1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclOpenMP.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Type.h"
37 
38 using namespace clang;
39 using namespace CodeGen;
40 
41 void CodeGenFunction::EmitDecl(const Decl &D) {
42   switch (D.getKind()) {
43   case Decl::BuiltinTemplate:
44   case Decl::TranslationUnit:
45   case Decl::ExternCContext:
46   case Decl::Namespace:
47   case Decl::UnresolvedUsingTypename:
48   case Decl::ClassTemplateSpecialization:
49   case Decl::ClassTemplatePartialSpecialization:
50   case Decl::VarTemplateSpecialization:
51   case Decl::VarTemplatePartialSpecialization:
52   case Decl::TemplateTypeParm:
53   case Decl::UnresolvedUsingValue:
54   case Decl::NonTypeTemplateParm:
55   case Decl::CXXDeductionGuide:
56   case Decl::CXXMethod:
57   case Decl::CXXConstructor:
58   case Decl::CXXDestructor:
59   case Decl::CXXConversion:
60   case Decl::Field:
61   case Decl::MSProperty:
62   case Decl::IndirectField:
63   case Decl::ObjCIvar:
64   case Decl::ObjCAtDefsField:
65   case Decl::ParmVar:
66   case Decl::ImplicitParam:
67   case Decl::ClassTemplate:
68   case Decl::VarTemplate:
69   case Decl::FunctionTemplate:
70   case Decl::TypeAliasTemplate:
71   case Decl::TemplateTemplateParm:
72   case Decl::ObjCMethod:
73   case Decl::ObjCCategory:
74   case Decl::ObjCProtocol:
75   case Decl::ObjCInterface:
76   case Decl::ObjCCategoryImpl:
77   case Decl::ObjCImplementation:
78   case Decl::ObjCProperty:
79   case Decl::ObjCCompatibleAlias:
80   case Decl::PragmaComment:
81   case Decl::PragmaDetectMismatch:
82   case Decl::AccessSpec:
83   case Decl::LinkageSpec:
84   case Decl::Export:
85   case Decl::ObjCPropertyImpl:
86   case Decl::FileScopeAsm:
87   case Decl::Friend:
88   case Decl::FriendTemplate:
89   case Decl::Block:
90   case Decl::Captured:
91   case Decl::ClassScopeFunctionSpecialization:
92   case Decl::UsingShadow:
93   case Decl::ConstructorUsingShadow:
94   case Decl::ObjCTypeParam:
95   case Decl::Binding:
96     llvm_unreachable("Declaration should not be in declstmts!");
97   case Decl::Function:  // void X();
98   case Decl::Record:    // struct/union/class X;
99   case Decl::Enum:      // enum X;
100   case Decl::EnumConstant: // enum ? { X = ? }
101   case Decl::CXXRecord: // struct/union/class X; [C++]
102   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
103   case Decl::Label:        // __label__ x;
104   case Decl::Import:
105   case Decl::OMPThreadPrivate:
106   case Decl::OMPCapturedExpr:
107   case Decl::OMPRequires:
108   case Decl::Empty:
109     // None of these decls require codegen support.
110     return;
111 
112   case Decl::NamespaceAlias:
113     if (CGDebugInfo *DI = getDebugInfo())
114         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
115     return;
116   case Decl::Using:          // using X; [C++]
117     if (CGDebugInfo *DI = getDebugInfo())
118         DI->EmitUsingDecl(cast<UsingDecl>(D));
119     return;
120   case Decl::UsingPack:
121     for (auto *Using : cast<UsingPackDecl>(D).expansions())
122       EmitDecl(*Using);
123     return;
124   case Decl::UsingDirective: // using namespace X; [C++]
125     if (CGDebugInfo *DI = getDebugInfo())
126       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
127     return;
128   case Decl::Var:
129   case Decl::Decomposition: {
130     const VarDecl &VD = cast<VarDecl>(D);
131     assert(VD.isLocalVarDecl() &&
132            "Should not see file-scope variables inside a function!");
133     EmitVarDecl(VD);
134     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
135       for (auto *B : DD->bindings())
136         if (auto *HD = B->getHoldingVar())
137           EmitVarDecl(*HD);
138     return;
139   }
140 
141   case Decl::OMPDeclareReduction:
142     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
143 
144   case Decl::OMPDeclareMapper:
145     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
146 
147   case Decl::Typedef:      // typedef int X;
148   case Decl::TypeAlias: {  // using X = int; [C++0x]
149     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
150     QualType Ty = TD.getUnderlyingType();
151 
152     if (Ty->isVariablyModifiedType())
153       EmitVariablyModifiedType(Ty);
154   }
155   }
156 }
157 
158 /// EmitVarDecl - This method handles emission of any variable declaration
159 /// inside a function, including static vars etc.
160 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
161   if (D.hasExternalStorage())
162     // Don't emit it now, allow it to be emitted lazily on its first use.
163     return;
164 
165   // Some function-scope variable does not have static storage but still
166   // needs to be emitted like a static variable, e.g. a function-scope
167   // variable in constant address space in OpenCL.
168   if (D.getStorageDuration() != SD_Automatic) {
169     // Static sampler variables translated to function calls.
170     if (D.getType()->isSamplerT())
171       return;
172 
173     llvm::GlobalValue::LinkageTypes Linkage =
174         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
175 
176     // FIXME: We need to force the emission/use of a guard variable for
177     // some variables even if we can constant-evaluate them because
178     // we can't guarantee every translation unit will constant-evaluate them.
179 
180     return EmitStaticVarDecl(D, Linkage);
181   }
182 
183   if (D.getType().getAddressSpace() == LangAS::opencl_local)
184     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
185 
186   assert(D.hasLocalStorage());
187   return EmitAutoVarDecl(D);
188 }
189 
190 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
191   if (CGM.getLangOpts().CPlusPlus)
192     return CGM.getMangledName(&D).str();
193 
194   // If this isn't C++, we don't need a mangled name, just a pretty one.
195   assert(!D.isExternallyVisible() && "name shouldn't matter");
196   std::string ContextName;
197   const DeclContext *DC = D.getDeclContext();
198   if (auto *CD = dyn_cast<CapturedDecl>(DC))
199     DC = cast<DeclContext>(CD->getNonClosureContext());
200   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
201     ContextName = CGM.getMangledName(FD);
202   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
203     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
204   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
205     ContextName = OMD->getSelector().getAsString();
206   else
207     llvm_unreachable("Unknown context for static var decl");
208 
209   ContextName += "." + D.getNameAsString();
210   return ContextName;
211 }
212 
213 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
214     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
215   // In general, we don't always emit static var decls once before we reference
216   // them. It is possible to reference them before emitting the function that
217   // contains them, and it is possible to emit the containing function multiple
218   // times.
219   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
220     return ExistingGV;
221 
222   QualType Ty = D.getType();
223   assert(Ty->isConstantSizeType() && "VLAs can't be static");
224 
225   // Use the label if the variable is renamed with the asm-label extension.
226   std::string Name;
227   if (D.hasAttr<AsmLabelAttr>())
228     Name = getMangledName(&D);
229   else
230     Name = getStaticDeclName(*this, D);
231 
232   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
233   LangAS AS = GetGlobalVarAddressSpace(&D);
234   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
235 
236   // OpenCL variables in local address space and CUDA shared
237   // variables cannot have an initializer.
238   llvm::Constant *Init = nullptr;
239   if (Ty.getAddressSpace() == LangAS::opencl_local ||
240       D.hasAttr<CUDASharedAttr>())
241     Init = llvm::UndefValue::get(LTy);
242   else
243     Init = EmitNullConstant(Ty);
244 
245   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
246       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
247       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
248   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
249 
250   if (supportsCOMDAT() && GV->isWeakForLinker())
251     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
252 
253   if (D.getTLSKind())
254     setTLSMode(GV, D);
255 
256   setGVProperties(GV, &D);
257 
258   // Make sure the result is of the correct type.
259   LangAS ExpectedAS = Ty.getAddressSpace();
260   llvm::Constant *Addr = GV;
261   if (AS != ExpectedAS) {
262     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
263         *this, GV, AS, ExpectedAS,
264         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
265   }
266 
267   setStaticLocalDeclAddress(&D, Addr);
268 
269   // Ensure that the static local gets initialized by making sure the parent
270   // function gets emitted eventually.
271   const Decl *DC = cast<Decl>(D.getDeclContext());
272 
273   // We can't name blocks or captured statements directly, so try to emit their
274   // parents.
275   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
276     DC = DC->getNonClosureContext();
277     // FIXME: Ensure that global blocks get emitted.
278     if (!DC)
279       return Addr;
280   }
281 
282   GlobalDecl GD;
283   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
284     GD = GlobalDecl(CD, Ctor_Base);
285   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
286     GD = GlobalDecl(DD, Dtor_Base);
287   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
288     GD = GlobalDecl(FD);
289   else {
290     // Don't do anything for Obj-C method decls or global closures. We should
291     // never defer them.
292     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
293   }
294   if (GD.getDecl()) {
295     // Disable emission of the parent function for the OpenMP device codegen.
296     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
297     (void)GetAddrOfGlobal(GD);
298   }
299 
300   return Addr;
301 }
302 
303 /// hasNontrivialDestruction - Determine whether a type's destruction is
304 /// non-trivial. If so, and the variable uses static initialization, we must
305 /// register its destructor to run on exit.
306 static bool hasNontrivialDestruction(QualType T) {
307   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
308   return RD && !RD->hasTrivialDestructor();
309 }
310 
311 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
312 /// global variable that has already been created for it.  If the initializer
313 /// has a different type than GV does, this may free GV and return a different
314 /// one.  Otherwise it just returns GV.
315 llvm::GlobalVariable *
316 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
317                                                llvm::GlobalVariable *GV) {
318   ConstantEmitter emitter(*this);
319   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
320 
321   // If constant emission failed, then this should be a C++ static
322   // initializer.
323   if (!Init) {
324     if (!getLangOpts().CPlusPlus)
325       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
326     else if (HaveInsertPoint()) {
327       // Since we have a static initializer, this global variable can't
328       // be constant.
329       GV->setConstant(false);
330 
331       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
332     }
333     return GV;
334   }
335 
336   // The initializer may differ in type from the global. Rewrite
337   // the global to match the initializer.  (We have to do this
338   // because some types, like unions, can't be completely represented
339   // in the LLVM type system.)
340   if (GV->getType()->getElementType() != Init->getType()) {
341     llvm::GlobalVariable *OldGV = GV;
342 
343     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
344                                   OldGV->isConstant(),
345                                   OldGV->getLinkage(), Init, "",
346                                   /*InsertBefore*/ OldGV,
347                                   OldGV->getThreadLocalMode(),
348                            CGM.getContext().getTargetAddressSpace(D.getType()));
349     GV->setVisibility(OldGV->getVisibility());
350     GV->setDSOLocal(OldGV->isDSOLocal());
351     GV->setComdat(OldGV->getComdat());
352 
353     // Steal the name of the old global
354     GV->takeName(OldGV);
355 
356     // Replace all uses of the old global with the new global
357     llvm::Constant *NewPtrForOldDecl =
358     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
359     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
360 
361     // Erase the old global, since it is no longer used.
362     OldGV->eraseFromParent();
363   }
364 
365   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
366   GV->setInitializer(Init);
367 
368   emitter.finalize(GV);
369 
370   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
371     // We have a constant initializer, but a nontrivial destructor. We still
372     // need to perform a guarded "initialization" in order to register the
373     // destructor.
374     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
375   }
376 
377   return GV;
378 }
379 
380 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
381                                       llvm::GlobalValue::LinkageTypes Linkage) {
382   // Check to see if we already have a global variable for this
383   // declaration.  This can happen when double-emitting function
384   // bodies, e.g. with complete and base constructors.
385   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
386   CharUnits alignment = getContext().getDeclAlign(&D);
387 
388   // Store into LocalDeclMap before generating initializer to handle
389   // circular references.
390   setAddrOfLocalVar(&D, Address(addr, alignment));
391 
392   // We can't have a VLA here, but we can have a pointer to a VLA,
393   // even though that doesn't really make any sense.
394   // Make sure to evaluate VLA bounds now so that we have them for later.
395   if (D.getType()->isVariablyModifiedType())
396     EmitVariablyModifiedType(D.getType());
397 
398   // Save the type in case adding the initializer forces a type change.
399   llvm::Type *expectedType = addr->getType();
400 
401   llvm::GlobalVariable *var =
402     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
403 
404   // CUDA's local and local static __shared__ variables should not
405   // have any non-empty initializers. This is ensured by Sema.
406   // Whatever initializer such variable may have when it gets here is
407   // a no-op and should not be emitted.
408   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
409                          D.hasAttr<CUDASharedAttr>();
410   // If this value has an initializer, emit it.
411   if (D.getInit() && !isCudaSharedVar)
412     var = AddInitializerToStaticVarDecl(D, var);
413 
414   var->setAlignment(alignment.getQuantity());
415 
416   if (D.hasAttr<AnnotateAttr>())
417     CGM.AddGlobalAnnotations(&D, var);
418 
419   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
420     var->addAttribute("bss-section", SA->getName());
421   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
422     var->addAttribute("data-section", SA->getName());
423   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
424     var->addAttribute("rodata-section", SA->getName());
425 
426   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
427     var->setSection(SA->getName());
428 
429   if (D.hasAttr<UsedAttr>())
430     CGM.addUsedGlobal(var);
431 
432   // We may have to cast the constant because of the initializer
433   // mismatch above.
434   //
435   // FIXME: It is really dangerous to store this in the map; if anyone
436   // RAUW's the GV uses of this constant will be invalid.
437   llvm::Constant *castedAddr =
438     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
439   if (var != castedAddr)
440     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
441   CGM.setStaticLocalDeclAddress(&D, castedAddr);
442 
443   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
444 
445   // Emit global variable debug descriptor for static vars.
446   CGDebugInfo *DI = getDebugInfo();
447   if (DI &&
448       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
449     DI->setLocation(D.getLocation());
450     DI->EmitGlobalVariable(var, &D);
451   }
452 }
453 
454 namespace {
455   struct DestroyObject final : EHScopeStack::Cleanup {
456     DestroyObject(Address addr, QualType type,
457                   CodeGenFunction::Destroyer *destroyer,
458                   bool useEHCleanupForArray)
459       : addr(addr), type(type), destroyer(destroyer),
460         useEHCleanupForArray(useEHCleanupForArray) {}
461 
462     Address addr;
463     QualType type;
464     CodeGenFunction::Destroyer *destroyer;
465     bool useEHCleanupForArray;
466 
467     void Emit(CodeGenFunction &CGF, Flags flags) override {
468       // Don't use an EH cleanup recursively from an EH cleanup.
469       bool useEHCleanupForArray =
470         flags.isForNormalCleanup() && this->useEHCleanupForArray;
471 
472       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
473     }
474   };
475 
476   template <class Derived>
477   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
478     DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag)
479         : NRVOFlag(NRVOFlag), Loc(addr) {}
480 
481     llvm::Value *NRVOFlag;
482     Address Loc;
483 
484     void Emit(CodeGenFunction &CGF, Flags flags) override {
485       // Along the exceptions path we always execute the dtor.
486       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
487 
488       llvm::BasicBlock *SkipDtorBB = nullptr;
489       if (NRVO) {
490         // If we exited via NRVO, we skip the destructor call.
491         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
492         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
493         llvm::Value *DidNRVO =
494           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
495         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
496         CGF.EmitBlock(RunDtorBB);
497       }
498 
499       static_cast<Derived *>(this)->emitDestructorCall(CGF);
500 
501       if (NRVO) CGF.EmitBlock(SkipDtorBB);
502     }
503 
504     virtual ~DestroyNRVOVariable() = default;
505   };
506 
507   struct DestroyNRVOVariableCXX final
508       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
509     DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor,
510                            llvm::Value *NRVOFlag)
511       : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag),
512         Dtor(Dtor) {}
513 
514     const CXXDestructorDecl *Dtor;
515 
516     void emitDestructorCall(CodeGenFunction &CGF) {
517       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
518                                 /*ForVirtualBase=*/false,
519                                 /*Delegating=*/false, Loc);
520     }
521   };
522 
523   struct DestroyNRVOVariableC final
524       : DestroyNRVOVariable<DestroyNRVOVariableC> {
525     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
526         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {}
527 
528     QualType Ty;
529 
530     void emitDestructorCall(CodeGenFunction &CGF) {
531       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
532     }
533   };
534 
535   struct CallStackRestore final : EHScopeStack::Cleanup {
536     Address Stack;
537     CallStackRestore(Address Stack) : Stack(Stack) {}
538     void Emit(CodeGenFunction &CGF, Flags flags) override {
539       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
540       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
541       CGF.Builder.CreateCall(F, V);
542     }
543   };
544 
545   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
546     const VarDecl &Var;
547     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
548 
549     void Emit(CodeGenFunction &CGF, Flags flags) override {
550       // Compute the address of the local variable, in case it's a
551       // byref or something.
552       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
553                       Var.getType(), VK_LValue, SourceLocation());
554       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
555                                                 SourceLocation());
556       CGF.EmitExtendGCLifetime(value);
557     }
558   };
559 
560   struct CallCleanupFunction final : EHScopeStack::Cleanup {
561     llvm::Constant *CleanupFn;
562     const CGFunctionInfo &FnInfo;
563     const VarDecl &Var;
564 
565     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
566                         const VarDecl *Var)
567       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
568 
569     void Emit(CodeGenFunction &CGF, Flags flags) override {
570       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
571                       Var.getType(), VK_LValue, SourceLocation());
572       // Compute the address of the local variable, in case it's a byref
573       // or something.
574       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
575 
576       // In some cases, the type of the function argument will be different from
577       // the type of the pointer. An example of this is
578       // void f(void* arg);
579       // __attribute__((cleanup(f))) void *g;
580       //
581       // To fix this we insert a bitcast here.
582       QualType ArgTy = FnInfo.arg_begin()->type;
583       llvm::Value *Arg =
584         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
585 
586       CallArgList Args;
587       Args.add(RValue::get(Arg),
588                CGF.getContext().getPointerType(Var.getType()));
589       auto Callee = CGCallee::forDirect(CleanupFn);
590       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
591     }
592   };
593 } // end anonymous namespace
594 
595 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
596 /// variable with lifetime.
597 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
598                                     Address addr,
599                                     Qualifiers::ObjCLifetime lifetime) {
600   switch (lifetime) {
601   case Qualifiers::OCL_None:
602     llvm_unreachable("present but none");
603 
604   case Qualifiers::OCL_ExplicitNone:
605     // nothing to do
606     break;
607 
608   case Qualifiers::OCL_Strong: {
609     CodeGenFunction::Destroyer *destroyer =
610       (var.hasAttr<ObjCPreciseLifetimeAttr>()
611        ? CodeGenFunction::destroyARCStrongPrecise
612        : CodeGenFunction::destroyARCStrongImprecise);
613 
614     CleanupKind cleanupKind = CGF.getARCCleanupKind();
615     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
616                     cleanupKind & EHCleanup);
617     break;
618   }
619   case Qualifiers::OCL_Autoreleasing:
620     // nothing to do
621     break;
622 
623   case Qualifiers::OCL_Weak:
624     // __weak objects always get EH cleanups; otherwise, exceptions
625     // could cause really nasty crashes instead of mere leaks.
626     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
627                     CodeGenFunction::destroyARCWeak,
628                     /*useEHCleanup*/ true);
629     break;
630   }
631 }
632 
633 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
634   if (const Expr *e = dyn_cast<Expr>(s)) {
635     // Skip the most common kinds of expressions that make
636     // hierarchy-walking expensive.
637     s = e = e->IgnoreParenCasts();
638 
639     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
640       return (ref->getDecl() == &var);
641     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
642       const BlockDecl *block = be->getBlockDecl();
643       for (const auto &I : block->captures()) {
644         if (I.getVariable() == &var)
645           return true;
646       }
647     }
648   }
649 
650   for (const Stmt *SubStmt : s->children())
651     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
652     if (SubStmt && isAccessedBy(var, SubStmt))
653       return true;
654 
655   return false;
656 }
657 
658 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
659   if (!decl) return false;
660   if (!isa<VarDecl>(decl)) return false;
661   const VarDecl *var = cast<VarDecl>(decl);
662   return isAccessedBy(*var, e);
663 }
664 
665 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
666                                    const LValue &destLV, const Expr *init) {
667   bool needsCast = false;
668 
669   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
670     switch (castExpr->getCastKind()) {
671     // Look through casts that don't require representation changes.
672     case CK_NoOp:
673     case CK_BitCast:
674     case CK_BlockPointerToObjCPointerCast:
675       needsCast = true;
676       break;
677 
678     // If we find an l-value to r-value cast from a __weak variable,
679     // emit this operation as a copy or move.
680     case CK_LValueToRValue: {
681       const Expr *srcExpr = castExpr->getSubExpr();
682       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
683         return false;
684 
685       // Emit the source l-value.
686       LValue srcLV = CGF.EmitLValue(srcExpr);
687 
688       // Handle a formal type change to avoid asserting.
689       auto srcAddr = srcLV.getAddress();
690       if (needsCast) {
691         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
692                                          destLV.getAddress().getElementType());
693       }
694 
695       // If it was an l-value, use objc_copyWeak.
696       if (srcExpr->getValueKind() == VK_LValue) {
697         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
698       } else {
699         assert(srcExpr->getValueKind() == VK_XValue);
700         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
701       }
702       return true;
703     }
704 
705     // Stop at anything else.
706     default:
707       return false;
708     }
709 
710     init = castExpr->getSubExpr();
711   }
712   return false;
713 }
714 
715 static void drillIntoBlockVariable(CodeGenFunction &CGF,
716                                    LValue &lvalue,
717                                    const VarDecl *var) {
718   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
719 }
720 
721 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
722                                            SourceLocation Loc) {
723   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
724     return;
725 
726   auto Nullability = LHS.getType()->getNullability(getContext());
727   if (!Nullability || *Nullability != NullabilityKind::NonNull)
728     return;
729 
730   // Check if the right hand side of the assignment is nonnull, if the left
731   // hand side must be nonnull.
732   SanitizerScope SanScope(this);
733   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
734   llvm::Constant *StaticData[] = {
735       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
736       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
737       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
738   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
739             SanitizerHandler::TypeMismatch, StaticData, RHS);
740 }
741 
742 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
743                                      LValue lvalue, bool capturedByInit) {
744   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
745   if (!lifetime) {
746     llvm::Value *value = EmitScalarExpr(init);
747     if (capturedByInit)
748       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
749     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
750     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
751     return;
752   }
753 
754   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
755     init = DIE->getExpr();
756 
757   // If we're emitting a value with lifetime, we have to do the
758   // initialization *before* we leave the cleanup scopes.
759   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
760     enterFullExpression(fe);
761     init = fe->getSubExpr();
762   }
763   CodeGenFunction::RunCleanupsScope Scope(*this);
764 
765   // We have to maintain the illusion that the variable is
766   // zero-initialized.  If the variable might be accessed in its
767   // initializer, zero-initialize before running the initializer, then
768   // actually perform the initialization with an assign.
769   bool accessedByInit = false;
770   if (lifetime != Qualifiers::OCL_ExplicitNone)
771     accessedByInit = (capturedByInit || isAccessedBy(D, init));
772   if (accessedByInit) {
773     LValue tempLV = lvalue;
774     // Drill down to the __block object if necessary.
775     if (capturedByInit) {
776       // We can use a simple GEP for this because it can't have been
777       // moved yet.
778       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
779                                               cast<VarDecl>(D),
780                                               /*follow*/ false));
781     }
782 
783     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
784     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
785 
786     // If __weak, we want to use a barrier under certain conditions.
787     if (lifetime == Qualifiers::OCL_Weak)
788       EmitARCInitWeak(tempLV.getAddress(), zero);
789 
790     // Otherwise just do a simple store.
791     else
792       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
793   }
794 
795   // Emit the initializer.
796   llvm::Value *value = nullptr;
797 
798   switch (lifetime) {
799   case Qualifiers::OCL_None:
800     llvm_unreachable("present but none");
801 
802   case Qualifiers::OCL_Strong: {
803     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
804       value = EmitARCRetainScalarExpr(init);
805       break;
806     }
807     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
808     // that we omit the retain, and causes non-autoreleased return values to be
809     // immediately released.
810     LLVM_FALLTHROUGH;
811   }
812 
813   case Qualifiers::OCL_ExplicitNone:
814     value = EmitARCUnsafeUnretainedScalarExpr(init);
815     break;
816 
817   case Qualifiers::OCL_Weak: {
818     // If it's not accessed by the initializer, try to emit the
819     // initialization with a copy or move.
820     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
821       return;
822     }
823 
824     // No way to optimize a producing initializer into this.  It's not
825     // worth optimizing for, because the value will immediately
826     // disappear in the common case.
827     value = EmitScalarExpr(init);
828 
829     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
830     if (accessedByInit)
831       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
832     else
833       EmitARCInitWeak(lvalue.getAddress(), value);
834     return;
835   }
836 
837   case Qualifiers::OCL_Autoreleasing:
838     value = EmitARCRetainAutoreleaseScalarExpr(init);
839     break;
840   }
841 
842   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
843 
844   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
845 
846   // If the variable might have been accessed by its initializer, we
847   // might have to initialize with a barrier.  We have to do this for
848   // both __weak and __strong, but __weak got filtered out above.
849   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
850     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
851     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
852     EmitARCRelease(oldValue, ARCImpreciseLifetime);
853     return;
854   }
855 
856   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
857 }
858 
859 /// Decide whether we can emit the non-zero parts of the specified initializer
860 /// with equal or fewer than NumStores scalar stores.
861 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
862                                                unsigned &NumStores) {
863   // Zero and Undef never requires any extra stores.
864   if (isa<llvm::ConstantAggregateZero>(Init) ||
865       isa<llvm::ConstantPointerNull>(Init) ||
866       isa<llvm::UndefValue>(Init))
867     return true;
868   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
869       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
870       isa<llvm::ConstantExpr>(Init))
871     return Init->isNullValue() || NumStores--;
872 
873   // See if we can emit each element.
874   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
875     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
876       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
877       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
878         return false;
879     }
880     return true;
881   }
882 
883   if (llvm::ConstantDataSequential *CDS =
884         dyn_cast<llvm::ConstantDataSequential>(Init)) {
885     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
886       llvm::Constant *Elt = CDS->getElementAsConstant(i);
887       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
888         return false;
889     }
890     return true;
891   }
892 
893   // Anything else is hard and scary.
894   return false;
895 }
896 
897 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
898 /// the scalar stores that would be required.
899 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
900                                         llvm::Constant *Init, Address Loc,
901                                         bool isVolatile, CGBuilderTy &Builder) {
902   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
903          "called emitStoresForInitAfterBZero for zero or undef value.");
904 
905   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
906       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
907       isa<llvm::ConstantExpr>(Init)) {
908     Builder.CreateStore(Init, Loc, isVolatile);
909     return;
910   }
911 
912   if (llvm::ConstantDataSequential *CDS =
913           dyn_cast<llvm::ConstantDataSequential>(Init)) {
914     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
915       llvm::Constant *Elt = CDS->getElementAsConstant(i);
916 
917       // If necessary, get a pointer to the element and emit it.
918       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
919         emitStoresForInitAfterBZero(
920             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
921             Builder);
922     }
923     return;
924   }
925 
926   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
927          "Unknown value type!");
928 
929   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
930     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
931 
932     // If necessary, get a pointer to the element and emit it.
933     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
934       emitStoresForInitAfterBZero(CGM, Elt,
935                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
936                                   isVolatile, Builder);
937   }
938 }
939 
940 /// Decide whether we should use bzero plus some stores to initialize a local
941 /// variable instead of using a memcpy from a constant global.  It is beneficial
942 /// to use bzero if the global is all zeros, or mostly zeros and large.
943 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
944                                                  uint64_t GlobalSize) {
945   // If a global is all zeros, always use a bzero.
946   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
947 
948   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
949   // do it if it will require 6 or fewer scalar stores.
950   // TODO: Should budget depends on the size?  Avoiding a large global warrants
951   // plopping in more stores.
952   unsigned StoreBudget = 6;
953   uint64_t SizeLimit = 32;
954 
955   return GlobalSize > SizeLimit &&
956          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
957 }
958 
959 /// Decide whether we should use memset to initialize a local variable instead
960 /// of using a memcpy from a constant global. Assumes we've already decided to
961 /// not user bzero.
962 /// FIXME We could be more clever, as we are for bzero above, and generate
963 ///       memset followed by stores. It's unclear that's worth the effort.
964 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
965                                                 uint64_t GlobalSize) {
966   uint64_t SizeLimit = 32;
967   if (GlobalSize <= SizeLimit)
968     return nullptr;
969   return llvm::isBytewiseValue(Init);
970 }
971 
972 /// Decide whether we want to split a constant structure store into a sequence
973 /// of its fields' stores. This may cost us code size and compilation speed,
974 /// but plays better with store optimizations.
975 static bool shouldSplitStructStore(CodeGenModule &CGM,
976                                    uint64_t GlobalByteSize) {
977   // Don't break structures that occupy more than one cacheline.
978   uint64_t ByteSizeLimit = 64;
979   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
980     return false;
981   if (GlobalByteSize <= ByteSizeLimit)
982     return true;
983   return false;
984 }
985 
986 static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) {
987   // The following value is a guaranteed unmappable pointer value and has a
988   // repeated byte-pattern which makes it easier to synthesize. We use it for
989   // pointers as well as integers so that aggregates are likely to be
990   // initialized with this repeated value.
991   constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull;
992   // For 32-bit platforms it's a bit trickier because, across systems, only the
993   // zero page can reasonably be expected to be unmapped, and even then we need
994   // a very low address. We use a smaller value, and that value sadly doesn't
995   // have a repeated byte-pattern. We don't use it for integers.
996   constexpr uint32_t SmallValue = 0x000000AA;
997   // Floating-point values are initialized as NaNs because they propagate. Using
998   // a repeated byte pattern means that it will be easier to initialize
999   // all-floating-point aggregates and arrays with memset. Further, aggregates
1000   // which mix integral and a few floats might also initialize with memset
1001   // followed by a handful of stores for the floats. Using fairly unique NaNs
1002   // also means they'll be easier to distinguish in a crash.
1003   constexpr bool NegativeNaN = true;
1004   constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull;
1005   if (Ty->isIntOrIntVectorTy()) {
1006     unsigned BitWidth = cast<llvm::IntegerType>(
1007                             Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
1008                             ->getBitWidth();
1009     if (BitWidth <= 64)
1010       return llvm::ConstantInt::get(Ty, LargeValue);
1011     return llvm::ConstantInt::get(
1012         Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue)));
1013   }
1014   if (Ty->isPtrOrPtrVectorTy()) {
1015     auto *PtrTy = cast<llvm::PointerType>(
1016         Ty->isVectorTy() ? Ty->getVectorElementType() : Ty);
1017     unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth(
1018         PtrTy->getAddressSpace());
1019     llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth);
1020     uint64_t IntValue;
1021     switch (PtrWidth) {
1022     default:
1023       llvm_unreachable("pattern initialization of unsupported pointer width");
1024     case 64:
1025       IntValue = LargeValue;
1026       break;
1027     case 32:
1028       IntValue = SmallValue;
1029       break;
1030     }
1031     auto *Int = llvm::ConstantInt::get(IntTy, IntValue);
1032     return llvm::ConstantExpr::getIntToPtr(Int, PtrTy);
1033   }
1034   if (Ty->isFPOrFPVectorTy()) {
1035     unsigned BitWidth = llvm::APFloat::semanticsSizeInBits(
1036         (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
1037             ->getFltSemantics());
1038     llvm::APInt Payload(64, NaNPayload);
1039     if (BitWidth >= 64)
1040       Payload = llvm::APInt::getSplat(BitWidth, Payload);
1041     return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload);
1042   }
1043   if (Ty->isArrayTy()) {
1044     // Note: this doesn't touch tail padding (at the end of an object, before
1045     // the next array object). It is instead handled by replaceUndef.
1046     auto *ArrTy = cast<llvm::ArrayType>(Ty);
1047     llvm::SmallVector<llvm::Constant *, 8> Element(
1048         ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType()));
1049     return llvm::ConstantArray::get(ArrTy, Element);
1050   }
1051 
1052   // Note: this doesn't touch struct padding. It will initialize as much union
1053   // padding as is required for the largest type in the union. Padding is
1054   // instead handled by replaceUndef. Stores to structs with volatile members
1055   // don't have a volatile qualifier when initialized according to C++. This is
1056   // fine because stack-based volatiles don't really have volatile semantics
1057   // anyways, and the initialization shouldn't be observable.
1058   auto *StructTy = cast<llvm::StructType>(Ty);
1059   llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements());
1060   for (unsigned El = 0; El != Struct.size(); ++El)
1061     Struct[El] = patternFor(CGM, StructTy->getElementType(El));
1062   return llvm::ConstantStruct::get(StructTy, Struct);
1063 }
1064 
1065 enum class IsPattern { No, Yes };
1066 
1067 /// Generate a constant filled with either a pattern or zeroes.
1068 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1069                                         llvm::Type *Ty) {
1070   if (isPattern == IsPattern::Yes)
1071     return patternFor(CGM, Ty);
1072   else
1073     return llvm::Constant::getNullValue(Ty);
1074 }
1075 
1076 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1077                                         llvm::Constant *constant);
1078 
1079 /// Helper function for constWithPadding() to deal with padding in structures.
1080 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1081                                               IsPattern isPattern,
1082                                               llvm::StructType *STy,
1083                                               llvm::Constant *constant) {
1084   const llvm::DataLayout &DL = CGM.getDataLayout();
1085   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1086   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1087   unsigned SizeSoFar = 0;
1088   SmallVector<llvm::Constant *, 8> Values;
1089   bool NestedIntact = true;
1090   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1091     unsigned CurOff = Layout->getElementOffset(i);
1092     if (SizeSoFar < CurOff) {
1093       assert(!STy->isPacked());
1094       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1095       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1096     }
1097     llvm::Constant *CurOp;
1098     if (constant->isZeroValue())
1099       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1100     else
1101       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1102     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1103     if (CurOp != NewOp)
1104       NestedIntact = false;
1105     Values.push_back(NewOp);
1106     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1107   }
1108   unsigned TotalSize = Layout->getSizeInBytes();
1109   if (SizeSoFar < TotalSize) {
1110     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1111     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1112   }
1113   if (NestedIntact && Values.size() == STy->getNumElements())
1114     return constant;
1115   return llvm::ConstantStruct::getAnon(Values);
1116 }
1117 
1118 /// Replace all padding bytes in a given constant with either a pattern byte or
1119 /// 0x00.
1120 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1121                                         llvm::Constant *constant) {
1122   llvm::Type *OrigTy = constant->getType();
1123   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1124     return constStructWithPadding(CGM, isPattern, STy, constant);
1125   if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
1126     llvm::SmallVector<llvm::Constant *, 8> Values;
1127     unsigned Size = STy->getNumElements();
1128     if (!Size)
1129       return constant;
1130     llvm::Type *ElemTy = STy->getElementType();
1131     bool ZeroInitializer = constant->isZeroValue();
1132     llvm::Constant *OpValue, *PaddedOp;
1133     if (ZeroInitializer) {
1134       OpValue = llvm::Constant::getNullValue(ElemTy);
1135       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1136     }
1137     for (unsigned Op = 0; Op != Size; ++Op) {
1138       if (!ZeroInitializer) {
1139         OpValue = constant->getAggregateElement(Op);
1140         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1141       }
1142       Values.push_back(PaddedOp);
1143     }
1144     auto *NewElemTy = Values[0]->getType();
1145     if (NewElemTy == ElemTy)
1146       return constant;
1147     if (OrigTy->isArrayTy()) {
1148       auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1149       return llvm::ConstantArray::get(ArrayTy, Values);
1150     } else {
1151       return llvm::ConstantVector::get(Values);
1152     }
1153   }
1154   return constant;
1155 }
1156 
1157 static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D,
1158                                        CGBuilderTy &Builder,
1159                                        llvm::Constant *Constant,
1160                                        CharUnits Align) {
1161   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1162     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1163       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1164         return CC->getNameAsString();
1165       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1166         return CD->getNameAsString();
1167       return CGM.getMangledName(FD);
1168     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1169       return OM->getNameAsString();
1170     } else if (isa<BlockDecl>(DC)) {
1171       return "<block>";
1172     } else if (isa<CapturedDecl>(DC)) {
1173       return "<captured>";
1174     } else {
1175       llvm::llvm_unreachable_internal("expected a function or method");
1176     }
1177   };
1178 
1179   auto *Ty = Constant->getType();
1180   bool isConstant = true;
1181   llvm::GlobalVariable *InsertBefore = nullptr;
1182   unsigned AS = CGM.getContext().getTargetAddressSpace(
1183       CGM.getStringLiteralAddressSpace());
1184   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1185       CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1186       Constant,
1187       "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." +
1188           D.getName(),
1189       InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1190   GV->setAlignment(Align.getQuantity());
1191   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1192 
1193   Address SrcPtr = Address(GV, Align);
1194   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS);
1195   if (SrcPtr.getType() != BP)
1196     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1197   return SrcPtr;
1198 }
1199 
1200 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1201                                   Address Loc, bool isVolatile,
1202                                   CGBuilderTy &Builder,
1203                                   llvm::Constant *constant) {
1204   auto *Ty = constant->getType();
1205   bool isScalar = Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy() ||
1206                   Ty->isFPOrFPVectorTy();
1207   if (isScalar) {
1208     Builder.CreateStore(constant, Loc, isVolatile);
1209     return;
1210   }
1211 
1212   auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1213   auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext());
1214 
1215   // If the initializer is all or mostly the same, codegen with bzero / memset
1216   // then do a few stores afterward.
1217   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1218   if (!ConstantSize)
1219     return;
1220   auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize);
1221   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1222     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1223                          isVolatile);
1224 
1225     bool valueAlreadyCorrect =
1226         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1227     if (!valueAlreadyCorrect) {
1228       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1229       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1230     }
1231     return;
1232   }
1233 
1234   llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize);
1235   if (Pattern) {
1236     uint64_t Value = 0x00;
1237     if (!isa<llvm::UndefValue>(Pattern)) {
1238       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1239       assert(AP.getBitWidth() <= 8);
1240       Value = AP.getLimitedValue();
1241     }
1242     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal,
1243                          isVolatile);
1244     return;
1245   }
1246 
1247   llvm::StructType *STy = dyn_cast<llvm::StructType>(Ty);
1248   // FIXME: handle the case when STy != Loc.getElementType().
1249   // FIXME: handle non-struct aggregate types.
1250   if (STy && (STy == Loc.getElementType()) &&
1251       shouldSplitStructStore(CGM, ConstantSize)) {
1252     for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1253       Address EltPtr = Builder.CreateStructGEP(Loc, i);
1254       emitStoresForConstant(
1255           CGM, D, EltPtr, isVolatile, Builder,
1256           cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1257     }
1258     return;
1259   }
1260 
1261   Builder.CreateMemCpy(
1262       Loc,
1263       createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()),
1264       SizeVal, isVolatile);
1265 }
1266 
1267 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1268                                   Address Loc, bool isVolatile,
1269                                   CGBuilderTy &Builder) {
1270   llvm::Type *ElTy = Loc.getElementType();
1271   llvm::Constant *constant =
1272       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1273   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1274 }
1275 
1276 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1277                                      Address Loc, bool isVolatile,
1278                                      CGBuilderTy &Builder) {
1279   llvm::Type *ElTy = Loc.getElementType();
1280   llvm::Constant *constant =
1281       constWithPadding(CGM, IsPattern::Yes, patternFor(CGM, ElTy));
1282   assert(!isa<llvm::UndefValue>(constant));
1283   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1284 }
1285 
1286 static bool containsUndef(llvm::Constant *constant) {
1287   auto *Ty = constant->getType();
1288   if (isa<llvm::UndefValue>(constant))
1289     return true;
1290   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1291     for (llvm::Use &Op : constant->operands())
1292       if (containsUndef(cast<llvm::Constant>(Op)))
1293         return true;
1294   return false;
1295 }
1296 
1297 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1298                                     llvm::Constant *constant) {
1299   auto *Ty = constant->getType();
1300   if (isa<llvm::UndefValue>(constant))
1301     return patternOrZeroFor(CGM, isPattern, Ty);
1302   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1303     return constant;
1304   if (!containsUndef(constant))
1305     return constant;
1306   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1307   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1308     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1309     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1310   }
1311   if (Ty->isStructTy())
1312     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1313   if (Ty->isArrayTy())
1314     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1315   assert(Ty->isVectorTy());
1316   return llvm::ConstantVector::get(Values);
1317 }
1318 
1319 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1320 /// variable declaration with auto, register, or no storage class specifier.
1321 /// These turn into simple stack objects, or GlobalValues depending on target.
1322 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1323   AutoVarEmission emission = EmitAutoVarAlloca(D);
1324   EmitAutoVarInit(emission);
1325   EmitAutoVarCleanups(emission);
1326 }
1327 
1328 /// Emit a lifetime.begin marker if some criteria are satisfied.
1329 /// \return a pointer to the temporary size Value if a marker was emitted, null
1330 /// otherwise
1331 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1332                                                 llvm::Value *Addr) {
1333   if (!ShouldEmitLifetimeMarkers)
1334     return nullptr;
1335 
1336   assert(Addr->getType()->getPointerAddressSpace() ==
1337              CGM.getDataLayout().getAllocaAddrSpace() &&
1338          "Pointer should be in alloca address space");
1339   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1340   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1341   llvm::CallInst *C =
1342       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1343   C->setDoesNotThrow();
1344   return SizeV;
1345 }
1346 
1347 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1348   assert(Addr->getType()->getPointerAddressSpace() ==
1349              CGM.getDataLayout().getAllocaAddrSpace() &&
1350          "Pointer should be in alloca address space");
1351   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1352   llvm::CallInst *C =
1353       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1354   C->setDoesNotThrow();
1355 }
1356 
1357 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1358     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1359   // For each dimension stores its QualType and corresponding
1360   // size-expression Value.
1361   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1362   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1363 
1364   // Break down the array into individual dimensions.
1365   QualType Type1D = D.getType();
1366   while (getContext().getAsVariableArrayType(Type1D)) {
1367     auto VlaSize = getVLAElements1D(Type1D);
1368     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1369       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1370     else {
1371       // Generate a locally unique name for the size expression.
1372       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1373       SmallString<12> Buffer;
1374       StringRef NameRef = Name.toStringRef(Buffer);
1375       auto &Ident = getContext().Idents.getOwn(NameRef);
1376       VLAExprNames.push_back(&Ident);
1377       auto SizeExprAddr =
1378           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1379       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1380       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1381                               Type1D.getUnqualifiedType());
1382     }
1383     Type1D = VlaSize.Type;
1384   }
1385 
1386   if (!EmitDebugInfo)
1387     return;
1388 
1389   // Register each dimension's size-expression with a DILocalVariable,
1390   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1391   // to describe this array.
1392   unsigned NameIdx = 0;
1393   for (auto &VlaSize : Dimensions) {
1394     llvm::Metadata *MD;
1395     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1396       MD = llvm::ConstantAsMetadata::get(C);
1397     else {
1398       // Create an artificial VarDecl to generate debug info for.
1399       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1400       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1401       auto QT = getContext().getIntTypeForBitwidth(
1402           VlaExprTy->getScalarSizeInBits(), false);
1403       auto *ArtificialDecl = VarDecl::Create(
1404           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1405           D.getLocation(), D.getLocation(), NameIdent, QT,
1406           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1407       ArtificialDecl->setImplicit();
1408 
1409       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1410                                          Builder);
1411     }
1412     assert(MD && "No Size expression debug node created");
1413     DI->registerVLASizeExpression(VlaSize.Type, MD);
1414   }
1415 }
1416 
1417 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1418 /// local variable.  Does not emit initialization or destruction.
1419 CodeGenFunction::AutoVarEmission
1420 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1421   QualType Ty = D.getType();
1422   assert(
1423       Ty.getAddressSpace() == LangAS::Default ||
1424       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1425 
1426   AutoVarEmission emission(D);
1427 
1428   bool isEscapingByRef = D.isEscapingByref();
1429   emission.IsEscapingByRef = isEscapingByRef;
1430 
1431   CharUnits alignment = getContext().getDeclAlign(&D);
1432 
1433   // If the type is variably-modified, emit all the VLA sizes for it.
1434   if (Ty->isVariablyModifiedType())
1435     EmitVariablyModifiedType(Ty);
1436 
1437   auto *DI = getDebugInfo();
1438   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1439                                  codegenoptions::LimitedDebugInfo;
1440 
1441   Address address = Address::invalid();
1442   Address AllocaAddr = Address::invalid();
1443   if (Ty->isConstantSizeType()) {
1444     bool NRVO = getLangOpts().ElideConstructors &&
1445       D.isNRVOVariable();
1446 
1447     // If this value is an array or struct with a statically determinable
1448     // constant initializer, there are optimizations we can do.
1449     //
1450     // TODO: We should constant-evaluate the initializer of any variable,
1451     // as long as it is initialized by a constant expression. Currently,
1452     // isConstantInitializer produces wrong answers for structs with
1453     // reference or bitfield members, and a few other cases, and checking
1454     // for POD-ness protects us from some of these.
1455     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1456         (D.isConstexpr() ||
1457          ((Ty.isPODType(getContext()) ||
1458            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1459           D.getInit()->isConstantInitializer(getContext(), false)))) {
1460 
1461       // If the variable's a const type, and it's neither an NRVO
1462       // candidate nor a __block variable and has no mutable members,
1463       // emit it as a global instead.
1464       // Exception is if a variable is located in non-constant address space
1465       // in OpenCL.
1466       if ((!getLangOpts().OpenCL ||
1467            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1468           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1469            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1470         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1471 
1472         // Signal this condition to later callbacks.
1473         emission.Addr = Address::invalid();
1474         assert(emission.wasEmittedAsGlobal());
1475         return emission;
1476       }
1477 
1478       // Otherwise, tell the initialization code that we're in this case.
1479       emission.IsConstantAggregate = true;
1480     }
1481 
1482     // A normal fixed sized variable becomes an alloca in the entry block,
1483     // unless:
1484     // - it's an NRVO variable.
1485     // - we are compiling OpenMP and it's an OpenMP local variable.
1486 
1487     Address OpenMPLocalAddr =
1488         getLangOpts().OpenMP
1489             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1490             : Address::invalid();
1491     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1492       address = OpenMPLocalAddr;
1493     } else if (NRVO) {
1494       // The named return value optimization: allocate this variable in the
1495       // return slot, so that we can elide the copy when returning this
1496       // variable (C++0x [class.copy]p34).
1497       address = ReturnValue;
1498 
1499       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1500         const auto *RD = RecordTy->getDecl();
1501         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1502         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1503             RD->isNonTrivialToPrimitiveDestroy()) {
1504           // Create a flag that is used to indicate when the NRVO was applied
1505           // to this variable. Set it to zero to indicate that NRVO was not
1506           // applied.
1507           llvm::Value *Zero = Builder.getFalse();
1508           Address NRVOFlag =
1509             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1510           EnsureInsertPoint();
1511           Builder.CreateStore(Zero, NRVOFlag);
1512 
1513           // Record the NRVO flag for this variable.
1514           NRVOFlags[&D] = NRVOFlag.getPointer();
1515           emission.NRVOFlag = NRVOFlag.getPointer();
1516         }
1517       }
1518     } else {
1519       CharUnits allocaAlignment;
1520       llvm::Type *allocaTy;
1521       if (isEscapingByRef) {
1522         auto &byrefInfo = getBlockByrefInfo(&D);
1523         allocaTy = byrefInfo.Type;
1524         allocaAlignment = byrefInfo.ByrefAlignment;
1525       } else {
1526         allocaTy = ConvertTypeForMem(Ty);
1527         allocaAlignment = alignment;
1528       }
1529 
1530       // Create the alloca.  Note that we set the name separately from
1531       // building the instruction so that it's there even in no-asserts
1532       // builds.
1533       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1534                                  /*ArraySize=*/nullptr, &AllocaAddr);
1535 
1536       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1537       // the catch parameter starts in the catchpad instruction, and we can't
1538       // insert code in those basic blocks.
1539       bool IsMSCatchParam =
1540           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1541 
1542       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1543       // if we don't have a valid insertion point (?).
1544       if (HaveInsertPoint() && !IsMSCatchParam) {
1545         // If there's a jump into the lifetime of this variable, its lifetime
1546         // gets broken up into several regions in IR, which requires more work
1547         // to handle correctly. For now, just omit the intrinsics; this is a
1548         // rare case, and it's better to just be conservatively correct.
1549         // PR28267.
1550         //
1551         // We have to do this in all language modes if there's a jump past the
1552         // declaration. We also have to do it in C if there's a jump to an
1553         // earlier point in the current block because non-VLA lifetimes begin as
1554         // soon as the containing block is entered, not when its variables
1555         // actually come into scope; suppressing the lifetime annotations
1556         // completely in this case is unnecessarily pessimistic, but again, this
1557         // is rare.
1558         if (!Bypasses.IsBypassed(&D) &&
1559             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1560           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1561           emission.SizeForLifetimeMarkers =
1562               EmitLifetimeStart(size, AllocaAddr.getPointer());
1563         }
1564       } else {
1565         assert(!emission.useLifetimeMarkers());
1566       }
1567     }
1568   } else {
1569     EnsureInsertPoint();
1570 
1571     if (!DidCallStackSave) {
1572       // Save the stack.
1573       Address Stack =
1574         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1575 
1576       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1577       llvm::Value *V = Builder.CreateCall(F);
1578       Builder.CreateStore(V, Stack);
1579 
1580       DidCallStackSave = true;
1581 
1582       // Push a cleanup block and restore the stack there.
1583       // FIXME: in general circumstances, this should be an EH cleanup.
1584       pushStackRestore(NormalCleanup, Stack);
1585     }
1586 
1587     auto VlaSize = getVLASize(Ty);
1588     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1589 
1590     // Allocate memory for the array.
1591     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1592                                &AllocaAddr);
1593 
1594     // If we have debug info enabled, properly describe the VLA dimensions for
1595     // this type by registering the vla size expression for each of the
1596     // dimensions.
1597     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1598   }
1599 
1600   setAddrOfLocalVar(&D, address);
1601   emission.Addr = address;
1602   emission.AllocaAddr = AllocaAddr;
1603 
1604   // Emit debug info for local var declaration.
1605   if (EmitDebugInfo && HaveInsertPoint()) {
1606     DI->setLocation(D.getLocation());
1607     (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1608   }
1609 
1610   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1611     EmitVarAnnotations(&D, address.getPointer());
1612 
1613   // Make sure we call @llvm.lifetime.end.
1614   if (emission.useLifetimeMarkers())
1615     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1616                                          emission.getOriginalAllocatedAddress(),
1617                                          emission.getSizeForLifetimeMarkers());
1618 
1619   return emission;
1620 }
1621 
1622 static bool isCapturedBy(const VarDecl &, const Expr *);
1623 
1624 /// Determines whether the given __block variable is potentially
1625 /// captured by the given statement.
1626 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1627   if (const Expr *E = dyn_cast<Expr>(S))
1628     return isCapturedBy(Var, E);
1629   for (const Stmt *SubStmt : S->children())
1630     if (isCapturedBy(Var, SubStmt))
1631       return true;
1632   return false;
1633 }
1634 
1635 /// Determines whether the given __block variable is potentially
1636 /// captured by the given expression.
1637 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1638   // Skip the most common kinds of expressions that make
1639   // hierarchy-walking expensive.
1640   E = E->IgnoreParenCasts();
1641 
1642   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1643     const BlockDecl *Block = BE->getBlockDecl();
1644     for (const auto &I : Block->captures()) {
1645       if (I.getVariable() == &Var)
1646         return true;
1647     }
1648 
1649     // No need to walk into the subexpressions.
1650     return false;
1651   }
1652 
1653   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1654     const CompoundStmt *CS = SE->getSubStmt();
1655     for (const auto *BI : CS->body())
1656       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1657         if (isCapturedBy(Var, BIE))
1658           return true;
1659       }
1660       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1661           // special case declarations
1662           for (const auto *I : DS->decls()) {
1663               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1664                 const Expr *Init = VD->getInit();
1665                 if (Init && isCapturedBy(Var, Init))
1666                   return true;
1667               }
1668           }
1669       }
1670       else
1671         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1672         // Later, provide code to poke into statements for capture analysis.
1673         return true;
1674     return false;
1675   }
1676 
1677   for (const Stmt *SubStmt : E->children())
1678     if (isCapturedBy(Var, SubStmt))
1679       return true;
1680 
1681   return false;
1682 }
1683 
1684 /// Determine whether the given initializer is trivial in the sense
1685 /// that it requires no code to be generated.
1686 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1687   if (!Init)
1688     return true;
1689 
1690   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1691     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1692       if (Constructor->isTrivial() &&
1693           Constructor->isDefaultConstructor() &&
1694           !Construct->requiresZeroInitialization())
1695         return true;
1696 
1697   return false;
1698 }
1699 
1700 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1701   assert(emission.Variable && "emission was not valid!");
1702 
1703   // If this was emitted as a global constant, we're done.
1704   if (emission.wasEmittedAsGlobal()) return;
1705 
1706   const VarDecl &D = *emission.Variable;
1707   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1708   QualType type = D.getType();
1709 
1710   bool isVolatile = type.isVolatileQualified();
1711 
1712   // If this local has an initializer, emit it now.
1713   const Expr *Init = D.getInit();
1714 
1715   // If we are at an unreachable point, we don't need to emit the initializer
1716   // unless it contains a label.
1717   if (!HaveInsertPoint()) {
1718     if (!Init || !ContainsLabel(Init)) return;
1719     EnsureInsertPoint();
1720   }
1721 
1722   // Initialize the structure of a __block variable.
1723   if (emission.IsEscapingByRef)
1724     emitByrefStructureInit(emission);
1725 
1726   // Initialize the variable here if it doesn't have a initializer and it is a
1727   // C struct that is non-trivial to initialize or an array containing such a
1728   // struct.
1729   if (!Init &&
1730       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1731           QualType::PDIK_Struct) {
1732     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1733     if (emission.IsEscapingByRef)
1734       drillIntoBlockVariable(*this, Dst, &D);
1735     defaultInitNonTrivialCStructVar(Dst);
1736     return;
1737   }
1738 
1739   // Check whether this is a byref variable that's potentially
1740   // captured and moved by its own initializer.  If so, we'll need to
1741   // emit the initializer first, then copy into the variable.
1742   bool capturedByInit =
1743       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1744 
1745   bool locIsByrefHeader = !capturedByInit;
1746   const Address Loc =
1747       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1748 
1749   // Note: constexpr already initializes everything correctly.
1750   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1751       (D.isConstexpr()
1752            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1753            : (D.getAttr<UninitializedAttr>()
1754                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1755                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1756 
1757   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1758     if (trivialAutoVarInit ==
1759         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1760       return;
1761 
1762     // Only initialize a __block's storage: we always initialize the header.
1763     if (emission.IsEscapingByRef && !locIsByrefHeader)
1764       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1765 
1766     CharUnits Size = getContext().getTypeSizeInChars(type);
1767     if (!Size.isZero()) {
1768       switch (trivialAutoVarInit) {
1769       case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1770         llvm_unreachable("Uninitialized handled above");
1771       case LangOptions::TrivialAutoVarInitKind::Zero:
1772         emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1773         break;
1774       case LangOptions::TrivialAutoVarInitKind::Pattern:
1775         emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1776         break;
1777       }
1778       return;
1779     }
1780 
1781     // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1782     // them, so emit a memcpy with the VLA size to initialize each element.
1783     // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1784     // will catch that code, but there exists code which generates zero-sized
1785     // VLAs. Be nice and initialize whatever they requested.
1786     const auto *VlaType = getContext().getAsVariableArrayType(type);
1787     if (!VlaType)
1788       return;
1789     auto VlaSize = getVLASize(VlaType);
1790     auto SizeVal = VlaSize.NumElts;
1791     CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1792     switch (trivialAutoVarInit) {
1793     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1794       llvm_unreachable("Uninitialized handled above");
1795 
1796     case LangOptions::TrivialAutoVarInitKind::Zero:
1797       if (!EltSize.isOne())
1798         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1799       Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1800                            isVolatile);
1801       break;
1802 
1803     case LangOptions::TrivialAutoVarInitKind::Pattern: {
1804       llvm::Type *ElTy = Loc.getElementType();
1805       llvm::Constant *Constant =
1806           constWithPadding(CGM, IsPattern::Yes, patternFor(CGM, ElTy));
1807       CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1808       llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1809       llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1810       llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1811       llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1812           SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1813           "vla.iszerosized");
1814       Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1815       EmitBlock(SetupBB);
1816       if (!EltSize.isOne())
1817         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1818       llvm::Value *BaseSizeInChars =
1819           llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1820       Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1821       llvm::Value *End =
1822           Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1823       llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1824       EmitBlock(LoopBB);
1825       llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1826       Cur->addIncoming(Begin.getPointer(), OriginBB);
1827       CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1828       Builder.CreateMemCpy(
1829           Address(Cur, CurAlign),
1830           createUnnamedGlobalFrom(CGM, D, Builder, Constant, ConstantAlign),
1831           BaseSizeInChars, isVolatile);
1832       llvm::Value *Next =
1833           Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1834       llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1835       Builder.CreateCondBr(Done, ContBB, LoopBB);
1836       Cur->addIncoming(Next, LoopBB);
1837       EmitBlock(ContBB);
1838     } break;
1839     }
1840   };
1841 
1842   if (isTrivialInitializer(Init)) {
1843     initializeWhatIsTechnicallyUninitialized(Loc);
1844     return;
1845   }
1846 
1847   llvm::Constant *constant = nullptr;
1848   if (emission.IsConstantAggregate || D.isConstexpr()) {
1849     assert(!capturedByInit && "constant init contains a capturing block?");
1850     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1851     if (constant && trivialAutoVarInit !=
1852                         LangOptions::TrivialAutoVarInitKind::Uninitialized) {
1853       IsPattern isPattern =
1854           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1855               ? IsPattern::Yes
1856               : IsPattern::No;
1857       constant = constWithPadding(CGM, isPattern,
1858                                   replaceUndef(CGM, isPattern, constant));
1859     }
1860   }
1861 
1862   if (!constant) {
1863     initializeWhatIsTechnicallyUninitialized(Loc);
1864     LValue lv = MakeAddrLValue(Loc, type);
1865     lv.setNonGC(true);
1866     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1867   }
1868 
1869   if (!emission.IsConstantAggregate) {
1870     // For simple scalar/complex initialization, store the value directly.
1871     LValue lv = MakeAddrLValue(Loc, type);
1872     lv.setNonGC(true);
1873     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1874   }
1875 
1876   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1877   emitStoresForConstant(
1878       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1879       isVolatile, Builder, constant);
1880 }
1881 
1882 /// Emit an expression as an initializer for an object (variable, field, etc.)
1883 /// at the given location.  The expression is not necessarily the normal
1884 /// initializer for the object, and the address is not necessarily
1885 /// its normal location.
1886 ///
1887 /// \param init the initializing expression
1888 /// \param D the object to act as if we're initializing
1889 /// \param loc the address to initialize; its type is a pointer
1890 ///   to the LLVM mapping of the object's type
1891 /// \param alignment the alignment of the address
1892 /// \param capturedByInit true if \p D is a __block variable
1893 ///   whose address is potentially changed by the initializer
1894 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1895                                      LValue lvalue, bool capturedByInit) {
1896   QualType type = D->getType();
1897 
1898   if (type->isReferenceType()) {
1899     RValue rvalue = EmitReferenceBindingToExpr(init);
1900     if (capturedByInit)
1901       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1902     EmitStoreThroughLValue(rvalue, lvalue, true);
1903     return;
1904   }
1905   switch (getEvaluationKind(type)) {
1906   case TEK_Scalar:
1907     EmitScalarInit(init, D, lvalue, capturedByInit);
1908     return;
1909   case TEK_Complex: {
1910     ComplexPairTy complex = EmitComplexExpr(init);
1911     if (capturedByInit)
1912       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1913     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1914     return;
1915   }
1916   case TEK_Aggregate:
1917     if (type->isAtomicType()) {
1918       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1919     } else {
1920       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1921       if (isa<VarDecl>(D))
1922         Overlap = AggValueSlot::DoesNotOverlap;
1923       else if (auto *FD = dyn_cast<FieldDecl>(D))
1924         Overlap = overlapForFieldInit(FD);
1925       // TODO: how can we delay here if D is captured by its initializer?
1926       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1927                                               AggValueSlot::IsDestructed,
1928                                          AggValueSlot::DoesNotNeedGCBarriers,
1929                                               AggValueSlot::IsNotAliased,
1930                                               Overlap));
1931     }
1932     return;
1933   }
1934   llvm_unreachable("bad evaluation kind");
1935 }
1936 
1937 /// Enter a destroy cleanup for the given local variable.
1938 void CodeGenFunction::emitAutoVarTypeCleanup(
1939                             const CodeGenFunction::AutoVarEmission &emission,
1940                             QualType::DestructionKind dtorKind) {
1941   assert(dtorKind != QualType::DK_none);
1942 
1943   // Note that for __block variables, we want to destroy the
1944   // original stack object, not the possibly forwarded object.
1945   Address addr = emission.getObjectAddress(*this);
1946 
1947   const VarDecl *var = emission.Variable;
1948   QualType type = var->getType();
1949 
1950   CleanupKind cleanupKind = NormalAndEHCleanup;
1951   CodeGenFunction::Destroyer *destroyer = nullptr;
1952 
1953   switch (dtorKind) {
1954   case QualType::DK_none:
1955     llvm_unreachable("no cleanup for trivially-destructible variable");
1956 
1957   case QualType::DK_cxx_destructor:
1958     // If there's an NRVO flag on the emission, we need a different
1959     // cleanup.
1960     if (emission.NRVOFlag) {
1961       assert(!type->isArrayType());
1962       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1963       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor,
1964                                                   emission.NRVOFlag);
1965       return;
1966     }
1967     break;
1968 
1969   case QualType::DK_objc_strong_lifetime:
1970     // Suppress cleanups for pseudo-strong variables.
1971     if (var->isARCPseudoStrong()) return;
1972 
1973     // Otherwise, consider whether to use an EH cleanup or not.
1974     cleanupKind = getARCCleanupKind();
1975 
1976     // Use the imprecise destroyer by default.
1977     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1978       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1979     break;
1980 
1981   case QualType::DK_objc_weak_lifetime:
1982     break;
1983 
1984   case QualType::DK_nontrivial_c_struct:
1985     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1986     if (emission.NRVOFlag) {
1987       assert(!type->isArrayType());
1988       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1989                                                 emission.NRVOFlag, type);
1990       return;
1991     }
1992     break;
1993   }
1994 
1995   // If we haven't chosen a more specific destroyer, use the default.
1996   if (!destroyer) destroyer = getDestroyer(dtorKind);
1997 
1998   // Use an EH cleanup in array destructors iff the destructor itself
1999   // is being pushed as an EH cleanup.
2000   bool useEHCleanup = (cleanupKind & EHCleanup);
2001   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2002                                      useEHCleanup);
2003 }
2004 
2005 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2006   assert(emission.Variable && "emission was not valid!");
2007 
2008   // If this was emitted as a global constant, we're done.
2009   if (emission.wasEmittedAsGlobal()) return;
2010 
2011   // If we don't have an insertion point, we're done.  Sema prevents
2012   // us from jumping into any of these scopes anyway.
2013   if (!HaveInsertPoint()) return;
2014 
2015   const VarDecl &D = *emission.Variable;
2016 
2017   // Check the type for a cleanup.
2018   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
2019     emitAutoVarTypeCleanup(emission, dtorKind);
2020 
2021   // In GC mode, honor objc_precise_lifetime.
2022   if (getLangOpts().getGC() != LangOptions::NonGC &&
2023       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2024     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2025   }
2026 
2027   // Handle the cleanup attribute.
2028   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2029     const FunctionDecl *FD = CA->getFunctionDecl();
2030 
2031     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2032     assert(F && "Could not find function!");
2033 
2034     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2035     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2036   }
2037 
2038   // If this is a block variable, call _Block_object_destroy
2039   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2040   // mode.
2041   if (emission.IsEscapingByRef &&
2042       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2043     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2044     if (emission.Variable->getType().isObjCGCWeak())
2045       Flags |= BLOCK_FIELD_IS_WEAK;
2046     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2047                       /*LoadBlockVarAddr*/ false,
2048                       cxxDestructorCanThrow(emission.Variable->getType()));
2049   }
2050 }
2051 
2052 CodeGenFunction::Destroyer *
2053 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2054   switch (kind) {
2055   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2056   case QualType::DK_cxx_destructor:
2057     return destroyCXXObject;
2058   case QualType::DK_objc_strong_lifetime:
2059     return destroyARCStrongPrecise;
2060   case QualType::DK_objc_weak_lifetime:
2061     return destroyARCWeak;
2062   case QualType::DK_nontrivial_c_struct:
2063     return destroyNonTrivialCStruct;
2064   }
2065   llvm_unreachable("Unknown DestructionKind");
2066 }
2067 
2068 /// pushEHDestroy - Push the standard destructor for the given type as
2069 /// an EH-only cleanup.
2070 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2071                                     Address addr, QualType type) {
2072   assert(dtorKind && "cannot push destructor for trivial type");
2073   assert(needsEHCleanup(dtorKind));
2074 
2075   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2076 }
2077 
2078 /// pushDestroy - Push the standard destructor for the given type as
2079 /// at least a normal cleanup.
2080 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2081                                   Address addr, QualType type) {
2082   assert(dtorKind && "cannot push destructor for trivial type");
2083 
2084   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2085   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2086               cleanupKind & EHCleanup);
2087 }
2088 
2089 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2090                                   QualType type, Destroyer *destroyer,
2091                                   bool useEHCleanupForArray) {
2092   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2093                                      destroyer, useEHCleanupForArray);
2094 }
2095 
2096 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2097   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2098 }
2099 
2100 void CodeGenFunction::pushLifetimeExtendedDestroy(
2101     CleanupKind cleanupKind, Address addr, QualType type,
2102     Destroyer *destroyer, bool useEHCleanupForArray) {
2103   // Push an EH-only cleanup for the object now.
2104   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2105   // around in case a temporary's destructor throws an exception.
2106   if (cleanupKind & EHCleanup)
2107     EHStack.pushCleanup<DestroyObject>(
2108         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2109         destroyer, useEHCleanupForArray);
2110 
2111   // Remember that we need to push a full cleanup for the object at the
2112   // end of the full-expression.
2113   pushCleanupAfterFullExpr<DestroyObject>(
2114       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
2115 }
2116 
2117 /// emitDestroy - Immediately perform the destruction of the given
2118 /// object.
2119 ///
2120 /// \param addr - the address of the object; a type*
2121 /// \param type - the type of the object; if an array type, all
2122 ///   objects are destroyed in reverse order
2123 /// \param destroyer - the function to call to destroy individual
2124 ///   elements
2125 /// \param useEHCleanupForArray - whether an EH cleanup should be
2126 ///   used when destroying array elements, in case one of the
2127 ///   destructions throws an exception
2128 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2129                                   Destroyer *destroyer,
2130                                   bool useEHCleanupForArray) {
2131   const ArrayType *arrayType = getContext().getAsArrayType(type);
2132   if (!arrayType)
2133     return destroyer(*this, addr, type);
2134 
2135   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2136 
2137   CharUnits elementAlign =
2138     addr.getAlignment()
2139         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2140 
2141   // Normally we have to check whether the array is zero-length.
2142   bool checkZeroLength = true;
2143 
2144   // But if the array length is constant, we can suppress that.
2145   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2146     // ...and if it's constant zero, we can just skip the entire thing.
2147     if (constLength->isZero()) return;
2148     checkZeroLength = false;
2149   }
2150 
2151   llvm::Value *begin = addr.getPointer();
2152   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2153   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2154                    checkZeroLength, useEHCleanupForArray);
2155 }
2156 
2157 /// emitArrayDestroy - Destroys all the elements of the given array,
2158 /// beginning from last to first.  The array cannot be zero-length.
2159 ///
2160 /// \param begin - a type* denoting the first element of the array
2161 /// \param end - a type* denoting one past the end of the array
2162 /// \param elementType - the element type of the array
2163 /// \param destroyer - the function to call to destroy elements
2164 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2165 ///   the remaining elements in case the destruction of a single
2166 ///   element throws
2167 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2168                                        llvm::Value *end,
2169                                        QualType elementType,
2170                                        CharUnits elementAlign,
2171                                        Destroyer *destroyer,
2172                                        bool checkZeroLength,
2173                                        bool useEHCleanup) {
2174   assert(!elementType->isArrayType());
2175 
2176   // The basic structure here is a do-while loop, because we don't
2177   // need to check for the zero-element case.
2178   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2179   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2180 
2181   if (checkZeroLength) {
2182     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2183                                                 "arraydestroy.isempty");
2184     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2185   }
2186 
2187   // Enter the loop body, making that address the current address.
2188   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2189   EmitBlock(bodyBB);
2190   llvm::PHINode *elementPast =
2191     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2192   elementPast->addIncoming(end, entryBB);
2193 
2194   // Shift the address back by one element.
2195   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2196   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2197                                                    "arraydestroy.element");
2198 
2199   if (useEHCleanup)
2200     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2201                                    destroyer);
2202 
2203   // Perform the actual destruction there.
2204   destroyer(*this, Address(element, elementAlign), elementType);
2205 
2206   if (useEHCleanup)
2207     PopCleanupBlock();
2208 
2209   // Check whether we've reached the end.
2210   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2211   Builder.CreateCondBr(done, doneBB, bodyBB);
2212   elementPast->addIncoming(element, Builder.GetInsertBlock());
2213 
2214   // Done.
2215   EmitBlock(doneBB);
2216 }
2217 
2218 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2219 /// emitArrayDestroy, the element type here may still be an array type.
2220 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2221                                     llvm::Value *begin, llvm::Value *end,
2222                                     QualType type, CharUnits elementAlign,
2223                                     CodeGenFunction::Destroyer *destroyer) {
2224   // If the element type is itself an array, drill down.
2225   unsigned arrayDepth = 0;
2226   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2227     // VLAs don't require a GEP index to walk into.
2228     if (!isa<VariableArrayType>(arrayType))
2229       arrayDepth++;
2230     type = arrayType->getElementType();
2231   }
2232 
2233   if (arrayDepth) {
2234     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2235 
2236     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2237     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2238     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2239   }
2240 
2241   // Destroy the array.  We don't ever need an EH cleanup because we
2242   // assume that we're in an EH cleanup ourselves, so a throwing
2243   // destructor causes an immediate terminate.
2244   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2245                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2246 }
2247 
2248 namespace {
2249   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2250   /// array destroy where the end pointer is regularly determined and
2251   /// does not need to be loaded from a local.
2252   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2253     llvm::Value *ArrayBegin;
2254     llvm::Value *ArrayEnd;
2255     QualType ElementType;
2256     CodeGenFunction::Destroyer *Destroyer;
2257     CharUnits ElementAlign;
2258   public:
2259     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2260                                QualType elementType, CharUnits elementAlign,
2261                                CodeGenFunction::Destroyer *destroyer)
2262       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2263         ElementType(elementType), Destroyer(destroyer),
2264         ElementAlign(elementAlign) {}
2265 
2266     void Emit(CodeGenFunction &CGF, Flags flags) override {
2267       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2268                               ElementType, ElementAlign, Destroyer);
2269     }
2270   };
2271 
2272   /// IrregularPartialArrayDestroy - a cleanup which performs a
2273   /// partial array destroy where the end pointer is irregularly
2274   /// determined and must be loaded from a local.
2275   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2276     llvm::Value *ArrayBegin;
2277     Address ArrayEndPointer;
2278     QualType ElementType;
2279     CodeGenFunction::Destroyer *Destroyer;
2280     CharUnits ElementAlign;
2281   public:
2282     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2283                                  Address arrayEndPointer,
2284                                  QualType elementType,
2285                                  CharUnits elementAlign,
2286                                  CodeGenFunction::Destroyer *destroyer)
2287       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2288         ElementType(elementType), Destroyer(destroyer),
2289         ElementAlign(elementAlign) {}
2290 
2291     void Emit(CodeGenFunction &CGF, Flags flags) override {
2292       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2293       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2294                               ElementType, ElementAlign, Destroyer);
2295     }
2296   };
2297 } // end anonymous namespace
2298 
2299 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2300 /// already-constructed elements of the given array.  The cleanup
2301 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2302 ///
2303 /// \param elementType - the immediate element type of the array;
2304 ///   possibly still an array type
2305 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2306                                                        Address arrayEndPointer,
2307                                                        QualType elementType,
2308                                                        CharUnits elementAlign,
2309                                                        Destroyer *destroyer) {
2310   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2311                                                     arrayBegin, arrayEndPointer,
2312                                                     elementType, elementAlign,
2313                                                     destroyer);
2314 }
2315 
2316 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2317 /// already-constructed elements of the given array.  The cleanup
2318 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2319 ///
2320 /// \param elementType - the immediate element type of the array;
2321 ///   possibly still an array type
2322 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2323                                                      llvm::Value *arrayEnd,
2324                                                      QualType elementType,
2325                                                      CharUnits elementAlign,
2326                                                      Destroyer *destroyer) {
2327   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2328                                                   arrayBegin, arrayEnd,
2329                                                   elementType, elementAlign,
2330                                                   destroyer);
2331 }
2332 
2333 /// Lazily declare the @llvm.lifetime.start intrinsic.
2334 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2335   if (LifetimeStartFn)
2336     return LifetimeStartFn;
2337   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2338     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2339   return LifetimeStartFn;
2340 }
2341 
2342 /// Lazily declare the @llvm.lifetime.end intrinsic.
2343 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2344   if (LifetimeEndFn)
2345     return LifetimeEndFn;
2346   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2347     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2348   return LifetimeEndFn;
2349 }
2350 
2351 namespace {
2352   /// A cleanup to perform a release of an object at the end of a
2353   /// function.  This is used to balance out the incoming +1 of a
2354   /// ns_consumed argument when we can't reasonably do that just by
2355   /// not doing the initial retain for a __block argument.
2356   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2357     ConsumeARCParameter(llvm::Value *param,
2358                         ARCPreciseLifetime_t precise)
2359       : Param(param), Precise(precise) {}
2360 
2361     llvm::Value *Param;
2362     ARCPreciseLifetime_t Precise;
2363 
2364     void Emit(CodeGenFunction &CGF, Flags flags) override {
2365       CGF.EmitARCRelease(Param, Precise);
2366     }
2367   };
2368 } // end anonymous namespace
2369 
2370 /// Emit an alloca (or GlobalValue depending on target)
2371 /// for the specified parameter and set up LocalDeclMap.
2372 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2373                                    unsigned ArgNo) {
2374   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2375   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2376          "Invalid argument to EmitParmDecl");
2377 
2378   Arg.getAnyValue()->setName(D.getName());
2379 
2380   QualType Ty = D.getType();
2381 
2382   // Use better IR generation for certain implicit parameters.
2383   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2384     // The only implicit argument a block has is its literal.
2385     // This may be passed as an inalloca'ed value on Windows x86.
2386     if (BlockInfo) {
2387       llvm::Value *V = Arg.isIndirect()
2388                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2389                            : Arg.getDirectValue();
2390       setBlockContextParameter(IPD, ArgNo, V);
2391       return;
2392     }
2393   }
2394 
2395   Address DeclPtr = Address::invalid();
2396   bool DoStore = false;
2397   bool IsScalar = hasScalarEvaluationKind(Ty);
2398   // If we already have a pointer to the argument, reuse the input pointer.
2399   if (Arg.isIndirect()) {
2400     DeclPtr = Arg.getIndirectAddress();
2401     // If we have a prettier pointer type at this point, bitcast to that.
2402     unsigned AS = DeclPtr.getType()->getAddressSpace();
2403     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2404     if (DeclPtr.getType() != IRTy)
2405       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2406     // Indirect argument is in alloca address space, which may be different
2407     // from the default address space.
2408     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2409     auto *V = DeclPtr.getPointer();
2410     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2411     auto DestLangAS =
2412         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2413     if (SrcLangAS != DestLangAS) {
2414       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2415              CGM.getDataLayout().getAllocaAddrSpace());
2416       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2417       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2418       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2419                             *this, V, SrcLangAS, DestLangAS, T, true),
2420                         DeclPtr.getAlignment());
2421     }
2422 
2423     // Push a destructor cleanup for this parameter if the ABI requires it.
2424     // Don't push a cleanup in a thunk for a method that will also emit a
2425     // cleanup.
2426     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2427         Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2428       if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
2429         assert((DtorKind == QualType::DK_cxx_destructor ||
2430                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2431                "unexpected destructor type");
2432         pushDestroy(DtorKind, DeclPtr, Ty);
2433         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2434             EHStack.stable_begin();
2435       }
2436     }
2437   } else {
2438     // Check if the parameter address is controlled by OpenMP runtime.
2439     Address OpenMPLocalAddr =
2440         getLangOpts().OpenMP
2441             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2442             : Address::invalid();
2443     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2444       DeclPtr = OpenMPLocalAddr;
2445     } else {
2446       // Otherwise, create a temporary to hold the value.
2447       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2448                               D.getName() + ".addr");
2449     }
2450     DoStore = true;
2451   }
2452 
2453   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2454 
2455   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2456   if (IsScalar) {
2457     Qualifiers qs = Ty.getQualifiers();
2458     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2459       // We honor __attribute__((ns_consumed)) for types with lifetime.
2460       // For __strong, it's handled by just skipping the initial retain;
2461       // otherwise we have to balance out the initial +1 with an extra
2462       // cleanup to do the release at the end of the function.
2463       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2464 
2465       // If a parameter is pseudo-strong then we can omit the implicit retain.
2466       if (D.isARCPseudoStrong()) {
2467         assert(lt == Qualifiers::OCL_Strong &&
2468                "pseudo-strong variable isn't strong?");
2469         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2470         lt = Qualifiers::OCL_ExplicitNone;
2471       }
2472 
2473       // Load objects passed indirectly.
2474       if (Arg.isIndirect() && !ArgVal)
2475         ArgVal = Builder.CreateLoad(DeclPtr);
2476 
2477       if (lt == Qualifiers::OCL_Strong) {
2478         if (!isConsumed) {
2479           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2480             // use objc_storeStrong(&dest, value) for retaining the
2481             // object. But first, store a null into 'dest' because
2482             // objc_storeStrong attempts to release its old value.
2483             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2484             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2485             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2486             DoStore = false;
2487           }
2488           else
2489           // Don't use objc_retainBlock for block pointers, because we
2490           // don't want to Block_copy something just because we got it
2491           // as a parameter.
2492             ArgVal = EmitARCRetainNonBlock(ArgVal);
2493         }
2494       } else {
2495         // Push the cleanup for a consumed parameter.
2496         if (isConsumed) {
2497           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2498                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2499           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2500                                                    precise);
2501         }
2502 
2503         if (lt == Qualifiers::OCL_Weak) {
2504           EmitARCInitWeak(DeclPtr, ArgVal);
2505           DoStore = false; // The weak init is a store, no need to do two.
2506         }
2507       }
2508 
2509       // Enter the cleanup scope.
2510       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2511     }
2512   }
2513 
2514   // Store the initial value into the alloca.
2515   if (DoStore)
2516     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2517 
2518   setAddrOfLocalVar(&D, DeclPtr);
2519 
2520   // Emit debug info for param declaration.
2521   if (CGDebugInfo *DI = getDebugInfo()) {
2522     if (CGM.getCodeGenOpts().getDebugInfo() >=
2523         codegenoptions::LimitedDebugInfo) {
2524       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2525     }
2526   }
2527 
2528   if (D.hasAttr<AnnotateAttr>())
2529     EmitVarAnnotations(&D, DeclPtr.getPointer());
2530 
2531   // We can only check return value nullability if all arguments to the
2532   // function satisfy their nullability preconditions. This makes it necessary
2533   // to emit null checks for args in the function body itself.
2534   if (requiresReturnValueNullabilityCheck()) {
2535     auto Nullability = Ty->getNullability(getContext());
2536     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2537       SanitizerScope SanScope(this);
2538       RetValNullabilityPrecondition =
2539           Builder.CreateAnd(RetValNullabilityPrecondition,
2540                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2541     }
2542   }
2543 }
2544 
2545 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2546                                             CodeGenFunction *CGF) {
2547   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2548     return;
2549   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2550 }
2551 
2552 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2553                                             CodeGenFunction *CGF) {
2554   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2555     return;
2556   // FIXME: need to implement mapper code generation
2557 }
2558 
2559 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2560   getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D);
2561 }
2562