1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40 
41 using namespace clang;
42 using namespace CodeGen;
43 
44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
45               "Clang max alignment greater than what LLVM supports?");
46 
47 void CodeGenFunction::EmitDecl(const Decl &D) {
48   switch (D.getKind()) {
49   case Decl::BuiltinTemplate:
50   case Decl::TranslationUnit:
51   case Decl::ExternCContext:
52   case Decl::Namespace:
53   case Decl::UnresolvedUsingTypename:
54   case Decl::ClassTemplateSpecialization:
55   case Decl::ClassTemplatePartialSpecialization:
56   case Decl::VarTemplateSpecialization:
57   case Decl::VarTemplatePartialSpecialization:
58   case Decl::TemplateTypeParm:
59   case Decl::UnresolvedUsingValue:
60   case Decl::NonTypeTemplateParm:
61   case Decl::CXXDeductionGuide:
62   case Decl::CXXMethod:
63   case Decl::CXXConstructor:
64   case Decl::CXXDestructor:
65   case Decl::CXXConversion:
66   case Decl::Field:
67   case Decl::MSProperty:
68   case Decl::IndirectField:
69   case Decl::ObjCIvar:
70   case Decl::ObjCAtDefsField:
71   case Decl::ParmVar:
72   case Decl::ImplicitParam:
73   case Decl::ClassTemplate:
74   case Decl::VarTemplate:
75   case Decl::FunctionTemplate:
76   case Decl::TypeAliasTemplate:
77   case Decl::TemplateTemplateParm:
78   case Decl::ObjCMethod:
79   case Decl::ObjCCategory:
80   case Decl::ObjCProtocol:
81   case Decl::ObjCInterface:
82   case Decl::ObjCCategoryImpl:
83   case Decl::ObjCImplementation:
84   case Decl::ObjCProperty:
85   case Decl::ObjCCompatibleAlias:
86   case Decl::PragmaComment:
87   case Decl::PragmaDetectMismatch:
88   case Decl::AccessSpec:
89   case Decl::LinkageSpec:
90   case Decl::Export:
91   case Decl::ObjCPropertyImpl:
92   case Decl::FileScopeAsm:
93   case Decl::Friend:
94   case Decl::FriendTemplate:
95   case Decl::Block:
96   case Decl::Captured:
97   case Decl::ClassScopeFunctionSpecialization:
98   case Decl::UsingShadow:
99   case Decl::ConstructorUsingShadow:
100   case Decl::ObjCTypeParam:
101   case Decl::Binding:
102     llvm_unreachable("Declaration should not be in declstmts!");
103   case Decl::Record:    // struct/union/class X;
104   case Decl::CXXRecord: // struct/union/class X; [C++]
105     if (CGDebugInfo *DI = getDebugInfo())
106       if (cast<RecordDecl>(D).getDefinition())
107         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
108     return;
109   case Decl::Enum:      // enum X;
110     if (CGDebugInfo *DI = getDebugInfo())
111       if (cast<EnumDecl>(D).getDefinition())
112         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
113     return;
114   case Decl::Function:     // void X();
115   case Decl::EnumConstant: // enum ? { X = ? }
116   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
117   case Decl::Label:        // __label__ x;
118   case Decl::Import:
119   case Decl::MSGuid:    // __declspec(uuid("..."))
120   case Decl::OMPThreadPrivate:
121   case Decl::OMPAllocate:
122   case Decl::OMPCapturedExpr:
123   case Decl::OMPRequires:
124   case Decl::Empty:
125   case Decl::Concept:
126   case Decl::LifetimeExtendedTemporary:
127   case Decl::RequiresExprBody:
128     // None of these decls require codegen support.
129     return;
130 
131   case Decl::NamespaceAlias:
132     if (CGDebugInfo *DI = getDebugInfo())
133         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
134     return;
135   case Decl::Using:          // using X; [C++]
136     if (CGDebugInfo *DI = getDebugInfo())
137         DI->EmitUsingDecl(cast<UsingDecl>(D));
138     return;
139   case Decl::UsingPack:
140     for (auto *Using : cast<UsingPackDecl>(D).expansions())
141       EmitDecl(*Using);
142     return;
143   case Decl::UsingDirective: // using namespace X; [C++]
144     if (CGDebugInfo *DI = getDebugInfo())
145       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
146     return;
147   case Decl::Var:
148   case Decl::Decomposition: {
149     const VarDecl &VD = cast<VarDecl>(D);
150     assert(VD.isLocalVarDecl() &&
151            "Should not see file-scope variables inside a function!");
152     EmitVarDecl(VD);
153     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
154       for (auto *B : DD->bindings())
155         if (auto *HD = B->getHoldingVar())
156           EmitVarDecl(*HD);
157     return;
158   }
159 
160   case Decl::OMPDeclareReduction:
161     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
162 
163   case Decl::OMPDeclareMapper:
164     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
165 
166   case Decl::Typedef:      // typedef int X;
167   case Decl::TypeAlias: {  // using X = int; [C++0x]
168     QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
169     if (CGDebugInfo *DI = getDebugInfo())
170       DI->EmitAndRetainType(Ty);
171     if (Ty->isVariablyModifiedType())
172       EmitVariablyModifiedType(Ty);
173     return;
174   }
175   }
176 }
177 
178 /// EmitVarDecl - This method handles emission of any variable declaration
179 /// inside a function, including static vars etc.
180 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
181   if (D.hasExternalStorage())
182     // Don't emit it now, allow it to be emitted lazily on its first use.
183     return;
184 
185   // Some function-scope variable does not have static storage but still
186   // needs to be emitted like a static variable, e.g. a function-scope
187   // variable in constant address space in OpenCL.
188   if (D.getStorageDuration() != SD_Automatic) {
189     // Static sampler variables translated to function calls.
190     if (D.getType()->isSamplerT())
191       return;
192 
193     llvm::GlobalValue::LinkageTypes Linkage =
194         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
195 
196     // FIXME: We need to force the emission/use of a guard variable for
197     // some variables even if we can constant-evaluate them because
198     // we can't guarantee every translation unit will constant-evaluate them.
199 
200     return EmitStaticVarDecl(D, Linkage);
201   }
202 
203   if (D.getType().getAddressSpace() == LangAS::opencl_local)
204     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
205 
206   assert(D.hasLocalStorage());
207   return EmitAutoVarDecl(D);
208 }
209 
210 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
211   if (CGM.getLangOpts().CPlusPlus)
212     return CGM.getMangledName(&D).str();
213 
214   // If this isn't C++, we don't need a mangled name, just a pretty one.
215   assert(!D.isExternallyVisible() && "name shouldn't matter");
216   std::string ContextName;
217   const DeclContext *DC = D.getDeclContext();
218   if (auto *CD = dyn_cast<CapturedDecl>(DC))
219     DC = cast<DeclContext>(CD->getNonClosureContext());
220   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
221     ContextName = std::string(CGM.getMangledName(FD));
222   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
223     ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
224   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
225     ContextName = OMD->getSelector().getAsString();
226   else
227     llvm_unreachable("Unknown context for static var decl");
228 
229   ContextName += "." + D.getNameAsString();
230   return ContextName;
231 }
232 
233 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
234     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
235   // In general, we don't always emit static var decls once before we reference
236   // them. It is possible to reference them before emitting the function that
237   // contains them, and it is possible to emit the containing function multiple
238   // times.
239   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
240     return ExistingGV;
241 
242   QualType Ty = D.getType();
243   assert(Ty->isConstantSizeType() && "VLAs can't be static");
244 
245   // Use the label if the variable is renamed with the asm-label extension.
246   std::string Name;
247   if (D.hasAttr<AsmLabelAttr>())
248     Name = std::string(getMangledName(&D));
249   else
250     Name = getStaticDeclName(*this, D);
251 
252   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
253   LangAS AS = GetGlobalVarAddressSpace(&D);
254   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
255 
256   // OpenCL variables in local address space and CUDA shared
257   // variables cannot have an initializer.
258   llvm::Constant *Init = nullptr;
259   if (Ty.getAddressSpace() == LangAS::opencl_local ||
260       D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
261     Init = llvm::UndefValue::get(LTy);
262   else
263     Init = EmitNullConstant(Ty);
264 
265   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
266       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
267       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
268   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
269 
270   if (supportsCOMDAT() && GV->isWeakForLinker())
271     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
272 
273   if (D.getTLSKind())
274     setTLSMode(GV, D);
275 
276   setGVProperties(GV, &D);
277 
278   // Make sure the result is of the correct type.
279   LangAS ExpectedAS = Ty.getAddressSpace();
280   llvm::Constant *Addr = GV;
281   if (AS != ExpectedAS) {
282     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
283         *this, GV, AS, ExpectedAS,
284         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
285   }
286 
287   setStaticLocalDeclAddress(&D, Addr);
288 
289   // Ensure that the static local gets initialized by making sure the parent
290   // function gets emitted eventually.
291   const Decl *DC = cast<Decl>(D.getDeclContext());
292 
293   // We can't name blocks or captured statements directly, so try to emit their
294   // parents.
295   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
296     DC = DC->getNonClosureContext();
297     // FIXME: Ensure that global blocks get emitted.
298     if (!DC)
299       return Addr;
300   }
301 
302   GlobalDecl GD;
303   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
304     GD = GlobalDecl(CD, Ctor_Base);
305   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
306     GD = GlobalDecl(DD, Dtor_Base);
307   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
308     GD = GlobalDecl(FD);
309   else {
310     // Don't do anything for Obj-C method decls or global closures. We should
311     // never defer them.
312     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
313   }
314   if (GD.getDecl()) {
315     // Disable emission of the parent function for the OpenMP device codegen.
316     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
317     (void)GetAddrOfGlobal(GD);
318   }
319 
320   return Addr;
321 }
322 
323 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
324 /// global variable that has already been created for it.  If the initializer
325 /// has a different type than GV does, this may free GV and return a different
326 /// one.  Otherwise it just returns GV.
327 llvm::GlobalVariable *
328 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
329                                                llvm::GlobalVariable *GV) {
330   ConstantEmitter emitter(*this);
331   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
332 
333   // If constant emission failed, then this should be a C++ static
334   // initializer.
335   if (!Init) {
336     if (!getLangOpts().CPlusPlus)
337       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
338     else if (HaveInsertPoint()) {
339       // Since we have a static initializer, this global variable can't
340       // be constant.
341       GV->setConstant(false);
342 
343       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
344     }
345     return GV;
346   }
347 
348   // The initializer may differ in type from the global. Rewrite
349   // the global to match the initializer.  (We have to do this
350   // because some types, like unions, can't be completely represented
351   // in the LLVM type system.)
352   if (GV->getValueType() != Init->getType()) {
353     llvm::GlobalVariable *OldGV = GV;
354 
355     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
356                                   OldGV->isConstant(),
357                                   OldGV->getLinkage(), Init, "",
358                                   /*InsertBefore*/ OldGV,
359                                   OldGV->getThreadLocalMode(),
360                            CGM.getContext().getTargetAddressSpace(D.getType()));
361     GV->setVisibility(OldGV->getVisibility());
362     GV->setDSOLocal(OldGV->isDSOLocal());
363     GV->setComdat(OldGV->getComdat());
364 
365     // Steal the name of the old global
366     GV->takeName(OldGV);
367 
368     // Replace all uses of the old global with the new global
369     llvm::Constant *NewPtrForOldDecl =
370     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
371     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
372 
373     // Erase the old global, since it is no longer used.
374     OldGV->eraseFromParent();
375   }
376 
377   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
378   GV->setInitializer(Init);
379 
380   emitter.finalize(GV);
381 
382   if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
383       HaveInsertPoint()) {
384     // We have a constant initializer, but a nontrivial destructor. We still
385     // need to perform a guarded "initialization" in order to register the
386     // destructor.
387     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
388   }
389 
390   return GV;
391 }
392 
393 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
394                                       llvm::GlobalValue::LinkageTypes Linkage) {
395   // Check to see if we already have a global variable for this
396   // declaration.  This can happen when double-emitting function
397   // bodies, e.g. with complete and base constructors.
398   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
399   CharUnits alignment = getContext().getDeclAlign(&D);
400 
401   // Store into LocalDeclMap before generating initializer to handle
402   // circular references.
403   setAddrOfLocalVar(&D, Address(addr, alignment));
404 
405   // We can't have a VLA here, but we can have a pointer to a VLA,
406   // even though that doesn't really make any sense.
407   // Make sure to evaluate VLA bounds now so that we have them for later.
408   if (D.getType()->isVariablyModifiedType())
409     EmitVariablyModifiedType(D.getType());
410 
411   // Save the type in case adding the initializer forces a type change.
412   llvm::Type *expectedType = addr->getType();
413 
414   llvm::GlobalVariable *var =
415     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
416 
417   // CUDA's local and local static __shared__ variables should not
418   // have any non-empty initializers. This is ensured by Sema.
419   // Whatever initializer such variable may have when it gets here is
420   // a no-op and should not be emitted.
421   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
422                          D.hasAttr<CUDASharedAttr>();
423   // If this value has an initializer, emit it.
424   if (D.getInit() && !isCudaSharedVar)
425     var = AddInitializerToStaticVarDecl(D, var);
426 
427   var->setAlignment(alignment.getAsAlign());
428 
429   if (D.hasAttr<AnnotateAttr>())
430     CGM.AddGlobalAnnotations(&D, var);
431 
432   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
433     var->addAttribute("bss-section", SA->getName());
434   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
435     var->addAttribute("data-section", SA->getName());
436   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
437     var->addAttribute("rodata-section", SA->getName());
438   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
439     var->addAttribute("relro-section", SA->getName());
440 
441   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
442     var->setSection(SA->getName());
443 
444   if (D.hasAttr<UsedAttr>())
445     CGM.addUsedGlobal(var);
446 
447   // We may have to cast the constant because of the initializer
448   // mismatch above.
449   //
450   // FIXME: It is really dangerous to store this in the map; if anyone
451   // RAUW's the GV uses of this constant will be invalid.
452   llvm::Constant *castedAddr =
453     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
454   if (var != castedAddr)
455     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
456   CGM.setStaticLocalDeclAddress(&D, castedAddr);
457 
458   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
459 
460   // Emit global variable debug descriptor for static vars.
461   CGDebugInfo *DI = getDebugInfo();
462   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
463     DI->setLocation(D.getLocation());
464     DI->EmitGlobalVariable(var, &D);
465   }
466 }
467 
468 namespace {
469   struct DestroyObject final : EHScopeStack::Cleanup {
470     DestroyObject(Address addr, QualType type,
471                   CodeGenFunction::Destroyer *destroyer,
472                   bool useEHCleanupForArray)
473       : addr(addr), type(type), destroyer(destroyer),
474         useEHCleanupForArray(useEHCleanupForArray) {}
475 
476     Address addr;
477     QualType type;
478     CodeGenFunction::Destroyer *destroyer;
479     bool useEHCleanupForArray;
480 
481     void Emit(CodeGenFunction &CGF, Flags flags) override {
482       // Don't use an EH cleanup recursively from an EH cleanup.
483       bool useEHCleanupForArray =
484         flags.isForNormalCleanup() && this->useEHCleanupForArray;
485 
486       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
487     }
488   };
489 
490   template <class Derived>
491   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
492     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
493         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
494 
495     llvm::Value *NRVOFlag;
496     Address Loc;
497     QualType Ty;
498 
499     void Emit(CodeGenFunction &CGF, Flags flags) override {
500       // Along the exceptions path we always execute the dtor.
501       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
502 
503       llvm::BasicBlock *SkipDtorBB = nullptr;
504       if (NRVO) {
505         // If we exited via NRVO, we skip the destructor call.
506         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
507         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
508         llvm::Value *DidNRVO =
509           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
510         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
511         CGF.EmitBlock(RunDtorBB);
512       }
513 
514       static_cast<Derived *>(this)->emitDestructorCall(CGF);
515 
516       if (NRVO) CGF.EmitBlock(SkipDtorBB);
517     }
518 
519     virtual ~DestroyNRVOVariable() = default;
520   };
521 
522   struct DestroyNRVOVariableCXX final
523       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
524     DestroyNRVOVariableCXX(Address addr, QualType type,
525                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
526         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
527           Dtor(Dtor) {}
528 
529     const CXXDestructorDecl *Dtor;
530 
531     void emitDestructorCall(CodeGenFunction &CGF) {
532       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
533                                 /*ForVirtualBase=*/false,
534                                 /*Delegating=*/false, Loc, Ty);
535     }
536   };
537 
538   struct DestroyNRVOVariableC final
539       : DestroyNRVOVariable<DestroyNRVOVariableC> {
540     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
541         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
542 
543     void emitDestructorCall(CodeGenFunction &CGF) {
544       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
545     }
546   };
547 
548   struct CallStackRestore final : EHScopeStack::Cleanup {
549     Address Stack;
550     CallStackRestore(Address Stack) : Stack(Stack) {}
551     void Emit(CodeGenFunction &CGF, Flags flags) override {
552       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
553       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
554       CGF.Builder.CreateCall(F, V);
555     }
556   };
557 
558   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
559     const VarDecl &Var;
560     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
561 
562     void Emit(CodeGenFunction &CGF, Flags flags) override {
563       // Compute the address of the local variable, in case it's a
564       // byref or something.
565       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
566                       Var.getType(), VK_LValue, SourceLocation());
567       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
568                                                 SourceLocation());
569       CGF.EmitExtendGCLifetime(value);
570     }
571   };
572 
573   struct CallCleanupFunction final : EHScopeStack::Cleanup {
574     llvm::Constant *CleanupFn;
575     const CGFunctionInfo &FnInfo;
576     const VarDecl &Var;
577 
578     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
579                         const VarDecl *Var)
580       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
581 
582     void Emit(CodeGenFunction &CGF, Flags flags) override {
583       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
584                       Var.getType(), VK_LValue, SourceLocation());
585       // Compute the address of the local variable, in case it's a byref
586       // or something.
587       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
588 
589       // In some cases, the type of the function argument will be different from
590       // the type of the pointer. An example of this is
591       // void f(void* arg);
592       // __attribute__((cleanup(f))) void *g;
593       //
594       // To fix this we insert a bitcast here.
595       QualType ArgTy = FnInfo.arg_begin()->type;
596       llvm::Value *Arg =
597         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
598 
599       CallArgList Args;
600       Args.add(RValue::get(Arg),
601                CGF.getContext().getPointerType(Var.getType()));
602       auto Callee = CGCallee::forDirect(CleanupFn);
603       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
604     }
605   };
606 } // end anonymous namespace
607 
608 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
609 /// variable with lifetime.
610 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
611                                     Address addr,
612                                     Qualifiers::ObjCLifetime lifetime) {
613   switch (lifetime) {
614   case Qualifiers::OCL_None:
615     llvm_unreachable("present but none");
616 
617   case Qualifiers::OCL_ExplicitNone:
618     // nothing to do
619     break;
620 
621   case Qualifiers::OCL_Strong: {
622     CodeGenFunction::Destroyer *destroyer =
623       (var.hasAttr<ObjCPreciseLifetimeAttr>()
624        ? CodeGenFunction::destroyARCStrongPrecise
625        : CodeGenFunction::destroyARCStrongImprecise);
626 
627     CleanupKind cleanupKind = CGF.getARCCleanupKind();
628     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
629                     cleanupKind & EHCleanup);
630     break;
631   }
632   case Qualifiers::OCL_Autoreleasing:
633     // nothing to do
634     break;
635 
636   case Qualifiers::OCL_Weak:
637     // __weak objects always get EH cleanups; otherwise, exceptions
638     // could cause really nasty crashes instead of mere leaks.
639     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
640                     CodeGenFunction::destroyARCWeak,
641                     /*useEHCleanup*/ true);
642     break;
643   }
644 }
645 
646 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
647   if (const Expr *e = dyn_cast<Expr>(s)) {
648     // Skip the most common kinds of expressions that make
649     // hierarchy-walking expensive.
650     s = e = e->IgnoreParenCasts();
651 
652     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
653       return (ref->getDecl() == &var);
654     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
655       const BlockDecl *block = be->getBlockDecl();
656       for (const auto &I : block->captures()) {
657         if (I.getVariable() == &var)
658           return true;
659       }
660     }
661   }
662 
663   for (const Stmt *SubStmt : s->children())
664     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
665     if (SubStmt && isAccessedBy(var, SubStmt))
666       return true;
667 
668   return false;
669 }
670 
671 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
672   if (!decl) return false;
673   if (!isa<VarDecl>(decl)) return false;
674   const VarDecl *var = cast<VarDecl>(decl);
675   return isAccessedBy(*var, e);
676 }
677 
678 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
679                                    const LValue &destLV, const Expr *init) {
680   bool needsCast = false;
681 
682   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
683     switch (castExpr->getCastKind()) {
684     // Look through casts that don't require representation changes.
685     case CK_NoOp:
686     case CK_BitCast:
687     case CK_BlockPointerToObjCPointerCast:
688       needsCast = true;
689       break;
690 
691     // If we find an l-value to r-value cast from a __weak variable,
692     // emit this operation as a copy or move.
693     case CK_LValueToRValue: {
694       const Expr *srcExpr = castExpr->getSubExpr();
695       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
696         return false;
697 
698       // Emit the source l-value.
699       LValue srcLV = CGF.EmitLValue(srcExpr);
700 
701       // Handle a formal type change to avoid asserting.
702       auto srcAddr = srcLV.getAddress(CGF);
703       if (needsCast) {
704         srcAddr = CGF.Builder.CreateElementBitCast(
705             srcAddr, destLV.getAddress(CGF).getElementType());
706       }
707 
708       // If it was an l-value, use objc_copyWeak.
709       if (srcExpr->getValueKind() == VK_LValue) {
710         CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
711       } else {
712         assert(srcExpr->getValueKind() == VK_XValue);
713         CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
714       }
715       return true;
716     }
717 
718     // Stop at anything else.
719     default:
720       return false;
721     }
722 
723     init = castExpr->getSubExpr();
724   }
725   return false;
726 }
727 
728 static void drillIntoBlockVariable(CodeGenFunction &CGF,
729                                    LValue &lvalue,
730                                    const VarDecl *var) {
731   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
732 }
733 
734 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
735                                            SourceLocation Loc) {
736   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
737     return;
738 
739   auto Nullability = LHS.getType()->getNullability(getContext());
740   if (!Nullability || *Nullability != NullabilityKind::NonNull)
741     return;
742 
743   // Check if the right hand side of the assignment is nonnull, if the left
744   // hand side must be nonnull.
745   SanitizerScope SanScope(this);
746   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
747   llvm::Constant *StaticData[] = {
748       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
749       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
750       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
751   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
752             SanitizerHandler::TypeMismatch, StaticData, RHS);
753 }
754 
755 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
756                                      LValue lvalue, bool capturedByInit) {
757   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
758   if (!lifetime) {
759     llvm::Value *value = EmitScalarExpr(init);
760     if (capturedByInit)
761       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
762     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
763     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
764     return;
765   }
766 
767   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
768     init = DIE->getExpr();
769 
770   // If we're emitting a value with lifetime, we have to do the
771   // initialization *before* we leave the cleanup scopes.
772   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(init))
773     init = EWC->getSubExpr();
774   CodeGenFunction::RunCleanupsScope Scope(*this);
775 
776   // We have to maintain the illusion that the variable is
777   // zero-initialized.  If the variable might be accessed in its
778   // initializer, zero-initialize before running the initializer, then
779   // actually perform the initialization with an assign.
780   bool accessedByInit = false;
781   if (lifetime != Qualifiers::OCL_ExplicitNone)
782     accessedByInit = (capturedByInit || isAccessedBy(D, init));
783   if (accessedByInit) {
784     LValue tempLV = lvalue;
785     // Drill down to the __block object if necessary.
786     if (capturedByInit) {
787       // We can use a simple GEP for this because it can't have been
788       // moved yet.
789       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
790                                               cast<VarDecl>(D),
791                                               /*follow*/ false));
792     }
793 
794     auto ty =
795         cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
796     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
797 
798     // If __weak, we want to use a barrier under certain conditions.
799     if (lifetime == Qualifiers::OCL_Weak)
800       EmitARCInitWeak(tempLV.getAddress(*this), zero);
801 
802     // Otherwise just do a simple store.
803     else
804       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
805   }
806 
807   // Emit the initializer.
808   llvm::Value *value = nullptr;
809 
810   switch (lifetime) {
811   case Qualifiers::OCL_None:
812     llvm_unreachable("present but none");
813 
814   case Qualifiers::OCL_Strong: {
815     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
816       value = EmitARCRetainScalarExpr(init);
817       break;
818     }
819     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
820     // that we omit the retain, and causes non-autoreleased return values to be
821     // immediately released.
822     LLVM_FALLTHROUGH;
823   }
824 
825   case Qualifiers::OCL_ExplicitNone:
826     value = EmitARCUnsafeUnretainedScalarExpr(init);
827     break;
828 
829   case Qualifiers::OCL_Weak: {
830     // If it's not accessed by the initializer, try to emit the
831     // initialization with a copy or move.
832     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
833       return;
834     }
835 
836     // No way to optimize a producing initializer into this.  It's not
837     // worth optimizing for, because the value will immediately
838     // disappear in the common case.
839     value = EmitScalarExpr(init);
840 
841     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
842     if (accessedByInit)
843       EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
844     else
845       EmitARCInitWeak(lvalue.getAddress(*this), value);
846     return;
847   }
848 
849   case Qualifiers::OCL_Autoreleasing:
850     value = EmitARCRetainAutoreleaseScalarExpr(init);
851     break;
852   }
853 
854   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
855 
856   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
857 
858   // If the variable might have been accessed by its initializer, we
859   // might have to initialize with a barrier.  We have to do this for
860   // both __weak and __strong, but __weak got filtered out above.
861   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
862     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
863     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
864     EmitARCRelease(oldValue, ARCImpreciseLifetime);
865     return;
866   }
867 
868   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
869 }
870 
871 /// Decide whether we can emit the non-zero parts of the specified initializer
872 /// with equal or fewer than NumStores scalar stores.
873 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
874                                                unsigned &NumStores) {
875   // Zero and Undef never requires any extra stores.
876   if (isa<llvm::ConstantAggregateZero>(Init) ||
877       isa<llvm::ConstantPointerNull>(Init) ||
878       isa<llvm::UndefValue>(Init))
879     return true;
880   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
881       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
882       isa<llvm::ConstantExpr>(Init))
883     return Init->isNullValue() || NumStores--;
884 
885   // See if we can emit each element.
886   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
887     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
888       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
889       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
890         return false;
891     }
892     return true;
893   }
894 
895   if (llvm::ConstantDataSequential *CDS =
896         dyn_cast<llvm::ConstantDataSequential>(Init)) {
897     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
898       llvm::Constant *Elt = CDS->getElementAsConstant(i);
899       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
900         return false;
901     }
902     return true;
903   }
904 
905   // Anything else is hard and scary.
906   return false;
907 }
908 
909 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
910 /// the scalar stores that would be required.
911 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
912                                         llvm::Constant *Init, Address Loc,
913                                         bool isVolatile, CGBuilderTy &Builder) {
914   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
915          "called emitStoresForInitAfterBZero for zero or undef value.");
916 
917   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
918       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
919       isa<llvm::ConstantExpr>(Init)) {
920     Builder.CreateStore(Init, Loc, isVolatile);
921     return;
922   }
923 
924   if (llvm::ConstantDataSequential *CDS =
925           dyn_cast<llvm::ConstantDataSequential>(Init)) {
926     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
927       llvm::Constant *Elt = CDS->getElementAsConstant(i);
928 
929       // If necessary, get a pointer to the element and emit it.
930       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
931         emitStoresForInitAfterBZero(
932             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
933             Builder);
934     }
935     return;
936   }
937 
938   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
939          "Unknown value type!");
940 
941   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
942     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
943 
944     // If necessary, get a pointer to the element and emit it.
945     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
946       emitStoresForInitAfterBZero(CGM, Elt,
947                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
948                                   isVolatile, Builder);
949   }
950 }
951 
952 /// Decide whether we should use bzero plus some stores to initialize a local
953 /// variable instead of using a memcpy from a constant global.  It is beneficial
954 /// to use bzero if the global is all zeros, or mostly zeros and large.
955 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
956                                                  uint64_t GlobalSize) {
957   // If a global is all zeros, always use a bzero.
958   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
959 
960   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
961   // do it if it will require 6 or fewer scalar stores.
962   // TODO: Should budget depends on the size?  Avoiding a large global warrants
963   // plopping in more stores.
964   unsigned StoreBudget = 6;
965   uint64_t SizeLimit = 32;
966 
967   return GlobalSize > SizeLimit &&
968          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
969 }
970 
971 /// Decide whether we should use memset to initialize a local variable instead
972 /// of using a memcpy from a constant global. Assumes we've already decided to
973 /// not user bzero.
974 /// FIXME We could be more clever, as we are for bzero above, and generate
975 ///       memset followed by stores. It's unclear that's worth the effort.
976 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
977                                                 uint64_t GlobalSize,
978                                                 const llvm::DataLayout &DL) {
979   uint64_t SizeLimit = 32;
980   if (GlobalSize <= SizeLimit)
981     return nullptr;
982   return llvm::isBytewiseValue(Init, DL);
983 }
984 
985 /// Decide whether we want to split a constant structure or array store into a
986 /// sequence of its fields' stores. This may cost us code size and compilation
987 /// speed, but plays better with store optimizations.
988 static bool shouldSplitConstantStore(CodeGenModule &CGM,
989                                      uint64_t GlobalByteSize) {
990   // Don't break things that occupy more than one cacheline.
991   uint64_t ByteSizeLimit = 64;
992   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
993     return false;
994   if (GlobalByteSize <= ByteSizeLimit)
995     return true;
996   return false;
997 }
998 
999 enum class IsPattern { No, Yes };
1000 
1001 /// Generate a constant filled with either a pattern or zeroes.
1002 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1003                                         llvm::Type *Ty) {
1004   if (isPattern == IsPattern::Yes)
1005     return initializationPatternFor(CGM, Ty);
1006   else
1007     return llvm::Constant::getNullValue(Ty);
1008 }
1009 
1010 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1011                                         llvm::Constant *constant);
1012 
1013 /// Helper function for constWithPadding() to deal with padding in structures.
1014 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1015                                               IsPattern isPattern,
1016                                               llvm::StructType *STy,
1017                                               llvm::Constant *constant) {
1018   const llvm::DataLayout &DL = CGM.getDataLayout();
1019   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1020   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1021   unsigned SizeSoFar = 0;
1022   SmallVector<llvm::Constant *, 8> Values;
1023   bool NestedIntact = true;
1024   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1025     unsigned CurOff = Layout->getElementOffset(i);
1026     if (SizeSoFar < CurOff) {
1027       assert(!STy->isPacked());
1028       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1029       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1030     }
1031     llvm::Constant *CurOp;
1032     if (constant->isZeroValue())
1033       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1034     else
1035       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1036     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1037     if (CurOp != NewOp)
1038       NestedIntact = false;
1039     Values.push_back(NewOp);
1040     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1041   }
1042   unsigned TotalSize = Layout->getSizeInBytes();
1043   if (SizeSoFar < TotalSize) {
1044     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1045     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1046   }
1047   if (NestedIntact && Values.size() == STy->getNumElements())
1048     return constant;
1049   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1050 }
1051 
1052 /// Replace all padding bytes in a given constant with either a pattern byte or
1053 /// 0x00.
1054 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1055                                         llvm::Constant *constant) {
1056   llvm::Type *OrigTy = constant->getType();
1057   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1058     return constStructWithPadding(CGM, isPattern, STy, constant);
1059   if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1060     llvm::SmallVector<llvm::Constant *, 8> Values;
1061     uint64_t Size = ArrayTy->getNumElements();
1062     if (!Size)
1063       return constant;
1064     llvm::Type *ElemTy = ArrayTy->getElementType();
1065     bool ZeroInitializer = constant->isNullValue();
1066     llvm::Constant *OpValue, *PaddedOp;
1067     if (ZeroInitializer) {
1068       OpValue = llvm::Constant::getNullValue(ElemTy);
1069       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1070     }
1071     for (unsigned Op = 0; Op != Size; ++Op) {
1072       if (!ZeroInitializer) {
1073         OpValue = constant->getAggregateElement(Op);
1074         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1075       }
1076       Values.push_back(PaddedOp);
1077     }
1078     auto *NewElemTy = Values[0]->getType();
1079     if (NewElemTy == ElemTy)
1080       return constant;
1081     auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1082     return llvm::ConstantArray::get(NewArrayTy, Values);
1083   }
1084   // FIXME: Add handling for tail padding in vectors. Vectors don't
1085   // have padding between or inside elements, but the total amount of
1086   // data can be less than the allocated size.
1087   return constant;
1088 }
1089 
1090 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1091                                                llvm::Constant *Constant,
1092                                                CharUnits Align) {
1093   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1094     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1095       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1096         return CC->getNameAsString();
1097       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1098         return CD->getNameAsString();
1099       return std::string(getMangledName(FD));
1100     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1101       return OM->getNameAsString();
1102     } else if (isa<BlockDecl>(DC)) {
1103       return "<block>";
1104     } else if (isa<CapturedDecl>(DC)) {
1105       return "<captured>";
1106     } else {
1107       llvm_unreachable("expected a function or method");
1108     }
1109   };
1110 
1111   // Form a simple per-variable cache of these values in case we find we
1112   // want to reuse them.
1113   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1114   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1115     auto *Ty = Constant->getType();
1116     bool isConstant = true;
1117     llvm::GlobalVariable *InsertBefore = nullptr;
1118     unsigned AS =
1119         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1120     std::string Name;
1121     if (D.hasGlobalStorage())
1122       Name = getMangledName(&D).str() + ".const";
1123     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1124       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1125     else
1126       llvm_unreachable("local variable has no parent function or method");
1127     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1128         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1129         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1130     GV->setAlignment(Align.getAsAlign());
1131     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1132     CacheEntry = GV;
1133   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1134     CacheEntry->setAlignment(Align.getAsAlign());
1135   }
1136 
1137   return Address(CacheEntry, Align);
1138 }
1139 
1140 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1141                                                 const VarDecl &D,
1142                                                 CGBuilderTy &Builder,
1143                                                 llvm::Constant *Constant,
1144                                                 CharUnits Align) {
1145   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1146   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1147                                                    SrcPtr.getAddressSpace());
1148   if (SrcPtr.getType() != BP)
1149     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1150   return SrcPtr;
1151 }
1152 
1153 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1154                                   Address Loc, bool isVolatile,
1155                                   CGBuilderTy &Builder,
1156                                   llvm::Constant *constant) {
1157   auto *Ty = constant->getType();
1158   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1159   if (!ConstantSize)
1160     return;
1161 
1162   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1163                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1164   if (canDoSingleStore) {
1165     Builder.CreateStore(constant, Loc, isVolatile);
1166     return;
1167   }
1168 
1169   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1170 
1171   // If the initializer is all or mostly the same, codegen with bzero / memset
1172   // then do a few stores afterward.
1173   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1174     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
1175                          isVolatile);
1176 
1177     bool valueAlreadyCorrect =
1178         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1179     if (!valueAlreadyCorrect) {
1180       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1181       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1182     }
1183     return;
1184   }
1185 
1186   // If the initializer is a repeated byte pattern, use memset.
1187   llvm::Value *Pattern =
1188       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1189   if (Pattern) {
1190     uint64_t Value = 0x00;
1191     if (!isa<llvm::UndefValue>(Pattern)) {
1192       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1193       assert(AP.getBitWidth() <= 8);
1194       Value = AP.getLimitedValue();
1195     }
1196     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
1197                          isVolatile);
1198     return;
1199   }
1200 
1201   // If the initializer is small, use a handful of stores.
1202   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1203     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1204       // FIXME: handle the case when STy != Loc.getElementType().
1205       if (STy == Loc.getElementType()) {
1206         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1207           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1208           emitStoresForConstant(
1209               CGM, D, EltPtr, isVolatile, Builder,
1210               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1211         }
1212         return;
1213       }
1214     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1215       // FIXME: handle the case when ATy != Loc.getElementType().
1216       if (ATy == Loc.getElementType()) {
1217         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1218           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1219           emitStoresForConstant(
1220               CGM, D, EltPtr, isVolatile, Builder,
1221               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1222         }
1223         return;
1224       }
1225     }
1226   }
1227 
1228   // Copy from a global.
1229   Builder.CreateMemCpy(Loc,
1230                        createUnnamedGlobalForMemcpyFrom(
1231                            CGM, D, Builder, constant, Loc.getAlignment()),
1232                        SizeVal, isVolatile);
1233 }
1234 
1235 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1236                                   Address Loc, bool isVolatile,
1237                                   CGBuilderTy &Builder) {
1238   llvm::Type *ElTy = Loc.getElementType();
1239   llvm::Constant *constant =
1240       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1241   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1242 }
1243 
1244 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1245                                      Address Loc, bool isVolatile,
1246                                      CGBuilderTy &Builder) {
1247   llvm::Type *ElTy = Loc.getElementType();
1248   llvm::Constant *constant = constWithPadding(
1249       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1250   assert(!isa<llvm::UndefValue>(constant));
1251   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1252 }
1253 
1254 static bool containsUndef(llvm::Constant *constant) {
1255   auto *Ty = constant->getType();
1256   if (isa<llvm::UndefValue>(constant))
1257     return true;
1258   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1259     for (llvm::Use &Op : constant->operands())
1260       if (containsUndef(cast<llvm::Constant>(Op)))
1261         return true;
1262   return false;
1263 }
1264 
1265 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1266                                     llvm::Constant *constant) {
1267   auto *Ty = constant->getType();
1268   if (isa<llvm::UndefValue>(constant))
1269     return patternOrZeroFor(CGM, isPattern, Ty);
1270   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1271     return constant;
1272   if (!containsUndef(constant))
1273     return constant;
1274   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1275   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1276     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1277     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1278   }
1279   if (Ty->isStructTy())
1280     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1281   if (Ty->isArrayTy())
1282     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1283   assert(Ty->isVectorTy());
1284   return llvm::ConstantVector::get(Values);
1285 }
1286 
1287 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1288 /// variable declaration with auto, register, or no storage class specifier.
1289 /// These turn into simple stack objects, or GlobalValues depending on target.
1290 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1291   AutoVarEmission emission = EmitAutoVarAlloca(D);
1292   EmitAutoVarInit(emission);
1293   EmitAutoVarCleanups(emission);
1294 }
1295 
1296 /// Emit a lifetime.begin marker if some criteria are satisfied.
1297 /// \return a pointer to the temporary size Value if a marker was emitted, null
1298 /// otherwise
1299 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1300                                                 llvm::Value *Addr) {
1301   if (!ShouldEmitLifetimeMarkers)
1302     return nullptr;
1303 
1304   assert(Addr->getType()->getPointerAddressSpace() ==
1305              CGM.getDataLayout().getAllocaAddrSpace() &&
1306          "Pointer should be in alloca address space");
1307   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1308   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1309   llvm::CallInst *C =
1310       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1311   C->setDoesNotThrow();
1312   return SizeV;
1313 }
1314 
1315 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1316   assert(Addr->getType()->getPointerAddressSpace() ==
1317              CGM.getDataLayout().getAllocaAddrSpace() &&
1318          "Pointer should be in alloca address space");
1319   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1320   llvm::CallInst *C =
1321       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1322   C->setDoesNotThrow();
1323 }
1324 
1325 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1326     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1327   // For each dimension stores its QualType and corresponding
1328   // size-expression Value.
1329   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1330   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1331 
1332   // Break down the array into individual dimensions.
1333   QualType Type1D = D.getType();
1334   while (getContext().getAsVariableArrayType(Type1D)) {
1335     auto VlaSize = getVLAElements1D(Type1D);
1336     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1337       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1338     else {
1339       // Generate a locally unique name for the size expression.
1340       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1341       SmallString<12> Buffer;
1342       StringRef NameRef = Name.toStringRef(Buffer);
1343       auto &Ident = getContext().Idents.getOwn(NameRef);
1344       VLAExprNames.push_back(&Ident);
1345       auto SizeExprAddr =
1346           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1347       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1348       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1349                               Type1D.getUnqualifiedType());
1350     }
1351     Type1D = VlaSize.Type;
1352   }
1353 
1354   if (!EmitDebugInfo)
1355     return;
1356 
1357   // Register each dimension's size-expression with a DILocalVariable,
1358   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1359   // to describe this array.
1360   unsigned NameIdx = 0;
1361   for (auto &VlaSize : Dimensions) {
1362     llvm::Metadata *MD;
1363     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1364       MD = llvm::ConstantAsMetadata::get(C);
1365     else {
1366       // Create an artificial VarDecl to generate debug info for.
1367       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1368       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1369       auto QT = getContext().getIntTypeForBitwidth(
1370           VlaExprTy->getScalarSizeInBits(), false);
1371       auto *ArtificialDecl = VarDecl::Create(
1372           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1373           D.getLocation(), D.getLocation(), NameIdent, QT,
1374           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1375       ArtificialDecl->setImplicit();
1376 
1377       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1378                                          Builder);
1379     }
1380     assert(MD && "No Size expression debug node created");
1381     DI->registerVLASizeExpression(VlaSize.Type, MD);
1382   }
1383 }
1384 
1385 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1386 /// local variable.  Does not emit initialization or destruction.
1387 CodeGenFunction::AutoVarEmission
1388 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1389   QualType Ty = D.getType();
1390   assert(
1391       Ty.getAddressSpace() == LangAS::Default ||
1392       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1393 
1394   AutoVarEmission emission(D);
1395 
1396   bool isEscapingByRef = D.isEscapingByref();
1397   emission.IsEscapingByRef = isEscapingByRef;
1398 
1399   CharUnits alignment = getContext().getDeclAlign(&D);
1400 
1401   // If the type is variably-modified, emit all the VLA sizes for it.
1402   if (Ty->isVariablyModifiedType())
1403     EmitVariablyModifiedType(Ty);
1404 
1405   auto *DI = getDebugInfo();
1406   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1407 
1408   Address address = Address::invalid();
1409   Address AllocaAddr = Address::invalid();
1410   Address OpenMPLocalAddr = Address::invalid();
1411   if (CGM.getLangOpts().OpenMPIRBuilder)
1412     OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1413   else
1414     OpenMPLocalAddr =
1415         getLangOpts().OpenMP
1416             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1417             : Address::invalid();
1418 
1419   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1420 
1421   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1422     address = OpenMPLocalAddr;
1423   } else if (Ty->isConstantSizeType()) {
1424     // If this value is an array or struct with a statically determinable
1425     // constant initializer, there are optimizations we can do.
1426     //
1427     // TODO: We should constant-evaluate the initializer of any variable,
1428     // as long as it is initialized by a constant expression. Currently,
1429     // isConstantInitializer produces wrong answers for structs with
1430     // reference or bitfield members, and a few other cases, and checking
1431     // for POD-ness protects us from some of these.
1432     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1433         (D.isConstexpr() ||
1434          ((Ty.isPODType(getContext()) ||
1435            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1436           D.getInit()->isConstantInitializer(getContext(), false)))) {
1437 
1438       // If the variable's a const type, and it's neither an NRVO
1439       // candidate nor a __block variable and has no mutable members,
1440       // emit it as a global instead.
1441       // Exception is if a variable is located in non-constant address space
1442       // in OpenCL.
1443       if ((!getLangOpts().OpenCL ||
1444            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1445           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1446            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1447         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1448 
1449         // Signal this condition to later callbacks.
1450         emission.Addr = Address::invalid();
1451         assert(emission.wasEmittedAsGlobal());
1452         return emission;
1453       }
1454 
1455       // Otherwise, tell the initialization code that we're in this case.
1456       emission.IsConstantAggregate = true;
1457     }
1458 
1459     // A normal fixed sized variable becomes an alloca in the entry block,
1460     // unless:
1461     // - it's an NRVO variable.
1462     // - we are compiling OpenMP and it's an OpenMP local variable.
1463     if (NRVO) {
1464       // The named return value optimization: allocate this variable in the
1465       // return slot, so that we can elide the copy when returning this
1466       // variable (C++0x [class.copy]p34).
1467       address = ReturnValue;
1468 
1469       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1470         const auto *RD = RecordTy->getDecl();
1471         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1472         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1473             RD->isNonTrivialToPrimitiveDestroy()) {
1474           // Create a flag that is used to indicate when the NRVO was applied
1475           // to this variable. Set it to zero to indicate that NRVO was not
1476           // applied.
1477           llvm::Value *Zero = Builder.getFalse();
1478           Address NRVOFlag =
1479             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1480           EnsureInsertPoint();
1481           Builder.CreateStore(Zero, NRVOFlag);
1482 
1483           // Record the NRVO flag for this variable.
1484           NRVOFlags[&D] = NRVOFlag.getPointer();
1485           emission.NRVOFlag = NRVOFlag.getPointer();
1486         }
1487       }
1488     } else {
1489       CharUnits allocaAlignment;
1490       llvm::Type *allocaTy;
1491       if (isEscapingByRef) {
1492         auto &byrefInfo = getBlockByrefInfo(&D);
1493         allocaTy = byrefInfo.Type;
1494         allocaAlignment = byrefInfo.ByrefAlignment;
1495       } else {
1496         allocaTy = ConvertTypeForMem(Ty);
1497         allocaAlignment = alignment;
1498       }
1499 
1500       // Create the alloca.  Note that we set the name separately from
1501       // building the instruction so that it's there even in no-asserts
1502       // builds.
1503       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1504                                  /*ArraySize=*/nullptr, &AllocaAddr);
1505 
1506       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1507       // the catch parameter starts in the catchpad instruction, and we can't
1508       // insert code in those basic blocks.
1509       bool IsMSCatchParam =
1510           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1511 
1512       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1513       // if we don't have a valid insertion point (?).
1514       if (HaveInsertPoint() && !IsMSCatchParam) {
1515         // If there's a jump into the lifetime of this variable, its lifetime
1516         // gets broken up into several regions in IR, which requires more work
1517         // to handle correctly. For now, just omit the intrinsics; this is a
1518         // rare case, and it's better to just be conservatively correct.
1519         // PR28267.
1520         //
1521         // We have to do this in all language modes if there's a jump past the
1522         // declaration. We also have to do it in C if there's a jump to an
1523         // earlier point in the current block because non-VLA lifetimes begin as
1524         // soon as the containing block is entered, not when its variables
1525         // actually come into scope; suppressing the lifetime annotations
1526         // completely in this case is unnecessarily pessimistic, but again, this
1527         // is rare.
1528         if (!Bypasses.IsBypassed(&D) &&
1529             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1530           llvm::TypeSize size =
1531               CGM.getDataLayout().getTypeAllocSize(allocaTy);
1532           emission.SizeForLifetimeMarkers =
1533               size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer())
1534                                 : EmitLifetimeStart(size.getFixedSize(),
1535                                                     AllocaAddr.getPointer());
1536         }
1537       } else {
1538         assert(!emission.useLifetimeMarkers());
1539       }
1540     }
1541   } else {
1542     EnsureInsertPoint();
1543 
1544     if (!DidCallStackSave) {
1545       // Save the stack.
1546       Address Stack =
1547         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1548 
1549       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1550       llvm::Value *V = Builder.CreateCall(F);
1551       Builder.CreateStore(V, Stack);
1552 
1553       DidCallStackSave = true;
1554 
1555       // Push a cleanup block and restore the stack there.
1556       // FIXME: in general circumstances, this should be an EH cleanup.
1557       pushStackRestore(NormalCleanup, Stack);
1558     }
1559 
1560     auto VlaSize = getVLASize(Ty);
1561     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1562 
1563     // Allocate memory for the array.
1564     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1565                                &AllocaAddr);
1566 
1567     // If we have debug info enabled, properly describe the VLA dimensions for
1568     // this type by registering the vla size expression for each of the
1569     // dimensions.
1570     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1571   }
1572 
1573   setAddrOfLocalVar(&D, address);
1574   emission.Addr = address;
1575   emission.AllocaAddr = AllocaAddr;
1576 
1577   // Emit debug info for local var declaration.
1578   if (EmitDebugInfo && HaveInsertPoint()) {
1579     Address DebugAddr = address;
1580     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1581     DI->setLocation(D.getLocation());
1582 
1583     // If NRVO, use a pointer to the return address.
1584     if (UsePointerValue)
1585       DebugAddr = ReturnValuePointer;
1586 
1587     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1588                                         UsePointerValue);
1589   }
1590 
1591   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1592     EmitVarAnnotations(&D, address.getPointer());
1593 
1594   // Make sure we call @llvm.lifetime.end.
1595   if (emission.useLifetimeMarkers())
1596     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1597                                          emission.getOriginalAllocatedAddress(),
1598                                          emission.getSizeForLifetimeMarkers());
1599 
1600   return emission;
1601 }
1602 
1603 static bool isCapturedBy(const VarDecl &, const Expr *);
1604 
1605 /// Determines whether the given __block variable is potentially
1606 /// captured by the given statement.
1607 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1608   if (const Expr *E = dyn_cast<Expr>(S))
1609     return isCapturedBy(Var, E);
1610   for (const Stmt *SubStmt : S->children())
1611     if (isCapturedBy(Var, SubStmt))
1612       return true;
1613   return false;
1614 }
1615 
1616 /// Determines whether the given __block variable is potentially
1617 /// captured by the given expression.
1618 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1619   // Skip the most common kinds of expressions that make
1620   // hierarchy-walking expensive.
1621   E = E->IgnoreParenCasts();
1622 
1623   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1624     const BlockDecl *Block = BE->getBlockDecl();
1625     for (const auto &I : Block->captures()) {
1626       if (I.getVariable() == &Var)
1627         return true;
1628     }
1629 
1630     // No need to walk into the subexpressions.
1631     return false;
1632   }
1633 
1634   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1635     const CompoundStmt *CS = SE->getSubStmt();
1636     for (const auto *BI : CS->body())
1637       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1638         if (isCapturedBy(Var, BIE))
1639           return true;
1640       }
1641       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1642           // special case declarations
1643           for (const auto *I : DS->decls()) {
1644               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1645                 const Expr *Init = VD->getInit();
1646                 if (Init && isCapturedBy(Var, Init))
1647                   return true;
1648               }
1649           }
1650       }
1651       else
1652         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1653         // Later, provide code to poke into statements for capture analysis.
1654         return true;
1655     return false;
1656   }
1657 
1658   for (const Stmt *SubStmt : E->children())
1659     if (isCapturedBy(Var, SubStmt))
1660       return true;
1661 
1662   return false;
1663 }
1664 
1665 /// Determine whether the given initializer is trivial in the sense
1666 /// that it requires no code to be generated.
1667 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1668   if (!Init)
1669     return true;
1670 
1671   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1672     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1673       if (Constructor->isTrivial() &&
1674           Constructor->isDefaultConstructor() &&
1675           !Construct->requiresZeroInitialization())
1676         return true;
1677 
1678   return false;
1679 }
1680 
1681 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1682                                                       const VarDecl &D,
1683                                                       Address Loc) {
1684   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1685   CharUnits Size = getContext().getTypeSizeInChars(type);
1686   bool isVolatile = type.isVolatileQualified();
1687   if (!Size.isZero()) {
1688     switch (trivialAutoVarInit) {
1689     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1690       llvm_unreachable("Uninitialized handled by caller");
1691     case LangOptions::TrivialAutoVarInitKind::Zero:
1692       if (CGM.stopAutoInit())
1693         return;
1694       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1695       break;
1696     case LangOptions::TrivialAutoVarInitKind::Pattern:
1697       if (CGM.stopAutoInit())
1698         return;
1699       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1700       break;
1701     }
1702     return;
1703   }
1704 
1705   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1706   // them, so emit a memcpy with the VLA size to initialize each element.
1707   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1708   // will catch that code, but there exists code which generates zero-sized
1709   // VLAs. Be nice and initialize whatever they requested.
1710   const auto *VlaType = getContext().getAsVariableArrayType(type);
1711   if (!VlaType)
1712     return;
1713   auto VlaSize = getVLASize(VlaType);
1714   auto SizeVal = VlaSize.NumElts;
1715   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1716   switch (trivialAutoVarInit) {
1717   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1718     llvm_unreachable("Uninitialized handled by caller");
1719 
1720   case LangOptions::TrivialAutoVarInitKind::Zero:
1721     if (CGM.stopAutoInit())
1722       return;
1723     if (!EltSize.isOne())
1724       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1725     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1726                          isVolatile);
1727     break;
1728 
1729   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1730     if (CGM.stopAutoInit())
1731       return;
1732     llvm::Type *ElTy = Loc.getElementType();
1733     llvm::Constant *Constant = constWithPadding(
1734         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1735     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1736     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1737     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1738     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1739     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1740         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1741         "vla.iszerosized");
1742     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1743     EmitBlock(SetupBB);
1744     if (!EltSize.isOne())
1745       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1746     llvm::Value *BaseSizeInChars =
1747         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1748     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1749     llvm::Value *End =
1750         Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1751     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1752     EmitBlock(LoopBB);
1753     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1754     Cur->addIncoming(Begin.getPointer(), OriginBB);
1755     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1756     Builder.CreateMemCpy(Address(Cur, CurAlign),
1757                          createUnnamedGlobalForMemcpyFrom(
1758                              CGM, D, Builder, Constant, ConstantAlign),
1759                          BaseSizeInChars, isVolatile);
1760     llvm::Value *Next =
1761         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1762     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1763     Builder.CreateCondBr(Done, ContBB, LoopBB);
1764     Cur->addIncoming(Next, LoopBB);
1765     EmitBlock(ContBB);
1766   } break;
1767   }
1768 }
1769 
1770 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1771   assert(emission.Variable && "emission was not valid!");
1772 
1773   // If this was emitted as a global constant, we're done.
1774   if (emission.wasEmittedAsGlobal()) return;
1775 
1776   const VarDecl &D = *emission.Variable;
1777   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1778   QualType type = D.getType();
1779 
1780   // If this local has an initializer, emit it now.
1781   const Expr *Init = D.getInit();
1782 
1783   // If we are at an unreachable point, we don't need to emit the initializer
1784   // unless it contains a label.
1785   if (!HaveInsertPoint()) {
1786     if (!Init || !ContainsLabel(Init)) return;
1787     EnsureInsertPoint();
1788   }
1789 
1790   // Initialize the structure of a __block variable.
1791   if (emission.IsEscapingByRef)
1792     emitByrefStructureInit(emission);
1793 
1794   // Initialize the variable here if it doesn't have a initializer and it is a
1795   // C struct that is non-trivial to initialize or an array containing such a
1796   // struct.
1797   if (!Init &&
1798       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1799           QualType::PDIK_Struct) {
1800     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1801     if (emission.IsEscapingByRef)
1802       drillIntoBlockVariable(*this, Dst, &D);
1803     defaultInitNonTrivialCStructVar(Dst);
1804     return;
1805   }
1806 
1807   // Check whether this is a byref variable that's potentially
1808   // captured and moved by its own initializer.  If so, we'll need to
1809   // emit the initializer first, then copy into the variable.
1810   bool capturedByInit =
1811       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1812 
1813   bool locIsByrefHeader = !capturedByInit;
1814   const Address Loc =
1815       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1816 
1817   // Note: constexpr already initializes everything correctly.
1818   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1819       (D.isConstexpr()
1820            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1821            : (D.getAttr<UninitializedAttr>()
1822                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1823                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1824 
1825   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1826     if (trivialAutoVarInit ==
1827         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1828       return;
1829 
1830     // Only initialize a __block's storage: we always initialize the header.
1831     if (emission.IsEscapingByRef && !locIsByrefHeader)
1832       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1833 
1834     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1835   };
1836 
1837   if (isTrivialInitializer(Init))
1838     return initializeWhatIsTechnicallyUninitialized(Loc);
1839 
1840   llvm::Constant *constant = nullptr;
1841   if (emission.IsConstantAggregate ||
1842       D.mightBeUsableInConstantExpressions(getContext())) {
1843     assert(!capturedByInit && "constant init contains a capturing block?");
1844     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1845     if (constant && !constant->isZeroValue() &&
1846         (trivialAutoVarInit !=
1847          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1848       IsPattern isPattern =
1849           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1850               ? IsPattern::Yes
1851               : IsPattern::No;
1852       // C guarantees that brace-init with fewer initializers than members in
1853       // the aggregate will initialize the rest of the aggregate as-if it were
1854       // static initialization. In turn static initialization guarantees that
1855       // padding is initialized to zero bits. We could instead pattern-init if D
1856       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1857       // behavior.
1858       constant = constWithPadding(CGM, IsPattern::No,
1859                                   replaceUndef(CGM, isPattern, constant));
1860     }
1861   }
1862 
1863   if (!constant) {
1864     initializeWhatIsTechnicallyUninitialized(Loc);
1865     LValue lv = MakeAddrLValue(Loc, type);
1866     lv.setNonGC(true);
1867     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1868   }
1869 
1870   if (!emission.IsConstantAggregate) {
1871     // For simple scalar/complex initialization, store the value directly.
1872     LValue lv = MakeAddrLValue(Loc, type);
1873     lv.setNonGC(true);
1874     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1875   }
1876 
1877   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1878   emitStoresForConstant(
1879       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1880       type.isVolatileQualified(), Builder, constant);
1881 }
1882 
1883 /// Emit an expression as an initializer for an object (variable, field, etc.)
1884 /// at the given location.  The expression is not necessarily the normal
1885 /// initializer for the object, and the address is not necessarily
1886 /// its normal location.
1887 ///
1888 /// \param init the initializing expression
1889 /// \param D the object to act as if we're initializing
1890 /// \param lvalue the lvalue to initialize
1891 /// \param capturedByInit true if \p D is a __block variable
1892 ///   whose address is potentially changed by the initializer
1893 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1894                                      LValue lvalue, bool capturedByInit) {
1895   QualType type = D->getType();
1896 
1897   if (type->isReferenceType()) {
1898     RValue rvalue = EmitReferenceBindingToExpr(init);
1899     if (capturedByInit)
1900       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1901     EmitStoreThroughLValue(rvalue, lvalue, true);
1902     return;
1903   }
1904   switch (getEvaluationKind(type)) {
1905   case TEK_Scalar:
1906     EmitScalarInit(init, D, lvalue, capturedByInit);
1907     return;
1908   case TEK_Complex: {
1909     ComplexPairTy complex = EmitComplexExpr(init);
1910     if (capturedByInit)
1911       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1912     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1913     return;
1914   }
1915   case TEK_Aggregate:
1916     if (type->isAtomicType()) {
1917       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1918     } else {
1919       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1920       if (isa<VarDecl>(D))
1921         Overlap = AggValueSlot::DoesNotOverlap;
1922       else if (auto *FD = dyn_cast<FieldDecl>(D))
1923         Overlap = getOverlapForFieldInit(FD);
1924       // TODO: how can we delay here if D is captured by its initializer?
1925       EmitAggExpr(init, AggValueSlot::forLValue(
1926                             lvalue, *this, AggValueSlot::IsDestructed,
1927                             AggValueSlot::DoesNotNeedGCBarriers,
1928                             AggValueSlot::IsNotAliased, Overlap));
1929     }
1930     return;
1931   }
1932   llvm_unreachable("bad evaluation kind");
1933 }
1934 
1935 /// Enter a destroy cleanup for the given local variable.
1936 void CodeGenFunction::emitAutoVarTypeCleanup(
1937                             const CodeGenFunction::AutoVarEmission &emission,
1938                             QualType::DestructionKind dtorKind) {
1939   assert(dtorKind != QualType::DK_none);
1940 
1941   // Note that for __block variables, we want to destroy the
1942   // original stack object, not the possibly forwarded object.
1943   Address addr = emission.getObjectAddress(*this);
1944 
1945   const VarDecl *var = emission.Variable;
1946   QualType type = var->getType();
1947 
1948   CleanupKind cleanupKind = NormalAndEHCleanup;
1949   CodeGenFunction::Destroyer *destroyer = nullptr;
1950 
1951   switch (dtorKind) {
1952   case QualType::DK_none:
1953     llvm_unreachable("no cleanup for trivially-destructible variable");
1954 
1955   case QualType::DK_cxx_destructor:
1956     // If there's an NRVO flag on the emission, we need a different
1957     // cleanup.
1958     if (emission.NRVOFlag) {
1959       assert(!type->isArrayType());
1960       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1961       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1962                                                   emission.NRVOFlag);
1963       return;
1964     }
1965     break;
1966 
1967   case QualType::DK_objc_strong_lifetime:
1968     // Suppress cleanups for pseudo-strong variables.
1969     if (var->isARCPseudoStrong()) return;
1970 
1971     // Otherwise, consider whether to use an EH cleanup or not.
1972     cleanupKind = getARCCleanupKind();
1973 
1974     // Use the imprecise destroyer by default.
1975     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1976       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1977     break;
1978 
1979   case QualType::DK_objc_weak_lifetime:
1980     break;
1981 
1982   case QualType::DK_nontrivial_c_struct:
1983     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1984     if (emission.NRVOFlag) {
1985       assert(!type->isArrayType());
1986       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1987                                                 emission.NRVOFlag, type);
1988       return;
1989     }
1990     break;
1991   }
1992 
1993   // If we haven't chosen a more specific destroyer, use the default.
1994   if (!destroyer) destroyer = getDestroyer(dtorKind);
1995 
1996   // Use an EH cleanup in array destructors iff the destructor itself
1997   // is being pushed as an EH cleanup.
1998   bool useEHCleanup = (cleanupKind & EHCleanup);
1999   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2000                                      useEHCleanup);
2001 }
2002 
2003 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2004   assert(emission.Variable && "emission was not valid!");
2005 
2006   // If this was emitted as a global constant, we're done.
2007   if (emission.wasEmittedAsGlobal()) return;
2008 
2009   // If we don't have an insertion point, we're done.  Sema prevents
2010   // us from jumping into any of these scopes anyway.
2011   if (!HaveInsertPoint()) return;
2012 
2013   const VarDecl &D = *emission.Variable;
2014 
2015   // Check the type for a cleanup.
2016   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2017     emitAutoVarTypeCleanup(emission, dtorKind);
2018 
2019   // In GC mode, honor objc_precise_lifetime.
2020   if (getLangOpts().getGC() != LangOptions::NonGC &&
2021       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2022     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2023   }
2024 
2025   // Handle the cleanup attribute.
2026   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2027     const FunctionDecl *FD = CA->getFunctionDecl();
2028 
2029     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2030     assert(F && "Could not find function!");
2031 
2032     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2033     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2034   }
2035 
2036   // If this is a block variable, call _Block_object_destroy
2037   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2038   // mode.
2039   if (emission.IsEscapingByRef &&
2040       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2041     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2042     if (emission.Variable->getType().isObjCGCWeak())
2043       Flags |= BLOCK_FIELD_IS_WEAK;
2044     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2045                       /*LoadBlockVarAddr*/ false,
2046                       cxxDestructorCanThrow(emission.Variable->getType()));
2047   }
2048 }
2049 
2050 CodeGenFunction::Destroyer *
2051 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2052   switch (kind) {
2053   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2054   case QualType::DK_cxx_destructor:
2055     return destroyCXXObject;
2056   case QualType::DK_objc_strong_lifetime:
2057     return destroyARCStrongPrecise;
2058   case QualType::DK_objc_weak_lifetime:
2059     return destroyARCWeak;
2060   case QualType::DK_nontrivial_c_struct:
2061     return destroyNonTrivialCStruct;
2062   }
2063   llvm_unreachable("Unknown DestructionKind");
2064 }
2065 
2066 /// pushEHDestroy - Push the standard destructor for the given type as
2067 /// an EH-only cleanup.
2068 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2069                                     Address addr, QualType type) {
2070   assert(dtorKind && "cannot push destructor for trivial type");
2071   assert(needsEHCleanup(dtorKind));
2072 
2073   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2074 }
2075 
2076 /// pushDestroy - Push the standard destructor for the given type as
2077 /// at least a normal cleanup.
2078 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2079                                   Address addr, QualType type) {
2080   assert(dtorKind && "cannot push destructor for trivial type");
2081 
2082   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2083   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2084               cleanupKind & EHCleanup);
2085 }
2086 
2087 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2088                                   QualType type, Destroyer *destroyer,
2089                                   bool useEHCleanupForArray) {
2090   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2091                                      destroyer, useEHCleanupForArray);
2092 }
2093 
2094 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2095   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2096 }
2097 
2098 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2099                                                   Address addr, QualType type,
2100                                                   Destroyer *destroyer,
2101                                                   bool useEHCleanupForArray) {
2102   // If we're not in a conditional branch, we don't need to bother generating a
2103   // conditional cleanup.
2104   if (!isInConditionalBranch()) {
2105     // Push an EH-only cleanup for the object now.
2106     // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2107     // around in case a temporary's destructor throws an exception.
2108     if (cleanupKind & EHCleanup)
2109       EHStack.pushCleanup<DestroyObject>(
2110           static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2111           destroyer, useEHCleanupForArray);
2112 
2113     return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2114         cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2115   }
2116 
2117   // Otherwise, we should only destroy the object if it's been initialized.
2118   // Re-use the active flag and saved address across both the EH and end of
2119   // scope cleanups.
2120 
2121   using SavedType = typename DominatingValue<Address>::saved_type;
2122   using ConditionalCleanupType =
2123       EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2124                                        Destroyer *, bool>;
2125 
2126   Address ActiveFlag = createCleanupActiveFlag();
2127   SavedType SavedAddr = saveValueInCond(addr);
2128 
2129   if (cleanupKind & EHCleanup) {
2130     EHStack.pushCleanup<ConditionalCleanupType>(
2131         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2132         destroyer, useEHCleanupForArray);
2133     initFullExprCleanupWithFlag(ActiveFlag);
2134   }
2135 
2136   pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2137       cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2138       useEHCleanupForArray);
2139 }
2140 
2141 /// emitDestroy - Immediately perform the destruction of the given
2142 /// object.
2143 ///
2144 /// \param addr - the address of the object; a type*
2145 /// \param type - the type of the object; if an array type, all
2146 ///   objects are destroyed in reverse order
2147 /// \param destroyer - the function to call to destroy individual
2148 ///   elements
2149 /// \param useEHCleanupForArray - whether an EH cleanup should be
2150 ///   used when destroying array elements, in case one of the
2151 ///   destructions throws an exception
2152 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2153                                   Destroyer *destroyer,
2154                                   bool useEHCleanupForArray) {
2155   const ArrayType *arrayType = getContext().getAsArrayType(type);
2156   if (!arrayType)
2157     return destroyer(*this, addr, type);
2158 
2159   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2160 
2161   CharUnits elementAlign =
2162     addr.getAlignment()
2163         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2164 
2165   // Normally we have to check whether the array is zero-length.
2166   bool checkZeroLength = true;
2167 
2168   // But if the array length is constant, we can suppress that.
2169   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2170     // ...and if it's constant zero, we can just skip the entire thing.
2171     if (constLength->isZero()) return;
2172     checkZeroLength = false;
2173   }
2174 
2175   llvm::Value *begin = addr.getPointer();
2176   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2177   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2178                    checkZeroLength, useEHCleanupForArray);
2179 }
2180 
2181 /// emitArrayDestroy - Destroys all the elements of the given array,
2182 /// beginning from last to first.  The array cannot be zero-length.
2183 ///
2184 /// \param begin - a type* denoting the first element of the array
2185 /// \param end - a type* denoting one past the end of the array
2186 /// \param elementType - the element type of the array
2187 /// \param destroyer - the function to call to destroy elements
2188 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2189 ///   the remaining elements in case the destruction of a single
2190 ///   element throws
2191 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2192                                        llvm::Value *end,
2193                                        QualType elementType,
2194                                        CharUnits elementAlign,
2195                                        Destroyer *destroyer,
2196                                        bool checkZeroLength,
2197                                        bool useEHCleanup) {
2198   assert(!elementType->isArrayType());
2199 
2200   // The basic structure here is a do-while loop, because we don't
2201   // need to check for the zero-element case.
2202   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2203   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2204 
2205   if (checkZeroLength) {
2206     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2207                                                 "arraydestroy.isempty");
2208     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2209   }
2210 
2211   // Enter the loop body, making that address the current address.
2212   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2213   EmitBlock(bodyBB);
2214   llvm::PHINode *elementPast =
2215     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2216   elementPast->addIncoming(end, entryBB);
2217 
2218   // Shift the address back by one element.
2219   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2220   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2221                                                    "arraydestroy.element");
2222 
2223   if (useEHCleanup)
2224     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2225                                    destroyer);
2226 
2227   // Perform the actual destruction there.
2228   destroyer(*this, Address(element, elementAlign), elementType);
2229 
2230   if (useEHCleanup)
2231     PopCleanupBlock();
2232 
2233   // Check whether we've reached the end.
2234   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2235   Builder.CreateCondBr(done, doneBB, bodyBB);
2236   elementPast->addIncoming(element, Builder.GetInsertBlock());
2237 
2238   // Done.
2239   EmitBlock(doneBB);
2240 }
2241 
2242 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2243 /// emitArrayDestroy, the element type here may still be an array type.
2244 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2245                                     llvm::Value *begin, llvm::Value *end,
2246                                     QualType type, CharUnits elementAlign,
2247                                     CodeGenFunction::Destroyer *destroyer) {
2248   // If the element type is itself an array, drill down.
2249   unsigned arrayDepth = 0;
2250   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2251     // VLAs don't require a GEP index to walk into.
2252     if (!isa<VariableArrayType>(arrayType))
2253       arrayDepth++;
2254     type = arrayType->getElementType();
2255   }
2256 
2257   if (arrayDepth) {
2258     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2259 
2260     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2261     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2262     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2263   }
2264 
2265   // Destroy the array.  We don't ever need an EH cleanup because we
2266   // assume that we're in an EH cleanup ourselves, so a throwing
2267   // destructor causes an immediate terminate.
2268   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2269                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2270 }
2271 
2272 namespace {
2273   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2274   /// array destroy where the end pointer is regularly determined and
2275   /// does not need to be loaded from a local.
2276   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2277     llvm::Value *ArrayBegin;
2278     llvm::Value *ArrayEnd;
2279     QualType ElementType;
2280     CodeGenFunction::Destroyer *Destroyer;
2281     CharUnits ElementAlign;
2282   public:
2283     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2284                                QualType elementType, CharUnits elementAlign,
2285                                CodeGenFunction::Destroyer *destroyer)
2286       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2287         ElementType(elementType), Destroyer(destroyer),
2288         ElementAlign(elementAlign) {}
2289 
2290     void Emit(CodeGenFunction &CGF, Flags flags) override {
2291       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2292                               ElementType, ElementAlign, Destroyer);
2293     }
2294   };
2295 
2296   /// IrregularPartialArrayDestroy - a cleanup which performs a
2297   /// partial array destroy where the end pointer is irregularly
2298   /// determined and must be loaded from a local.
2299   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2300     llvm::Value *ArrayBegin;
2301     Address ArrayEndPointer;
2302     QualType ElementType;
2303     CodeGenFunction::Destroyer *Destroyer;
2304     CharUnits ElementAlign;
2305   public:
2306     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2307                                  Address arrayEndPointer,
2308                                  QualType elementType,
2309                                  CharUnits elementAlign,
2310                                  CodeGenFunction::Destroyer *destroyer)
2311       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2312         ElementType(elementType), Destroyer(destroyer),
2313         ElementAlign(elementAlign) {}
2314 
2315     void Emit(CodeGenFunction &CGF, Flags flags) override {
2316       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2317       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2318                               ElementType, ElementAlign, Destroyer);
2319     }
2320   };
2321 } // end anonymous namespace
2322 
2323 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2324 /// already-constructed elements of the given array.  The cleanup
2325 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2326 ///
2327 /// \param elementType - the immediate element type of the array;
2328 ///   possibly still an array type
2329 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2330                                                        Address arrayEndPointer,
2331                                                        QualType elementType,
2332                                                        CharUnits elementAlign,
2333                                                        Destroyer *destroyer) {
2334   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2335                                                     arrayBegin, arrayEndPointer,
2336                                                     elementType, elementAlign,
2337                                                     destroyer);
2338 }
2339 
2340 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2341 /// already-constructed elements of the given array.  The cleanup
2342 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2343 ///
2344 /// \param elementType - the immediate element type of the array;
2345 ///   possibly still an array type
2346 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2347                                                      llvm::Value *arrayEnd,
2348                                                      QualType elementType,
2349                                                      CharUnits elementAlign,
2350                                                      Destroyer *destroyer) {
2351   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2352                                                   arrayBegin, arrayEnd,
2353                                                   elementType, elementAlign,
2354                                                   destroyer);
2355 }
2356 
2357 /// Lazily declare the @llvm.lifetime.start intrinsic.
2358 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2359   if (LifetimeStartFn)
2360     return LifetimeStartFn;
2361   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2362     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2363   return LifetimeStartFn;
2364 }
2365 
2366 /// Lazily declare the @llvm.lifetime.end intrinsic.
2367 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2368   if (LifetimeEndFn)
2369     return LifetimeEndFn;
2370   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2371     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2372   return LifetimeEndFn;
2373 }
2374 
2375 namespace {
2376   /// A cleanup to perform a release of an object at the end of a
2377   /// function.  This is used to balance out the incoming +1 of a
2378   /// ns_consumed argument when we can't reasonably do that just by
2379   /// not doing the initial retain for a __block argument.
2380   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2381     ConsumeARCParameter(llvm::Value *param,
2382                         ARCPreciseLifetime_t precise)
2383       : Param(param), Precise(precise) {}
2384 
2385     llvm::Value *Param;
2386     ARCPreciseLifetime_t Precise;
2387 
2388     void Emit(CodeGenFunction &CGF, Flags flags) override {
2389       CGF.EmitARCRelease(Param, Precise);
2390     }
2391   };
2392 } // end anonymous namespace
2393 
2394 /// Emit an alloca (or GlobalValue depending on target)
2395 /// for the specified parameter and set up LocalDeclMap.
2396 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2397                                    unsigned ArgNo) {
2398   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2399   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2400          "Invalid argument to EmitParmDecl");
2401 
2402   Arg.getAnyValue()->setName(D.getName());
2403 
2404   QualType Ty = D.getType();
2405 
2406   // Use better IR generation for certain implicit parameters.
2407   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2408     // The only implicit argument a block has is its literal.
2409     // This may be passed as an inalloca'ed value on Windows x86.
2410     if (BlockInfo) {
2411       llvm::Value *V = Arg.isIndirect()
2412                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2413                            : Arg.getDirectValue();
2414       setBlockContextParameter(IPD, ArgNo, V);
2415       return;
2416     }
2417   }
2418 
2419   Address DeclPtr = Address::invalid();
2420   bool DoStore = false;
2421   bool IsScalar = hasScalarEvaluationKind(Ty);
2422   // If we already have a pointer to the argument, reuse the input pointer.
2423   if (Arg.isIndirect()) {
2424     DeclPtr = Arg.getIndirectAddress();
2425     // If we have a prettier pointer type at this point, bitcast to that.
2426     unsigned AS = DeclPtr.getType()->getAddressSpace();
2427     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2428     if (DeclPtr.getType() != IRTy)
2429       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2430     // Indirect argument is in alloca address space, which may be different
2431     // from the default address space.
2432     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2433     auto *V = DeclPtr.getPointer();
2434     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2435     auto DestLangAS =
2436         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2437     if (SrcLangAS != DestLangAS) {
2438       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2439              CGM.getDataLayout().getAllocaAddrSpace());
2440       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2441       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2442       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2443                             *this, V, SrcLangAS, DestLangAS, T, true),
2444                         DeclPtr.getAlignment());
2445     }
2446 
2447     // Push a destructor cleanup for this parameter if the ABI requires it.
2448     // Don't push a cleanup in a thunk for a method that will also emit a
2449     // cleanup.
2450     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2451         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2452       if (QualType::DestructionKind DtorKind =
2453               D.needsDestruction(getContext())) {
2454         assert((DtorKind == QualType::DK_cxx_destructor ||
2455                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2456                "unexpected destructor type");
2457         pushDestroy(DtorKind, DeclPtr, Ty);
2458         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2459             EHStack.stable_begin();
2460       }
2461     }
2462   } else {
2463     // Check if the parameter address is controlled by OpenMP runtime.
2464     Address OpenMPLocalAddr =
2465         getLangOpts().OpenMP
2466             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2467             : Address::invalid();
2468     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2469       DeclPtr = OpenMPLocalAddr;
2470     } else {
2471       // Otherwise, create a temporary to hold the value.
2472       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2473                               D.getName() + ".addr");
2474     }
2475     DoStore = true;
2476   }
2477 
2478   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2479 
2480   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2481   if (IsScalar) {
2482     Qualifiers qs = Ty.getQualifiers();
2483     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2484       // We honor __attribute__((ns_consumed)) for types with lifetime.
2485       // For __strong, it's handled by just skipping the initial retain;
2486       // otherwise we have to balance out the initial +1 with an extra
2487       // cleanup to do the release at the end of the function.
2488       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2489 
2490       // If a parameter is pseudo-strong then we can omit the implicit retain.
2491       if (D.isARCPseudoStrong()) {
2492         assert(lt == Qualifiers::OCL_Strong &&
2493                "pseudo-strong variable isn't strong?");
2494         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2495         lt = Qualifiers::OCL_ExplicitNone;
2496       }
2497 
2498       // Load objects passed indirectly.
2499       if (Arg.isIndirect() && !ArgVal)
2500         ArgVal = Builder.CreateLoad(DeclPtr);
2501 
2502       if (lt == Qualifiers::OCL_Strong) {
2503         if (!isConsumed) {
2504           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2505             // use objc_storeStrong(&dest, value) for retaining the
2506             // object. But first, store a null into 'dest' because
2507             // objc_storeStrong attempts to release its old value.
2508             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2509             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2510             EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2511             DoStore = false;
2512           }
2513           else
2514           // Don't use objc_retainBlock for block pointers, because we
2515           // don't want to Block_copy something just because we got it
2516           // as a parameter.
2517             ArgVal = EmitARCRetainNonBlock(ArgVal);
2518         }
2519       } else {
2520         // Push the cleanup for a consumed parameter.
2521         if (isConsumed) {
2522           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2523                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2524           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2525                                                    precise);
2526         }
2527 
2528         if (lt == Qualifiers::OCL_Weak) {
2529           EmitARCInitWeak(DeclPtr, ArgVal);
2530           DoStore = false; // The weak init is a store, no need to do two.
2531         }
2532       }
2533 
2534       // Enter the cleanup scope.
2535       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2536     }
2537   }
2538 
2539   // Store the initial value into the alloca.
2540   if (DoStore)
2541     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2542 
2543   setAddrOfLocalVar(&D, DeclPtr);
2544 
2545   // Emit debug info for param declarations in non-thunk functions.
2546   if (CGDebugInfo *DI = getDebugInfo()) {
2547     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
2548       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2549     }
2550   }
2551 
2552   if (D.hasAttr<AnnotateAttr>())
2553     EmitVarAnnotations(&D, DeclPtr.getPointer());
2554 
2555   // We can only check return value nullability if all arguments to the
2556   // function satisfy their nullability preconditions. This makes it necessary
2557   // to emit null checks for args in the function body itself.
2558   if (requiresReturnValueNullabilityCheck()) {
2559     auto Nullability = Ty->getNullability(getContext());
2560     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2561       SanitizerScope SanScope(this);
2562       RetValNullabilityPrecondition =
2563           Builder.CreateAnd(RetValNullabilityPrecondition,
2564                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2565     }
2566   }
2567 }
2568 
2569 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2570                                             CodeGenFunction *CGF) {
2571   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2572     return;
2573   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2574 }
2575 
2576 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2577                                          CodeGenFunction *CGF) {
2578   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2579       (!LangOpts.EmitAllDecls && !D->isUsed()))
2580     return;
2581   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2582 }
2583 
2584 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2585   getOpenMPRuntime().processRequiresDirective(D);
2586 }
2587