1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclOpenMP.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Type.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 void CodeGenFunction::EmitDecl(const Decl &D) { 39 switch (D.getKind()) { 40 case Decl::BuiltinTemplate: 41 case Decl::TranslationUnit: 42 case Decl::ExternCContext: 43 case Decl::Namespace: 44 case Decl::UnresolvedUsingTypename: 45 case Decl::ClassTemplateSpecialization: 46 case Decl::ClassTemplatePartialSpecialization: 47 case Decl::VarTemplateSpecialization: 48 case Decl::VarTemplatePartialSpecialization: 49 case Decl::TemplateTypeParm: 50 case Decl::UnresolvedUsingValue: 51 case Decl::NonTypeTemplateParm: 52 case Decl::CXXMethod: 53 case Decl::CXXConstructor: 54 case Decl::CXXDestructor: 55 case Decl::CXXConversion: 56 case Decl::Field: 57 case Decl::MSProperty: 58 case Decl::IndirectField: 59 case Decl::ObjCIvar: 60 case Decl::ObjCAtDefsField: 61 case Decl::ParmVar: 62 case Decl::ImplicitParam: 63 case Decl::ClassTemplate: 64 case Decl::VarTemplate: 65 case Decl::FunctionTemplate: 66 case Decl::TypeAliasTemplate: 67 case Decl::TemplateTemplateParm: 68 case Decl::ObjCMethod: 69 case Decl::ObjCCategory: 70 case Decl::ObjCProtocol: 71 case Decl::ObjCInterface: 72 case Decl::ObjCCategoryImpl: 73 case Decl::ObjCImplementation: 74 case Decl::ObjCProperty: 75 case Decl::ObjCCompatibleAlias: 76 case Decl::PragmaComment: 77 case Decl::PragmaDetectMismatch: 78 case Decl::AccessSpec: 79 case Decl::LinkageSpec: 80 case Decl::ObjCPropertyImpl: 81 case Decl::FileScopeAsm: 82 case Decl::Friend: 83 case Decl::FriendTemplate: 84 case Decl::Block: 85 case Decl::Captured: 86 case Decl::ClassScopeFunctionSpecialization: 87 case Decl::UsingShadow: 88 case Decl::ConstructorUsingShadow: 89 case Decl::ObjCTypeParam: 90 case Decl::Binding: 91 llvm_unreachable("Declaration should not be in declstmts!"); 92 case Decl::Function: // void X(); 93 case Decl::Record: // struct/union/class X; 94 case Decl::Enum: // enum X; 95 case Decl::EnumConstant: // enum ? { X = ? } 96 case Decl::CXXRecord: // struct/union/class X; [C++] 97 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 98 case Decl::Label: // __label__ x; 99 case Decl::Import: 100 case Decl::OMPThreadPrivate: 101 case Decl::OMPCapturedExpr: 102 case Decl::Empty: 103 // None of these decls require codegen support. 104 return; 105 106 case Decl::NamespaceAlias: 107 if (CGDebugInfo *DI = getDebugInfo()) 108 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 109 return; 110 case Decl::Using: // using X; [C++] 111 if (CGDebugInfo *DI = getDebugInfo()) 112 DI->EmitUsingDecl(cast<UsingDecl>(D)); 113 return; 114 case Decl::UsingDirective: // using namespace X; [C++] 115 if (CGDebugInfo *DI = getDebugInfo()) 116 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 117 return; 118 case Decl::Var: 119 case Decl::Decomposition: { 120 const VarDecl &VD = cast<VarDecl>(D); 121 assert(VD.isLocalVarDecl() && 122 "Should not see file-scope variables inside a function!"); 123 EmitVarDecl(VD); 124 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 125 for (auto *B : DD->bindings()) 126 if (auto *HD = B->getHoldingVar()) 127 EmitVarDecl(*HD); 128 return; 129 } 130 131 case Decl::OMPDeclareReduction: 132 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 133 134 case Decl::Typedef: // typedef int X; 135 case Decl::TypeAlias: { // using X = int; [C++0x] 136 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 137 QualType Ty = TD.getUnderlyingType(); 138 139 if (Ty->isVariablyModifiedType()) 140 EmitVariablyModifiedType(Ty); 141 } 142 } 143 } 144 145 /// EmitVarDecl - This method handles emission of any variable declaration 146 /// inside a function, including static vars etc. 147 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 148 if (D.isStaticLocal()) { 149 llvm::GlobalValue::LinkageTypes Linkage = 150 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 151 152 // FIXME: We need to force the emission/use of a guard variable for 153 // some variables even if we can constant-evaluate them because 154 // we can't guarantee every translation unit will constant-evaluate them. 155 156 return EmitStaticVarDecl(D, Linkage); 157 } 158 159 if (D.hasExternalStorage()) 160 // Don't emit it now, allow it to be emitted lazily on its first use. 161 return; 162 163 if (D.getType().getAddressSpace() == LangAS::opencl_local) 164 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 165 166 assert(D.hasLocalStorage()); 167 return EmitAutoVarDecl(D); 168 } 169 170 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 171 if (CGM.getLangOpts().CPlusPlus) 172 return CGM.getMangledName(&D).str(); 173 174 // If this isn't C++, we don't need a mangled name, just a pretty one. 175 assert(!D.isExternallyVisible() && "name shouldn't matter"); 176 std::string ContextName; 177 const DeclContext *DC = D.getDeclContext(); 178 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 179 DC = cast<DeclContext>(CD->getNonClosureContext()); 180 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 181 ContextName = CGM.getMangledName(FD); 182 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 183 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 184 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 185 ContextName = OMD->getSelector().getAsString(); 186 else 187 llvm_unreachable("Unknown context for static var decl"); 188 189 ContextName += "." + D.getNameAsString(); 190 return ContextName; 191 } 192 193 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 194 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 195 // In general, we don't always emit static var decls once before we reference 196 // them. It is possible to reference them before emitting the function that 197 // contains them, and it is possible to emit the containing function multiple 198 // times. 199 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 200 return ExistingGV; 201 202 QualType Ty = D.getType(); 203 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 204 205 // Use the label if the variable is renamed with the asm-label extension. 206 std::string Name; 207 if (D.hasAttr<AsmLabelAttr>()) 208 Name = getMangledName(&D); 209 else 210 Name = getStaticDeclName(*this, D); 211 212 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 213 unsigned AddrSpace = 214 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 215 216 // Local address space cannot have an initializer. 217 llvm::Constant *Init = nullptr; 218 if (Ty.getAddressSpace() != LangAS::opencl_local) 219 Init = EmitNullConstant(Ty); 220 else 221 Init = llvm::UndefValue::get(LTy); 222 223 llvm::GlobalVariable *GV = 224 new llvm::GlobalVariable(getModule(), LTy, 225 Ty.isConstant(getContext()), Linkage, 226 Init, Name, nullptr, 227 llvm::GlobalVariable::NotThreadLocal, 228 AddrSpace); 229 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 230 setGlobalVisibility(GV, &D); 231 232 if (supportsCOMDAT() && GV->isWeakForLinker()) 233 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 234 235 if (D.getTLSKind()) 236 setTLSMode(GV, D); 237 238 if (D.isExternallyVisible()) { 239 if (D.hasAttr<DLLImportAttr>()) 240 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 241 else if (D.hasAttr<DLLExportAttr>()) 242 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 243 } 244 245 // Make sure the result is of the correct type. 246 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 247 llvm::Constant *Addr = GV; 248 if (AddrSpace != ExpectedAddrSpace) { 249 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 250 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 251 } 252 253 setStaticLocalDeclAddress(&D, Addr); 254 255 // Ensure that the static local gets initialized by making sure the parent 256 // function gets emitted eventually. 257 const Decl *DC = cast<Decl>(D.getDeclContext()); 258 259 // We can't name blocks or captured statements directly, so try to emit their 260 // parents. 261 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 262 DC = DC->getNonClosureContext(); 263 // FIXME: Ensure that global blocks get emitted. 264 if (!DC) 265 return Addr; 266 } 267 268 GlobalDecl GD; 269 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 270 GD = GlobalDecl(CD, Ctor_Base); 271 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 272 GD = GlobalDecl(DD, Dtor_Base); 273 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 274 GD = GlobalDecl(FD); 275 else { 276 // Don't do anything for Obj-C method decls or global closures. We should 277 // never defer them. 278 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 279 } 280 if (GD.getDecl()) 281 (void)GetAddrOfGlobal(GD); 282 283 return Addr; 284 } 285 286 /// hasNontrivialDestruction - Determine whether a type's destruction is 287 /// non-trivial. If so, and the variable uses static initialization, we must 288 /// register its destructor to run on exit. 289 static bool hasNontrivialDestruction(QualType T) { 290 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 291 return RD && !RD->hasTrivialDestructor(); 292 } 293 294 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 295 /// global variable that has already been created for it. If the initializer 296 /// has a different type than GV does, this may free GV and return a different 297 /// one. Otherwise it just returns GV. 298 llvm::GlobalVariable * 299 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 300 llvm::GlobalVariable *GV) { 301 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 302 303 // If constant emission failed, then this should be a C++ static 304 // initializer. 305 if (!Init) { 306 if (!getLangOpts().CPlusPlus) 307 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 308 else if (Builder.GetInsertBlock()) { 309 // Since we have a static initializer, this global variable can't 310 // be constant. 311 GV->setConstant(false); 312 313 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 314 } 315 return GV; 316 } 317 318 // The initializer may differ in type from the global. Rewrite 319 // the global to match the initializer. (We have to do this 320 // because some types, like unions, can't be completely represented 321 // in the LLVM type system.) 322 if (GV->getType()->getElementType() != Init->getType()) { 323 llvm::GlobalVariable *OldGV = GV; 324 325 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 326 OldGV->isConstant(), 327 OldGV->getLinkage(), Init, "", 328 /*InsertBefore*/ OldGV, 329 OldGV->getThreadLocalMode(), 330 CGM.getContext().getTargetAddressSpace(D.getType())); 331 GV->setVisibility(OldGV->getVisibility()); 332 GV->setComdat(OldGV->getComdat()); 333 334 // Steal the name of the old global 335 GV->takeName(OldGV); 336 337 // Replace all uses of the old global with the new global 338 llvm::Constant *NewPtrForOldDecl = 339 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 340 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 341 342 // Erase the old global, since it is no longer used. 343 OldGV->eraseFromParent(); 344 } 345 346 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 347 GV->setInitializer(Init); 348 349 if (hasNontrivialDestruction(D.getType())) { 350 // We have a constant initializer, but a nontrivial destructor. We still 351 // need to perform a guarded "initialization" in order to register the 352 // destructor. 353 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 354 } 355 356 return GV; 357 } 358 359 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 360 llvm::GlobalValue::LinkageTypes Linkage) { 361 // Check to see if we already have a global variable for this 362 // declaration. This can happen when double-emitting function 363 // bodies, e.g. with complete and base constructors. 364 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 365 CharUnits alignment = getContext().getDeclAlign(&D); 366 367 // Store into LocalDeclMap before generating initializer to handle 368 // circular references. 369 setAddrOfLocalVar(&D, Address(addr, alignment)); 370 371 // We can't have a VLA here, but we can have a pointer to a VLA, 372 // even though that doesn't really make any sense. 373 // Make sure to evaluate VLA bounds now so that we have them for later. 374 if (D.getType()->isVariablyModifiedType()) 375 EmitVariablyModifiedType(D.getType()); 376 377 // Save the type in case adding the initializer forces a type change. 378 llvm::Type *expectedType = addr->getType(); 379 380 llvm::GlobalVariable *var = 381 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 382 383 // CUDA's local and local static __shared__ variables should not 384 // have any non-empty initializers. This is ensured by Sema. 385 // Whatever initializer such variable may have when it gets here is 386 // a no-op and should not be emitted. 387 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 388 D.hasAttr<CUDASharedAttr>(); 389 // If this value has an initializer, emit it. 390 if (D.getInit() && !isCudaSharedVar) 391 var = AddInitializerToStaticVarDecl(D, var); 392 393 var->setAlignment(alignment.getQuantity()); 394 395 if (D.hasAttr<AnnotateAttr>()) 396 CGM.AddGlobalAnnotations(&D, var); 397 398 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 399 var->setSection(SA->getName()); 400 401 if (D.hasAttr<UsedAttr>()) 402 CGM.addUsedGlobal(var); 403 404 // We may have to cast the constant because of the initializer 405 // mismatch above. 406 // 407 // FIXME: It is really dangerous to store this in the map; if anyone 408 // RAUW's the GV uses of this constant will be invalid. 409 llvm::Constant *castedAddr = 410 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 411 if (var != castedAddr) 412 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 413 CGM.setStaticLocalDeclAddress(&D, castedAddr); 414 415 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 416 417 // Emit global variable debug descriptor for static vars. 418 CGDebugInfo *DI = getDebugInfo(); 419 if (DI && 420 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 421 DI->setLocation(D.getLocation()); 422 DI->EmitGlobalVariable(var, &D); 423 } 424 } 425 426 namespace { 427 struct DestroyObject final : EHScopeStack::Cleanup { 428 DestroyObject(Address addr, QualType type, 429 CodeGenFunction::Destroyer *destroyer, 430 bool useEHCleanupForArray) 431 : addr(addr), type(type), destroyer(destroyer), 432 useEHCleanupForArray(useEHCleanupForArray) {} 433 434 Address addr; 435 QualType type; 436 CodeGenFunction::Destroyer *destroyer; 437 bool useEHCleanupForArray; 438 439 void Emit(CodeGenFunction &CGF, Flags flags) override { 440 // Don't use an EH cleanup recursively from an EH cleanup. 441 bool useEHCleanupForArray = 442 flags.isForNormalCleanup() && this->useEHCleanupForArray; 443 444 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 445 } 446 }; 447 448 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 449 DestroyNRVOVariable(Address addr, 450 const CXXDestructorDecl *Dtor, 451 llvm::Value *NRVOFlag) 452 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 453 454 const CXXDestructorDecl *Dtor; 455 llvm::Value *NRVOFlag; 456 Address Loc; 457 458 void Emit(CodeGenFunction &CGF, Flags flags) override { 459 // Along the exceptions path we always execute the dtor. 460 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 461 462 llvm::BasicBlock *SkipDtorBB = nullptr; 463 if (NRVO) { 464 // If we exited via NRVO, we skip the destructor call. 465 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 466 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 467 llvm::Value *DidNRVO = 468 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 469 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 470 CGF.EmitBlock(RunDtorBB); 471 } 472 473 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 474 /*ForVirtualBase=*/false, 475 /*Delegating=*/false, 476 Loc); 477 478 if (NRVO) CGF.EmitBlock(SkipDtorBB); 479 } 480 }; 481 482 struct CallStackRestore final : EHScopeStack::Cleanup { 483 Address Stack; 484 CallStackRestore(Address Stack) : Stack(Stack) {} 485 void Emit(CodeGenFunction &CGF, Flags flags) override { 486 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 487 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 488 CGF.Builder.CreateCall(F, V); 489 } 490 }; 491 492 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 493 const VarDecl &Var; 494 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 495 496 void Emit(CodeGenFunction &CGF, Flags flags) override { 497 // Compute the address of the local variable, in case it's a 498 // byref or something. 499 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 500 Var.getType(), VK_LValue, SourceLocation()); 501 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 502 SourceLocation()); 503 CGF.EmitExtendGCLifetime(value); 504 } 505 }; 506 507 struct CallCleanupFunction final : EHScopeStack::Cleanup { 508 llvm::Constant *CleanupFn; 509 const CGFunctionInfo &FnInfo; 510 const VarDecl &Var; 511 512 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 513 const VarDecl *Var) 514 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 515 516 void Emit(CodeGenFunction &CGF, Flags flags) override { 517 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 518 Var.getType(), VK_LValue, SourceLocation()); 519 // Compute the address of the local variable, in case it's a byref 520 // or something. 521 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 522 523 // In some cases, the type of the function argument will be different from 524 // the type of the pointer. An example of this is 525 // void f(void* arg); 526 // __attribute__((cleanup(f))) void *g; 527 // 528 // To fix this we insert a bitcast here. 529 QualType ArgTy = FnInfo.arg_begin()->type; 530 llvm::Value *Arg = 531 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 532 533 CallArgList Args; 534 Args.add(RValue::get(Arg), 535 CGF.getContext().getPointerType(Var.getType())); 536 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 537 } 538 }; 539 } // end anonymous namespace 540 541 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 542 /// variable with lifetime. 543 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 544 Address addr, 545 Qualifiers::ObjCLifetime lifetime) { 546 switch (lifetime) { 547 case Qualifiers::OCL_None: 548 llvm_unreachable("present but none"); 549 550 case Qualifiers::OCL_ExplicitNone: 551 // nothing to do 552 break; 553 554 case Qualifiers::OCL_Strong: { 555 CodeGenFunction::Destroyer *destroyer = 556 (var.hasAttr<ObjCPreciseLifetimeAttr>() 557 ? CodeGenFunction::destroyARCStrongPrecise 558 : CodeGenFunction::destroyARCStrongImprecise); 559 560 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 561 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 562 cleanupKind & EHCleanup); 563 break; 564 } 565 case Qualifiers::OCL_Autoreleasing: 566 // nothing to do 567 break; 568 569 case Qualifiers::OCL_Weak: 570 // __weak objects always get EH cleanups; otherwise, exceptions 571 // could cause really nasty crashes instead of mere leaks. 572 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 573 CodeGenFunction::destroyARCWeak, 574 /*useEHCleanup*/ true); 575 break; 576 } 577 } 578 579 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 580 if (const Expr *e = dyn_cast<Expr>(s)) { 581 // Skip the most common kinds of expressions that make 582 // hierarchy-walking expensive. 583 s = e = e->IgnoreParenCasts(); 584 585 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 586 return (ref->getDecl() == &var); 587 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 588 const BlockDecl *block = be->getBlockDecl(); 589 for (const auto &I : block->captures()) { 590 if (I.getVariable() == &var) 591 return true; 592 } 593 } 594 } 595 596 for (const Stmt *SubStmt : s->children()) 597 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 598 if (SubStmt && isAccessedBy(var, SubStmt)) 599 return true; 600 601 return false; 602 } 603 604 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 605 if (!decl) return false; 606 if (!isa<VarDecl>(decl)) return false; 607 const VarDecl *var = cast<VarDecl>(decl); 608 return isAccessedBy(*var, e); 609 } 610 611 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 612 const LValue &destLV, const Expr *init) { 613 bool needsCast = false; 614 615 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 616 switch (castExpr->getCastKind()) { 617 // Look through casts that don't require representation changes. 618 case CK_NoOp: 619 case CK_BitCast: 620 case CK_BlockPointerToObjCPointerCast: 621 needsCast = true; 622 break; 623 624 // If we find an l-value to r-value cast from a __weak variable, 625 // emit this operation as a copy or move. 626 case CK_LValueToRValue: { 627 const Expr *srcExpr = castExpr->getSubExpr(); 628 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 629 return false; 630 631 // Emit the source l-value. 632 LValue srcLV = CGF.EmitLValue(srcExpr); 633 634 // Handle a formal type change to avoid asserting. 635 auto srcAddr = srcLV.getAddress(); 636 if (needsCast) { 637 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 638 destLV.getAddress().getElementType()); 639 } 640 641 // If it was an l-value, use objc_copyWeak. 642 if (srcExpr->getValueKind() == VK_LValue) { 643 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 644 } else { 645 assert(srcExpr->getValueKind() == VK_XValue); 646 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 647 } 648 return true; 649 } 650 651 // Stop at anything else. 652 default: 653 return false; 654 } 655 656 init = castExpr->getSubExpr(); 657 } 658 return false; 659 } 660 661 static void drillIntoBlockVariable(CodeGenFunction &CGF, 662 LValue &lvalue, 663 const VarDecl *var) { 664 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 665 } 666 667 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 668 LValue lvalue, bool capturedByInit) { 669 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 670 if (!lifetime) { 671 llvm::Value *value = EmitScalarExpr(init); 672 if (capturedByInit) 673 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 674 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 675 return; 676 } 677 678 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 679 init = DIE->getExpr(); 680 681 // If we're emitting a value with lifetime, we have to do the 682 // initialization *before* we leave the cleanup scopes. 683 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 684 enterFullExpression(ewc); 685 init = ewc->getSubExpr(); 686 } 687 CodeGenFunction::RunCleanupsScope Scope(*this); 688 689 // We have to maintain the illusion that the variable is 690 // zero-initialized. If the variable might be accessed in its 691 // initializer, zero-initialize before running the initializer, then 692 // actually perform the initialization with an assign. 693 bool accessedByInit = false; 694 if (lifetime != Qualifiers::OCL_ExplicitNone) 695 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 696 if (accessedByInit) { 697 LValue tempLV = lvalue; 698 // Drill down to the __block object if necessary. 699 if (capturedByInit) { 700 // We can use a simple GEP for this because it can't have been 701 // moved yet. 702 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 703 cast<VarDecl>(D), 704 /*follow*/ false)); 705 } 706 707 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 708 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 709 710 // If __weak, we want to use a barrier under certain conditions. 711 if (lifetime == Qualifiers::OCL_Weak) 712 EmitARCInitWeak(tempLV.getAddress(), zero); 713 714 // Otherwise just do a simple store. 715 else 716 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 717 } 718 719 // Emit the initializer. 720 llvm::Value *value = nullptr; 721 722 switch (lifetime) { 723 case Qualifiers::OCL_None: 724 llvm_unreachable("present but none"); 725 726 case Qualifiers::OCL_ExplicitNone: 727 value = EmitARCUnsafeUnretainedScalarExpr(init); 728 break; 729 730 case Qualifiers::OCL_Strong: { 731 value = EmitARCRetainScalarExpr(init); 732 break; 733 } 734 735 case Qualifiers::OCL_Weak: { 736 // If it's not accessed by the initializer, try to emit the 737 // initialization with a copy or move. 738 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 739 return; 740 } 741 742 // No way to optimize a producing initializer into this. It's not 743 // worth optimizing for, because the value will immediately 744 // disappear in the common case. 745 value = EmitScalarExpr(init); 746 747 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 748 if (accessedByInit) 749 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 750 else 751 EmitARCInitWeak(lvalue.getAddress(), value); 752 return; 753 } 754 755 case Qualifiers::OCL_Autoreleasing: 756 value = EmitARCRetainAutoreleaseScalarExpr(init); 757 break; 758 } 759 760 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 761 762 // If the variable might have been accessed by its initializer, we 763 // might have to initialize with a barrier. We have to do this for 764 // both __weak and __strong, but __weak got filtered out above. 765 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 766 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 767 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 768 EmitARCRelease(oldValue, ARCImpreciseLifetime); 769 return; 770 } 771 772 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 773 } 774 775 /// EmitScalarInit - Initialize the given lvalue with the given object. 776 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 777 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 778 if (!lifetime) 779 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 780 781 switch (lifetime) { 782 case Qualifiers::OCL_None: 783 llvm_unreachable("present but none"); 784 785 case Qualifiers::OCL_ExplicitNone: 786 // nothing to do 787 break; 788 789 case Qualifiers::OCL_Strong: 790 init = EmitARCRetain(lvalue.getType(), init); 791 break; 792 793 case Qualifiers::OCL_Weak: 794 // Initialize and then skip the primitive store. 795 EmitARCInitWeak(lvalue.getAddress(), init); 796 return; 797 798 case Qualifiers::OCL_Autoreleasing: 799 init = EmitARCRetainAutorelease(lvalue.getType(), init); 800 break; 801 } 802 803 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 804 } 805 806 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 807 /// non-zero parts of the specified initializer with equal or fewer than 808 /// NumStores scalar stores. 809 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 810 unsigned &NumStores) { 811 // Zero and Undef never requires any extra stores. 812 if (isa<llvm::ConstantAggregateZero>(Init) || 813 isa<llvm::ConstantPointerNull>(Init) || 814 isa<llvm::UndefValue>(Init)) 815 return true; 816 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 817 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 818 isa<llvm::ConstantExpr>(Init)) 819 return Init->isNullValue() || NumStores--; 820 821 // See if we can emit each element. 822 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 823 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 824 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 825 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 826 return false; 827 } 828 return true; 829 } 830 831 if (llvm::ConstantDataSequential *CDS = 832 dyn_cast<llvm::ConstantDataSequential>(Init)) { 833 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 834 llvm::Constant *Elt = CDS->getElementAsConstant(i); 835 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 836 return false; 837 } 838 return true; 839 } 840 841 // Anything else is hard and scary. 842 return false; 843 } 844 845 /// emitStoresForInitAfterMemset - For inits that 846 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 847 /// stores that would be required. 848 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 849 bool isVolatile, CGBuilderTy &Builder) { 850 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 851 "called emitStoresForInitAfterMemset for zero or undef value."); 852 853 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 854 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 855 isa<llvm::ConstantExpr>(Init)) { 856 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 857 return; 858 } 859 860 if (llvm::ConstantDataSequential *CDS = 861 dyn_cast<llvm::ConstantDataSequential>(Init)) { 862 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 863 llvm::Constant *Elt = CDS->getElementAsConstant(i); 864 865 // If necessary, get a pointer to the element and emit it. 866 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 867 emitStoresForInitAfterMemset( 868 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 869 isVolatile, Builder); 870 } 871 return; 872 } 873 874 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 875 "Unknown value type!"); 876 877 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 878 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 879 880 // If necessary, get a pointer to the element and emit it. 881 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 882 emitStoresForInitAfterMemset( 883 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 884 isVolatile, Builder); 885 } 886 } 887 888 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 889 /// plus some stores to initialize a local variable instead of using a memcpy 890 /// from a constant global. It is beneficial to use memset if the global is all 891 /// zeros, or mostly zeros and large. 892 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 893 uint64_t GlobalSize) { 894 // If a global is all zeros, always use a memset. 895 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 896 897 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 898 // do it if it will require 6 or fewer scalar stores. 899 // TODO: Should budget depends on the size? Avoiding a large global warrants 900 // plopping in more stores. 901 unsigned StoreBudget = 6; 902 uint64_t SizeLimit = 32; 903 904 return GlobalSize > SizeLimit && 905 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 906 } 907 908 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 909 /// variable declaration with auto, register, or no storage class specifier. 910 /// These turn into simple stack objects, or GlobalValues depending on target. 911 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 912 AutoVarEmission emission = EmitAutoVarAlloca(D); 913 EmitAutoVarInit(emission); 914 EmitAutoVarCleanups(emission); 915 } 916 917 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 918 /// markers. 919 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 920 const LangOptions &LangOpts) { 921 // Asan uses markers for use-after-scope checks. 922 if (CGOpts.SanitizeAddressUseAfterScope) 923 return true; 924 925 // Disable lifetime markers in msan builds. 926 // FIXME: Remove this when msan works with lifetime markers. 927 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 928 return false; 929 930 // For now, only in optimized builds. 931 return CGOpts.OptimizationLevel != 0; 932 } 933 934 /// Emit a lifetime.begin marker if some criteria are satisfied. 935 /// \return a pointer to the temporary size Value if a marker was emitted, null 936 /// otherwise 937 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 938 llvm::Value *Addr) { 939 if (!shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), getLangOpts())) 940 return nullptr; 941 942 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 943 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 944 llvm::CallInst *C = 945 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 946 C->setDoesNotThrow(); 947 return SizeV; 948 } 949 950 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 951 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 952 llvm::CallInst *C = 953 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 954 C->setDoesNotThrow(); 955 } 956 957 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 958 /// local variable. Does not emit initialization or destruction. 959 CodeGenFunction::AutoVarEmission 960 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 961 QualType Ty = D.getType(); 962 963 AutoVarEmission emission(D); 964 965 bool isByRef = D.hasAttr<BlocksAttr>(); 966 emission.IsByRef = isByRef; 967 968 CharUnits alignment = getContext().getDeclAlign(&D); 969 970 // If the type is variably-modified, emit all the VLA sizes for it. 971 if (Ty->isVariablyModifiedType()) 972 EmitVariablyModifiedType(Ty); 973 974 Address address = Address::invalid(); 975 if (Ty->isConstantSizeType()) { 976 bool NRVO = getLangOpts().ElideConstructors && 977 D.isNRVOVariable(); 978 979 // If this value is an array or struct with a statically determinable 980 // constant initializer, there are optimizations we can do. 981 // 982 // TODO: We should constant-evaluate the initializer of any variable, 983 // as long as it is initialized by a constant expression. Currently, 984 // isConstantInitializer produces wrong answers for structs with 985 // reference or bitfield members, and a few other cases, and checking 986 // for POD-ness protects us from some of these. 987 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 988 (D.isConstexpr() || 989 ((Ty.isPODType(getContext()) || 990 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 991 D.getInit()->isConstantInitializer(getContext(), false)))) { 992 993 // If the variable's a const type, and it's neither an NRVO 994 // candidate nor a __block variable and has no mutable members, 995 // emit it as a global instead. 996 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 997 CGM.isTypeConstant(Ty, true)) { 998 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 999 1000 // Signal this condition to later callbacks. 1001 emission.Addr = Address::invalid(); 1002 assert(emission.wasEmittedAsGlobal()); 1003 return emission; 1004 } 1005 1006 // Otherwise, tell the initialization code that we're in this case. 1007 emission.IsConstantAggregate = true; 1008 } 1009 1010 // A normal fixed sized variable becomes an alloca in the entry block, 1011 // unless it's an NRVO variable. 1012 1013 if (NRVO) { 1014 // The named return value optimization: allocate this variable in the 1015 // return slot, so that we can elide the copy when returning this 1016 // variable (C++0x [class.copy]p34). 1017 address = ReturnValue; 1018 1019 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1020 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 1021 // Create a flag that is used to indicate when the NRVO was applied 1022 // to this variable. Set it to zero to indicate that NRVO was not 1023 // applied. 1024 llvm::Value *Zero = Builder.getFalse(); 1025 Address NRVOFlag = 1026 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1027 EnsureInsertPoint(); 1028 Builder.CreateStore(Zero, NRVOFlag); 1029 1030 // Record the NRVO flag for this variable. 1031 NRVOFlags[&D] = NRVOFlag.getPointer(); 1032 emission.NRVOFlag = NRVOFlag.getPointer(); 1033 } 1034 } 1035 } else { 1036 CharUnits allocaAlignment; 1037 llvm::Type *allocaTy; 1038 if (isByRef) { 1039 auto &byrefInfo = getBlockByrefInfo(&D); 1040 allocaTy = byrefInfo.Type; 1041 allocaAlignment = byrefInfo.ByrefAlignment; 1042 } else { 1043 allocaTy = ConvertTypeForMem(Ty); 1044 allocaAlignment = alignment; 1045 } 1046 1047 // Create the alloca. Note that we set the name separately from 1048 // building the instruction so that it's there even in no-asserts 1049 // builds. 1050 address = CreateTempAlloca(allocaTy, allocaAlignment); 1051 address.getPointer()->setName(D.getName()); 1052 1053 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1054 // the catch parameter starts in the catchpad instruction, and we can't 1055 // insert code in those basic blocks. 1056 bool IsMSCatchParam = 1057 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1058 1059 // Emit a lifetime intrinsic if meaningful. There's no point 1060 // in doing this if we don't have a valid insertion point (?). 1061 if (HaveInsertPoint() && !IsMSCatchParam) { 1062 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1063 emission.SizeForLifetimeMarkers = 1064 EmitLifetimeStart(size, address.getPointer()); 1065 } else { 1066 assert(!emission.useLifetimeMarkers()); 1067 } 1068 } 1069 } else { 1070 EnsureInsertPoint(); 1071 1072 if (!DidCallStackSave) { 1073 // Save the stack. 1074 Address Stack = 1075 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1076 1077 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1078 llvm::Value *V = Builder.CreateCall(F); 1079 Builder.CreateStore(V, Stack); 1080 1081 DidCallStackSave = true; 1082 1083 // Push a cleanup block and restore the stack there. 1084 // FIXME: in general circumstances, this should be an EH cleanup. 1085 pushStackRestore(NormalCleanup, Stack); 1086 } 1087 1088 llvm::Value *elementCount; 1089 QualType elementType; 1090 std::tie(elementCount, elementType) = getVLASize(Ty); 1091 1092 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1093 1094 // Allocate memory for the array. 1095 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 1096 vla->setAlignment(alignment.getQuantity()); 1097 1098 address = Address(vla, alignment); 1099 } 1100 1101 setAddrOfLocalVar(&D, address); 1102 emission.Addr = address; 1103 1104 // Emit debug info for local var declaration. 1105 if (HaveInsertPoint()) 1106 if (CGDebugInfo *DI = getDebugInfo()) { 1107 if (CGM.getCodeGenOpts().getDebugInfo() >= 1108 codegenoptions::LimitedDebugInfo) { 1109 DI->setLocation(D.getLocation()); 1110 DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1111 } 1112 } 1113 1114 if (D.hasAttr<AnnotateAttr>()) 1115 EmitVarAnnotations(&D, address.getPointer()); 1116 1117 return emission; 1118 } 1119 1120 /// Determines whether the given __block variable is potentially 1121 /// captured by the given expression. 1122 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1123 // Skip the most common kinds of expressions that make 1124 // hierarchy-walking expensive. 1125 e = e->IgnoreParenCasts(); 1126 1127 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1128 const BlockDecl *block = be->getBlockDecl(); 1129 for (const auto &I : block->captures()) { 1130 if (I.getVariable() == &var) 1131 return true; 1132 } 1133 1134 // No need to walk into the subexpressions. 1135 return false; 1136 } 1137 1138 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1139 const CompoundStmt *CS = SE->getSubStmt(); 1140 for (const auto *BI : CS->body()) 1141 if (const auto *E = dyn_cast<Expr>(BI)) { 1142 if (isCapturedBy(var, E)) 1143 return true; 1144 } 1145 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1146 // special case declarations 1147 for (const auto *I : DS->decls()) { 1148 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1149 const Expr *Init = VD->getInit(); 1150 if (Init && isCapturedBy(var, Init)) 1151 return true; 1152 } 1153 } 1154 } 1155 else 1156 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1157 // Later, provide code to poke into statements for capture analysis. 1158 return true; 1159 return false; 1160 } 1161 1162 for (const Stmt *SubStmt : e->children()) 1163 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1164 return true; 1165 1166 return false; 1167 } 1168 1169 /// \brief Determine whether the given initializer is trivial in the sense 1170 /// that it requires no code to be generated. 1171 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1172 if (!Init) 1173 return true; 1174 1175 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1176 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1177 if (Constructor->isTrivial() && 1178 Constructor->isDefaultConstructor() && 1179 !Construct->requiresZeroInitialization()) 1180 return true; 1181 1182 return false; 1183 } 1184 1185 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1186 assert(emission.Variable && "emission was not valid!"); 1187 1188 // If this was emitted as a global constant, we're done. 1189 if (emission.wasEmittedAsGlobal()) return; 1190 1191 const VarDecl &D = *emission.Variable; 1192 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1193 QualType type = D.getType(); 1194 1195 // If this local has an initializer, emit it now. 1196 const Expr *Init = D.getInit(); 1197 1198 // If we are at an unreachable point, we don't need to emit the initializer 1199 // unless it contains a label. 1200 if (!HaveInsertPoint()) { 1201 if (!Init || !ContainsLabel(Init)) return; 1202 EnsureInsertPoint(); 1203 } 1204 1205 // Initialize the structure of a __block variable. 1206 if (emission.IsByRef) 1207 emitByrefStructureInit(emission); 1208 1209 if (isTrivialInitializer(Init)) 1210 return; 1211 1212 // Check whether this is a byref variable that's potentially 1213 // captured and moved by its own initializer. If so, we'll need to 1214 // emit the initializer first, then copy into the variable. 1215 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1216 1217 Address Loc = 1218 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1219 1220 llvm::Constant *constant = nullptr; 1221 if (emission.IsConstantAggregate || D.isConstexpr()) { 1222 assert(!capturedByInit && "constant init contains a capturing block?"); 1223 constant = CGM.EmitConstantInit(D, this); 1224 } 1225 1226 if (!constant) { 1227 LValue lv = MakeAddrLValue(Loc, type); 1228 lv.setNonGC(true); 1229 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1230 } 1231 1232 if (!emission.IsConstantAggregate) { 1233 // For simple scalar/complex initialization, store the value directly. 1234 LValue lv = MakeAddrLValue(Loc, type); 1235 lv.setNonGC(true); 1236 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1237 } 1238 1239 // If this is a simple aggregate initialization, we can optimize it 1240 // in various ways. 1241 bool isVolatile = type.isVolatileQualified(); 1242 1243 llvm::Value *SizeVal = 1244 llvm::ConstantInt::get(IntPtrTy, 1245 getContext().getTypeSizeInChars(type).getQuantity()); 1246 1247 llvm::Type *BP = Int8PtrTy; 1248 if (Loc.getType() != BP) 1249 Loc = Builder.CreateBitCast(Loc, BP); 1250 1251 // If the initializer is all or mostly zeros, codegen with memset then do 1252 // a few stores afterward. 1253 if (shouldUseMemSetPlusStoresToInitialize(constant, 1254 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1255 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1256 isVolatile); 1257 // Zero and undef don't require a stores. 1258 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1259 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1260 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1261 isVolatile, Builder); 1262 } 1263 } else { 1264 // Otherwise, create a temporary global with the initializer then 1265 // memcpy from the global to the alloca. 1266 std::string Name = getStaticDeclName(CGM, D); 1267 llvm::GlobalVariable *GV = 1268 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1269 llvm::GlobalValue::PrivateLinkage, 1270 constant, Name); 1271 GV->setAlignment(Loc.getAlignment().getQuantity()); 1272 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1273 1274 Address SrcPtr = Address(GV, Loc.getAlignment()); 1275 if (SrcPtr.getType() != BP) 1276 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1277 1278 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1279 } 1280 } 1281 1282 /// Emit an expression as an initializer for a variable at the given 1283 /// location. The expression is not necessarily the normal 1284 /// initializer for the variable, and the address is not necessarily 1285 /// its normal location. 1286 /// 1287 /// \param init the initializing expression 1288 /// \param var the variable to act as if we're initializing 1289 /// \param loc the address to initialize; its type is a pointer 1290 /// to the LLVM mapping of the variable's type 1291 /// \param alignment the alignment of the address 1292 /// \param capturedByInit true if the variable is a __block variable 1293 /// whose address is potentially changed by the initializer 1294 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1295 LValue lvalue, bool capturedByInit) { 1296 QualType type = D->getType(); 1297 1298 if (type->isReferenceType()) { 1299 RValue rvalue = EmitReferenceBindingToExpr(init); 1300 if (capturedByInit) 1301 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1302 EmitStoreThroughLValue(rvalue, lvalue, true); 1303 return; 1304 } 1305 switch (getEvaluationKind(type)) { 1306 case TEK_Scalar: 1307 EmitScalarInit(init, D, lvalue, capturedByInit); 1308 return; 1309 case TEK_Complex: { 1310 ComplexPairTy complex = EmitComplexExpr(init); 1311 if (capturedByInit) 1312 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1313 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1314 return; 1315 } 1316 case TEK_Aggregate: 1317 if (type->isAtomicType()) { 1318 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1319 } else { 1320 // TODO: how can we delay here if D is captured by its initializer? 1321 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1322 AggValueSlot::IsDestructed, 1323 AggValueSlot::DoesNotNeedGCBarriers, 1324 AggValueSlot::IsNotAliased)); 1325 } 1326 return; 1327 } 1328 llvm_unreachable("bad evaluation kind"); 1329 } 1330 1331 /// Enter a destroy cleanup for the given local variable. 1332 void CodeGenFunction::emitAutoVarTypeCleanup( 1333 const CodeGenFunction::AutoVarEmission &emission, 1334 QualType::DestructionKind dtorKind) { 1335 assert(dtorKind != QualType::DK_none); 1336 1337 // Note that for __block variables, we want to destroy the 1338 // original stack object, not the possibly forwarded object. 1339 Address addr = emission.getObjectAddress(*this); 1340 1341 const VarDecl *var = emission.Variable; 1342 QualType type = var->getType(); 1343 1344 CleanupKind cleanupKind = NormalAndEHCleanup; 1345 CodeGenFunction::Destroyer *destroyer = nullptr; 1346 1347 switch (dtorKind) { 1348 case QualType::DK_none: 1349 llvm_unreachable("no cleanup for trivially-destructible variable"); 1350 1351 case QualType::DK_cxx_destructor: 1352 // If there's an NRVO flag on the emission, we need a different 1353 // cleanup. 1354 if (emission.NRVOFlag) { 1355 assert(!type->isArrayType()); 1356 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1357 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1358 dtor, emission.NRVOFlag); 1359 return; 1360 } 1361 break; 1362 1363 case QualType::DK_objc_strong_lifetime: 1364 // Suppress cleanups for pseudo-strong variables. 1365 if (var->isARCPseudoStrong()) return; 1366 1367 // Otherwise, consider whether to use an EH cleanup or not. 1368 cleanupKind = getARCCleanupKind(); 1369 1370 // Use the imprecise destroyer by default. 1371 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1372 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1373 break; 1374 1375 case QualType::DK_objc_weak_lifetime: 1376 break; 1377 } 1378 1379 // If we haven't chosen a more specific destroyer, use the default. 1380 if (!destroyer) destroyer = getDestroyer(dtorKind); 1381 1382 // Use an EH cleanup in array destructors iff the destructor itself 1383 // is being pushed as an EH cleanup. 1384 bool useEHCleanup = (cleanupKind & EHCleanup); 1385 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1386 useEHCleanup); 1387 } 1388 1389 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1390 assert(emission.Variable && "emission was not valid!"); 1391 1392 // If this was emitted as a global constant, we're done. 1393 if (emission.wasEmittedAsGlobal()) return; 1394 1395 // If we don't have an insertion point, we're done. Sema prevents 1396 // us from jumping into any of these scopes anyway. 1397 if (!HaveInsertPoint()) return; 1398 1399 const VarDecl &D = *emission.Variable; 1400 1401 // Make sure we call @llvm.lifetime.end. This needs to happen 1402 // *last*, so the cleanup needs to be pushed *first*. 1403 if (emission.useLifetimeMarkers()) 1404 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1405 emission.getAllocatedAddress(), 1406 emission.getSizeForLifetimeMarkers()); 1407 1408 // Check the type for a cleanup. 1409 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1410 emitAutoVarTypeCleanup(emission, dtorKind); 1411 1412 // In GC mode, honor objc_precise_lifetime. 1413 if (getLangOpts().getGC() != LangOptions::NonGC && 1414 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1415 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1416 } 1417 1418 // Handle the cleanup attribute. 1419 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1420 const FunctionDecl *FD = CA->getFunctionDecl(); 1421 1422 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1423 assert(F && "Could not find function!"); 1424 1425 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1426 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1427 } 1428 1429 // If this is a block variable, call _Block_object_destroy 1430 // (on the unforwarded address). 1431 if (emission.IsByRef) 1432 enterByrefCleanup(emission); 1433 } 1434 1435 CodeGenFunction::Destroyer * 1436 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1437 switch (kind) { 1438 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1439 case QualType::DK_cxx_destructor: 1440 return destroyCXXObject; 1441 case QualType::DK_objc_strong_lifetime: 1442 return destroyARCStrongPrecise; 1443 case QualType::DK_objc_weak_lifetime: 1444 return destroyARCWeak; 1445 } 1446 llvm_unreachable("Unknown DestructionKind"); 1447 } 1448 1449 /// pushEHDestroy - Push the standard destructor for the given type as 1450 /// an EH-only cleanup. 1451 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1452 Address addr, QualType type) { 1453 assert(dtorKind && "cannot push destructor for trivial type"); 1454 assert(needsEHCleanup(dtorKind)); 1455 1456 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1457 } 1458 1459 /// pushDestroy - Push the standard destructor for the given type as 1460 /// at least a normal cleanup. 1461 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1462 Address addr, QualType type) { 1463 assert(dtorKind && "cannot push destructor for trivial type"); 1464 1465 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1466 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1467 cleanupKind & EHCleanup); 1468 } 1469 1470 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1471 QualType type, Destroyer *destroyer, 1472 bool useEHCleanupForArray) { 1473 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1474 destroyer, useEHCleanupForArray); 1475 } 1476 1477 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1478 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1479 } 1480 1481 void CodeGenFunction::pushLifetimeExtendedDestroy( 1482 CleanupKind cleanupKind, Address addr, QualType type, 1483 Destroyer *destroyer, bool useEHCleanupForArray) { 1484 assert(!isInConditionalBranch() && 1485 "performing lifetime extension from within conditional"); 1486 1487 // Push an EH-only cleanup for the object now. 1488 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1489 // around in case a temporary's destructor throws an exception. 1490 if (cleanupKind & EHCleanup) 1491 EHStack.pushCleanup<DestroyObject>( 1492 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1493 destroyer, useEHCleanupForArray); 1494 1495 // Remember that we need to push a full cleanup for the object at the 1496 // end of the full-expression. 1497 pushCleanupAfterFullExpr<DestroyObject>( 1498 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1499 } 1500 1501 /// emitDestroy - Immediately perform the destruction of the given 1502 /// object. 1503 /// 1504 /// \param addr - the address of the object; a type* 1505 /// \param type - the type of the object; if an array type, all 1506 /// objects are destroyed in reverse order 1507 /// \param destroyer - the function to call to destroy individual 1508 /// elements 1509 /// \param useEHCleanupForArray - whether an EH cleanup should be 1510 /// used when destroying array elements, in case one of the 1511 /// destructions throws an exception 1512 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1513 Destroyer *destroyer, 1514 bool useEHCleanupForArray) { 1515 const ArrayType *arrayType = getContext().getAsArrayType(type); 1516 if (!arrayType) 1517 return destroyer(*this, addr, type); 1518 1519 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1520 1521 CharUnits elementAlign = 1522 addr.getAlignment() 1523 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1524 1525 // Normally we have to check whether the array is zero-length. 1526 bool checkZeroLength = true; 1527 1528 // But if the array length is constant, we can suppress that. 1529 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1530 // ...and if it's constant zero, we can just skip the entire thing. 1531 if (constLength->isZero()) return; 1532 checkZeroLength = false; 1533 } 1534 1535 llvm::Value *begin = addr.getPointer(); 1536 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1537 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1538 checkZeroLength, useEHCleanupForArray); 1539 } 1540 1541 /// emitArrayDestroy - Destroys all the elements of the given array, 1542 /// beginning from last to first. The array cannot be zero-length. 1543 /// 1544 /// \param begin - a type* denoting the first element of the array 1545 /// \param end - a type* denoting one past the end of the array 1546 /// \param elementType - the element type of the array 1547 /// \param destroyer - the function to call to destroy elements 1548 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1549 /// the remaining elements in case the destruction of a single 1550 /// element throws 1551 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1552 llvm::Value *end, 1553 QualType elementType, 1554 CharUnits elementAlign, 1555 Destroyer *destroyer, 1556 bool checkZeroLength, 1557 bool useEHCleanup) { 1558 assert(!elementType->isArrayType()); 1559 1560 // The basic structure here is a do-while loop, because we don't 1561 // need to check for the zero-element case. 1562 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1563 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1564 1565 if (checkZeroLength) { 1566 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1567 "arraydestroy.isempty"); 1568 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1569 } 1570 1571 // Enter the loop body, making that address the current address. 1572 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1573 EmitBlock(bodyBB); 1574 llvm::PHINode *elementPast = 1575 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1576 elementPast->addIncoming(end, entryBB); 1577 1578 // Shift the address back by one element. 1579 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1580 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1581 "arraydestroy.element"); 1582 1583 if (useEHCleanup) 1584 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1585 destroyer); 1586 1587 // Perform the actual destruction there. 1588 destroyer(*this, Address(element, elementAlign), elementType); 1589 1590 if (useEHCleanup) 1591 PopCleanupBlock(); 1592 1593 // Check whether we've reached the end. 1594 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1595 Builder.CreateCondBr(done, doneBB, bodyBB); 1596 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1597 1598 // Done. 1599 EmitBlock(doneBB); 1600 } 1601 1602 /// Perform partial array destruction as if in an EH cleanup. Unlike 1603 /// emitArrayDestroy, the element type here may still be an array type. 1604 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1605 llvm::Value *begin, llvm::Value *end, 1606 QualType type, CharUnits elementAlign, 1607 CodeGenFunction::Destroyer *destroyer) { 1608 // If the element type is itself an array, drill down. 1609 unsigned arrayDepth = 0; 1610 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1611 // VLAs don't require a GEP index to walk into. 1612 if (!isa<VariableArrayType>(arrayType)) 1613 arrayDepth++; 1614 type = arrayType->getElementType(); 1615 } 1616 1617 if (arrayDepth) { 1618 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1619 1620 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1621 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1622 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1623 } 1624 1625 // Destroy the array. We don't ever need an EH cleanup because we 1626 // assume that we're in an EH cleanup ourselves, so a throwing 1627 // destructor causes an immediate terminate. 1628 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1629 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1630 } 1631 1632 namespace { 1633 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1634 /// array destroy where the end pointer is regularly determined and 1635 /// does not need to be loaded from a local. 1636 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1637 llvm::Value *ArrayBegin; 1638 llvm::Value *ArrayEnd; 1639 QualType ElementType; 1640 CodeGenFunction::Destroyer *Destroyer; 1641 CharUnits ElementAlign; 1642 public: 1643 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1644 QualType elementType, CharUnits elementAlign, 1645 CodeGenFunction::Destroyer *destroyer) 1646 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1647 ElementType(elementType), Destroyer(destroyer), 1648 ElementAlign(elementAlign) {} 1649 1650 void Emit(CodeGenFunction &CGF, Flags flags) override { 1651 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1652 ElementType, ElementAlign, Destroyer); 1653 } 1654 }; 1655 1656 /// IrregularPartialArrayDestroy - a cleanup which performs a 1657 /// partial array destroy where the end pointer is irregularly 1658 /// determined and must be loaded from a local. 1659 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1660 llvm::Value *ArrayBegin; 1661 Address ArrayEndPointer; 1662 QualType ElementType; 1663 CodeGenFunction::Destroyer *Destroyer; 1664 CharUnits ElementAlign; 1665 public: 1666 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1667 Address arrayEndPointer, 1668 QualType elementType, 1669 CharUnits elementAlign, 1670 CodeGenFunction::Destroyer *destroyer) 1671 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1672 ElementType(elementType), Destroyer(destroyer), 1673 ElementAlign(elementAlign) {} 1674 1675 void Emit(CodeGenFunction &CGF, Flags flags) override { 1676 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1677 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1678 ElementType, ElementAlign, Destroyer); 1679 } 1680 }; 1681 } // end anonymous namespace 1682 1683 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1684 /// already-constructed elements of the given array. The cleanup 1685 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1686 /// 1687 /// \param elementType - the immediate element type of the array; 1688 /// possibly still an array type 1689 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1690 Address arrayEndPointer, 1691 QualType elementType, 1692 CharUnits elementAlign, 1693 Destroyer *destroyer) { 1694 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1695 arrayBegin, arrayEndPointer, 1696 elementType, elementAlign, 1697 destroyer); 1698 } 1699 1700 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1701 /// already-constructed elements of the given array. The cleanup 1702 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1703 /// 1704 /// \param elementType - the immediate element type of the array; 1705 /// possibly still an array type 1706 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1707 llvm::Value *arrayEnd, 1708 QualType elementType, 1709 CharUnits elementAlign, 1710 Destroyer *destroyer) { 1711 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1712 arrayBegin, arrayEnd, 1713 elementType, elementAlign, 1714 destroyer); 1715 } 1716 1717 /// Lazily declare the @llvm.lifetime.start intrinsic. 1718 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1719 if (LifetimeStartFn) return LifetimeStartFn; 1720 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1721 llvm::Intrinsic::lifetime_start); 1722 return LifetimeStartFn; 1723 } 1724 1725 /// Lazily declare the @llvm.lifetime.end intrinsic. 1726 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1727 if (LifetimeEndFn) return LifetimeEndFn; 1728 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1729 llvm::Intrinsic::lifetime_end); 1730 return LifetimeEndFn; 1731 } 1732 1733 namespace { 1734 /// A cleanup to perform a release of an object at the end of a 1735 /// function. This is used to balance out the incoming +1 of a 1736 /// ns_consumed argument when we can't reasonably do that just by 1737 /// not doing the initial retain for a __block argument. 1738 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1739 ConsumeARCParameter(llvm::Value *param, 1740 ARCPreciseLifetime_t precise) 1741 : Param(param), Precise(precise) {} 1742 1743 llvm::Value *Param; 1744 ARCPreciseLifetime_t Precise; 1745 1746 void Emit(CodeGenFunction &CGF, Flags flags) override { 1747 CGF.EmitARCRelease(Param, Precise); 1748 } 1749 }; 1750 } // end anonymous namespace 1751 1752 /// Emit an alloca (or GlobalValue depending on target) 1753 /// for the specified parameter and set up LocalDeclMap. 1754 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1755 unsigned ArgNo) { 1756 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1757 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1758 "Invalid argument to EmitParmDecl"); 1759 1760 Arg.getAnyValue()->setName(D.getName()); 1761 1762 QualType Ty = D.getType(); 1763 1764 // Use better IR generation for certain implicit parameters. 1765 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1766 // The only implicit argument a block has is its literal. 1767 // We assume this is always passed directly. 1768 if (BlockInfo) { 1769 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1770 return; 1771 } 1772 } 1773 1774 Address DeclPtr = Address::invalid(); 1775 bool DoStore = false; 1776 bool IsScalar = hasScalarEvaluationKind(Ty); 1777 // If we already have a pointer to the argument, reuse the input pointer. 1778 if (Arg.isIndirect()) { 1779 DeclPtr = Arg.getIndirectAddress(); 1780 // If we have a prettier pointer type at this point, bitcast to that. 1781 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1782 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1783 if (DeclPtr.getType() != IRTy) 1784 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1785 1786 // Push a destructor cleanup for this parameter if the ABI requires it. 1787 // Don't push a cleanup in a thunk for a method that will also emit a 1788 // cleanup. 1789 if (!IsScalar && !CurFuncIsThunk && 1790 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1791 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1792 if (RD && RD->hasNonTrivialDestructor()) 1793 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1794 } 1795 } else { 1796 // Otherwise, create a temporary to hold the value. 1797 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1798 D.getName() + ".addr"); 1799 DoStore = true; 1800 } 1801 1802 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1803 1804 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1805 if (IsScalar) { 1806 Qualifiers qs = Ty.getQualifiers(); 1807 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1808 // We honor __attribute__((ns_consumed)) for types with lifetime. 1809 // For __strong, it's handled by just skipping the initial retain; 1810 // otherwise we have to balance out the initial +1 with an extra 1811 // cleanup to do the release at the end of the function. 1812 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1813 1814 // 'self' is always formally __strong, but if this is not an 1815 // init method then we don't want to retain it. 1816 if (D.isARCPseudoStrong()) { 1817 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1818 assert(&D == method->getSelfDecl()); 1819 assert(lt == Qualifiers::OCL_Strong); 1820 assert(qs.hasConst()); 1821 assert(method->getMethodFamily() != OMF_init); 1822 (void) method; 1823 lt = Qualifiers::OCL_ExplicitNone; 1824 } 1825 1826 if (lt == Qualifiers::OCL_Strong) { 1827 if (!isConsumed) { 1828 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1829 // use objc_storeStrong(&dest, value) for retaining the 1830 // object. But first, store a null into 'dest' because 1831 // objc_storeStrong attempts to release its old value. 1832 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1833 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1834 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1835 DoStore = false; 1836 } 1837 else 1838 // Don't use objc_retainBlock for block pointers, because we 1839 // don't want to Block_copy something just because we got it 1840 // as a parameter. 1841 ArgVal = EmitARCRetainNonBlock(ArgVal); 1842 } 1843 } else { 1844 // Push the cleanup for a consumed parameter. 1845 if (isConsumed) { 1846 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1847 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1848 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1849 precise); 1850 } 1851 1852 if (lt == Qualifiers::OCL_Weak) { 1853 EmitARCInitWeak(DeclPtr, ArgVal); 1854 DoStore = false; // The weak init is a store, no need to do two. 1855 } 1856 } 1857 1858 // Enter the cleanup scope. 1859 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1860 } 1861 } 1862 1863 // Store the initial value into the alloca. 1864 if (DoStore) 1865 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1866 1867 setAddrOfLocalVar(&D, DeclPtr); 1868 1869 // Emit debug info for param declaration. 1870 if (CGDebugInfo *DI = getDebugInfo()) { 1871 if (CGM.getCodeGenOpts().getDebugInfo() >= 1872 codegenoptions::LimitedDebugInfo) { 1873 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1874 } 1875 } 1876 1877 if (D.hasAttr<AnnotateAttr>()) 1878 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1879 } 1880 1881 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 1882 CodeGenFunction *CGF) { 1883 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 1884 return; 1885 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 1886 } 1887