1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CodeGenModule.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Type.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 void CodeGenFunction::EmitDecl(const Decl &D) {
37   switch (D.getKind()) {
38   case Decl::TranslationUnit:
39   case Decl::ExternCContext:
40   case Decl::Namespace:
41   case Decl::UnresolvedUsingTypename:
42   case Decl::ClassTemplateSpecialization:
43   case Decl::ClassTemplatePartialSpecialization:
44   case Decl::VarTemplateSpecialization:
45   case Decl::VarTemplatePartialSpecialization:
46   case Decl::TemplateTypeParm:
47   case Decl::UnresolvedUsingValue:
48   case Decl::NonTypeTemplateParm:
49   case Decl::CXXMethod:
50   case Decl::CXXConstructor:
51   case Decl::CXXDestructor:
52   case Decl::CXXConversion:
53   case Decl::Field:
54   case Decl::MSProperty:
55   case Decl::IndirectField:
56   case Decl::ObjCIvar:
57   case Decl::ObjCAtDefsField:
58   case Decl::ParmVar:
59   case Decl::ImplicitParam:
60   case Decl::ClassTemplate:
61   case Decl::VarTemplate:
62   case Decl::FunctionTemplate:
63   case Decl::TypeAliasTemplate:
64   case Decl::TemplateTemplateParm:
65   case Decl::ObjCMethod:
66   case Decl::ObjCCategory:
67   case Decl::ObjCProtocol:
68   case Decl::ObjCInterface:
69   case Decl::ObjCCategoryImpl:
70   case Decl::ObjCImplementation:
71   case Decl::ObjCProperty:
72   case Decl::ObjCCompatibleAlias:
73   case Decl::AccessSpec:
74   case Decl::LinkageSpec:
75   case Decl::ObjCPropertyImpl:
76   case Decl::FileScopeAsm:
77   case Decl::Friend:
78   case Decl::FriendTemplate:
79   case Decl::Block:
80   case Decl::Captured:
81   case Decl::ClassScopeFunctionSpecialization:
82   case Decl::UsingShadow:
83   case Decl::ObjCTypeParam:
84     llvm_unreachable("Declaration should not be in declstmts!");
85   case Decl::Function:  // void X();
86   case Decl::Record:    // struct/union/class X;
87   case Decl::Enum:      // enum X;
88   case Decl::EnumConstant: // enum ? { X = ? }
89   case Decl::CXXRecord: // struct/union/class X; [C++]
90   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
91   case Decl::Label:        // __label__ x;
92   case Decl::Import:
93   case Decl::OMPThreadPrivate:
94   case Decl::Empty:
95     // None of these decls require codegen support.
96     return;
97 
98   case Decl::NamespaceAlias:
99     if (CGDebugInfo *DI = getDebugInfo())
100         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
101     return;
102   case Decl::Using:          // using X; [C++]
103     if (CGDebugInfo *DI = getDebugInfo())
104         DI->EmitUsingDecl(cast<UsingDecl>(D));
105     return;
106   case Decl::UsingDirective: // using namespace X; [C++]
107     if (CGDebugInfo *DI = getDebugInfo())
108       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
109     return;
110   case Decl::Var: {
111     const VarDecl &VD = cast<VarDecl>(D);
112     assert(VD.isLocalVarDecl() &&
113            "Should not see file-scope variables inside a function!");
114     return EmitVarDecl(VD);
115   }
116 
117   case Decl::Typedef:      // typedef int X;
118   case Decl::TypeAlias: {  // using X = int; [C++0x]
119     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
120     QualType Ty = TD.getUnderlyingType();
121 
122     if (Ty->isVariablyModifiedType())
123       EmitVariablyModifiedType(Ty);
124   }
125   }
126 }
127 
128 /// EmitVarDecl - This method handles emission of any variable declaration
129 /// inside a function, including static vars etc.
130 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
131   if (D.isStaticLocal()) {
132     llvm::GlobalValue::LinkageTypes Linkage =
133         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
134 
135     // FIXME: We need to force the emission/use of a guard variable for
136     // some variables even if we can constant-evaluate them because
137     // we can't guarantee every translation unit will constant-evaluate them.
138 
139     return EmitStaticVarDecl(D, Linkage);
140   }
141 
142   if (D.hasExternalStorage())
143     // Don't emit it now, allow it to be emitted lazily on its first use.
144     return;
145 
146   if (D.getType().getAddressSpace() == LangAS::opencl_local)
147     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
148 
149   assert(D.hasLocalStorage());
150   return EmitAutoVarDecl(D);
151 }
152 
153 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
154   if (CGM.getLangOpts().CPlusPlus)
155     return CGM.getMangledName(&D).str();
156 
157   // If this isn't C++, we don't need a mangled name, just a pretty one.
158   assert(!D.isExternallyVisible() && "name shouldn't matter");
159   std::string ContextName;
160   const DeclContext *DC = D.getDeclContext();
161   if (auto *CD = dyn_cast<CapturedDecl>(DC))
162     DC = cast<DeclContext>(CD->getNonClosureContext());
163   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
164     ContextName = CGM.getMangledName(FD);
165   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
166     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
167   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
168     ContextName = OMD->getSelector().getAsString();
169   else
170     llvm_unreachable("Unknown context for static var decl");
171 
172   ContextName += "." + D.getNameAsString();
173   return ContextName;
174 }
175 
176 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
177     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
178   // In general, we don't always emit static var decls once before we reference
179   // them. It is possible to reference them before emitting the function that
180   // contains them, and it is possible to emit the containing function multiple
181   // times.
182   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
183     return ExistingGV;
184 
185   QualType Ty = D.getType();
186   assert(Ty->isConstantSizeType() && "VLAs can't be static");
187 
188   // Use the label if the variable is renamed with the asm-label extension.
189   std::string Name;
190   if (D.hasAttr<AsmLabelAttr>())
191     Name = getMangledName(&D);
192   else
193     Name = getStaticDeclName(*this, D);
194 
195   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
196   unsigned AddrSpace =
197       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
198 
199   // Local address space cannot have an initializer.
200   llvm::Constant *Init = nullptr;
201   if (Ty.getAddressSpace() != LangAS::opencl_local)
202     Init = EmitNullConstant(Ty);
203   else
204     Init = llvm::UndefValue::get(LTy);
205 
206   llvm::GlobalVariable *GV =
207     new llvm::GlobalVariable(getModule(), LTy,
208                              Ty.isConstant(getContext()), Linkage,
209                              Init, Name, nullptr,
210                              llvm::GlobalVariable::NotThreadLocal,
211                              AddrSpace);
212   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
213   setGlobalVisibility(GV, &D);
214 
215   if (supportsCOMDAT() && GV->isWeakForLinker())
216     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
217 
218   if (D.getTLSKind())
219     setTLSMode(GV, D);
220 
221   if (D.isExternallyVisible()) {
222     if (D.hasAttr<DLLImportAttr>())
223       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
224     else if (D.hasAttr<DLLExportAttr>())
225       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
226   }
227 
228   // Make sure the result is of the correct type.
229   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
230   llvm::Constant *Addr = GV;
231   if (AddrSpace != ExpectedAddrSpace) {
232     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
233     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
234   }
235 
236   setStaticLocalDeclAddress(&D, Addr);
237 
238   // Ensure that the static local gets initialized by making sure the parent
239   // function gets emitted eventually.
240   const Decl *DC = cast<Decl>(D.getDeclContext());
241 
242   // We can't name blocks or captured statements directly, so try to emit their
243   // parents.
244   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
245     DC = DC->getNonClosureContext();
246     // FIXME: Ensure that global blocks get emitted.
247     if (!DC)
248       return Addr;
249   }
250 
251   GlobalDecl GD;
252   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
253     GD = GlobalDecl(CD, Ctor_Base);
254   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
255     GD = GlobalDecl(DD, Dtor_Base);
256   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
257     GD = GlobalDecl(FD);
258   else {
259     // Don't do anything for Obj-C method decls or global closures. We should
260     // never defer them.
261     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
262   }
263   if (GD.getDecl())
264     (void)GetAddrOfGlobal(GD);
265 
266   return Addr;
267 }
268 
269 /// hasNontrivialDestruction - Determine whether a type's destruction is
270 /// non-trivial. If so, and the variable uses static initialization, we must
271 /// register its destructor to run on exit.
272 static bool hasNontrivialDestruction(QualType T) {
273   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
274   return RD && !RD->hasTrivialDestructor();
275 }
276 
277 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
278 /// global variable that has already been created for it.  If the initializer
279 /// has a different type than GV does, this may free GV and return a different
280 /// one.  Otherwise it just returns GV.
281 llvm::GlobalVariable *
282 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
283                                                llvm::GlobalVariable *GV) {
284   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
285 
286   // If constant emission failed, then this should be a C++ static
287   // initializer.
288   if (!Init) {
289     if (!getLangOpts().CPlusPlus)
290       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
291     else if (Builder.GetInsertBlock()) {
292       // Since we have a static initializer, this global variable can't
293       // be constant.
294       GV->setConstant(false);
295 
296       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
297     }
298     return GV;
299   }
300 
301   // The initializer may differ in type from the global. Rewrite
302   // the global to match the initializer.  (We have to do this
303   // because some types, like unions, can't be completely represented
304   // in the LLVM type system.)
305   if (GV->getType()->getElementType() != Init->getType()) {
306     llvm::GlobalVariable *OldGV = GV;
307 
308     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
309                                   OldGV->isConstant(),
310                                   OldGV->getLinkage(), Init, "",
311                                   /*InsertBefore*/ OldGV,
312                                   OldGV->getThreadLocalMode(),
313                            CGM.getContext().getTargetAddressSpace(D.getType()));
314     GV->setVisibility(OldGV->getVisibility());
315     GV->setComdat(OldGV->getComdat());
316 
317     // Steal the name of the old global
318     GV->takeName(OldGV);
319 
320     // Replace all uses of the old global with the new global
321     llvm::Constant *NewPtrForOldDecl =
322     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
323     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
324 
325     // Erase the old global, since it is no longer used.
326     OldGV->eraseFromParent();
327   }
328 
329   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
330   GV->setInitializer(Init);
331 
332   if (hasNontrivialDestruction(D.getType())) {
333     // We have a constant initializer, but a nontrivial destructor. We still
334     // need to perform a guarded "initialization" in order to register the
335     // destructor.
336     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
337   }
338 
339   return GV;
340 }
341 
342 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
343                                       llvm::GlobalValue::LinkageTypes Linkage) {
344   // Check to see if we already have a global variable for this
345   // declaration.  This can happen when double-emitting function
346   // bodies, e.g. with complete and base constructors.
347   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
348   CharUnits alignment = getContext().getDeclAlign(&D);
349 
350   // Store into LocalDeclMap before generating initializer to handle
351   // circular references.
352   setAddrOfLocalVar(&D, Address(addr, alignment));
353 
354   // We can't have a VLA here, but we can have a pointer to a VLA,
355   // even though that doesn't really make any sense.
356   // Make sure to evaluate VLA bounds now so that we have them for later.
357   if (D.getType()->isVariablyModifiedType())
358     EmitVariablyModifiedType(D.getType());
359 
360   // Save the type in case adding the initializer forces a type change.
361   llvm::Type *expectedType = addr->getType();
362 
363   llvm::GlobalVariable *var =
364     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
365   // If this value has an initializer, emit it.
366   if (D.getInit())
367     var = AddInitializerToStaticVarDecl(D, var);
368 
369   var->setAlignment(alignment.getQuantity());
370 
371   if (D.hasAttr<AnnotateAttr>())
372     CGM.AddGlobalAnnotations(&D, var);
373 
374   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
375     var->setSection(SA->getName());
376 
377   if (D.hasAttr<UsedAttr>())
378     CGM.addUsedGlobal(var);
379 
380   // We may have to cast the constant because of the initializer
381   // mismatch above.
382   //
383   // FIXME: It is really dangerous to store this in the map; if anyone
384   // RAUW's the GV uses of this constant will be invalid.
385   llvm::Constant *castedAddr =
386     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
387   if (var != castedAddr)
388     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
389   CGM.setStaticLocalDeclAddress(&D, castedAddr);
390 
391   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
392 
393   // Emit global variable debug descriptor for static vars.
394   CGDebugInfo *DI = getDebugInfo();
395   if (DI &&
396       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
397     DI->setLocation(D.getLocation());
398     DI->EmitGlobalVariable(var, &D);
399   }
400 }
401 
402 namespace {
403   struct DestroyObject final : EHScopeStack::Cleanup {
404     DestroyObject(Address addr, QualType type,
405                   CodeGenFunction::Destroyer *destroyer,
406                   bool useEHCleanupForArray)
407       : addr(addr), type(type), destroyer(destroyer),
408         useEHCleanupForArray(useEHCleanupForArray) {}
409 
410     Address addr;
411     QualType type;
412     CodeGenFunction::Destroyer *destroyer;
413     bool useEHCleanupForArray;
414 
415     void Emit(CodeGenFunction &CGF, Flags flags) override {
416       // Don't use an EH cleanup recursively from an EH cleanup.
417       bool useEHCleanupForArray =
418         flags.isForNormalCleanup() && this->useEHCleanupForArray;
419 
420       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
421     }
422   };
423 
424   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
425     DestroyNRVOVariable(Address addr,
426                         const CXXDestructorDecl *Dtor,
427                         llvm::Value *NRVOFlag)
428       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
429 
430     const CXXDestructorDecl *Dtor;
431     llvm::Value *NRVOFlag;
432     Address Loc;
433 
434     void Emit(CodeGenFunction &CGF, Flags flags) override {
435       // Along the exceptions path we always execute the dtor.
436       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
437 
438       llvm::BasicBlock *SkipDtorBB = nullptr;
439       if (NRVO) {
440         // If we exited via NRVO, we skip the destructor call.
441         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
442         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
443         llvm::Value *DidNRVO =
444           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
445         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
446         CGF.EmitBlock(RunDtorBB);
447       }
448 
449       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
450                                 /*ForVirtualBase=*/false,
451                                 /*Delegating=*/false,
452                                 Loc);
453 
454       if (NRVO) CGF.EmitBlock(SkipDtorBB);
455     }
456   };
457 
458   struct CallStackRestore final : EHScopeStack::Cleanup {
459     Address Stack;
460     CallStackRestore(Address Stack) : Stack(Stack) {}
461     void Emit(CodeGenFunction &CGF, Flags flags) override {
462       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
463       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
464       CGF.Builder.CreateCall(F, V);
465     }
466   };
467 
468   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
469     const VarDecl &Var;
470     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
471 
472     void Emit(CodeGenFunction &CGF, Flags flags) override {
473       // Compute the address of the local variable, in case it's a
474       // byref or something.
475       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
476                       Var.getType(), VK_LValue, SourceLocation());
477       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
478                                                 SourceLocation());
479       CGF.EmitExtendGCLifetime(value);
480     }
481   };
482 
483   struct CallCleanupFunction final : EHScopeStack::Cleanup {
484     llvm::Constant *CleanupFn;
485     const CGFunctionInfo &FnInfo;
486     const VarDecl &Var;
487 
488     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
489                         const VarDecl *Var)
490       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
491 
492     void Emit(CodeGenFunction &CGF, Flags flags) override {
493       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
494                       Var.getType(), VK_LValue, SourceLocation());
495       // Compute the address of the local variable, in case it's a byref
496       // or something.
497       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
498 
499       // In some cases, the type of the function argument will be different from
500       // the type of the pointer. An example of this is
501       // void f(void* arg);
502       // __attribute__((cleanup(f))) void *g;
503       //
504       // To fix this we insert a bitcast here.
505       QualType ArgTy = FnInfo.arg_begin()->type;
506       llvm::Value *Arg =
507         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
508 
509       CallArgList Args;
510       Args.add(RValue::get(Arg),
511                CGF.getContext().getPointerType(Var.getType()));
512       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
513     }
514   };
515 
516   /// A cleanup to call @llvm.lifetime.end.
517   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
518     llvm::Value *Addr;
519     llvm::Value *Size;
520   public:
521     CallLifetimeEnd(Address addr, llvm::Value *size)
522       : Addr(addr.getPointer()), Size(size) {}
523 
524     void Emit(CodeGenFunction &CGF, Flags flags) override {
525       CGF.EmitLifetimeEnd(Size, Addr);
526     }
527   };
528 }
529 
530 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
531 /// variable with lifetime.
532 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
533                                     Address addr,
534                                     Qualifiers::ObjCLifetime lifetime) {
535   switch (lifetime) {
536   case Qualifiers::OCL_None:
537     llvm_unreachable("present but none");
538 
539   case Qualifiers::OCL_ExplicitNone:
540     // nothing to do
541     break;
542 
543   case Qualifiers::OCL_Strong: {
544     CodeGenFunction::Destroyer *destroyer =
545       (var.hasAttr<ObjCPreciseLifetimeAttr>()
546        ? CodeGenFunction::destroyARCStrongPrecise
547        : CodeGenFunction::destroyARCStrongImprecise);
548 
549     CleanupKind cleanupKind = CGF.getARCCleanupKind();
550     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
551                     cleanupKind & EHCleanup);
552     break;
553   }
554   case Qualifiers::OCL_Autoreleasing:
555     // nothing to do
556     break;
557 
558   case Qualifiers::OCL_Weak:
559     // __weak objects always get EH cleanups; otherwise, exceptions
560     // could cause really nasty crashes instead of mere leaks.
561     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
562                     CodeGenFunction::destroyARCWeak,
563                     /*useEHCleanup*/ true);
564     break;
565   }
566 }
567 
568 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
569   if (const Expr *e = dyn_cast<Expr>(s)) {
570     // Skip the most common kinds of expressions that make
571     // hierarchy-walking expensive.
572     s = e = e->IgnoreParenCasts();
573 
574     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
575       return (ref->getDecl() == &var);
576     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
577       const BlockDecl *block = be->getBlockDecl();
578       for (const auto &I : block->captures()) {
579         if (I.getVariable() == &var)
580           return true;
581       }
582     }
583   }
584 
585   for (const Stmt *SubStmt : s->children())
586     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
587     if (SubStmt && isAccessedBy(var, SubStmt))
588       return true;
589 
590   return false;
591 }
592 
593 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
594   if (!decl) return false;
595   if (!isa<VarDecl>(decl)) return false;
596   const VarDecl *var = cast<VarDecl>(decl);
597   return isAccessedBy(*var, e);
598 }
599 
600 static void drillIntoBlockVariable(CodeGenFunction &CGF,
601                                    LValue &lvalue,
602                                    const VarDecl *var) {
603   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
604 }
605 
606 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
607                                      LValue lvalue, bool capturedByInit) {
608   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
609   if (!lifetime) {
610     llvm::Value *value = EmitScalarExpr(init);
611     if (capturedByInit)
612       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
613     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
614     return;
615   }
616 
617   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
618     init = DIE->getExpr();
619 
620   // If we're emitting a value with lifetime, we have to do the
621   // initialization *before* we leave the cleanup scopes.
622   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
623     enterFullExpression(ewc);
624     init = ewc->getSubExpr();
625   }
626   CodeGenFunction::RunCleanupsScope Scope(*this);
627 
628   // We have to maintain the illusion that the variable is
629   // zero-initialized.  If the variable might be accessed in its
630   // initializer, zero-initialize before running the initializer, then
631   // actually perform the initialization with an assign.
632   bool accessedByInit = false;
633   if (lifetime != Qualifiers::OCL_ExplicitNone)
634     accessedByInit = (capturedByInit || isAccessedBy(D, init));
635   if (accessedByInit) {
636     LValue tempLV = lvalue;
637     // Drill down to the __block object if necessary.
638     if (capturedByInit) {
639       // We can use a simple GEP for this because it can't have been
640       // moved yet.
641       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
642                                               cast<VarDecl>(D),
643                                               /*follow*/ false));
644     }
645 
646     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
647     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
648 
649     // If __weak, we want to use a barrier under certain conditions.
650     if (lifetime == Qualifiers::OCL_Weak)
651       EmitARCInitWeak(tempLV.getAddress(), zero);
652 
653     // Otherwise just do a simple store.
654     else
655       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
656   }
657 
658   // Emit the initializer.
659   llvm::Value *value = nullptr;
660 
661   switch (lifetime) {
662   case Qualifiers::OCL_None:
663     llvm_unreachable("present but none");
664 
665   case Qualifiers::OCL_ExplicitNone:
666     // nothing to do
667     value = EmitScalarExpr(init);
668     break;
669 
670   case Qualifiers::OCL_Strong: {
671     value = EmitARCRetainScalarExpr(init);
672     break;
673   }
674 
675   case Qualifiers::OCL_Weak: {
676     // No way to optimize a producing initializer into this.  It's not
677     // worth optimizing for, because the value will immediately
678     // disappear in the common case.
679     value = EmitScalarExpr(init);
680 
681     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
682     if (accessedByInit)
683       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
684     else
685       EmitARCInitWeak(lvalue.getAddress(), value);
686     return;
687   }
688 
689   case Qualifiers::OCL_Autoreleasing:
690     value = EmitARCRetainAutoreleaseScalarExpr(init);
691     break;
692   }
693 
694   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
695 
696   // If the variable might have been accessed by its initializer, we
697   // might have to initialize with a barrier.  We have to do this for
698   // both __weak and __strong, but __weak got filtered out above.
699   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
700     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
701     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
702     EmitARCRelease(oldValue, ARCImpreciseLifetime);
703     return;
704   }
705 
706   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
707 }
708 
709 /// EmitScalarInit - Initialize the given lvalue with the given object.
710 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
711   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
712   if (!lifetime)
713     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
714 
715   switch (lifetime) {
716   case Qualifiers::OCL_None:
717     llvm_unreachable("present but none");
718 
719   case Qualifiers::OCL_ExplicitNone:
720     // nothing to do
721     break;
722 
723   case Qualifiers::OCL_Strong:
724     init = EmitARCRetain(lvalue.getType(), init);
725     break;
726 
727   case Qualifiers::OCL_Weak:
728     // Initialize and then skip the primitive store.
729     EmitARCInitWeak(lvalue.getAddress(), init);
730     return;
731 
732   case Qualifiers::OCL_Autoreleasing:
733     init = EmitARCRetainAutorelease(lvalue.getType(), init);
734     break;
735   }
736 
737   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
738 }
739 
740 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
741 /// non-zero parts of the specified initializer with equal or fewer than
742 /// NumStores scalar stores.
743 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
744                                                 unsigned &NumStores) {
745   // Zero and Undef never requires any extra stores.
746   if (isa<llvm::ConstantAggregateZero>(Init) ||
747       isa<llvm::ConstantPointerNull>(Init) ||
748       isa<llvm::UndefValue>(Init))
749     return true;
750   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
751       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
752       isa<llvm::ConstantExpr>(Init))
753     return Init->isNullValue() || NumStores--;
754 
755   // See if we can emit each element.
756   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
757     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
758       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
759       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
760         return false;
761     }
762     return true;
763   }
764 
765   if (llvm::ConstantDataSequential *CDS =
766         dyn_cast<llvm::ConstantDataSequential>(Init)) {
767     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
768       llvm::Constant *Elt = CDS->getElementAsConstant(i);
769       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
770         return false;
771     }
772     return true;
773   }
774 
775   // Anything else is hard and scary.
776   return false;
777 }
778 
779 /// emitStoresForInitAfterMemset - For inits that
780 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
781 /// stores that would be required.
782 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
783                                          bool isVolatile, CGBuilderTy &Builder) {
784   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
785          "called emitStoresForInitAfterMemset for zero or undef value.");
786 
787   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
788       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
789       isa<llvm::ConstantExpr>(Init)) {
790     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
791     return;
792   }
793 
794   if (llvm::ConstantDataSequential *CDS =
795         dyn_cast<llvm::ConstantDataSequential>(Init)) {
796     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
797       llvm::Constant *Elt = CDS->getElementAsConstant(i);
798 
799       // If necessary, get a pointer to the element and emit it.
800       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
801         emitStoresForInitAfterMemset(
802             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
803             isVolatile, Builder);
804     }
805     return;
806   }
807 
808   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
809          "Unknown value type!");
810 
811   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
812     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
813 
814     // If necessary, get a pointer to the element and emit it.
815     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
816       emitStoresForInitAfterMemset(
817           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
818           isVolatile, Builder);
819   }
820 }
821 
822 
823 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
824 /// plus some stores to initialize a local variable instead of using a memcpy
825 /// from a constant global.  It is beneficial to use memset if the global is all
826 /// zeros, or mostly zeros and large.
827 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
828                                                   uint64_t GlobalSize) {
829   // If a global is all zeros, always use a memset.
830   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
831 
832   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
833   // do it if it will require 6 or fewer scalar stores.
834   // TODO: Should budget depends on the size?  Avoiding a large global warrants
835   // plopping in more stores.
836   unsigned StoreBudget = 6;
837   uint64_t SizeLimit = 32;
838 
839   return GlobalSize > SizeLimit &&
840          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
841 }
842 
843 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
844 /// variable declaration with auto, register, or no storage class specifier.
845 /// These turn into simple stack objects, or GlobalValues depending on target.
846 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
847   AutoVarEmission emission = EmitAutoVarAlloca(D);
848   EmitAutoVarInit(emission);
849   EmitAutoVarCleanups(emission);
850 }
851 
852 /// Emit a lifetime.begin marker if some criteria are satisfied.
853 /// \return a pointer to the temporary size Value if a marker was emitted, null
854 /// otherwise
855 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
856                                                 llvm::Value *Addr) {
857   // For now, only in optimized builds.
858   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
859     return nullptr;
860 
861   // Disable lifetime markers in msan builds.
862   // FIXME: Remove this when msan works with lifetime markers.
863   if (getLangOpts().Sanitize.has(SanitizerKind::Memory))
864     return nullptr;
865 
866   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
867   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
868   llvm::CallInst *C =
869       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
870   C->setDoesNotThrow();
871   return SizeV;
872 }
873 
874 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
875   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
876   llvm::CallInst *C =
877       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
878   C->setDoesNotThrow();
879 }
880 
881 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
882 /// local variable.  Does not emit initialization or destruction.
883 CodeGenFunction::AutoVarEmission
884 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
885   QualType Ty = D.getType();
886 
887   AutoVarEmission emission(D);
888 
889   bool isByRef = D.hasAttr<BlocksAttr>();
890   emission.IsByRef = isByRef;
891 
892   CharUnits alignment = getContext().getDeclAlign(&D);
893 
894   // If the type is variably-modified, emit all the VLA sizes for it.
895   if (Ty->isVariablyModifiedType())
896     EmitVariablyModifiedType(Ty);
897 
898   Address address = Address::invalid();
899   if (Ty->isConstantSizeType()) {
900     bool NRVO = getLangOpts().ElideConstructors &&
901       D.isNRVOVariable();
902 
903     // If this value is an array or struct with a statically determinable
904     // constant initializer, there are optimizations we can do.
905     //
906     // TODO: We should constant-evaluate the initializer of any variable,
907     // as long as it is initialized by a constant expression. Currently,
908     // isConstantInitializer produces wrong answers for structs with
909     // reference or bitfield members, and a few other cases, and checking
910     // for POD-ness protects us from some of these.
911     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
912         (D.isConstexpr() ||
913          ((Ty.isPODType(getContext()) ||
914            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
915           D.getInit()->isConstantInitializer(getContext(), false)))) {
916 
917       // If the variable's a const type, and it's neither an NRVO
918       // candidate nor a __block variable and has no mutable members,
919       // emit it as a global instead.
920       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
921           CGM.isTypeConstant(Ty, true)) {
922         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
923 
924         // Signal this condition to later callbacks.
925         emission.Addr = Address::invalid();
926         assert(emission.wasEmittedAsGlobal());
927         return emission;
928       }
929 
930       // Otherwise, tell the initialization code that we're in this case.
931       emission.IsConstantAggregate = true;
932     }
933 
934     // A normal fixed sized variable becomes an alloca in the entry block,
935     // unless it's an NRVO variable.
936 
937     if (NRVO) {
938       // The named return value optimization: allocate this variable in the
939       // return slot, so that we can elide the copy when returning this
940       // variable (C++0x [class.copy]p34).
941       address = ReturnValue;
942 
943       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
944         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
945           // Create a flag that is used to indicate when the NRVO was applied
946           // to this variable. Set it to zero to indicate that NRVO was not
947           // applied.
948           llvm::Value *Zero = Builder.getFalse();
949           Address NRVOFlag =
950             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
951           EnsureInsertPoint();
952           Builder.CreateStore(Zero, NRVOFlag);
953 
954           // Record the NRVO flag for this variable.
955           NRVOFlags[&D] = NRVOFlag.getPointer();
956           emission.NRVOFlag = NRVOFlag.getPointer();
957         }
958       }
959     } else {
960       CharUnits allocaAlignment;
961       llvm::Type *allocaTy;
962       if (isByRef) {
963         auto &byrefInfo = getBlockByrefInfo(&D);
964         allocaTy = byrefInfo.Type;
965         allocaAlignment = byrefInfo.ByrefAlignment;
966       } else {
967         allocaTy = ConvertTypeForMem(Ty);
968         allocaAlignment = alignment;
969       }
970 
971       // Create the alloca.  Note that we set the name separately from
972       // building the instruction so that it's there even in no-asserts
973       // builds.
974       address = CreateTempAlloca(allocaTy, allocaAlignment);
975       address.getPointer()->setName(D.getName());
976 
977       // Emit a lifetime intrinsic if meaningful.  There's no point
978       // in doing this if we don't have a valid insertion point (?).
979       if (HaveInsertPoint()) {
980         uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
981         emission.SizeForLifetimeMarkers =
982           EmitLifetimeStart(size, address.getPointer());
983       } else {
984         assert(!emission.useLifetimeMarkers());
985       }
986     }
987   } else {
988     EnsureInsertPoint();
989 
990     if (!DidCallStackSave) {
991       // Save the stack.
992       Address Stack =
993         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
994 
995       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
996       llvm::Value *V = Builder.CreateCall(F);
997       Builder.CreateStore(V, Stack);
998 
999       DidCallStackSave = true;
1000 
1001       // Push a cleanup block and restore the stack there.
1002       // FIXME: in general circumstances, this should be an EH cleanup.
1003       pushStackRestore(NormalCleanup, Stack);
1004     }
1005 
1006     llvm::Value *elementCount;
1007     QualType elementType;
1008     std::tie(elementCount, elementType) = getVLASize(Ty);
1009 
1010     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
1011 
1012     // Allocate memory for the array.
1013     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1014     vla->setAlignment(alignment.getQuantity());
1015 
1016     address = Address(vla, alignment);
1017   }
1018 
1019   setAddrOfLocalVar(&D, address);
1020   emission.Addr = address;
1021 
1022   // Emit debug info for local var declaration.
1023   if (HaveInsertPoint())
1024     if (CGDebugInfo *DI = getDebugInfo()) {
1025       if (CGM.getCodeGenOpts().getDebugInfo()
1026             >= CodeGenOptions::LimitedDebugInfo) {
1027         DI->setLocation(D.getLocation());
1028         DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1029       }
1030     }
1031 
1032   if (D.hasAttr<AnnotateAttr>())
1033     EmitVarAnnotations(&D, address.getPointer());
1034 
1035   return emission;
1036 }
1037 
1038 /// Determines whether the given __block variable is potentially
1039 /// captured by the given expression.
1040 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1041   // Skip the most common kinds of expressions that make
1042   // hierarchy-walking expensive.
1043   e = e->IgnoreParenCasts();
1044 
1045   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1046     const BlockDecl *block = be->getBlockDecl();
1047     for (const auto &I : block->captures()) {
1048       if (I.getVariable() == &var)
1049         return true;
1050     }
1051 
1052     // No need to walk into the subexpressions.
1053     return false;
1054   }
1055 
1056   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1057     const CompoundStmt *CS = SE->getSubStmt();
1058     for (const auto *BI : CS->body())
1059       if (const auto *E = dyn_cast<Expr>(BI)) {
1060         if (isCapturedBy(var, E))
1061             return true;
1062       }
1063       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1064           // special case declarations
1065           for (const auto *I : DS->decls()) {
1066               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1067                 const Expr *Init = VD->getInit();
1068                 if (Init && isCapturedBy(var, Init))
1069                   return true;
1070               }
1071           }
1072       }
1073       else
1074         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1075         // Later, provide code to poke into statements for capture analysis.
1076         return true;
1077     return false;
1078   }
1079 
1080   for (const Stmt *SubStmt : e->children())
1081     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1082       return true;
1083 
1084   return false;
1085 }
1086 
1087 /// \brief Determine whether the given initializer is trivial in the sense
1088 /// that it requires no code to be generated.
1089 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1090   if (!Init)
1091     return true;
1092 
1093   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1094     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1095       if (Constructor->isTrivial() &&
1096           Constructor->isDefaultConstructor() &&
1097           !Construct->requiresZeroInitialization())
1098         return true;
1099 
1100   return false;
1101 }
1102 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1103   assert(emission.Variable && "emission was not valid!");
1104 
1105   // If this was emitted as a global constant, we're done.
1106   if (emission.wasEmittedAsGlobal()) return;
1107 
1108   const VarDecl &D = *emission.Variable;
1109   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1110   QualType type = D.getType();
1111 
1112   // If this local has an initializer, emit it now.
1113   const Expr *Init = D.getInit();
1114 
1115   // If we are at an unreachable point, we don't need to emit the initializer
1116   // unless it contains a label.
1117   if (!HaveInsertPoint()) {
1118     if (!Init || !ContainsLabel(Init)) return;
1119     EnsureInsertPoint();
1120   }
1121 
1122   // Initialize the structure of a __block variable.
1123   if (emission.IsByRef)
1124     emitByrefStructureInit(emission);
1125 
1126   if (isTrivialInitializer(Init))
1127     return;
1128 
1129   // Check whether this is a byref variable that's potentially
1130   // captured and moved by its own initializer.  If so, we'll need to
1131   // emit the initializer first, then copy into the variable.
1132   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1133 
1134   Address Loc =
1135     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1136 
1137   llvm::Constant *constant = nullptr;
1138   if (emission.IsConstantAggregate || D.isConstexpr()) {
1139     assert(!capturedByInit && "constant init contains a capturing block?");
1140     constant = CGM.EmitConstantInit(D, this);
1141   }
1142 
1143   if (!constant) {
1144     LValue lv = MakeAddrLValue(Loc, type);
1145     lv.setNonGC(true);
1146     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1147   }
1148 
1149   if (!emission.IsConstantAggregate) {
1150     // For simple scalar/complex initialization, store the value directly.
1151     LValue lv = MakeAddrLValue(Loc, type);
1152     lv.setNonGC(true);
1153     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1154   }
1155 
1156   // If this is a simple aggregate initialization, we can optimize it
1157   // in various ways.
1158   bool isVolatile = type.isVolatileQualified();
1159 
1160   llvm::Value *SizeVal =
1161     llvm::ConstantInt::get(IntPtrTy,
1162                            getContext().getTypeSizeInChars(type).getQuantity());
1163 
1164   llvm::Type *BP = Int8PtrTy;
1165   if (Loc.getType() != BP)
1166     Loc = Builder.CreateBitCast(Loc, BP);
1167 
1168   // If the initializer is all or mostly zeros, codegen with memset then do
1169   // a few stores afterward.
1170   if (shouldUseMemSetPlusStoresToInitialize(constant,
1171                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1172     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1173                          isVolatile);
1174     // Zero and undef don't require a stores.
1175     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1176       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1177       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
1178                                    isVolatile, Builder);
1179     }
1180   } else {
1181     // Otherwise, create a temporary global with the initializer then
1182     // memcpy from the global to the alloca.
1183     std::string Name = getStaticDeclName(CGM, D);
1184     llvm::GlobalVariable *GV =
1185       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1186                                llvm::GlobalValue::PrivateLinkage,
1187                                constant, Name);
1188     GV->setAlignment(Loc.getAlignment().getQuantity());
1189     GV->setUnnamedAddr(true);
1190 
1191     Address SrcPtr = Address(GV, Loc.getAlignment());
1192     if (SrcPtr.getType() != BP)
1193       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1194 
1195     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1196   }
1197 }
1198 
1199 /// Emit an expression as an initializer for a variable at the given
1200 /// location.  The expression is not necessarily the normal
1201 /// initializer for the variable, and the address is not necessarily
1202 /// its normal location.
1203 ///
1204 /// \param init the initializing expression
1205 /// \param var the variable to act as if we're initializing
1206 /// \param loc the address to initialize; its type is a pointer
1207 ///   to the LLVM mapping of the variable's type
1208 /// \param alignment the alignment of the address
1209 /// \param capturedByInit true if the variable is a __block variable
1210 ///   whose address is potentially changed by the initializer
1211 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1212                                      LValue lvalue, bool capturedByInit) {
1213   QualType type = D->getType();
1214 
1215   if (type->isReferenceType()) {
1216     RValue rvalue = EmitReferenceBindingToExpr(init);
1217     if (capturedByInit)
1218       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1219     EmitStoreThroughLValue(rvalue, lvalue, true);
1220     return;
1221   }
1222   switch (getEvaluationKind(type)) {
1223   case TEK_Scalar:
1224     EmitScalarInit(init, D, lvalue, capturedByInit);
1225     return;
1226   case TEK_Complex: {
1227     ComplexPairTy complex = EmitComplexExpr(init);
1228     if (capturedByInit)
1229       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1230     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1231     return;
1232   }
1233   case TEK_Aggregate:
1234     if (type->isAtomicType()) {
1235       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1236     } else {
1237       // TODO: how can we delay here if D is captured by its initializer?
1238       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1239                                               AggValueSlot::IsDestructed,
1240                                          AggValueSlot::DoesNotNeedGCBarriers,
1241                                               AggValueSlot::IsNotAliased));
1242     }
1243     return;
1244   }
1245   llvm_unreachable("bad evaluation kind");
1246 }
1247 
1248 /// Enter a destroy cleanup for the given local variable.
1249 void CodeGenFunction::emitAutoVarTypeCleanup(
1250                             const CodeGenFunction::AutoVarEmission &emission,
1251                             QualType::DestructionKind dtorKind) {
1252   assert(dtorKind != QualType::DK_none);
1253 
1254   // Note that for __block variables, we want to destroy the
1255   // original stack object, not the possibly forwarded object.
1256   Address addr = emission.getObjectAddress(*this);
1257 
1258   const VarDecl *var = emission.Variable;
1259   QualType type = var->getType();
1260 
1261   CleanupKind cleanupKind = NormalAndEHCleanup;
1262   CodeGenFunction::Destroyer *destroyer = nullptr;
1263 
1264   switch (dtorKind) {
1265   case QualType::DK_none:
1266     llvm_unreachable("no cleanup for trivially-destructible variable");
1267 
1268   case QualType::DK_cxx_destructor:
1269     // If there's an NRVO flag on the emission, we need a different
1270     // cleanup.
1271     if (emission.NRVOFlag) {
1272       assert(!type->isArrayType());
1273       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1274       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
1275                                                dtor, emission.NRVOFlag);
1276       return;
1277     }
1278     break;
1279 
1280   case QualType::DK_objc_strong_lifetime:
1281     // Suppress cleanups for pseudo-strong variables.
1282     if (var->isARCPseudoStrong()) return;
1283 
1284     // Otherwise, consider whether to use an EH cleanup or not.
1285     cleanupKind = getARCCleanupKind();
1286 
1287     // Use the imprecise destroyer by default.
1288     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1289       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1290     break;
1291 
1292   case QualType::DK_objc_weak_lifetime:
1293     break;
1294   }
1295 
1296   // If we haven't chosen a more specific destroyer, use the default.
1297   if (!destroyer) destroyer = getDestroyer(dtorKind);
1298 
1299   // Use an EH cleanup in array destructors iff the destructor itself
1300   // is being pushed as an EH cleanup.
1301   bool useEHCleanup = (cleanupKind & EHCleanup);
1302   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1303                                      useEHCleanup);
1304 }
1305 
1306 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1307   assert(emission.Variable && "emission was not valid!");
1308 
1309   // If this was emitted as a global constant, we're done.
1310   if (emission.wasEmittedAsGlobal()) return;
1311 
1312   // If we don't have an insertion point, we're done.  Sema prevents
1313   // us from jumping into any of these scopes anyway.
1314   if (!HaveInsertPoint()) return;
1315 
1316   const VarDecl &D = *emission.Variable;
1317 
1318   // Make sure we call @llvm.lifetime.end.  This needs to happen
1319   // *last*, so the cleanup needs to be pushed *first*.
1320   if (emission.useLifetimeMarkers()) {
1321     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1322                                          emission.getAllocatedAddress(),
1323                                          emission.getSizeForLifetimeMarkers());
1324     EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
1325     cleanup.setLifetimeMarker();
1326   }
1327 
1328   // Check the type for a cleanup.
1329   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1330     emitAutoVarTypeCleanup(emission, dtorKind);
1331 
1332   // In GC mode, honor objc_precise_lifetime.
1333   if (getLangOpts().getGC() != LangOptions::NonGC &&
1334       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1335     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1336   }
1337 
1338   // Handle the cleanup attribute.
1339   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1340     const FunctionDecl *FD = CA->getFunctionDecl();
1341 
1342     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1343     assert(F && "Could not find function!");
1344 
1345     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1346     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1347   }
1348 
1349   // If this is a block variable, call _Block_object_destroy
1350   // (on the unforwarded address).
1351   if (emission.IsByRef)
1352     enterByrefCleanup(emission);
1353 }
1354 
1355 CodeGenFunction::Destroyer *
1356 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1357   switch (kind) {
1358   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1359   case QualType::DK_cxx_destructor:
1360     return destroyCXXObject;
1361   case QualType::DK_objc_strong_lifetime:
1362     return destroyARCStrongPrecise;
1363   case QualType::DK_objc_weak_lifetime:
1364     return destroyARCWeak;
1365   }
1366   llvm_unreachable("Unknown DestructionKind");
1367 }
1368 
1369 /// pushEHDestroy - Push the standard destructor for the given type as
1370 /// an EH-only cleanup.
1371 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1372                                     Address addr, QualType type) {
1373   assert(dtorKind && "cannot push destructor for trivial type");
1374   assert(needsEHCleanup(dtorKind));
1375 
1376   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1377 }
1378 
1379 /// pushDestroy - Push the standard destructor for the given type as
1380 /// at least a normal cleanup.
1381 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1382                                   Address addr, QualType type) {
1383   assert(dtorKind && "cannot push destructor for trivial type");
1384 
1385   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1386   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1387               cleanupKind & EHCleanup);
1388 }
1389 
1390 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1391                                   QualType type, Destroyer *destroyer,
1392                                   bool useEHCleanupForArray) {
1393   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1394                                      destroyer, useEHCleanupForArray);
1395 }
1396 
1397 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1398   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1399 }
1400 
1401 void CodeGenFunction::pushLifetimeExtendedDestroy(
1402     CleanupKind cleanupKind, Address addr, QualType type,
1403     Destroyer *destroyer, bool useEHCleanupForArray) {
1404   assert(!isInConditionalBranch() &&
1405          "performing lifetime extension from within conditional");
1406 
1407   // Push an EH-only cleanup for the object now.
1408   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1409   // around in case a temporary's destructor throws an exception.
1410   if (cleanupKind & EHCleanup)
1411     EHStack.pushCleanup<DestroyObject>(
1412         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1413         destroyer, useEHCleanupForArray);
1414 
1415   // Remember that we need to push a full cleanup for the object at the
1416   // end of the full-expression.
1417   pushCleanupAfterFullExpr<DestroyObject>(
1418       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1419 }
1420 
1421 /// emitDestroy - Immediately perform the destruction of the given
1422 /// object.
1423 ///
1424 /// \param addr - the address of the object; a type*
1425 /// \param type - the type of the object; if an array type, all
1426 ///   objects are destroyed in reverse order
1427 /// \param destroyer - the function to call to destroy individual
1428 ///   elements
1429 /// \param useEHCleanupForArray - whether an EH cleanup should be
1430 ///   used when destroying array elements, in case one of the
1431 ///   destructions throws an exception
1432 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1433                                   Destroyer *destroyer,
1434                                   bool useEHCleanupForArray) {
1435   const ArrayType *arrayType = getContext().getAsArrayType(type);
1436   if (!arrayType)
1437     return destroyer(*this, addr, type);
1438 
1439   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1440 
1441   CharUnits elementAlign =
1442     addr.getAlignment()
1443         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1444 
1445   // Normally we have to check whether the array is zero-length.
1446   bool checkZeroLength = true;
1447 
1448   // But if the array length is constant, we can suppress that.
1449   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1450     // ...and if it's constant zero, we can just skip the entire thing.
1451     if (constLength->isZero()) return;
1452     checkZeroLength = false;
1453   }
1454 
1455   llvm::Value *begin = addr.getPointer();
1456   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1457   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1458                    checkZeroLength, useEHCleanupForArray);
1459 }
1460 
1461 /// emitArrayDestroy - Destroys all the elements of the given array,
1462 /// beginning from last to first.  The array cannot be zero-length.
1463 ///
1464 /// \param begin - a type* denoting the first element of the array
1465 /// \param end - a type* denoting one past the end of the array
1466 /// \param elementType - the element type of the array
1467 /// \param destroyer - the function to call to destroy elements
1468 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1469 ///   the remaining elements in case the destruction of a single
1470 ///   element throws
1471 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1472                                        llvm::Value *end,
1473                                        QualType elementType,
1474                                        CharUnits elementAlign,
1475                                        Destroyer *destroyer,
1476                                        bool checkZeroLength,
1477                                        bool useEHCleanup) {
1478   assert(!elementType->isArrayType());
1479 
1480   // The basic structure here is a do-while loop, because we don't
1481   // need to check for the zero-element case.
1482   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1483   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1484 
1485   if (checkZeroLength) {
1486     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1487                                                 "arraydestroy.isempty");
1488     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1489   }
1490 
1491   // Enter the loop body, making that address the current address.
1492   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1493   EmitBlock(bodyBB);
1494   llvm::PHINode *elementPast =
1495     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1496   elementPast->addIncoming(end, entryBB);
1497 
1498   // Shift the address back by one element.
1499   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1500   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1501                                                    "arraydestroy.element");
1502 
1503   if (useEHCleanup)
1504     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1505                                    destroyer);
1506 
1507   // Perform the actual destruction there.
1508   destroyer(*this, Address(element, elementAlign), elementType);
1509 
1510   if (useEHCleanup)
1511     PopCleanupBlock();
1512 
1513   // Check whether we've reached the end.
1514   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1515   Builder.CreateCondBr(done, doneBB, bodyBB);
1516   elementPast->addIncoming(element, Builder.GetInsertBlock());
1517 
1518   // Done.
1519   EmitBlock(doneBB);
1520 }
1521 
1522 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1523 /// emitArrayDestroy, the element type here may still be an array type.
1524 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1525                                     llvm::Value *begin, llvm::Value *end,
1526                                     QualType type, CharUnits elementAlign,
1527                                     CodeGenFunction::Destroyer *destroyer) {
1528   // If the element type is itself an array, drill down.
1529   unsigned arrayDepth = 0;
1530   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1531     // VLAs don't require a GEP index to walk into.
1532     if (!isa<VariableArrayType>(arrayType))
1533       arrayDepth++;
1534     type = arrayType->getElementType();
1535   }
1536 
1537   if (arrayDepth) {
1538     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1539 
1540     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1541     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1542     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1543   }
1544 
1545   // Destroy the array.  We don't ever need an EH cleanup because we
1546   // assume that we're in an EH cleanup ourselves, so a throwing
1547   // destructor causes an immediate terminate.
1548   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1549                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1550 }
1551 
1552 namespace {
1553   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1554   /// array destroy where the end pointer is regularly determined and
1555   /// does not need to be loaded from a local.
1556   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1557     llvm::Value *ArrayBegin;
1558     llvm::Value *ArrayEnd;
1559     QualType ElementType;
1560     CodeGenFunction::Destroyer *Destroyer;
1561     CharUnits ElementAlign;
1562   public:
1563     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1564                                QualType elementType, CharUnits elementAlign,
1565                                CodeGenFunction::Destroyer *destroyer)
1566       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1567         ElementType(elementType), Destroyer(destroyer),
1568         ElementAlign(elementAlign) {}
1569 
1570     void Emit(CodeGenFunction &CGF, Flags flags) override {
1571       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1572                               ElementType, ElementAlign, Destroyer);
1573     }
1574   };
1575 
1576   /// IrregularPartialArrayDestroy - a cleanup which performs a
1577   /// partial array destroy where the end pointer is irregularly
1578   /// determined and must be loaded from a local.
1579   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1580     llvm::Value *ArrayBegin;
1581     Address ArrayEndPointer;
1582     QualType ElementType;
1583     CodeGenFunction::Destroyer *Destroyer;
1584     CharUnits ElementAlign;
1585   public:
1586     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1587                                  Address arrayEndPointer,
1588                                  QualType elementType,
1589                                  CharUnits elementAlign,
1590                                  CodeGenFunction::Destroyer *destroyer)
1591       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1592         ElementType(elementType), Destroyer(destroyer),
1593         ElementAlign(elementAlign) {}
1594 
1595     void Emit(CodeGenFunction &CGF, Flags flags) override {
1596       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1597       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1598                               ElementType, ElementAlign, Destroyer);
1599     }
1600   };
1601 }
1602 
1603 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1604 /// already-constructed elements of the given array.  The cleanup
1605 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1606 ///
1607 /// \param elementType - the immediate element type of the array;
1608 ///   possibly still an array type
1609 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1610                                                        Address arrayEndPointer,
1611                                                        QualType elementType,
1612                                                        CharUnits elementAlign,
1613                                                        Destroyer *destroyer) {
1614   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1615                                                     arrayBegin, arrayEndPointer,
1616                                                     elementType, elementAlign,
1617                                                     destroyer);
1618 }
1619 
1620 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1621 /// already-constructed elements of the given array.  The cleanup
1622 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1623 ///
1624 /// \param elementType - the immediate element type of the array;
1625 ///   possibly still an array type
1626 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1627                                                      llvm::Value *arrayEnd,
1628                                                      QualType elementType,
1629                                                      CharUnits elementAlign,
1630                                                      Destroyer *destroyer) {
1631   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1632                                                   arrayBegin, arrayEnd,
1633                                                   elementType, elementAlign,
1634                                                   destroyer);
1635 }
1636 
1637 /// Lazily declare the @llvm.lifetime.start intrinsic.
1638 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1639   if (LifetimeStartFn) return LifetimeStartFn;
1640   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1641                                             llvm::Intrinsic::lifetime_start);
1642   return LifetimeStartFn;
1643 }
1644 
1645 /// Lazily declare the @llvm.lifetime.end intrinsic.
1646 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1647   if (LifetimeEndFn) return LifetimeEndFn;
1648   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1649                                               llvm::Intrinsic::lifetime_end);
1650   return LifetimeEndFn;
1651 }
1652 
1653 namespace {
1654   /// A cleanup to perform a release of an object at the end of a
1655   /// function.  This is used to balance out the incoming +1 of a
1656   /// ns_consumed argument when we can't reasonably do that just by
1657   /// not doing the initial retain for a __block argument.
1658   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1659     ConsumeARCParameter(llvm::Value *param,
1660                         ARCPreciseLifetime_t precise)
1661       : Param(param), Precise(precise) {}
1662 
1663     llvm::Value *Param;
1664     ARCPreciseLifetime_t Precise;
1665 
1666     void Emit(CodeGenFunction &CGF, Flags flags) override {
1667       CGF.EmitARCRelease(Param, Precise);
1668     }
1669   };
1670 }
1671 
1672 /// Emit an alloca (or GlobalValue depending on target)
1673 /// for the specified parameter and set up LocalDeclMap.
1674 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1675                                    unsigned ArgNo) {
1676   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1677   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1678          "Invalid argument to EmitParmDecl");
1679 
1680   Arg.getAnyValue()->setName(D.getName());
1681 
1682   QualType Ty = D.getType();
1683 
1684   // Use better IR generation for certain implicit parameters.
1685   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1686     // The only implicit argument a block has is its literal.
1687     // We assume this is always passed directly.
1688     if (BlockInfo) {
1689       setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue());
1690       return;
1691     }
1692   }
1693 
1694   Address DeclPtr = Address::invalid();
1695   bool DoStore = false;
1696   bool IsScalar = hasScalarEvaluationKind(Ty);
1697   // If we already have a pointer to the argument, reuse the input pointer.
1698   if (Arg.isIndirect()) {
1699     DeclPtr = Arg.getIndirectAddress();
1700     // If we have a prettier pointer type at this point, bitcast to that.
1701     unsigned AS = DeclPtr.getType()->getAddressSpace();
1702     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1703     if (DeclPtr.getType() != IRTy)
1704       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
1705 
1706     // Push a destructor cleanup for this parameter if the ABI requires it.
1707     // Don't push a cleanup in a thunk for a method that will also emit a
1708     // cleanup.
1709     if (!IsScalar && !CurFuncIsThunk &&
1710         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1711       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1712       if (RD && RD->hasNonTrivialDestructor())
1713         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1714     }
1715   } else {
1716     // Otherwise, create a temporary to hold the value.
1717     DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
1718                             D.getName() + ".addr");
1719     DoStore = true;
1720   }
1721 
1722   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
1723 
1724   LValue lv = MakeAddrLValue(DeclPtr, Ty);
1725   if (IsScalar) {
1726     Qualifiers qs = Ty.getQualifiers();
1727     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1728       // We honor __attribute__((ns_consumed)) for types with lifetime.
1729       // For __strong, it's handled by just skipping the initial retain;
1730       // otherwise we have to balance out the initial +1 with an extra
1731       // cleanup to do the release at the end of the function.
1732       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1733 
1734       // 'self' is always formally __strong, but if this is not an
1735       // init method then we don't want to retain it.
1736       if (D.isARCPseudoStrong()) {
1737         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1738         assert(&D == method->getSelfDecl());
1739         assert(lt == Qualifiers::OCL_Strong);
1740         assert(qs.hasConst());
1741         assert(method->getMethodFamily() != OMF_init);
1742         (void) method;
1743         lt = Qualifiers::OCL_ExplicitNone;
1744       }
1745 
1746       if (lt == Qualifiers::OCL_Strong) {
1747         if (!isConsumed) {
1748           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1749             // use objc_storeStrong(&dest, value) for retaining the
1750             // object. But first, store a null into 'dest' because
1751             // objc_storeStrong attempts to release its old value.
1752             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1753             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1754             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
1755             DoStore = false;
1756           }
1757           else
1758           // Don't use objc_retainBlock for block pointers, because we
1759           // don't want to Block_copy something just because we got it
1760           // as a parameter.
1761             ArgVal = EmitARCRetainNonBlock(ArgVal);
1762         }
1763       } else {
1764         // Push the cleanup for a consumed parameter.
1765         if (isConsumed) {
1766           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1767                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1768           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
1769                                                    precise);
1770         }
1771 
1772         if (lt == Qualifiers::OCL_Weak) {
1773           EmitARCInitWeak(DeclPtr, ArgVal);
1774           DoStore = false; // The weak init is a store, no need to do two.
1775         }
1776       }
1777 
1778       // Enter the cleanup scope.
1779       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1780     }
1781   }
1782 
1783   // Store the initial value into the alloca.
1784   if (DoStore)
1785     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
1786 
1787   setAddrOfLocalVar(&D, DeclPtr);
1788 
1789   // Emit debug info for param declaration.
1790   if (CGDebugInfo *DI = getDebugInfo()) {
1791     if (CGM.getCodeGenOpts().getDebugInfo()
1792           >= CodeGenOptions::LimitedDebugInfo) {
1793       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
1794     }
1795   }
1796 
1797   if (D.hasAttr<AnnotateAttr>())
1798     EmitVarAnnotations(&D, DeclPtr.getPointer());
1799 }
1800