGDebugInfo *DI = getDebugInfo()) { 1079 if (CGM.getCodeGenOpts().getDebugInfo() 1080 >= CodeGenOptions::LimitedDebugInfo) { 1081 DI->setLocation(D.getLocation()); 1082 DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1083 } 1084 } 1085 1086 if (D.hasAttr<AnnotateAttr>()) 1087 EmitVarAnnotations(&D, address.getPointer()); 1088 1089 return emission; 1090 } 1091 1092 /// Determines whether the given __block variable is potentially 1093 /// captured by the given expression. 1094 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1095 // Skip the most common kinds of expressions that make 1096 // hierarchy-walking expensive. 1097 e = e->IgnoreParenCasts(); 1098 1099 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1100 const BlockDecl *block = be->getBlockDecl(); 1101 for (const auto &I : block->captures()) { 1102 if (I.getVariable() == &var) 1103 return true; 1104 } 1105 1106 // No need to walk into the subexpressions. 1107 return false; 1108 } 1109 1110 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1111 const CompoundStmt *CS = SE->getSubStmt(); 1112 for (const auto *BI : CS->body()) 1113 if (const auto *E = dyn_cast<Expr>(BI)) { 1114 if (isCapturedBy(var, E)) 1115 return true; 1116 } 1117 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1118 // special case declarations 1119 for (const auto *I : DS->decls()) { 1120 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1121 const Expr *Init = VD->getInit(); 1122 if (Init && isCapturedBy(var, Init)) 1123 return true; 1124 } 1125 } 1126 } 1127 else 1128 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1129 // Later, provide code to poke into statements for capture analysis. 1130 return true; 1131 return false; 1132 } 1133 1134 for (const Stmt *SubStmt : e->children()) 1135 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1136 return true; 1137 1138 return false; 1139 } 1140 1141 /// \brief Determine whether the given initializer is trivial in the sense 1142 /// that it requires no code to be generated. 1143 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1144 if (!Init) 1145 return true; 1146 1147 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1148 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1149 if (Constructor->isTrivial() && 1150 Constructor->isDefaultConstructor() && 1151 !Construct->requiresZeroInitialization()) 1152 return true; 1153 1154 return false; 1155 } 1156 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1157 assert(emission.Variable && "emission was not valid!"); 1158 1159 // If this was emitted as a global constant, we're done. 1160 if (emission.wasEmittedAsGlobal()) return; 1161 1162 const VarDecl &D = *emission.Variable; 1163 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1164 QualType type = D.getType(); 1165 1166 // If this local has an initializer, emit it now. 1167 const Expr *Init = D.getInit(); 1168 1169 // If we are at an unreachable point, we don't need to emit the initializer 1170 // unless it contains a label. 1171 if (!HaveInsertPoint()) { 1172 if (!Init || !ContainsLabel(Init)) return; 1173 EnsureInsertPoint(); 1174 } 1175 1176 // Initialize the structure of a __block variable. 1177 if (emission.IsByRef) 1178 emitByrefStructureInit(emission); 1179 1180 if (isTrivialInitializer(Init)) 1181 return; 1182 1183 // Check whether this is a byref variable that's potentially 1184 // captured and moved by its own initializer. If so, we'll need to 1185 // emit the initializer first, then copy into the variable. 1186 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1187 1188 Address Loc = 1189 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1190 1191 llvm::Constant *constant = nullptr; 1192 if (emission.IsConstantAggregate || D.isConstexpr()) { 1193 assert(!capturedByInit && "constant init contains a capturing block?"); 1194 constant = CGM.EmitConstantInit(D, this); 1195 } 1196 1197 if (!constant) { 1198 LValue lv = MakeAddrLValue(Loc, type); 1199 lv.setNonGC(true); 1200 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1201 } 1202 1203 if (!emission.IsConstantAggregate) { 1204 // For simple scalar/complex initialization, store the value directly. 1205 LValue lv = MakeAddrLValue(Loc, type); 1206 lv.setNonGC(true); 1207 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1208 } 1209 1210 // If this is a simple aggregate initialization, we can optimize it 1211 // in various ways. 1212 bool isVolatile = type.isVolatileQualified(); 1213 1214 llvm::Value *SizeVal = 1215 llvm::ConstantInt::get(IntPtrTy, 1216 getContext().getTypeSizeInChars(type).getQuantity()); 1217 1218 llvm::Type *BP = Int8PtrTy; 1219 if (Loc.getType() != BP) 1220 Loc = Builder.CreateBitCast(Loc, BP); 1221 1222 // If the initializer is all or mostly zeros, codegen with memset then do 1223 // a few stores afterward. 1224 if (shouldUseMemSetPlusStoresToInitialize(constant, 1225 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1226 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1227 isVolatile); 1228 // Zero and undef don't require a stores. 1229 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1230 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1231 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1232 isVolatile, Builder); 1233 } 1234 } else { 1235 // Otherwise, create a temporary global with the initializer then 1236 // memcpy from the global to the alloca. 1237 std::string Name = getStaticDeclName(CGM, D); 1238 llvm::GlobalVariable *GV = 1239 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1240 llvm::GlobalValue::PrivateLinkage, 1241 constant, Name); 1242 GV->setAlignment(Loc.getAlignment().getQuantity()); 1243 GV->setUnnamedAddr(true); 1244 1245 Address SrcPtr = Address(GV, Loc.getAlignment()); 1246 if (SrcPtr.getType() != BP) 1247 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1248 1249 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1250 } 1251 } 1252 1253 /// Emit an expression as an initializer for a variable at the given 1254 /// location. The expression is not necessarily the normal 1255 /// initializer for the variable, and the address is not necessarily 1256 /// its normal location. 1257 /// 1258 /// \param init the initializing expression 1259 /// \param var the variable to act as if we're initializing 1260 /// \param loc the address to initialize; its type is a pointer 1261 /// to the LLVM mapping of the variable's type 1262 /// \param alignment the alignment of the address 1263 /// \param capturedByInit true if the variable is a __block variable 1264 /// whose address is potentially changed by the initializer 1265 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1266 LValue lvalue, bool capturedByInit) { 1267 QualType type = D->getType(); 1268 1269 if (type->isReferenceType()) { 1270 RValue rvalue = EmitReferenceBindingToExpr(init); 1271 if (capturedByInit) 1272 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1273 EmitStoreThroughLValue(rvalue, lvalue, true); 1274 return; 1275 } 1276 switch (getEvaluationKind(type)) { 1277 case TEK_Scalar: 1278 EmitScalarInit(init, D, lvalue, capturedByInit); 1279 return; 1280 case TEK_Complex: { 1281 ComplexPairTy complex = EmitComplexExpr(init); 1282 if (capturedByInit) 1283 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1284 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1285 return; 1286 } 1287 case TEK_Aggregate: 1288 if (type->isAtomicType()) { 1289 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1290 } else { 1291 // TODO: how can we delay here if D is captured by its initializer? 1292 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1293 AggValueSlot::IsDestructed, 1294 AggValueSlot::DoesNotNeedGCBarriers, 1295 AggValueSlot::IsNotAliased)); 1296 } 1297 return; 1298 } 1299 llvm_unreachable("bad evaluation kind"); 1300 } 1301 1302 /// Enter a destroy cleanup for the given local variable. 1303 void CodeGenFunction::emitAutoVarTypeCleanup( 1304 const CodeGenFunction::AutoVarEmission &emission, 1305 QualType::DestructionKind dtorKind) { 1306 assert(dtorKind != QualType::DK_none); 1307 1308 // Note that for __block variables, we want to destroy the 1309 // original stack object, not the possibly forwarded object. 1310 Address addr = emission.getObjectAddress(*this); 1311 1312 const VarDecl *var = emission.Variable; 1313 QualType type = var->getType(); 1314 1315 CleanupKind cleanupKind = NormalAndEHCleanup; 1316 CodeGenFunction::Destroyer *destroyer = nullptr; 1317 1318 switch (dtorKind) { 1319 case QualType::DK_none: 1320 llvm_unreachable("no cleanup for trivially-destructible variable"); 1321 1322 case QualType::DK_cxx_destructor: 1323 // If there's an NRVO flag on the emission, we need a different 1324 // cleanup. 1325 if (emission.NRVOFlag) { 1326 assert(!type->isArrayType()); 1327 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1328 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1329 dtor, emission.NRVOFlag); 1330 return; 1331 } 1332 break; 1333 1334 case QualType::DK_objc_strong_lifetime: 1335 // Suppress cleanups for pseudo-strong variables. 1336 if (var->isARCPseudoStrong()) return; 1337 1338 // Otherwise, consider whether to use an EH cleanup or not. 1339 cleanupKind = getARCCleanupKind(); 1340 1341 // Use the imprecise destroyer by default. 1342 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1343 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1344 break; 1345 1346 case QualType::DK_objc_weak_lifetime: 1347 break; 1348 } 1349 1350 // If we haven't chosen a more specific destroyer, use the default. 1351 if (!destroyer) destroyer = getDestroyer(dtorKind); 1352 1353 // Use an EH cleanup in array destructors iff the destructor itself 1354 // is being pushed as an EH cleanup. 1355 bool useEHCleanup = (cleanupKind & EHCleanup); 1356 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1357 useEHCleanup); 1358 } 1359 1360 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1361 assert(emission.Variable && "emission was not valid!"); 1362 1363 // If this was emitted as a global constant, we're done. 1364 if (emission.wasEmittedAsGlobal()) return; 1365 1366 // If we don't have an insertion point, we're done. Sema prevents 1367 // us from jumping into any of these scopes anyway. 1368 if (!HaveInsertPoint()) return; 1369 1370 const VarDecl &D = *emission.Variable; 1371 1372 // Make sure we call @llvm.lifetime.end. This needs to happen 1373 // *last*, so the cleanup needs to be pushed *first*. 1374 if (emission.useLifetimeMarkers()) { 1375 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1376 emission.getAllocatedAddress(), 1377 emission.getSizeForLifetimeMarkers()); 1378 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin()); 1379 cleanup.setLifetimeMarker(); 1380 } 1381 1382 // Check the type for a cleanup. 1383 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1384 emitAutoVarTypeCleanup(emission, dtorKind); 1385 1386 // In GC mode, honor objc_precise_lifetime. 1387 if (getLangOpts().getGC() != LangOptions::NonGC && 1388 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1389 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1390 } 1391 1392 // Handle the cleanup attribute. 1393 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1394 const FunctionDecl *FD = CA->getFunctionDecl(); 1395 1396 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1397 assert(F && "Could not find function!"); 1398 1399 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1400 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1401 } 1402 1403 // If this is a block variable, call _Block_object_destroy 1404 // (on the unforwarded address). 1405 if (emission.IsByRef) 1406 enterByrefCleanup(emission); 1407 } 1408 1409 CodeGenFunction::Destroyer * 1410 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1411 switch (kind) { 1412 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1413 case QualType::DK_cxx_destructor: 1414 return destroyCXXObject; 1415 case QualType::DK_objc_strong_lifetime: 1416 return destroyARCStrongPrecise; 1417 case QualType::DK_objc_weak_lifetime: 1418 return destroyARCWeak; 1419 } 1420 llvm_unreachable("Unknown DestructionKind"); 1421 } 1422 1423 /// pushEHDestroy - Push the standard destructor for the given type as 1424 /// an EH-only cleanup. 1425 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1426 Address addr, QualType type) { 1427 assert(dtorKind && "cannot push destructor for trivial type"); 1428 assert(needsEHCleanup(dtorKind)); 1429 1430 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1431 } 1432 1433 /// pushDestroy - Push the standard destructor for the given type as 1434 /// at least a normal cleanup. 1435 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1436 Address addr, QualType type) { 1437 assert(dtorKind && "cannot push destructor for trivial type"); 1438 1439 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1440 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1441 cleanupKind & EHCleanup); 1442 } 1443 1444 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1445 QualType type, Destroyer *destroyer, 1446 bool useEHCleanupForArray) { 1447 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1448 destroyer, useEHCleanupForArray); 1449 } 1450 1451 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1452 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1453 } 1454 1455 void CodeGenFunction::pushLifetimeExtendedDestroy( 1456 CleanupKind cleanupKind, Address addr, QualType type, 1457 Destroyer *destroyer, bool useEHCleanupForArray) { 1458 assert(!isInConditionalBranch() && 1459 "performing lifetime extension from within conditional"); 1460 1461 // Push an EH-only cleanup for the object now. 1462 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1463 // around in case a temporary's destructor throws an exception. 1464 if (cleanupKind & EHCleanup) 1465 EHStack.pushCleanup<DestroyObject>( 1466 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1467 destroyer, useEHCleanupForArray); 1468 1469 // Remember that we need to push a full cleanup for the object at the 1470 // end of the full-expression. 1471 pushCleanupAfterFullExpr<DestroyObject>( 1472 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1473 } 1474 1475 /// emitDestroy - Immediately perform the destruction of the given 1476 /// object. 1477 /// 1478 /// \param addr - the address of the object; a type* 1479 /// \param type - the type of the object; if an array type, all 1480 /// objects are destroyed in reverse order 1481 /// \param destroyer - the function to call to destroy individual 1482 /// elements 1483 /// \param useEHCleanupForArray - whether an EH cleanup should be 1484 /// used when destroying array elements, in case one of the 1485 /// destructions throws an exception 1486 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1487 Destroyer *destroyer, 1488 bool useEHCleanupForArray) { 1489 const ArrayType *arrayType = getContext().getAsArrayType(type); 1490 if (!arrayType) 1491 return destroyer(*this, addr, type); 1492 1493 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1494 1495 CharUnits elementAlign = 1496 addr.getAlignment() 1497 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1498 1499 // Normally we have to check whether the array is zero-length. 1500 bool checkZeroLength = true; 1501 1502 // But if the array length is constant, we can suppress that. 1503 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1504 // ...and if it's constant zero, we can just skip the entire thing. 1505 if (constLength->isZero()) return; 1506 checkZeroLength = false; 1507 } 1508 1509 llvm::Value *begin = addr.getPointer(); 1510 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1511 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1512 checkZeroLength, useEHCleanupForArray); 1513 } 1514 1515 /// emitArrayDestroy - Destroys all the elements of the given array, 1516 /// beginning from last to first. The array cannot be zero-length. 1517 /// 1518 /// \param begin - a type* denoting the first element of the array 1519 /// \param end - a type* denoting one past the end of the array 1520 /// \param elementType - the element type of the array 1521 /// \param destroyer - the function to call to destroy elements 1522 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1523 /// the remaining elements in case the destruction of a single 1524 /// element throws 1525 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1526 llvm::Value *end, 1527 QualType elementType, 1528 CharUnits elementAlign, 1529 Destroyer *destroyer, 1530 bool checkZeroLength, 1531 bool useEHCleanup) { 1532 assert(!elementType->isArrayType()); 1533 1534 // The basic structure here is a do-while loop, because we don't 1535 // need to check for the zero-element case. 1536 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1537 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1538 1539 if (checkZeroLength) { 1540 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1541 "arraydestroy.isempty"); 1542 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1543 } 1544 1545 // Enter the loop body, making that address the current address. 1546 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1547 EmitBlock(bodyBB); 1548 llvm::PHINode *elementPast = 1549 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1550 elementPast->addIncoming(end, entryBB); 1551 1552 // Shift the address back by one element. 1553 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1554 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1555 "arraydestroy.element"); 1556 1557 if (useEHCleanup) 1558 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1559 destroyer); 1560 1561 // Perform the actual destruction there. 1562 destroyer(*this, Address(element, elementAlign), elementType); 1563 1564 if (useEHCleanup) 1565 PopCleanupBlock(); 1566 1567 // Check whether we've reached the end. 1568 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1569 Builder.CreateCondBr(done, doneBB, bodyBB); 1570 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1571 1572 // Done. 1573 EmitBlock(doneBB); 1574 } 1575 1576 /// Perform partial array destruction as if in an EH cleanup. Unlike 1577 /// emitArrayDestroy, the element type here may still be an array type. 1578 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1579 llvm::Value *begin, llvm::Value *end, 1580 QualType type, CharUnits elementAlign, 1581 CodeGenFunction::Destroyer *destroyer) { 1582 // If the element type is itself an array, drill down. 1583 unsigned arrayDepth = 0; 1584 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1585 // VLAs don't require a GEP index to walk into. 1586 if (!isa<VariableArrayType>(arrayType)) 1587 arrayDepth++; 1588 type = arrayType->getElementType(); 1589 } 1590 1591 if (arrayDepth) { 1592 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1593 1594 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1595 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1596 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1597 } 1598 1599 // Destroy the array. We don't ever need an EH cleanup because we 1600 // assume that we're in an EH cleanup ourselves, so a throwing 1601 // destructor causes an immediate terminate. 1602 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1603 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1604 } 1605 1606 namespace { 1607 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1608 /// array destroy where the end pointer is regularly determined and 1609 /// does not need to be loaded from a local. 1610 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1611 llvm::Value *ArrayBegin; 1612 llvm::Value *ArrayEnd; 1613 QualType ElementType; 1614 CodeGenFunction::Destroyer *Destroyer; 1615 CharUnits ElementAlign; 1616 public: 1617 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1618 QualType elementType, CharUnits elementAlign, 1619 CodeGenFunction::Destroyer *destroyer) 1620 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1621 ElementType(elementType), Destroyer(destroyer), 1622 ElementAlign(elementAlign) {} 1623 1624 void Emit(CodeGenFunction &CGF, Flags flags) override { 1625 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1626 ElementType, ElementAlign, Destroyer); 1627 } 1628 }; 1629 1630 /// IrregularPartialArrayDestroy - a cleanup which performs a 1631 /// partial array destroy where the end pointer is irregularly 1632 /// determined and must be loaded from a local. 1633 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1634 llvm::Value *ArrayBegin; 1635 Address ArrayEndPointer; 1636 QualType ElementType; 1637 CodeGenFunction::Destroyer *Destroyer; 1638 CharUnits ElementAlign; 1639 public: 1640 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1641 Address arrayEndPointer, 1642 QualType elementType, 1643 CharUnits elementAlign, 1644 CodeGenFunction::Destroyer *destroyer) 1645 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1646 ElementType(elementType), Destroyer(destroyer), 1647 ElementAlign(elementAlign) {} 1648 1649 void Emit(CodeGenFunction &CGF, Flags flags) override { 1650 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1651 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1652 ElementType, ElementAlign, Destroyer); 1653 } 1654 }; 1655 } 1656 1657 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1658 /// already-constructed elements of the given array. The cleanup 1659 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1660 /// 1661 /// \param elementType - the immediate element type of the array; 1662 /// possibly still an array type 1663 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1664 Address arrayEndPointer, 1665 QualType elementType, 1666 CharUnits elementAlign, 1667 Destroyer *destroyer) { 1668 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1669 arrayBegin, arrayEndPointer, 1670 elementType, elementAlign, 1671 destroyer); 1672 } 1673 1674 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1675 /// already-constructed elements of the given array. The cleanup 1676 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1677 /// 1678 /// \param elementType - the immediate element type of the array; 1679 /// possibly still an array type 1680 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1681 llvm::Value *arrayEnd, 1682 QualType elementType, 1683 CharUnits elementAlign, 1684 Destroyer *destroyer) { 1685 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1686 arrayBegin, arrayEnd, 1687 elementType, elementAlign, 1688 destroyer); 1689 } 1690 1691 /// Lazily declare the @llvm.lifetime.start intrinsic. 1692 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1693 if (LifetimeStartFn) return LifetimeStartFn; 1694 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1695 llvm::Intrinsic::lifetime_start); 1696 return LifetimeStartFn; 1697 } 1698 1699 /// Lazily declare the @llvm.lifetime.end intrinsic. 1700 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1701 if (LifetimeEndFn) return LifetimeEndFn; 1702 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1703 llvm::Intrinsic::lifetime_end); 1704 return LifetimeEndFn; 1705 } 1706 1707 namespace { 1708 /// A cleanup to perform a release of an object at the end of a 1709 /// function. This is used to balance out the incoming +1 of a 1710 /// ns_consumed argument when we can't reasonably do that just by 1711 /// not doing the initial retain for a __block argument. 1712 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1713 ConsumeARCParameter(llvm::Value *param, 1714 ARCPreciseLifetime_t precise) 1715 : Param(param), Precise(precise) {} 1716 1717 llvm::Value *Param; 1718 ARCPreciseLifetime_t Precise; 1719 1720 void Emit(CodeGenFunction &CGF, Flags flags) override { 1721 CGF.EmitARCRelease(Param, Precise); 1722 } 1723 }; 1724 } 1725 1726 /// Emit an alloca (or GlobalValue depending on target) 1727 /// for the specified parameter and set up LocalDeclMap. 1728 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1729 unsigned ArgNo) { 1730 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1731 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1732 "Invalid argument to EmitParmDecl"); 1733 1734 Arg.getAnyValue()->setName(D.getName()); 1735 1736 QualType Ty = D.getType(); 1737 1738 // Use better IR generation for certain implicit parameters. 1739 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1740 // The only implicit argument a block has is its literal. 1741 // We assume this is always passed directly. 1742 if (BlockInfo) { 1743 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1744 return; 1745 } 1746 } 1747 1748 Address DeclPtr = Address::invalid(); 1749 bool DoStore = false; 1750 bool IsScalar = hasScalarEvaluationKind(Ty); 1751 // If we already have a pointer to the argument, reuse the input pointer. 1752 if (Arg.isIndirect()) { 1753 DeclPtr = Arg.getIndirectAddress(); 1754 // If we have a prettier pointer type at this point, bitcast to that. 1755 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1756 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1757 if (DeclPtr.getType() != IRTy) 1758 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1759 1760 // Push a destructor cleanup for this parameter if the ABI requires it. 1761 // Don't push a cleanup in a thunk for a method that will also emit a 1762 // cleanup. 1763 if (!IsScalar && !CurFuncIsThunk && 1764 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1765 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1766 if (RD && RD->hasNonTrivialDestructor()) 1767 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1768 } 1769 } else { 1770 // Otherwise, create a temporary to hold the value. 1771 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1772 D.getName() + ".addr"); 1773 DoStore = true; 1774 } 1775 1776 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1777 1778 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1779 if (IsScalar) { 1780 Qualifiers qs = Ty.getQualifiers(); 1781 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1782 // We honor __attribute__((ns_consumed)) for types with lifetime. 1783 // For __strong, it's handled by just skipping the initial retain; 1784 // otherwise we have to balance out the initial +1 with an extra 1785 // cleanup to do the release at the end of the function. 1786 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1787 1788 // 'self' is always formally __strong, but if this is not an 1789 // init method then we don't want to retain it. 1790 if (D.isARCPseudoStrong()) { 1791 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1792 assert(&D == method->getSelfDecl()); 1793 assert(lt == Qualifiers::OCL_Strong); 1794 assert(qs.hasConst()); 1795 assert(method->getMethodFamily() != OMF_init); 1796 (void) method; 1797 lt = Qualifiers::OCL_ExplicitNone; 1798 } 1799 1800 if (lt == Qualifiers::OCL_Strong) { 1801 if (!isConsumed) { 1802 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1803 // use objc_storeStrong(&dest, value) for retaining the 1804 // object. But first, store a null into 'dest' because 1805 // objc_storeStrong attempts to release its old value. 1806 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1807 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1808 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1809 DoStore = false; 1810 } 1811 else 1812 // Don't use objc_retainBlock for block pointers, because we 1813 // don't want to Block_copy something just because we got it 1814 // as a parameter. 1815 ArgVal = EmitARCRetainNonBlock(ArgVal); 1816 } 1817 } else { 1818 // Push the cleanup for a consumed parameter. 1819 if (isConsumed) { 1820 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1821 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1822 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1823 precise); 1824 } 1825 1826 if (lt == Qualifiers::OCL_Weak) { 1827 EmitARCInitWeak(DeclPtr, ArgVal); 1828 DoStore = false; // The weak init is a store, no need to do two. 1829 } 1830 } 1831 1832 // Enter the cleanup scope. 1833 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1834 } 1835 } 1836 1837 // Store the initial value into the alloca. 1838 if (DoStore) 1839 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1840 1841 setAddrOfLocalVar(&D, DeclPtr); 1842 1843 // Emit debug info for param declaration. 1844 if (CGDebugInfo *DI = getDebugInfo()) { 1845 if (CGM.getCodeGenOpts().getDebugInfo() 1846 >= CodeGenOptions::LimitedDebugInfo) { 1847 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1848 } 1849 } 1850 1851 if (D.hasAttr<AnnotateAttr>()) 1852 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1853 } 1854