1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Type.h"
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 void CodeGenFunction::EmitDecl(const Decl &D) {
43   switch (D.getKind()) {
44   case Decl::BuiltinTemplate:
45   case Decl::TranslationUnit:
46   case Decl::ExternCContext:
47   case Decl::Namespace:
48   case Decl::UnresolvedUsingTypename:
49   case Decl::ClassTemplateSpecialization:
50   case Decl::ClassTemplatePartialSpecialization:
51   case Decl::VarTemplateSpecialization:
52   case Decl::VarTemplatePartialSpecialization:
53   case Decl::TemplateTypeParm:
54   case Decl::UnresolvedUsingValue:
55   case Decl::NonTypeTemplateParm:
56   case Decl::CXXDeductionGuide:
57   case Decl::CXXMethod:
58   case Decl::CXXConstructor:
59   case Decl::CXXDestructor:
60   case Decl::CXXConversion:
61   case Decl::Field:
62   case Decl::MSProperty:
63   case Decl::IndirectField:
64   case Decl::ObjCIvar:
65   case Decl::ObjCAtDefsField:
66   case Decl::ParmVar:
67   case Decl::ImplicitParam:
68   case Decl::ClassTemplate:
69   case Decl::VarTemplate:
70   case Decl::FunctionTemplate:
71   case Decl::TypeAliasTemplate:
72   case Decl::TemplateTemplateParm:
73   case Decl::ObjCMethod:
74   case Decl::ObjCCategory:
75   case Decl::ObjCProtocol:
76   case Decl::ObjCInterface:
77   case Decl::ObjCCategoryImpl:
78   case Decl::ObjCImplementation:
79   case Decl::ObjCProperty:
80   case Decl::ObjCCompatibleAlias:
81   case Decl::PragmaComment:
82   case Decl::PragmaDetectMismatch:
83   case Decl::AccessSpec:
84   case Decl::LinkageSpec:
85   case Decl::Export:
86   case Decl::ObjCPropertyImpl:
87   case Decl::FileScopeAsm:
88   case Decl::Friend:
89   case Decl::FriendTemplate:
90   case Decl::Block:
91   case Decl::Captured:
92   case Decl::ClassScopeFunctionSpecialization:
93   case Decl::UsingShadow:
94   case Decl::ConstructorUsingShadow:
95   case Decl::ObjCTypeParam:
96   case Decl::Binding:
97     llvm_unreachable("Declaration should not be in declstmts!");
98   case Decl::Function:  // void X();
99   case Decl::Record:    // struct/union/class X;
100   case Decl::Enum:      // enum X;
101   case Decl::EnumConstant: // enum ? { X = ? }
102   case Decl::CXXRecord: // struct/union/class X; [C++]
103   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
104   case Decl::Label:        // __label__ x;
105   case Decl::Import:
106   case Decl::OMPThreadPrivate:
107   case Decl::OMPAllocate:
108   case Decl::OMPCapturedExpr:
109   case Decl::OMPRequires:
110   case Decl::Empty:
111   case Decl::Concept:
112     // None of these decls require codegen support.
113     return;
114 
115   case Decl::NamespaceAlias:
116     if (CGDebugInfo *DI = getDebugInfo())
117         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
118     return;
119   case Decl::Using:          // using X; [C++]
120     if (CGDebugInfo *DI = getDebugInfo())
121         DI->EmitUsingDecl(cast<UsingDecl>(D));
122     return;
123   case Decl::UsingPack:
124     for (auto *Using : cast<UsingPackDecl>(D).expansions())
125       EmitDecl(*Using);
126     return;
127   case Decl::UsingDirective: // using namespace X; [C++]
128     if (CGDebugInfo *DI = getDebugInfo())
129       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
130     return;
131   case Decl::Var:
132   case Decl::Decomposition: {
133     const VarDecl &VD = cast<VarDecl>(D);
134     assert(VD.isLocalVarDecl() &&
135            "Should not see file-scope variables inside a function!");
136     EmitVarDecl(VD);
137     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
138       for (auto *B : DD->bindings())
139         if (auto *HD = B->getHoldingVar())
140           EmitVarDecl(*HD);
141     return;
142   }
143 
144   case Decl::OMPDeclareReduction:
145     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
146 
147   case Decl::OMPDeclareMapper:
148     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
149 
150   case Decl::Typedef:      // typedef int X;
151   case Decl::TypeAlias: {  // using X = int; [C++0x]
152     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
153     QualType Ty = TD.getUnderlyingType();
154 
155     if (Ty->isVariablyModifiedType())
156       EmitVariablyModifiedType(Ty);
157 
158     return;
159   }
160   }
161 }
162 
163 /// EmitVarDecl - This method handles emission of any variable declaration
164 /// inside a function, including static vars etc.
165 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
166   if (D.hasExternalStorage())
167     // Don't emit it now, allow it to be emitted lazily on its first use.
168     return;
169 
170   // Some function-scope variable does not have static storage but still
171   // needs to be emitted like a static variable, e.g. a function-scope
172   // variable in constant address space in OpenCL.
173   if (D.getStorageDuration() != SD_Automatic) {
174     // Static sampler variables translated to function calls.
175     if (D.getType()->isSamplerT())
176       return;
177 
178     llvm::GlobalValue::LinkageTypes Linkage =
179         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
180 
181     // FIXME: We need to force the emission/use of a guard variable for
182     // some variables even if we can constant-evaluate them because
183     // we can't guarantee every translation unit will constant-evaluate them.
184 
185     return EmitStaticVarDecl(D, Linkage);
186   }
187 
188   if (D.getType().getAddressSpace() == LangAS::opencl_local)
189     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
190 
191   assert(D.hasLocalStorage());
192   return EmitAutoVarDecl(D);
193 }
194 
195 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
196   if (CGM.getLangOpts().CPlusPlus)
197     return CGM.getMangledName(&D).str();
198 
199   // If this isn't C++, we don't need a mangled name, just a pretty one.
200   assert(!D.isExternallyVisible() && "name shouldn't matter");
201   std::string ContextName;
202   const DeclContext *DC = D.getDeclContext();
203   if (auto *CD = dyn_cast<CapturedDecl>(DC))
204     DC = cast<DeclContext>(CD->getNonClosureContext());
205   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
206     ContextName = CGM.getMangledName(FD);
207   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
208     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
209   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
210     ContextName = OMD->getSelector().getAsString();
211   else
212     llvm_unreachable("Unknown context for static var decl");
213 
214   ContextName += "." + D.getNameAsString();
215   return ContextName;
216 }
217 
218 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
219     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
220   // In general, we don't always emit static var decls once before we reference
221   // them. It is possible to reference them before emitting the function that
222   // contains them, and it is possible to emit the containing function multiple
223   // times.
224   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
225     return ExistingGV;
226 
227   QualType Ty = D.getType();
228   assert(Ty->isConstantSizeType() && "VLAs can't be static");
229 
230   // Use the label if the variable is renamed with the asm-label extension.
231   std::string Name;
232   if (D.hasAttr<AsmLabelAttr>())
233     Name = getMangledName(&D);
234   else
235     Name = getStaticDeclName(*this, D);
236 
237   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
238   LangAS AS = GetGlobalVarAddressSpace(&D);
239   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
240 
241   // OpenCL variables in local address space and CUDA shared
242   // variables cannot have an initializer.
243   llvm::Constant *Init = nullptr;
244   if (Ty.getAddressSpace() == LangAS::opencl_local ||
245       D.hasAttr<CUDASharedAttr>())
246     Init = llvm::UndefValue::get(LTy);
247   else
248     Init = EmitNullConstant(Ty);
249 
250   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
251       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
252       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
253   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
254 
255   if (supportsCOMDAT() && GV->isWeakForLinker())
256     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
257 
258   if (D.getTLSKind())
259     setTLSMode(GV, D);
260 
261   setGVProperties(GV, &D);
262 
263   // Make sure the result is of the correct type.
264   LangAS ExpectedAS = Ty.getAddressSpace();
265   llvm::Constant *Addr = GV;
266   if (AS != ExpectedAS) {
267     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
268         *this, GV, AS, ExpectedAS,
269         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
270   }
271 
272   setStaticLocalDeclAddress(&D, Addr);
273 
274   // Ensure that the static local gets initialized by making sure the parent
275   // function gets emitted eventually.
276   const Decl *DC = cast<Decl>(D.getDeclContext());
277 
278   // We can't name blocks or captured statements directly, so try to emit their
279   // parents.
280   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
281     DC = DC->getNonClosureContext();
282     // FIXME: Ensure that global blocks get emitted.
283     if (!DC)
284       return Addr;
285   }
286 
287   GlobalDecl GD;
288   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
289     GD = GlobalDecl(CD, Ctor_Base);
290   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
291     GD = GlobalDecl(DD, Dtor_Base);
292   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
293     GD = GlobalDecl(FD);
294   else {
295     // Don't do anything for Obj-C method decls or global closures. We should
296     // never defer them.
297     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
298   }
299   if (GD.getDecl()) {
300     // Disable emission of the parent function for the OpenMP device codegen.
301     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
302     (void)GetAddrOfGlobal(GD);
303   }
304 
305   return Addr;
306 }
307 
308 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
309 /// global variable that has already been created for it.  If the initializer
310 /// has a different type than GV does, this may free GV and return a different
311 /// one.  Otherwise it just returns GV.
312 llvm::GlobalVariable *
313 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
314                                                llvm::GlobalVariable *GV) {
315   ConstantEmitter emitter(*this);
316   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
317 
318   // If constant emission failed, then this should be a C++ static
319   // initializer.
320   if (!Init) {
321     if (!getLangOpts().CPlusPlus)
322       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
323     else if (HaveInsertPoint()) {
324       // Since we have a static initializer, this global variable can't
325       // be constant.
326       GV->setConstant(false);
327 
328       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
329     }
330     return GV;
331   }
332 
333   // The initializer may differ in type from the global. Rewrite
334   // the global to match the initializer.  (We have to do this
335   // because some types, like unions, can't be completely represented
336   // in the LLVM type system.)
337   if (GV->getType()->getElementType() != Init->getType()) {
338     llvm::GlobalVariable *OldGV = GV;
339 
340     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
341                                   OldGV->isConstant(),
342                                   OldGV->getLinkage(), Init, "",
343                                   /*InsertBefore*/ OldGV,
344                                   OldGV->getThreadLocalMode(),
345                            CGM.getContext().getTargetAddressSpace(D.getType()));
346     GV->setVisibility(OldGV->getVisibility());
347     GV->setDSOLocal(OldGV->isDSOLocal());
348     GV->setComdat(OldGV->getComdat());
349 
350     // Steal the name of the old global
351     GV->takeName(OldGV);
352 
353     // Replace all uses of the old global with the new global
354     llvm::Constant *NewPtrForOldDecl =
355     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
356     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
357 
358     // Erase the old global, since it is no longer used.
359     OldGV->eraseFromParent();
360   }
361 
362   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
363   GV->setInitializer(Init);
364 
365   emitter.finalize(GV);
366 
367   if (D.needsDestruction(getContext()) && HaveInsertPoint()) {
368     // We have a constant initializer, but a nontrivial destructor. We still
369     // need to perform a guarded "initialization" in order to register the
370     // destructor.
371     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
372   }
373 
374   return GV;
375 }
376 
377 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
378                                       llvm::GlobalValue::LinkageTypes Linkage) {
379   // Check to see if we already have a global variable for this
380   // declaration.  This can happen when double-emitting function
381   // bodies, e.g. with complete and base constructors.
382   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
383   CharUnits alignment = getContext().getDeclAlign(&D);
384 
385   // Store into LocalDeclMap before generating initializer to handle
386   // circular references.
387   setAddrOfLocalVar(&D, Address(addr, alignment));
388 
389   // We can't have a VLA here, but we can have a pointer to a VLA,
390   // even though that doesn't really make any sense.
391   // Make sure to evaluate VLA bounds now so that we have them for later.
392   if (D.getType()->isVariablyModifiedType())
393     EmitVariablyModifiedType(D.getType());
394 
395   // Save the type in case adding the initializer forces a type change.
396   llvm::Type *expectedType = addr->getType();
397 
398   llvm::GlobalVariable *var =
399     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
400 
401   // CUDA's local and local static __shared__ variables should not
402   // have any non-empty initializers. This is ensured by Sema.
403   // Whatever initializer such variable may have when it gets here is
404   // a no-op and should not be emitted.
405   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
406                          D.hasAttr<CUDASharedAttr>();
407   // If this value has an initializer, emit it.
408   if (D.getInit() && !isCudaSharedVar)
409     var = AddInitializerToStaticVarDecl(D, var);
410 
411   var->setAlignment(alignment.getAsAlign());
412 
413   if (D.hasAttr<AnnotateAttr>())
414     CGM.AddGlobalAnnotations(&D, var);
415 
416   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
417     var->addAttribute("bss-section", SA->getName());
418   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
419     var->addAttribute("data-section", SA->getName());
420   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
421     var->addAttribute("rodata-section", SA->getName());
422 
423   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
424     var->setSection(SA->getName());
425 
426   if (D.hasAttr<UsedAttr>())
427     CGM.addUsedGlobal(var);
428 
429   // We may have to cast the constant because of the initializer
430   // mismatch above.
431   //
432   // FIXME: It is really dangerous to store this in the map; if anyone
433   // RAUW's the GV uses of this constant will be invalid.
434   llvm::Constant *castedAddr =
435     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
436   if (var != castedAddr)
437     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
438   CGM.setStaticLocalDeclAddress(&D, castedAddr);
439 
440   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
441 
442   // Emit global variable debug descriptor for static vars.
443   CGDebugInfo *DI = getDebugInfo();
444   if (DI &&
445       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
446     DI->setLocation(D.getLocation());
447     DI->EmitGlobalVariable(var, &D);
448   }
449 }
450 
451 namespace {
452   struct DestroyObject final : EHScopeStack::Cleanup {
453     DestroyObject(Address addr, QualType type,
454                   CodeGenFunction::Destroyer *destroyer,
455                   bool useEHCleanupForArray)
456       : addr(addr), type(type), destroyer(destroyer),
457         useEHCleanupForArray(useEHCleanupForArray) {}
458 
459     Address addr;
460     QualType type;
461     CodeGenFunction::Destroyer *destroyer;
462     bool useEHCleanupForArray;
463 
464     void Emit(CodeGenFunction &CGF, Flags flags) override {
465       // Don't use an EH cleanup recursively from an EH cleanup.
466       bool useEHCleanupForArray =
467         flags.isForNormalCleanup() && this->useEHCleanupForArray;
468 
469       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
470     }
471   };
472 
473   template <class Derived>
474   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
475     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
476         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
477 
478     llvm::Value *NRVOFlag;
479     Address Loc;
480     QualType Ty;
481 
482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       // Along the exceptions path we always execute the dtor.
484       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
485 
486       llvm::BasicBlock *SkipDtorBB = nullptr;
487       if (NRVO) {
488         // If we exited via NRVO, we skip the destructor call.
489         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
490         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
491         llvm::Value *DidNRVO =
492           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
493         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
494         CGF.EmitBlock(RunDtorBB);
495       }
496 
497       static_cast<Derived *>(this)->emitDestructorCall(CGF);
498 
499       if (NRVO) CGF.EmitBlock(SkipDtorBB);
500     }
501 
502     virtual ~DestroyNRVOVariable() = default;
503   };
504 
505   struct DestroyNRVOVariableCXX final
506       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
507     DestroyNRVOVariableCXX(Address addr, QualType type,
508                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
509         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
510           Dtor(Dtor) {}
511 
512     const CXXDestructorDecl *Dtor;
513 
514     void emitDestructorCall(CodeGenFunction &CGF) {
515       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
516                                 /*ForVirtualBase=*/false,
517                                 /*Delegating=*/false, Loc, Ty);
518     }
519   };
520 
521   struct DestroyNRVOVariableC final
522       : DestroyNRVOVariable<DestroyNRVOVariableC> {
523     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
524         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
525 
526     void emitDestructorCall(CodeGenFunction &CGF) {
527       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
528     }
529   };
530 
531   struct CallStackRestore final : EHScopeStack::Cleanup {
532     Address Stack;
533     CallStackRestore(Address Stack) : Stack(Stack) {}
534     void Emit(CodeGenFunction &CGF, Flags flags) override {
535       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
536       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
537       CGF.Builder.CreateCall(F, V);
538     }
539   };
540 
541   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
542     const VarDecl &Var;
543     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
544 
545     void Emit(CodeGenFunction &CGF, Flags flags) override {
546       // Compute the address of the local variable, in case it's a
547       // byref or something.
548       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
549                       Var.getType(), VK_LValue, SourceLocation());
550       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
551                                                 SourceLocation());
552       CGF.EmitExtendGCLifetime(value);
553     }
554   };
555 
556   struct CallCleanupFunction final : EHScopeStack::Cleanup {
557     llvm::Constant *CleanupFn;
558     const CGFunctionInfo &FnInfo;
559     const VarDecl &Var;
560 
561     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
562                         const VarDecl *Var)
563       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
564 
565     void Emit(CodeGenFunction &CGF, Flags flags) override {
566       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
567                       Var.getType(), VK_LValue, SourceLocation());
568       // Compute the address of the local variable, in case it's a byref
569       // or something.
570       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
571 
572       // In some cases, the type of the function argument will be different from
573       // the type of the pointer. An example of this is
574       // void f(void* arg);
575       // __attribute__((cleanup(f))) void *g;
576       //
577       // To fix this we insert a bitcast here.
578       QualType ArgTy = FnInfo.arg_begin()->type;
579       llvm::Value *Arg =
580         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
581 
582       CallArgList Args;
583       Args.add(RValue::get(Arg),
584                CGF.getContext().getPointerType(Var.getType()));
585       auto Callee = CGCallee::forDirect(CleanupFn);
586       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
587     }
588   };
589 } // end anonymous namespace
590 
591 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
592 /// variable with lifetime.
593 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
594                                     Address addr,
595                                     Qualifiers::ObjCLifetime lifetime) {
596   switch (lifetime) {
597   case Qualifiers::OCL_None:
598     llvm_unreachable("present but none");
599 
600   case Qualifiers::OCL_ExplicitNone:
601     // nothing to do
602     break;
603 
604   case Qualifiers::OCL_Strong: {
605     CodeGenFunction::Destroyer *destroyer =
606       (var.hasAttr<ObjCPreciseLifetimeAttr>()
607        ? CodeGenFunction::destroyARCStrongPrecise
608        : CodeGenFunction::destroyARCStrongImprecise);
609 
610     CleanupKind cleanupKind = CGF.getARCCleanupKind();
611     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
612                     cleanupKind & EHCleanup);
613     break;
614   }
615   case Qualifiers::OCL_Autoreleasing:
616     // nothing to do
617     break;
618 
619   case Qualifiers::OCL_Weak:
620     // __weak objects always get EH cleanups; otherwise, exceptions
621     // could cause really nasty crashes instead of mere leaks.
622     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
623                     CodeGenFunction::destroyARCWeak,
624                     /*useEHCleanup*/ true);
625     break;
626   }
627 }
628 
629 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
630   if (const Expr *e = dyn_cast<Expr>(s)) {
631     // Skip the most common kinds of expressions that make
632     // hierarchy-walking expensive.
633     s = e = e->IgnoreParenCasts();
634 
635     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
636       return (ref->getDecl() == &var);
637     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
638       const BlockDecl *block = be->getBlockDecl();
639       for (const auto &I : block->captures()) {
640         if (I.getVariable() == &var)
641           return true;
642       }
643     }
644   }
645 
646   for (const Stmt *SubStmt : s->children())
647     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
648     if (SubStmt && isAccessedBy(var, SubStmt))
649       return true;
650 
651   return false;
652 }
653 
654 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
655   if (!decl) return false;
656   if (!isa<VarDecl>(decl)) return false;
657   const VarDecl *var = cast<VarDecl>(decl);
658   return isAccessedBy(*var, e);
659 }
660 
661 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
662                                    const LValue &destLV, const Expr *init) {
663   bool needsCast = false;
664 
665   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
666     switch (castExpr->getCastKind()) {
667     // Look through casts that don't require representation changes.
668     case CK_NoOp:
669     case CK_BitCast:
670     case CK_BlockPointerToObjCPointerCast:
671       needsCast = true;
672       break;
673 
674     // If we find an l-value to r-value cast from a __weak variable,
675     // emit this operation as a copy or move.
676     case CK_LValueToRValue: {
677       const Expr *srcExpr = castExpr->getSubExpr();
678       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
679         return false;
680 
681       // Emit the source l-value.
682       LValue srcLV = CGF.EmitLValue(srcExpr);
683 
684       // Handle a formal type change to avoid asserting.
685       auto srcAddr = srcLV.getAddress();
686       if (needsCast) {
687         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
688                                          destLV.getAddress().getElementType());
689       }
690 
691       // If it was an l-value, use objc_copyWeak.
692       if (srcExpr->getValueKind() == VK_LValue) {
693         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
694       } else {
695         assert(srcExpr->getValueKind() == VK_XValue);
696         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
697       }
698       return true;
699     }
700 
701     // Stop at anything else.
702     default:
703       return false;
704     }
705 
706     init = castExpr->getSubExpr();
707   }
708   return false;
709 }
710 
711 static void drillIntoBlockVariable(CodeGenFunction &CGF,
712                                    LValue &lvalue,
713                                    const VarDecl *var) {
714   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
715 }
716 
717 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
718                                            SourceLocation Loc) {
719   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
720     return;
721 
722   auto Nullability = LHS.getType()->getNullability(getContext());
723   if (!Nullability || *Nullability != NullabilityKind::NonNull)
724     return;
725 
726   // Check if the right hand side of the assignment is nonnull, if the left
727   // hand side must be nonnull.
728   SanitizerScope SanScope(this);
729   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
730   llvm::Constant *StaticData[] = {
731       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
732       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
733       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
734   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
735             SanitizerHandler::TypeMismatch, StaticData, RHS);
736 }
737 
738 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
739                                      LValue lvalue, bool capturedByInit) {
740   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
741   if (!lifetime) {
742     llvm::Value *value = EmitScalarExpr(init);
743     if (capturedByInit)
744       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
745     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
746     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
747     return;
748   }
749 
750   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
751     init = DIE->getExpr();
752 
753   // If we're emitting a value with lifetime, we have to do the
754   // initialization *before* we leave the cleanup scopes.
755   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
756     enterFullExpression(fe);
757     init = fe->getSubExpr();
758   }
759   CodeGenFunction::RunCleanupsScope Scope(*this);
760 
761   // We have to maintain the illusion that the variable is
762   // zero-initialized.  If the variable might be accessed in its
763   // initializer, zero-initialize before running the initializer, then
764   // actually perform the initialization with an assign.
765   bool accessedByInit = false;
766   if (lifetime != Qualifiers::OCL_ExplicitNone)
767     accessedByInit = (capturedByInit || isAccessedBy(D, init));
768   if (accessedByInit) {
769     LValue tempLV = lvalue;
770     // Drill down to the __block object if necessary.
771     if (capturedByInit) {
772       // We can use a simple GEP for this because it can't have been
773       // moved yet.
774       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
775                                               cast<VarDecl>(D),
776                                               /*follow*/ false));
777     }
778 
779     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
780     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
781 
782     // If __weak, we want to use a barrier under certain conditions.
783     if (lifetime == Qualifiers::OCL_Weak)
784       EmitARCInitWeak(tempLV.getAddress(), zero);
785 
786     // Otherwise just do a simple store.
787     else
788       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
789   }
790 
791   // Emit the initializer.
792   llvm::Value *value = nullptr;
793 
794   switch (lifetime) {
795   case Qualifiers::OCL_None:
796     llvm_unreachable("present but none");
797 
798   case Qualifiers::OCL_Strong: {
799     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
800       value = EmitARCRetainScalarExpr(init);
801       break;
802     }
803     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
804     // that we omit the retain, and causes non-autoreleased return values to be
805     // immediately released.
806     LLVM_FALLTHROUGH;
807   }
808 
809   case Qualifiers::OCL_ExplicitNone:
810     value = EmitARCUnsafeUnretainedScalarExpr(init);
811     break;
812 
813   case Qualifiers::OCL_Weak: {
814     // If it's not accessed by the initializer, try to emit the
815     // initialization with a copy or move.
816     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
817       return;
818     }
819 
820     // No way to optimize a producing initializer into this.  It's not
821     // worth optimizing for, because the value will immediately
822     // disappear in the common case.
823     value = EmitScalarExpr(init);
824 
825     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
826     if (accessedByInit)
827       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
828     else
829       EmitARCInitWeak(lvalue.getAddress(), value);
830     return;
831   }
832 
833   case Qualifiers::OCL_Autoreleasing:
834     value = EmitARCRetainAutoreleaseScalarExpr(init);
835     break;
836   }
837 
838   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
839 
840   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
841 
842   // If the variable might have been accessed by its initializer, we
843   // might have to initialize with a barrier.  We have to do this for
844   // both __weak and __strong, but __weak got filtered out above.
845   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
846     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
847     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
848     EmitARCRelease(oldValue, ARCImpreciseLifetime);
849     return;
850   }
851 
852   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
853 }
854 
855 /// Decide whether we can emit the non-zero parts of the specified initializer
856 /// with equal or fewer than NumStores scalar stores.
857 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
858                                                unsigned &NumStores) {
859   // Zero and Undef never requires any extra stores.
860   if (isa<llvm::ConstantAggregateZero>(Init) ||
861       isa<llvm::ConstantPointerNull>(Init) ||
862       isa<llvm::UndefValue>(Init))
863     return true;
864   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
865       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
866       isa<llvm::ConstantExpr>(Init))
867     return Init->isNullValue() || NumStores--;
868 
869   // See if we can emit each element.
870   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
871     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
872       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
873       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
874         return false;
875     }
876     return true;
877   }
878 
879   if (llvm::ConstantDataSequential *CDS =
880         dyn_cast<llvm::ConstantDataSequential>(Init)) {
881     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
882       llvm::Constant *Elt = CDS->getElementAsConstant(i);
883       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
884         return false;
885     }
886     return true;
887   }
888 
889   // Anything else is hard and scary.
890   return false;
891 }
892 
893 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
894 /// the scalar stores that would be required.
895 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
896                                         llvm::Constant *Init, Address Loc,
897                                         bool isVolatile, CGBuilderTy &Builder) {
898   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
899          "called emitStoresForInitAfterBZero for zero or undef value.");
900 
901   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
902       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
903       isa<llvm::ConstantExpr>(Init)) {
904     Builder.CreateStore(Init, Loc, isVolatile);
905     return;
906   }
907 
908   if (llvm::ConstantDataSequential *CDS =
909           dyn_cast<llvm::ConstantDataSequential>(Init)) {
910     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
911       llvm::Constant *Elt = CDS->getElementAsConstant(i);
912 
913       // If necessary, get a pointer to the element and emit it.
914       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
915         emitStoresForInitAfterBZero(
916             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
917             Builder);
918     }
919     return;
920   }
921 
922   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
923          "Unknown value type!");
924 
925   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
926     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
927 
928     // If necessary, get a pointer to the element and emit it.
929     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
930       emitStoresForInitAfterBZero(CGM, Elt,
931                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
932                                   isVolatile, Builder);
933   }
934 }
935 
936 /// Decide whether we should use bzero plus some stores to initialize a local
937 /// variable instead of using a memcpy from a constant global.  It is beneficial
938 /// to use bzero if the global is all zeros, or mostly zeros and large.
939 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
940                                                  uint64_t GlobalSize) {
941   // If a global is all zeros, always use a bzero.
942   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
943 
944   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
945   // do it if it will require 6 or fewer scalar stores.
946   // TODO: Should budget depends on the size?  Avoiding a large global warrants
947   // plopping in more stores.
948   unsigned StoreBudget = 6;
949   uint64_t SizeLimit = 32;
950 
951   return GlobalSize > SizeLimit &&
952          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
953 }
954 
955 /// Decide whether we should use memset to initialize a local variable instead
956 /// of using a memcpy from a constant global. Assumes we've already decided to
957 /// not user bzero.
958 /// FIXME We could be more clever, as we are for bzero above, and generate
959 ///       memset followed by stores. It's unclear that's worth the effort.
960 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
961                                                 uint64_t GlobalSize,
962                                                 const llvm::DataLayout &DL) {
963   uint64_t SizeLimit = 32;
964   if (GlobalSize <= SizeLimit)
965     return nullptr;
966   return llvm::isBytewiseValue(Init, DL);
967 }
968 
969 /// Decide whether we want to split a constant structure or array store into a
970 /// sequence of its fields' stores. This may cost us code size and compilation
971 /// speed, but plays better with store optimizations.
972 static bool shouldSplitConstantStore(CodeGenModule &CGM,
973                                      uint64_t GlobalByteSize) {
974   // Don't break things that occupy more than one cacheline.
975   uint64_t ByteSizeLimit = 64;
976   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
977     return false;
978   if (GlobalByteSize <= ByteSizeLimit)
979     return true;
980   return false;
981 }
982 
983 enum class IsPattern { No, Yes };
984 
985 /// Generate a constant filled with either a pattern or zeroes.
986 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
987                                         llvm::Type *Ty) {
988   if (isPattern == IsPattern::Yes)
989     return initializationPatternFor(CGM, Ty);
990   else
991     return llvm::Constant::getNullValue(Ty);
992 }
993 
994 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
995                                         llvm::Constant *constant);
996 
997 /// Helper function for constWithPadding() to deal with padding in structures.
998 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
999                                               IsPattern isPattern,
1000                                               llvm::StructType *STy,
1001                                               llvm::Constant *constant) {
1002   const llvm::DataLayout &DL = CGM.getDataLayout();
1003   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1004   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1005   unsigned SizeSoFar = 0;
1006   SmallVector<llvm::Constant *, 8> Values;
1007   bool NestedIntact = true;
1008   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1009     unsigned CurOff = Layout->getElementOffset(i);
1010     if (SizeSoFar < CurOff) {
1011       assert(!STy->isPacked());
1012       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1013       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1014     }
1015     llvm::Constant *CurOp;
1016     if (constant->isZeroValue())
1017       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1018     else
1019       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1020     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1021     if (CurOp != NewOp)
1022       NestedIntact = false;
1023     Values.push_back(NewOp);
1024     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1025   }
1026   unsigned TotalSize = Layout->getSizeInBytes();
1027   if (SizeSoFar < TotalSize) {
1028     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1029     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1030   }
1031   if (NestedIntact && Values.size() == STy->getNumElements())
1032     return constant;
1033   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1034 }
1035 
1036 /// Replace all padding bytes in a given constant with either a pattern byte or
1037 /// 0x00.
1038 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1039                                         llvm::Constant *constant) {
1040   llvm::Type *OrigTy = constant->getType();
1041   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1042     return constStructWithPadding(CGM, isPattern, STy, constant);
1043   if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
1044     llvm::SmallVector<llvm::Constant *, 8> Values;
1045     unsigned Size = STy->getNumElements();
1046     if (!Size)
1047       return constant;
1048     llvm::Type *ElemTy = STy->getElementType();
1049     bool ZeroInitializer = constant->isZeroValue();
1050     llvm::Constant *OpValue, *PaddedOp;
1051     if (ZeroInitializer) {
1052       OpValue = llvm::Constant::getNullValue(ElemTy);
1053       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1054     }
1055     for (unsigned Op = 0; Op != Size; ++Op) {
1056       if (!ZeroInitializer) {
1057         OpValue = constant->getAggregateElement(Op);
1058         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1059       }
1060       Values.push_back(PaddedOp);
1061     }
1062     auto *NewElemTy = Values[0]->getType();
1063     if (NewElemTy == ElemTy)
1064       return constant;
1065     if (OrigTy->isArrayTy()) {
1066       auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1067       return llvm::ConstantArray::get(ArrayTy, Values);
1068     } else {
1069       return llvm::ConstantVector::get(Values);
1070     }
1071   }
1072   return constant;
1073 }
1074 
1075 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1076                                                llvm::Constant *Constant,
1077                                                CharUnits Align) {
1078   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1079     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1080       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1081         return CC->getNameAsString();
1082       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1083         return CD->getNameAsString();
1084       return getMangledName(FD);
1085     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1086       return OM->getNameAsString();
1087     } else if (isa<BlockDecl>(DC)) {
1088       return "<block>";
1089     } else if (isa<CapturedDecl>(DC)) {
1090       return "<captured>";
1091     } else {
1092       llvm_unreachable("expected a function or method");
1093     }
1094   };
1095 
1096   // Form a simple per-variable cache of these values in case we find we
1097   // want to reuse them.
1098   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1099   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1100     auto *Ty = Constant->getType();
1101     bool isConstant = true;
1102     llvm::GlobalVariable *InsertBefore = nullptr;
1103     unsigned AS =
1104         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1105     std::string Name;
1106     if (D.hasGlobalStorage())
1107       Name = getMangledName(&D).str() + ".const";
1108     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1109       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1110     else
1111       llvm_unreachable("local variable has no parent function or method");
1112     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1113         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1114         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1115     GV->setAlignment(Align.getAsAlign());
1116     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1117     CacheEntry = GV;
1118   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1119     CacheEntry->setAlignment(Align.getAsAlign());
1120   }
1121 
1122   return Address(CacheEntry, Align);
1123 }
1124 
1125 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1126                                                 const VarDecl &D,
1127                                                 CGBuilderTy &Builder,
1128                                                 llvm::Constant *Constant,
1129                                                 CharUnits Align) {
1130   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1131   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1132                                                    SrcPtr.getAddressSpace());
1133   if (SrcPtr.getType() != BP)
1134     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1135   return SrcPtr;
1136 }
1137 
1138 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1139                                   Address Loc, bool isVolatile,
1140                                   CGBuilderTy &Builder,
1141                                   llvm::Constant *constant) {
1142   auto *Ty = constant->getType();
1143   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1144   if (!ConstantSize)
1145     return;
1146 
1147   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1148                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1149   if (canDoSingleStore) {
1150     Builder.CreateStore(constant, Loc, isVolatile);
1151     return;
1152   }
1153 
1154   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1155 
1156   // If the initializer is all or mostly the same, codegen with bzero / memset
1157   // then do a few stores afterward.
1158   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1159     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
1160                          isVolatile);
1161 
1162     bool valueAlreadyCorrect =
1163         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1164     if (!valueAlreadyCorrect) {
1165       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1166       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1167     }
1168     return;
1169   }
1170 
1171   // If the initializer is a repeated byte pattern, use memset.
1172   llvm::Value *Pattern =
1173       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1174   if (Pattern) {
1175     uint64_t Value = 0x00;
1176     if (!isa<llvm::UndefValue>(Pattern)) {
1177       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1178       assert(AP.getBitWidth() <= 8);
1179       Value = AP.getLimitedValue();
1180     }
1181     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
1182                          isVolatile);
1183     return;
1184   }
1185 
1186   // If the initializer is small, use a handful of stores.
1187   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1188     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1189       // FIXME: handle the case when STy != Loc.getElementType().
1190       if (STy == Loc.getElementType()) {
1191         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1192           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1193           emitStoresForConstant(
1194               CGM, D, EltPtr, isVolatile, Builder,
1195               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1196         }
1197         return;
1198       }
1199     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1200       // FIXME: handle the case when ATy != Loc.getElementType().
1201       if (ATy == Loc.getElementType()) {
1202         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1203           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1204           emitStoresForConstant(
1205               CGM, D, EltPtr, isVolatile, Builder,
1206               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1207         }
1208         return;
1209       }
1210     }
1211   }
1212 
1213   // Copy from a global.
1214   Builder.CreateMemCpy(Loc,
1215                        createUnnamedGlobalForMemcpyFrom(
1216                            CGM, D, Builder, constant, Loc.getAlignment()),
1217                        SizeVal, isVolatile);
1218 }
1219 
1220 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1221                                   Address Loc, bool isVolatile,
1222                                   CGBuilderTy &Builder) {
1223   llvm::Type *ElTy = Loc.getElementType();
1224   llvm::Constant *constant =
1225       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1226   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1227 }
1228 
1229 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1230                                      Address Loc, bool isVolatile,
1231                                      CGBuilderTy &Builder) {
1232   llvm::Type *ElTy = Loc.getElementType();
1233   llvm::Constant *constant = constWithPadding(
1234       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1235   assert(!isa<llvm::UndefValue>(constant));
1236   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1237 }
1238 
1239 static bool containsUndef(llvm::Constant *constant) {
1240   auto *Ty = constant->getType();
1241   if (isa<llvm::UndefValue>(constant))
1242     return true;
1243   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1244     for (llvm::Use &Op : constant->operands())
1245       if (containsUndef(cast<llvm::Constant>(Op)))
1246         return true;
1247   return false;
1248 }
1249 
1250 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1251                                     llvm::Constant *constant) {
1252   auto *Ty = constant->getType();
1253   if (isa<llvm::UndefValue>(constant))
1254     return patternOrZeroFor(CGM, isPattern, Ty);
1255   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1256     return constant;
1257   if (!containsUndef(constant))
1258     return constant;
1259   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1260   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1261     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1262     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1263   }
1264   if (Ty->isStructTy())
1265     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1266   if (Ty->isArrayTy())
1267     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1268   assert(Ty->isVectorTy());
1269   return llvm::ConstantVector::get(Values);
1270 }
1271 
1272 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1273 /// variable declaration with auto, register, or no storage class specifier.
1274 /// These turn into simple stack objects, or GlobalValues depending on target.
1275 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1276   AutoVarEmission emission = EmitAutoVarAlloca(D);
1277   EmitAutoVarInit(emission);
1278   EmitAutoVarCleanups(emission);
1279 }
1280 
1281 /// Emit a lifetime.begin marker if some criteria are satisfied.
1282 /// \return a pointer to the temporary size Value if a marker was emitted, null
1283 /// otherwise
1284 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1285                                                 llvm::Value *Addr) {
1286   if (!ShouldEmitLifetimeMarkers)
1287     return nullptr;
1288 
1289   assert(Addr->getType()->getPointerAddressSpace() ==
1290              CGM.getDataLayout().getAllocaAddrSpace() &&
1291          "Pointer should be in alloca address space");
1292   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1293   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1294   llvm::CallInst *C =
1295       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1296   C->setDoesNotThrow();
1297   return SizeV;
1298 }
1299 
1300 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1301   assert(Addr->getType()->getPointerAddressSpace() ==
1302              CGM.getDataLayout().getAllocaAddrSpace() &&
1303          "Pointer should be in alloca address space");
1304   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1305   llvm::CallInst *C =
1306       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1307   C->setDoesNotThrow();
1308 }
1309 
1310 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1311     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1312   // For each dimension stores its QualType and corresponding
1313   // size-expression Value.
1314   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1315   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1316 
1317   // Break down the array into individual dimensions.
1318   QualType Type1D = D.getType();
1319   while (getContext().getAsVariableArrayType(Type1D)) {
1320     auto VlaSize = getVLAElements1D(Type1D);
1321     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1322       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1323     else {
1324       // Generate a locally unique name for the size expression.
1325       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1326       SmallString<12> Buffer;
1327       StringRef NameRef = Name.toStringRef(Buffer);
1328       auto &Ident = getContext().Idents.getOwn(NameRef);
1329       VLAExprNames.push_back(&Ident);
1330       auto SizeExprAddr =
1331           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1332       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1333       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1334                               Type1D.getUnqualifiedType());
1335     }
1336     Type1D = VlaSize.Type;
1337   }
1338 
1339   if (!EmitDebugInfo)
1340     return;
1341 
1342   // Register each dimension's size-expression with a DILocalVariable,
1343   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1344   // to describe this array.
1345   unsigned NameIdx = 0;
1346   for (auto &VlaSize : Dimensions) {
1347     llvm::Metadata *MD;
1348     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1349       MD = llvm::ConstantAsMetadata::get(C);
1350     else {
1351       // Create an artificial VarDecl to generate debug info for.
1352       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1353       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1354       auto QT = getContext().getIntTypeForBitwidth(
1355           VlaExprTy->getScalarSizeInBits(), false);
1356       auto *ArtificialDecl = VarDecl::Create(
1357           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1358           D.getLocation(), D.getLocation(), NameIdent, QT,
1359           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1360       ArtificialDecl->setImplicit();
1361 
1362       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1363                                          Builder);
1364     }
1365     assert(MD && "No Size expression debug node created");
1366     DI->registerVLASizeExpression(VlaSize.Type, MD);
1367   }
1368 }
1369 
1370 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1371 /// local variable.  Does not emit initialization or destruction.
1372 CodeGenFunction::AutoVarEmission
1373 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1374   QualType Ty = D.getType();
1375   assert(
1376       Ty.getAddressSpace() == LangAS::Default ||
1377       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1378 
1379   AutoVarEmission emission(D);
1380 
1381   bool isEscapingByRef = D.isEscapingByref();
1382   emission.IsEscapingByRef = isEscapingByRef;
1383 
1384   CharUnits alignment = getContext().getDeclAlign(&D);
1385 
1386   // If the type is variably-modified, emit all the VLA sizes for it.
1387   if (Ty->isVariablyModifiedType())
1388     EmitVariablyModifiedType(Ty);
1389 
1390   auto *DI = getDebugInfo();
1391   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1392                                  codegenoptions::LimitedDebugInfo;
1393 
1394   Address address = Address::invalid();
1395   Address AllocaAddr = Address::invalid();
1396   Address OpenMPLocalAddr =
1397       getLangOpts().OpenMP
1398           ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1399           : Address::invalid();
1400   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1401 
1402   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1403     address = OpenMPLocalAddr;
1404   } else if (Ty->isConstantSizeType()) {
1405     // If this value is an array or struct with a statically determinable
1406     // constant initializer, there are optimizations we can do.
1407     //
1408     // TODO: We should constant-evaluate the initializer of any variable,
1409     // as long as it is initialized by a constant expression. Currently,
1410     // isConstantInitializer produces wrong answers for structs with
1411     // reference or bitfield members, and a few other cases, and checking
1412     // for POD-ness protects us from some of these.
1413     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1414         (D.isConstexpr() ||
1415          ((Ty.isPODType(getContext()) ||
1416            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1417           D.getInit()->isConstantInitializer(getContext(), false)))) {
1418 
1419       // If the variable's a const type, and it's neither an NRVO
1420       // candidate nor a __block variable and has no mutable members,
1421       // emit it as a global instead.
1422       // Exception is if a variable is located in non-constant address space
1423       // in OpenCL.
1424       if ((!getLangOpts().OpenCL ||
1425            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1426           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1427            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1428         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1429 
1430         // Signal this condition to later callbacks.
1431         emission.Addr = Address::invalid();
1432         assert(emission.wasEmittedAsGlobal());
1433         return emission;
1434       }
1435 
1436       // Otherwise, tell the initialization code that we're in this case.
1437       emission.IsConstantAggregate = true;
1438     }
1439 
1440     // A normal fixed sized variable becomes an alloca in the entry block,
1441     // unless:
1442     // - it's an NRVO variable.
1443     // - we are compiling OpenMP and it's an OpenMP local variable.
1444     if (NRVO) {
1445       // The named return value optimization: allocate this variable in the
1446       // return slot, so that we can elide the copy when returning this
1447       // variable (C++0x [class.copy]p34).
1448       address = ReturnValue;
1449 
1450       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1451         const auto *RD = RecordTy->getDecl();
1452         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1453         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1454             RD->isNonTrivialToPrimitiveDestroy()) {
1455           // Create a flag that is used to indicate when the NRVO was applied
1456           // to this variable. Set it to zero to indicate that NRVO was not
1457           // applied.
1458           llvm::Value *Zero = Builder.getFalse();
1459           Address NRVOFlag =
1460             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1461           EnsureInsertPoint();
1462           Builder.CreateStore(Zero, NRVOFlag);
1463 
1464           // Record the NRVO flag for this variable.
1465           NRVOFlags[&D] = NRVOFlag.getPointer();
1466           emission.NRVOFlag = NRVOFlag.getPointer();
1467         }
1468       }
1469     } else {
1470       CharUnits allocaAlignment;
1471       llvm::Type *allocaTy;
1472       if (isEscapingByRef) {
1473         auto &byrefInfo = getBlockByrefInfo(&D);
1474         allocaTy = byrefInfo.Type;
1475         allocaAlignment = byrefInfo.ByrefAlignment;
1476       } else {
1477         allocaTy = ConvertTypeForMem(Ty);
1478         allocaAlignment = alignment;
1479       }
1480 
1481       // Create the alloca.  Note that we set the name separately from
1482       // building the instruction so that it's there even in no-asserts
1483       // builds.
1484       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1485                                  /*ArraySize=*/nullptr, &AllocaAddr);
1486 
1487       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1488       // the catch parameter starts in the catchpad instruction, and we can't
1489       // insert code in those basic blocks.
1490       bool IsMSCatchParam =
1491           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1492 
1493       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1494       // if we don't have a valid insertion point (?).
1495       if (HaveInsertPoint() && !IsMSCatchParam) {
1496         // If there's a jump into the lifetime of this variable, its lifetime
1497         // gets broken up into several regions in IR, which requires more work
1498         // to handle correctly. For now, just omit the intrinsics; this is a
1499         // rare case, and it's better to just be conservatively correct.
1500         // PR28267.
1501         //
1502         // We have to do this in all language modes if there's a jump past the
1503         // declaration. We also have to do it in C if there's a jump to an
1504         // earlier point in the current block because non-VLA lifetimes begin as
1505         // soon as the containing block is entered, not when its variables
1506         // actually come into scope; suppressing the lifetime annotations
1507         // completely in this case is unnecessarily pessimistic, but again, this
1508         // is rare.
1509         if (!Bypasses.IsBypassed(&D) &&
1510             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1511           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1512           emission.SizeForLifetimeMarkers =
1513               EmitLifetimeStart(size, AllocaAddr.getPointer());
1514         }
1515       } else {
1516         assert(!emission.useLifetimeMarkers());
1517       }
1518     }
1519   } else {
1520     EnsureInsertPoint();
1521 
1522     if (!DidCallStackSave) {
1523       // Save the stack.
1524       Address Stack =
1525         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1526 
1527       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1528       llvm::Value *V = Builder.CreateCall(F);
1529       Builder.CreateStore(V, Stack);
1530 
1531       DidCallStackSave = true;
1532 
1533       // Push a cleanup block and restore the stack there.
1534       // FIXME: in general circumstances, this should be an EH cleanup.
1535       pushStackRestore(NormalCleanup, Stack);
1536     }
1537 
1538     auto VlaSize = getVLASize(Ty);
1539     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1540 
1541     // Allocate memory for the array.
1542     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1543                                &AllocaAddr);
1544 
1545     // If we have debug info enabled, properly describe the VLA dimensions for
1546     // this type by registering the vla size expression for each of the
1547     // dimensions.
1548     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1549   }
1550 
1551   setAddrOfLocalVar(&D, address);
1552   emission.Addr = address;
1553   emission.AllocaAddr = AllocaAddr;
1554 
1555   // Emit debug info for local var declaration.
1556   if (EmitDebugInfo && HaveInsertPoint()) {
1557     Address DebugAddr = address;
1558     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1559     DI->setLocation(D.getLocation());
1560 
1561     // If NRVO, use a pointer to the return address.
1562     if (UsePointerValue)
1563       DebugAddr = ReturnValuePointer;
1564 
1565     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1566                                         UsePointerValue);
1567   }
1568 
1569   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1570     EmitVarAnnotations(&D, address.getPointer());
1571 
1572   // Make sure we call @llvm.lifetime.end.
1573   if (emission.useLifetimeMarkers())
1574     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1575                                          emission.getOriginalAllocatedAddress(),
1576                                          emission.getSizeForLifetimeMarkers());
1577 
1578   return emission;
1579 }
1580 
1581 static bool isCapturedBy(const VarDecl &, const Expr *);
1582 
1583 /// Determines whether the given __block variable is potentially
1584 /// captured by the given statement.
1585 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1586   if (const Expr *E = dyn_cast<Expr>(S))
1587     return isCapturedBy(Var, E);
1588   for (const Stmt *SubStmt : S->children())
1589     if (isCapturedBy(Var, SubStmt))
1590       return true;
1591   return false;
1592 }
1593 
1594 /// Determines whether the given __block variable is potentially
1595 /// captured by the given expression.
1596 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1597   // Skip the most common kinds of expressions that make
1598   // hierarchy-walking expensive.
1599   E = E->IgnoreParenCasts();
1600 
1601   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1602     const BlockDecl *Block = BE->getBlockDecl();
1603     for (const auto &I : Block->captures()) {
1604       if (I.getVariable() == &Var)
1605         return true;
1606     }
1607 
1608     // No need to walk into the subexpressions.
1609     return false;
1610   }
1611 
1612   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1613     const CompoundStmt *CS = SE->getSubStmt();
1614     for (const auto *BI : CS->body())
1615       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1616         if (isCapturedBy(Var, BIE))
1617           return true;
1618       }
1619       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1620           // special case declarations
1621           for (const auto *I : DS->decls()) {
1622               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1623                 const Expr *Init = VD->getInit();
1624                 if (Init && isCapturedBy(Var, Init))
1625                   return true;
1626               }
1627           }
1628       }
1629       else
1630         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1631         // Later, provide code to poke into statements for capture analysis.
1632         return true;
1633     return false;
1634   }
1635 
1636   for (const Stmt *SubStmt : E->children())
1637     if (isCapturedBy(Var, SubStmt))
1638       return true;
1639 
1640   return false;
1641 }
1642 
1643 /// Determine whether the given initializer is trivial in the sense
1644 /// that it requires no code to be generated.
1645 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1646   if (!Init)
1647     return true;
1648 
1649   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1650     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1651       if (Constructor->isTrivial() &&
1652           Constructor->isDefaultConstructor() &&
1653           !Construct->requiresZeroInitialization())
1654         return true;
1655 
1656   return false;
1657 }
1658 
1659 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1660                                                       const VarDecl &D,
1661                                                       Address Loc) {
1662   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1663   CharUnits Size = getContext().getTypeSizeInChars(type);
1664   bool isVolatile = type.isVolatileQualified();
1665   if (!Size.isZero()) {
1666     switch (trivialAutoVarInit) {
1667     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1668       llvm_unreachable("Uninitialized handled by caller");
1669     case LangOptions::TrivialAutoVarInitKind::Zero:
1670       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1671       break;
1672     case LangOptions::TrivialAutoVarInitKind::Pattern:
1673       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1674       break;
1675     }
1676     return;
1677   }
1678 
1679   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1680   // them, so emit a memcpy with the VLA size to initialize each element.
1681   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1682   // will catch that code, but there exists code which generates zero-sized
1683   // VLAs. Be nice and initialize whatever they requested.
1684   const auto *VlaType = getContext().getAsVariableArrayType(type);
1685   if (!VlaType)
1686     return;
1687   auto VlaSize = getVLASize(VlaType);
1688   auto SizeVal = VlaSize.NumElts;
1689   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1690   switch (trivialAutoVarInit) {
1691   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1692     llvm_unreachable("Uninitialized handled by caller");
1693 
1694   case LangOptions::TrivialAutoVarInitKind::Zero:
1695     if (!EltSize.isOne())
1696       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1697     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1698                          isVolatile);
1699     break;
1700 
1701   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1702     llvm::Type *ElTy = Loc.getElementType();
1703     llvm::Constant *Constant = constWithPadding(
1704         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1705     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1706     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1707     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1708     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1709     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1710         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1711         "vla.iszerosized");
1712     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1713     EmitBlock(SetupBB);
1714     if (!EltSize.isOne())
1715       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1716     llvm::Value *BaseSizeInChars =
1717         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1718     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1719     llvm::Value *End =
1720         Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1721     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1722     EmitBlock(LoopBB);
1723     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1724     Cur->addIncoming(Begin.getPointer(), OriginBB);
1725     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1726     Builder.CreateMemCpy(Address(Cur, CurAlign),
1727                          createUnnamedGlobalForMemcpyFrom(
1728                              CGM, D, Builder, Constant, ConstantAlign),
1729                          BaseSizeInChars, isVolatile);
1730     llvm::Value *Next =
1731         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1732     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1733     Builder.CreateCondBr(Done, ContBB, LoopBB);
1734     Cur->addIncoming(Next, LoopBB);
1735     EmitBlock(ContBB);
1736   } break;
1737   }
1738 }
1739 
1740 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1741   assert(emission.Variable && "emission was not valid!");
1742 
1743   // If this was emitted as a global constant, we're done.
1744   if (emission.wasEmittedAsGlobal()) return;
1745 
1746   const VarDecl &D = *emission.Variable;
1747   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1748   QualType type = D.getType();
1749 
1750   // If this local has an initializer, emit it now.
1751   const Expr *Init = D.getInit();
1752 
1753   // If we are at an unreachable point, we don't need to emit the initializer
1754   // unless it contains a label.
1755   if (!HaveInsertPoint()) {
1756     if (!Init || !ContainsLabel(Init)) return;
1757     EnsureInsertPoint();
1758   }
1759 
1760   // Initialize the structure of a __block variable.
1761   if (emission.IsEscapingByRef)
1762     emitByrefStructureInit(emission);
1763 
1764   // Initialize the variable here if it doesn't have a initializer and it is a
1765   // C struct that is non-trivial to initialize or an array containing such a
1766   // struct.
1767   if (!Init &&
1768       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1769           QualType::PDIK_Struct) {
1770     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1771     if (emission.IsEscapingByRef)
1772       drillIntoBlockVariable(*this, Dst, &D);
1773     defaultInitNonTrivialCStructVar(Dst);
1774     return;
1775   }
1776 
1777   // Check whether this is a byref variable that's potentially
1778   // captured and moved by its own initializer.  If so, we'll need to
1779   // emit the initializer first, then copy into the variable.
1780   bool capturedByInit =
1781       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1782 
1783   bool locIsByrefHeader = !capturedByInit;
1784   const Address Loc =
1785       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1786 
1787   // Note: constexpr already initializes everything correctly.
1788   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1789       (D.isConstexpr()
1790            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1791            : (D.getAttr<UninitializedAttr>()
1792                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1793                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1794 
1795   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1796     if (trivialAutoVarInit ==
1797         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1798       return;
1799 
1800     // Only initialize a __block's storage: we always initialize the header.
1801     if (emission.IsEscapingByRef && !locIsByrefHeader)
1802       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1803 
1804     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1805   };
1806 
1807   if (isTrivialInitializer(Init))
1808     return initializeWhatIsTechnicallyUninitialized(Loc);
1809 
1810   llvm::Constant *constant = nullptr;
1811   if (emission.IsConstantAggregate ||
1812       D.mightBeUsableInConstantExpressions(getContext())) {
1813     assert(!capturedByInit && "constant init contains a capturing block?");
1814     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1815     if (constant && !constant->isZeroValue() &&
1816         (trivialAutoVarInit !=
1817          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1818       IsPattern isPattern =
1819           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1820               ? IsPattern::Yes
1821               : IsPattern::No;
1822       // C guarantees that brace-init with fewer initializers than members in
1823       // the aggregate will initialize the rest of the aggregate as-if it were
1824       // static initialization. In turn static initialization guarantees that
1825       // padding is initialized to zero bits. We could instead pattern-init if D
1826       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1827       // behavior.
1828       constant = constWithPadding(CGM, IsPattern::No,
1829                                   replaceUndef(CGM, isPattern, constant));
1830     }
1831   }
1832 
1833   if (!constant) {
1834     initializeWhatIsTechnicallyUninitialized(Loc);
1835     LValue lv = MakeAddrLValue(Loc, type);
1836     lv.setNonGC(true);
1837     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1838   }
1839 
1840   if (!emission.IsConstantAggregate) {
1841     // For simple scalar/complex initialization, store the value directly.
1842     LValue lv = MakeAddrLValue(Loc, type);
1843     lv.setNonGC(true);
1844     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1845   }
1846 
1847   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1848   emitStoresForConstant(
1849       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1850       type.isVolatileQualified(), Builder, constant);
1851 }
1852 
1853 /// Emit an expression as an initializer for an object (variable, field, etc.)
1854 /// at the given location.  The expression is not necessarily the normal
1855 /// initializer for the object, and the address is not necessarily
1856 /// its normal location.
1857 ///
1858 /// \param init the initializing expression
1859 /// \param D the object to act as if we're initializing
1860 /// \param loc the address to initialize; its type is a pointer
1861 ///   to the LLVM mapping of the object's type
1862 /// \param alignment the alignment of the address
1863 /// \param capturedByInit true if \p D is a __block variable
1864 ///   whose address is potentially changed by the initializer
1865 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1866                                      LValue lvalue, bool capturedByInit) {
1867   QualType type = D->getType();
1868 
1869   if (type->isReferenceType()) {
1870     RValue rvalue = EmitReferenceBindingToExpr(init);
1871     if (capturedByInit)
1872       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1873     EmitStoreThroughLValue(rvalue, lvalue, true);
1874     return;
1875   }
1876   switch (getEvaluationKind(type)) {
1877   case TEK_Scalar:
1878     EmitScalarInit(init, D, lvalue, capturedByInit);
1879     return;
1880   case TEK_Complex: {
1881     ComplexPairTy complex = EmitComplexExpr(init);
1882     if (capturedByInit)
1883       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1884     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1885     return;
1886   }
1887   case TEK_Aggregate:
1888     if (type->isAtomicType()) {
1889       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1890     } else {
1891       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1892       if (isa<VarDecl>(D))
1893         Overlap = AggValueSlot::DoesNotOverlap;
1894       else if (auto *FD = dyn_cast<FieldDecl>(D))
1895         Overlap = getOverlapForFieldInit(FD);
1896       // TODO: how can we delay here if D is captured by its initializer?
1897       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1898                                               AggValueSlot::IsDestructed,
1899                                          AggValueSlot::DoesNotNeedGCBarriers,
1900                                               AggValueSlot::IsNotAliased,
1901                                               Overlap));
1902     }
1903     return;
1904   }
1905   llvm_unreachable("bad evaluation kind");
1906 }
1907 
1908 /// Enter a destroy cleanup for the given local variable.
1909 void CodeGenFunction::emitAutoVarTypeCleanup(
1910                             const CodeGenFunction::AutoVarEmission &emission,
1911                             QualType::DestructionKind dtorKind) {
1912   assert(dtorKind != QualType::DK_none);
1913 
1914   // Note that for __block variables, we want to destroy the
1915   // original stack object, not the possibly forwarded object.
1916   Address addr = emission.getObjectAddress(*this);
1917 
1918   const VarDecl *var = emission.Variable;
1919   QualType type = var->getType();
1920 
1921   CleanupKind cleanupKind = NormalAndEHCleanup;
1922   CodeGenFunction::Destroyer *destroyer = nullptr;
1923 
1924   switch (dtorKind) {
1925   case QualType::DK_none:
1926     llvm_unreachable("no cleanup for trivially-destructible variable");
1927 
1928   case QualType::DK_cxx_destructor:
1929     // If there's an NRVO flag on the emission, we need a different
1930     // cleanup.
1931     if (emission.NRVOFlag) {
1932       assert(!type->isArrayType());
1933       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1934       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1935                                                   emission.NRVOFlag);
1936       return;
1937     }
1938     break;
1939 
1940   case QualType::DK_objc_strong_lifetime:
1941     // Suppress cleanups for pseudo-strong variables.
1942     if (var->isARCPseudoStrong()) return;
1943 
1944     // Otherwise, consider whether to use an EH cleanup or not.
1945     cleanupKind = getARCCleanupKind();
1946 
1947     // Use the imprecise destroyer by default.
1948     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1949       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1950     break;
1951 
1952   case QualType::DK_objc_weak_lifetime:
1953     break;
1954 
1955   case QualType::DK_nontrivial_c_struct:
1956     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1957     if (emission.NRVOFlag) {
1958       assert(!type->isArrayType());
1959       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1960                                                 emission.NRVOFlag, type);
1961       return;
1962     }
1963     break;
1964   }
1965 
1966   // If we haven't chosen a more specific destroyer, use the default.
1967   if (!destroyer) destroyer = getDestroyer(dtorKind);
1968 
1969   // Use an EH cleanup in array destructors iff the destructor itself
1970   // is being pushed as an EH cleanup.
1971   bool useEHCleanup = (cleanupKind & EHCleanup);
1972   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1973                                      useEHCleanup);
1974 }
1975 
1976 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1977   assert(emission.Variable && "emission was not valid!");
1978 
1979   // If this was emitted as a global constant, we're done.
1980   if (emission.wasEmittedAsGlobal()) return;
1981 
1982   // If we don't have an insertion point, we're done.  Sema prevents
1983   // us from jumping into any of these scopes anyway.
1984   if (!HaveInsertPoint()) return;
1985 
1986   const VarDecl &D = *emission.Variable;
1987 
1988   // Check the type for a cleanup.
1989   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
1990     emitAutoVarTypeCleanup(emission, dtorKind);
1991 
1992   // In GC mode, honor objc_precise_lifetime.
1993   if (getLangOpts().getGC() != LangOptions::NonGC &&
1994       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1995     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1996   }
1997 
1998   // Handle the cleanup attribute.
1999   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2000     const FunctionDecl *FD = CA->getFunctionDecl();
2001 
2002     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2003     assert(F && "Could not find function!");
2004 
2005     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2006     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2007   }
2008 
2009   // If this is a block variable, call _Block_object_destroy
2010   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2011   // mode.
2012   if (emission.IsEscapingByRef &&
2013       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2014     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2015     if (emission.Variable->getType().isObjCGCWeak())
2016       Flags |= BLOCK_FIELD_IS_WEAK;
2017     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2018                       /*LoadBlockVarAddr*/ false,
2019                       cxxDestructorCanThrow(emission.Variable->getType()));
2020   }
2021 }
2022 
2023 CodeGenFunction::Destroyer *
2024 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2025   switch (kind) {
2026   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2027   case QualType::DK_cxx_destructor:
2028     return destroyCXXObject;
2029   case QualType::DK_objc_strong_lifetime:
2030     return destroyARCStrongPrecise;
2031   case QualType::DK_objc_weak_lifetime:
2032     return destroyARCWeak;
2033   case QualType::DK_nontrivial_c_struct:
2034     return destroyNonTrivialCStruct;
2035   }
2036   llvm_unreachable("Unknown DestructionKind");
2037 }
2038 
2039 /// pushEHDestroy - Push the standard destructor for the given type as
2040 /// an EH-only cleanup.
2041 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2042                                     Address addr, QualType type) {
2043   assert(dtorKind && "cannot push destructor for trivial type");
2044   assert(needsEHCleanup(dtorKind));
2045 
2046   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2047 }
2048 
2049 /// pushDestroy - Push the standard destructor for the given type as
2050 /// at least a normal cleanup.
2051 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2052                                   Address addr, QualType type) {
2053   assert(dtorKind && "cannot push destructor for trivial type");
2054 
2055   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2056   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2057               cleanupKind & EHCleanup);
2058 }
2059 
2060 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2061                                   QualType type, Destroyer *destroyer,
2062                                   bool useEHCleanupForArray) {
2063   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2064                                      destroyer, useEHCleanupForArray);
2065 }
2066 
2067 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2068   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2069 }
2070 
2071 void CodeGenFunction::pushLifetimeExtendedDestroy(
2072     CleanupKind cleanupKind, Address addr, QualType type,
2073     Destroyer *destroyer, bool useEHCleanupForArray) {
2074   // Push an EH-only cleanup for the object now.
2075   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2076   // around in case a temporary's destructor throws an exception.
2077   if (cleanupKind & EHCleanup)
2078     EHStack.pushCleanup<DestroyObject>(
2079         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2080         destroyer, useEHCleanupForArray);
2081 
2082   // Remember that we need to push a full cleanup for the object at the
2083   // end of the full-expression.
2084   pushCleanupAfterFullExpr<DestroyObject>(
2085       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
2086 }
2087 
2088 /// emitDestroy - Immediately perform the destruction of the given
2089 /// object.
2090 ///
2091 /// \param addr - the address of the object; a type*
2092 /// \param type - the type of the object; if an array type, all
2093 ///   objects are destroyed in reverse order
2094 /// \param destroyer - the function to call to destroy individual
2095 ///   elements
2096 /// \param useEHCleanupForArray - whether an EH cleanup should be
2097 ///   used when destroying array elements, in case one of the
2098 ///   destructions throws an exception
2099 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2100                                   Destroyer *destroyer,
2101                                   bool useEHCleanupForArray) {
2102   const ArrayType *arrayType = getContext().getAsArrayType(type);
2103   if (!arrayType)
2104     return destroyer(*this, addr, type);
2105 
2106   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2107 
2108   CharUnits elementAlign =
2109     addr.getAlignment()
2110         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2111 
2112   // Normally we have to check whether the array is zero-length.
2113   bool checkZeroLength = true;
2114 
2115   // But if the array length is constant, we can suppress that.
2116   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2117     // ...and if it's constant zero, we can just skip the entire thing.
2118     if (constLength->isZero()) return;
2119     checkZeroLength = false;
2120   }
2121 
2122   llvm::Value *begin = addr.getPointer();
2123   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2124   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2125                    checkZeroLength, useEHCleanupForArray);
2126 }
2127 
2128 /// emitArrayDestroy - Destroys all the elements of the given array,
2129 /// beginning from last to first.  The array cannot be zero-length.
2130 ///
2131 /// \param begin - a type* denoting the first element of the array
2132 /// \param end - a type* denoting one past the end of the array
2133 /// \param elementType - the element type of the array
2134 /// \param destroyer - the function to call to destroy elements
2135 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2136 ///   the remaining elements in case the destruction of a single
2137 ///   element throws
2138 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2139                                        llvm::Value *end,
2140                                        QualType elementType,
2141                                        CharUnits elementAlign,
2142                                        Destroyer *destroyer,
2143                                        bool checkZeroLength,
2144                                        bool useEHCleanup) {
2145   assert(!elementType->isArrayType());
2146 
2147   // The basic structure here is a do-while loop, because we don't
2148   // need to check for the zero-element case.
2149   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2150   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2151 
2152   if (checkZeroLength) {
2153     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2154                                                 "arraydestroy.isempty");
2155     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2156   }
2157 
2158   // Enter the loop body, making that address the current address.
2159   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2160   EmitBlock(bodyBB);
2161   llvm::PHINode *elementPast =
2162     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2163   elementPast->addIncoming(end, entryBB);
2164 
2165   // Shift the address back by one element.
2166   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2167   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2168                                                    "arraydestroy.element");
2169 
2170   if (useEHCleanup)
2171     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2172                                    destroyer);
2173 
2174   // Perform the actual destruction there.
2175   destroyer(*this, Address(element, elementAlign), elementType);
2176 
2177   if (useEHCleanup)
2178     PopCleanupBlock();
2179 
2180   // Check whether we've reached the end.
2181   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2182   Builder.CreateCondBr(done, doneBB, bodyBB);
2183   elementPast->addIncoming(element, Builder.GetInsertBlock());
2184 
2185   // Done.
2186   EmitBlock(doneBB);
2187 }
2188 
2189 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2190 /// emitArrayDestroy, the element type here may still be an array type.
2191 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2192                                     llvm::Value *begin, llvm::Value *end,
2193                                     QualType type, CharUnits elementAlign,
2194                                     CodeGenFunction::Destroyer *destroyer) {
2195   // If the element type is itself an array, drill down.
2196   unsigned arrayDepth = 0;
2197   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2198     // VLAs don't require a GEP index to walk into.
2199     if (!isa<VariableArrayType>(arrayType))
2200       arrayDepth++;
2201     type = arrayType->getElementType();
2202   }
2203 
2204   if (arrayDepth) {
2205     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2206 
2207     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2208     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2209     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2210   }
2211 
2212   // Destroy the array.  We don't ever need an EH cleanup because we
2213   // assume that we're in an EH cleanup ourselves, so a throwing
2214   // destructor causes an immediate terminate.
2215   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2216                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2217 }
2218 
2219 namespace {
2220   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2221   /// array destroy where the end pointer is regularly determined and
2222   /// does not need to be loaded from a local.
2223   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2224     llvm::Value *ArrayBegin;
2225     llvm::Value *ArrayEnd;
2226     QualType ElementType;
2227     CodeGenFunction::Destroyer *Destroyer;
2228     CharUnits ElementAlign;
2229   public:
2230     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2231                                QualType elementType, CharUnits elementAlign,
2232                                CodeGenFunction::Destroyer *destroyer)
2233       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2234         ElementType(elementType), Destroyer(destroyer),
2235         ElementAlign(elementAlign) {}
2236 
2237     void Emit(CodeGenFunction &CGF, Flags flags) override {
2238       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2239                               ElementType, ElementAlign, Destroyer);
2240     }
2241   };
2242 
2243   /// IrregularPartialArrayDestroy - a cleanup which performs a
2244   /// partial array destroy where the end pointer is irregularly
2245   /// determined and must be loaded from a local.
2246   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2247     llvm::Value *ArrayBegin;
2248     Address ArrayEndPointer;
2249     QualType ElementType;
2250     CodeGenFunction::Destroyer *Destroyer;
2251     CharUnits ElementAlign;
2252   public:
2253     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2254                                  Address arrayEndPointer,
2255                                  QualType elementType,
2256                                  CharUnits elementAlign,
2257                                  CodeGenFunction::Destroyer *destroyer)
2258       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2259         ElementType(elementType), Destroyer(destroyer),
2260         ElementAlign(elementAlign) {}
2261 
2262     void Emit(CodeGenFunction &CGF, Flags flags) override {
2263       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2264       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2265                               ElementType, ElementAlign, Destroyer);
2266     }
2267   };
2268 } // end anonymous namespace
2269 
2270 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2271 /// already-constructed elements of the given array.  The cleanup
2272 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2273 ///
2274 /// \param elementType - the immediate element type of the array;
2275 ///   possibly still an array type
2276 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2277                                                        Address arrayEndPointer,
2278                                                        QualType elementType,
2279                                                        CharUnits elementAlign,
2280                                                        Destroyer *destroyer) {
2281   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2282                                                     arrayBegin, arrayEndPointer,
2283                                                     elementType, elementAlign,
2284                                                     destroyer);
2285 }
2286 
2287 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2288 /// already-constructed elements of the given array.  The cleanup
2289 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2290 ///
2291 /// \param elementType - the immediate element type of the array;
2292 ///   possibly still an array type
2293 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2294                                                      llvm::Value *arrayEnd,
2295                                                      QualType elementType,
2296                                                      CharUnits elementAlign,
2297                                                      Destroyer *destroyer) {
2298   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2299                                                   arrayBegin, arrayEnd,
2300                                                   elementType, elementAlign,
2301                                                   destroyer);
2302 }
2303 
2304 /// Lazily declare the @llvm.lifetime.start intrinsic.
2305 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2306   if (LifetimeStartFn)
2307     return LifetimeStartFn;
2308   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2309     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2310   return LifetimeStartFn;
2311 }
2312 
2313 /// Lazily declare the @llvm.lifetime.end intrinsic.
2314 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2315   if (LifetimeEndFn)
2316     return LifetimeEndFn;
2317   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2318     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2319   return LifetimeEndFn;
2320 }
2321 
2322 namespace {
2323   /// A cleanup to perform a release of an object at the end of a
2324   /// function.  This is used to balance out the incoming +1 of a
2325   /// ns_consumed argument when we can't reasonably do that just by
2326   /// not doing the initial retain for a __block argument.
2327   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2328     ConsumeARCParameter(llvm::Value *param,
2329                         ARCPreciseLifetime_t precise)
2330       : Param(param), Precise(precise) {}
2331 
2332     llvm::Value *Param;
2333     ARCPreciseLifetime_t Precise;
2334 
2335     void Emit(CodeGenFunction &CGF, Flags flags) override {
2336       CGF.EmitARCRelease(Param, Precise);
2337     }
2338   };
2339 } // end anonymous namespace
2340 
2341 /// Emit an alloca (or GlobalValue depending on target)
2342 /// for the specified parameter and set up LocalDeclMap.
2343 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2344                                    unsigned ArgNo) {
2345   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2346   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2347          "Invalid argument to EmitParmDecl");
2348 
2349   Arg.getAnyValue()->setName(D.getName());
2350 
2351   QualType Ty = D.getType();
2352 
2353   // Use better IR generation for certain implicit parameters.
2354   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2355     // The only implicit argument a block has is its literal.
2356     // This may be passed as an inalloca'ed value on Windows x86.
2357     if (BlockInfo) {
2358       llvm::Value *V = Arg.isIndirect()
2359                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2360                            : Arg.getDirectValue();
2361       setBlockContextParameter(IPD, ArgNo, V);
2362       return;
2363     }
2364   }
2365 
2366   Address DeclPtr = Address::invalid();
2367   bool DoStore = false;
2368   bool IsScalar = hasScalarEvaluationKind(Ty);
2369   // If we already have a pointer to the argument, reuse the input pointer.
2370   if (Arg.isIndirect()) {
2371     DeclPtr = Arg.getIndirectAddress();
2372     // If we have a prettier pointer type at this point, bitcast to that.
2373     unsigned AS = DeclPtr.getType()->getAddressSpace();
2374     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2375     if (DeclPtr.getType() != IRTy)
2376       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2377     // Indirect argument is in alloca address space, which may be different
2378     // from the default address space.
2379     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2380     auto *V = DeclPtr.getPointer();
2381     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2382     auto DestLangAS =
2383         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2384     if (SrcLangAS != DestLangAS) {
2385       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2386              CGM.getDataLayout().getAllocaAddrSpace());
2387       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2388       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2389       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2390                             *this, V, SrcLangAS, DestLangAS, T, true),
2391                         DeclPtr.getAlignment());
2392     }
2393 
2394     // Push a destructor cleanup for this parameter if the ABI requires it.
2395     // Don't push a cleanup in a thunk for a method that will also emit a
2396     // cleanup.
2397     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2398         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2399       if (QualType::DestructionKind DtorKind =
2400               D.needsDestruction(getContext())) {
2401         assert((DtorKind == QualType::DK_cxx_destructor ||
2402                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2403                "unexpected destructor type");
2404         pushDestroy(DtorKind, DeclPtr, Ty);
2405         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2406             EHStack.stable_begin();
2407       }
2408     }
2409   } else {
2410     // Check if the parameter address is controlled by OpenMP runtime.
2411     Address OpenMPLocalAddr =
2412         getLangOpts().OpenMP
2413             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2414             : Address::invalid();
2415     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2416       DeclPtr = OpenMPLocalAddr;
2417     } else {
2418       // Otherwise, create a temporary to hold the value.
2419       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2420                               D.getName() + ".addr");
2421     }
2422     DoStore = true;
2423   }
2424 
2425   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2426 
2427   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2428   if (IsScalar) {
2429     Qualifiers qs = Ty.getQualifiers();
2430     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2431       // We honor __attribute__((ns_consumed)) for types with lifetime.
2432       // For __strong, it's handled by just skipping the initial retain;
2433       // otherwise we have to balance out the initial +1 with an extra
2434       // cleanup to do the release at the end of the function.
2435       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2436 
2437       // If a parameter is pseudo-strong then we can omit the implicit retain.
2438       if (D.isARCPseudoStrong()) {
2439         assert(lt == Qualifiers::OCL_Strong &&
2440                "pseudo-strong variable isn't strong?");
2441         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2442         lt = Qualifiers::OCL_ExplicitNone;
2443       }
2444 
2445       // Load objects passed indirectly.
2446       if (Arg.isIndirect() && !ArgVal)
2447         ArgVal = Builder.CreateLoad(DeclPtr);
2448 
2449       if (lt == Qualifiers::OCL_Strong) {
2450         if (!isConsumed) {
2451           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2452             // use objc_storeStrong(&dest, value) for retaining the
2453             // object. But first, store a null into 'dest' because
2454             // objc_storeStrong attempts to release its old value.
2455             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2456             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2457             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2458             DoStore = false;
2459           }
2460           else
2461           // Don't use objc_retainBlock for block pointers, because we
2462           // don't want to Block_copy something just because we got it
2463           // as a parameter.
2464             ArgVal = EmitARCRetainNonBlock(ArgVal);
2465         }
2466       } else {
2467         // Push the cleanup for a consumed parameter.
2468         if (isConsumed) {
2469           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2470                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2471           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2472                                                    precise);
2473         }
2474 
2475         if (lt == Qualifiers::OCL_Weak) {
2476           EmitARCInitWeak(DeclPtr, ArgVal);
2477           DoStore = false; // The weak init is a store, no need to do two.
2478         }
2479       }
2480 
2481       // Enter the cleanup scope.
2482       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2483     }
2484   }
2485 
2486   // Store the initial value into the alloca.
2487   if (DoStore)
2488     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2489 
2490   setAddrOfLocalVar(&D, DeclPtr);
2491 
2492   // Emit debug info for param declarations in non-thunk functions.
2493   if (CGDebugInfo *DI = getDebugInfo()) {
2494     if (CGM.getCodeGenOpts().getDebugInfo() >=
2495             codegenoptions::LimitedDebugInfo &&
2496         !CurFuncIsThunk) {
2497       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2498     }
2499   }
2500 
2501   if (D.hasAttr<AnnotateAttr>())
2502     EmitVarAnnotations(&D, DeclPtr.getPointer());
2503 
2504   // We can only check return value nullability if all arguments to the
2505   // function satisfy their nullability preconditions. This makes it necessary
2506   // to emit null checks for args in the function body itself.
2507   if (requiresReturnValueNullabilityCheck()) {
2508     auto Nullability = Ty->getNullability(getContext());
2509     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2510       SanitizerScope SanScope(this);
2511       RetValNullabilityPrecondition =
2512           Builder.CreateAnd(RetValNullabilityPrecondition,
2513                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2514     }
2515   }
2516 }
2517 
2518 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2519                                             CodeGenFunction *CGF) {
2520   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2521     return;
2522   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2523 }
2524 
2525 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2526                                          CodeGenFunction *CGF) {
2527   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2528       (!LangOpts.EmitAllDecls && !D->isUsed()))
2529     return;
2530   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2531 }
2532 
2533 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2534   getOpenMPRuntime().checkArchForUnifiedAddressing(D);
2535 }
2536