1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Type.h" 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 void CodeGenFunction::EmitDecl(const Decl &D) { 43 switch (D.getKind()) { 44 case Decl::BuiltinTemplate: 45 case Decl::TranslationUnit: 46 case Decl::ExternCContext: 47 case Decl::Namespace: 48 case Decl::UnresolvedUsingTypename: 49 case Decl::ClassTemplateSpecialization: 50 case Decl::ClassTemplatePartialSpecialization: 51 case Decl::VarTemplateSpecialization: 52 case Decl::VarTemplatePartialSpecialization: 53 case Decl::TemplateTypeParm: 54 case Decl::UnresolvedUsingValue: 55 case Decl::NonTypeTemplateParm: 56 case Decl::CXXDeductionGuide: 57 case Decl::CXXMethod: 58 case Decl::CXXConstructor: 59 case Decl::CXXDestructor: 60 case Decl::CXXConversion: 61 case Decl::Field: 62 case Decl::MSProperty: 63 case Decl::IndirectField: 64 case Decl::ObjCIvar: 65 case Decl::ObjCAtDefsField: 66 case Decl::ParmVar: 67 case Decl::ImplicitParam: 68 case Decl::ClassTemplate: 69 case Decl::VarTemplate: 70 case Decl::FunctionTemplate: 71 case Decl::TypeAliasTemplate: 72 case Decl::TemplateTemplateParm: 73 case Decl::ObjCMethod: 74 case Decl::ObjCCategory: 75 case Decl::ObjCProtocol: 76 case Decl::ObjCInterface: 77 case Decl::ObjCCategoryImpl: 78 case Decl::ObjCImplementation: 79 case Decl::ObjCProperty: 80 case Decl::ObjCCompatibleAlias: 81 case Decl::PragmaComment: 82 case Decl::PragmaDetectMismatch: 83 case Decl::AccessSpec: 84 case Decl::LinkageSpec: 85 case Decl::Export: 86 case Decl::ObjCPropertyImpl: 87 case Decl::FileScopeAsm: 88 case Decl::Friend: 89 case Decl::FriendTemplate: 90 case Decl::Block: 91 case Decl::Captured: 92 case Decl::ClassScopeFunctionSpecialization: 93 case Decl::UsingShadow: 94 case Decl::ConstructorUsingShadow: 95 case Decl::ObjCTypeParam: 96 case Decl::Binding: 97 llvm_unreachable("Declaration should not be in declstmts!"); 98 case Decl::Function: // void X(); 99 case Decl::Record: // struct/union/class X; 100 case Decl::Enum: // enum X; 101 case Decl::EnumConstant: // enum ? { X = ? } 102 case Decl::CXXRecord: // struct/union/class X; [C++] 103 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 104 case Decl::Label: // __label__ x; 105 case Decl::Import: 106 case Decl::OMPThreadPrivate: 107 case Decl::OMPAllocate: 108 case Decl::OMPCapturedExpr: 109 case Decl::OMPRequires: 110 case Decl::Empty: 111 case Decl::Concept: 112 // None of these decls require codegen support. 113 return; 114 115 case Decl::NamespaceAlias: 116 if (CGDebugInfo *DI = getDebugInfo()) 117 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 118 return; 119 case Decl::Using: // using X; [C++] 120 if (CGDebugInfo *DI = getDebugInfo()) 121 DI->EmitUsingDecl(cast<UsingDecl>(D)); 122 return; 123 case Decl::UsingPack: 124 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 125 EmitDecl(*Using); 126 return; 127 case Decl::UsingDirective: // using namespace X; [C++] 128 if (CGDebugInfo *DI = getDebugInfo()) 129 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 130 return; 131 case Decl::Var: 132 case Decl::Decomposition: { 133 const VarDecl &VD = cast<VarDecl>(D); 134 assert(VD.isLocalVarDecl() && 135 "Should not see file-scope variables inside a function!"); 136 EmitVarDecl(VD); 137 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 138 for (auto *B : DD->bindings()) 139 if (auto *HD = B->getHoldingVar()) 140 EmitVarDecl(*HD); 141 return; 142 } 143 144 case Decl::OMPDeclareReduction: 145 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 146 147 case Decl::OMPDeclareMapper: 148 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 149 150 case Decl::Typedef: // typedef int X; 151 case Decl::TypeAlias: { // using X = int; [C++0x] 152 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 153 QualType Ty = TD.getUnderlyingType(); 154 155 if (Ty->isVariablyModifiedType()) 156 EmitVariablyModifiedType(Ty); 157 158 return; 159 } 160 } 161 } 162 163 /// EmitVarDecl - This method handles emission of any variable declaration 164 /// inside a function, including static vars etc. 165 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 166 if (D.hasExternalStorage()) 167 // Don't emit it now, allow it to be emitted lazily on its first use. 168 return; 169 170 // Some function-scope variable does not have static storage but still 171 // needs to be emitted like a static variable, e.g. a function-scope 172 // variable in constant address space in OpenCL. 173 if (D.getStorageDuration() != SD_Automatic) { 174 // Static sampler variables translated to function calls. 175 if (D.getType()->isSamplerT()) 176 return; 177 178 llvm::GlobalValue::LinkageTypes Linkage = 179 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 180 181 // FIXME: We need to force the emission/use of a guard variable for 182 // some variables even if we can constant-evaluate them because 183 // we can't guarantee every translation unit will constant-evaluate them. 184 185 return EmitStaticVarDecl(D, Linkage); 186 } 187 188 if (D.getType().getAddressSpace() == LangAS::opencl_local) 189 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 190 191 assert(D.hasLocalStorage()); 192 return EmitAutoVarDecl(D); 193 } 194 195 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 196 if (CGM.getLangOpts().CPlusPlus) 197 return CGM.getMangledName(&D).str(); 198 199 // If this isn't C++, we don't need a mangled name, just a pretty one. 200 assert(!D.isExternallyVisible() && "name shouldn't matter"); 201 std::string ContextName; 202 const DeclContext *DC = D.getDeclContext(); 203 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 204 DC = cast<DeclContext>(CD->getNonClosureContext()); 205 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 206 ContextName = CGM.getMangledName(FD); 207 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 208 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 209 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 210 ContextName = OMD->getSelector().getAsString(); 211 else 212 llvm_unreachable("Unknown context for static var decl"); 213 214 ContextName += "." + D.getNameAsString(); 215 return ContextName; 216 } 217 218 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 219 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 220 // In general, we don't always emit static var decls once before we reference 221 // them. It is possible to reference them before emitting the function that 222 // contains them, and it is possible to emit the containing function multiple 223 // times. 224 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 225 return ExistingGV; 226 227 QualType Ty = D.getType(); 228 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 229 230 // Use the label if the variable is renamed with the asm-label extension. 231 std::string Name; 232 if (D.hasAttr<AsmLabelAttr>()) 233 Name = getMangledName(&D); 234 else 235 Name = getStaticDeclName(*this, D); 236 237 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 238 LangAS AS = GetGlobalVarAddressSpace(&D); 239 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 240 241 // OpenCL variables in local address space and CUDA shared 242 // variables cannot have an initializer. 243 llvm::Constant *Init = nullptr; 244 if (Ty.getAddressSpace() == LangAS::opencl_local || 245 D.hasAttr<CUDASharedAttr>()) 246 Init = llvm::UndefValue::get(LTy); 247 else 248 Init = EmitNullConstant(Ty); 249 250 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 251 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 252 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 253 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 254 255 if (supportsCOMDAT() && GV->isWeakForLinker()) 256 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 257 258 if (D.getTLSKind()) 259 setTLSMode(GV, D); 260 261 setGVProperties(GV, &D); 262 263 // Make sure the result is of the correct type. 264 LangAS ExpectedAS = Ty.getAddressSpace(); 265 llvm::Constant *Addr = GV; 266 if (AS != ExpectedAS) { 267 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 268 *this, GV, AS, ExpectedAS, 269 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 270 } 271 272 setStaticLocalDeclAddress(&D, Addr); 273 274 // Ensure that the static local gets initialized by making sure the parent 275 // function gets emitted eventually. 276 const Decl *DC = cast<Decl>(D.getDeclContext()); 277 278 // We can't name blocks or captured statements directly, so try to emit their 279 // parents. 280 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 281 DC = DC->getNonClosureContext(); 282 // FIXME: Ensure that global blocks get emitted. 283 if (!DC) 284 return Addr; 285 } 286 287 GlobalDecl GD; 288 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 289 GD = GlobalDecl(CD, Ctor_Base); 290 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 291 GD = GlobalDecl(DD, Dtor_Base); 292 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 293 GD = GlobalDecl(FD); 294 else { 295 // Don't do anything for Obj-C method decls or global closures. We should 296 // never defer them. 297 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 298 } 299 if (GD.getDecl()) { 300 // Disable emission of the parent function for the OpenMP device codegen. 301 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 302 (void)GetAddrOfGlobal(GD); 303 } 304 305 return Addr; 306 } 307 308 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 309 /// global variable that has already been created for it. If the initializer 310 /// has a different type than GV does, this may free GV and return a different 311 /// one. Otherwise it just returns GV. 312 llvm::GlobalVariable * 313 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 314 llvm::GlobalVariable *GV) { 315 ConstantEmitter emitter(*this); 316 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 317 318 // If constant emission failed, then this should be a C++ static 319 // initializer. 320 if (!Init) { 321 if (!getLangOpts().CPlusPlus) 322 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 323 else if (HaveInsertPoint()) { 324 // Since we have a static initializer, this global variable can't 325 // be constant. 326 GV->setConstant(false); 327 328 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 329 } 330 return GV; 331 } 332 333 // The initializer may differ in type from the global. Rewrite 334 // the global to match the initializer. (We have to do this 335 // because some types, like unions, can't be completely represented 336 // in the LLVM type system.) 337 if (GV->getType()->getElementType() != Init->getType()) { 338 llvm::GlobalVariable *OldGV = GV; 339 340 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 341 OldGV->isConstant(), 342 OldGV->getLinkage(), Init, "", 343 /*InsertBefore*/ OldGV, 344 OldGV->getThreadLocalMode(), 345 CGM.getContext().getTargetAddressSpace(D.getType())); 346 GV->setVisibility(OldGV->getVisibility()); 347 GV->setDSOLocal(OldGV->isDSOLocal()); 348 GV->setComdat(OldGV->getComdat()); 349 350 // Steal the name of the old global 351 GV->takeName(OldGV); 352 353 // Replace all uses of the old global with the new global 354 llvm::Constant *NewPtrForOldDecl = 355 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 356 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 357 358 // Erase the old global, since it is no longer used. 359 OldGV->eraseFromParent(); 360 } 361 362 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 363 GV->setInitializer(Init); 364 365 emitter.finalize(GV); 366 367 if (D.needsDestruction(getContext()) && HaveInsertPoint()) { 368 // We have a constant initializer, but a nontrivial destructor. We still 369 // need to perform a guarded "initialization" in order to register the 370 // destructor. 371 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 372 } 373 374 return GV; 375 } 376 377 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 378 llvm::GlobalValue::LinkageTypes Linkage) { 379 // Check to see if we already have a global variable for this 380 // declaration. This can happen when double-emitting function 381 // bodies, e.g. with complete and base constructors. 382 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 383 CharUnits alignment = getContext().getDeclAlign(&D); 384 385 // Store into LocalDeclMap before generating initializer to handle 386 // circular references. 387 setAddrOfLocalVar(&D, Address(addr, alignment)); 388 389 // We can't have a VLA here, but we can have a pointer to a VLA, 390 // even though that doesn't really make any sense. 391 // Make sure to evaluate VLA bounds now so that we have them for later. 392 if (D.getType()->isVariablyModifiedType()) 393 EmitVariablyModifiedType(D.getType()); 394 395 // Save the type in case adding the initializer forces a type change. 396 llvm::Type *expectedType = addr->getType(); 397 398 llvm::GlobalVariable *var = 399 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 400 401 // CUDA's local and local static __shared__ variables should not 402 // have any non-empty initializers. This is ensured by Sema. 403 // Whatever initializer such variable may have when it gets here is 404 // a no-op and should not be emitted. 405 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 406 D.hasAttr<CUDASharedAttr>(); 407 // If this value has an initializer, emit it. 408 if (D.getInit() && !isCudaSharedVar) 409 var = AddInitializerToStaticVarDecl(D, var); 410 411 var->setAlignment(alignment.getAsAlign()); 412 413 if (D.hasAttr<AnnotateAttr>()) 414 CGM.AddGlobalAnnotations(&D, var); 415 416 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 417 var->addAttribute("bss-section", SA->getName()); 418 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 419 var->addAttribute("data-section", SA->getName()); 420 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 421 var->addAttribute("rodata-section", SA->getName()); 422 423 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 424 var->setSection(SA->getName()); 425 426 if (D.hasAttr<UsedAttr>()) 427 CGM.addUsedGlobal(var); 428 429 // We may have to cast the constant because of the initializer 430 // mismatch above. 431 // 432 // FIXME: It is really dangerous to store this in the map; if anyone 433 // RAUW's the GV uses of this constant will be invalid. 434 llvm::Constant *castedAddr = 435 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 436 if (var != castedAddr) 437 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 438 CGM.setStaticLocalDeclAddress(&D, castedAddr); 439 440 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 441 442 // Emit global variable debug descriptor for static vars. 443 CGDebugInfo *DI = getDebugInfo(); 444 if (DI && 445 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 446 DI->setLocation(D.getLocation()); 447 DI->EmitGlobalVariable(var, &D); 448 } 449 } 450 451 namespace { 452 struct DestroyObject final : EHScopeStack::Cleanup { 453 DestroyObject(Address addr, QualType type, 454 CodeGenFunction::Destroyer *destroyer, 455 bool useEHCleanupForArray) 456 : addr(addr), type(type), destroyer(destroyer), 457 useEHCleanupForArray(useEHCleanupForArray) {} 458 459 Address addr; 460 QualType type; 461 CodeGenFunction::Destroyer *destroyer; 462 bool useEHCleanupForArray; 463 464 void Emit(CodeGenFunction &CGF, Flags flags) override { 465 // Don't use an EH cleanup recursively from an EH cleanup. 466 bool useEHCleanupForArray = 467 flags.isForNormalCleanup() && this->useEHCleanupForArray; 468 469 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 470 } 471 }; 472 473 template <class Derived> 474 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 475 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 476 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 477 478 llvm::Value *NRVOFlag; 479 Address Loc; 480 QualType Ty; 481 482 void Emit(CodeGenFunction &CGF, Flags flags) override { 483 // Along the exceptions path we always execute the dtor. 484 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 485 486 llvm::BasicBlock *SkipDtorBB = nullptr; 487 if (NRVO) { 488 // If we exited via NRVO, we skip the destructor call. 489 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 490 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 491 llvm::Value *DidNRVO = 492 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 493 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 494 CGF.EmitBlock(RunDtorBB); 495 } 496 497 static_cast<Derived *>(this)->emitDestructorCall(CGF); 498 499 if (NRVO) CGF.EmitBlock(SkipDtorBB); 500 } 501 502 virtual ~DestroyNRVOVariable() = default; 503 }; 504 505 struct DestroyNRVOVariableCXX final 506 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 507 DestroyNRVOVariableCXX(Address addr, QualType type, 508 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 509 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 510 Dtor(Dtor) {} 511 512 const CXXDestructorDecl *Dtor; 513 514 void emitDestructorCall(CodeGenFunction &CGF) { 515 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 516 /*ForVirtualBase=*/false, 517 /*Delegating=*/false, Loc, Ty); 518 } 519 }; 520 521 struct DestroyNRVOVariableC final 522 : DestroyNRVOVariable<DestroyNRVOVariableC> { 523 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 524 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 525 526 void emitDestructorCall(CodeGenFunction &CGF) { 527 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 528 } 529 }; 530 531 struct CallStackRestore final : EHScopeStack::Cleanup { 532 Address Stack; 533 CallStackRestore(Address Stack) : Stack(Stack) {} 534 void Emit(CodeGenFunction &CGF, Flags flags) override { 535 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 536 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 537 CGF.Builder.CreateCall(F, V); 538 } 539 }; 540 541 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 542 const VarDecl &Var; 543 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 544 545 void Emit(CodeGenFunction &CGF, Flags flags) override { 546 // Compute the address of the local variable, in case it's a 547 // byref or something. 548 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 549 Var.getType(), VK_LValue, SourceLocation()); 550 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 551 SourceLocation()); 552 CGF.EmitExtendGCLifetime(value); 553 } 554 }; 555 556 struct CallCleanupFunction final : EHScopeStack::Cleanup { 557 llvm::Constant *CleanupFn; 558 const CGFunctionInfo &FnInfo; 559 const VarDecl &Var; 560 561 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 562 const VarDecl *Var) 563 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 564 565 void Emit(CodeGenFunction &CGF, Flags flags) override { 566 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 567 Var.getType(), VK_LValue, SourceLocation()); 568 // Compute the address of the local variable, in case it's a byref 569 // or something. 570 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 571 572 // In some cases, the type of the function argument will be different from 573 // the type of the pointer. An example of this is 574 // void f(void* arg); 575 // __attribute__((cleanup(f))) void *g; 576 // 577 // To fix this we insert a bitcast here. 578 QualType ArgTy = FnInfo.arg_begin()->type; 579 llvm::Value *Arg = 580 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 581 582 CallArgList Args; 583 Args.add(RValue::get(Arg), 584 CGF.getContext().getPointerType(Var.getType())); 585 auto Callee = CGCallee::forDirect(CleanupFn); 586 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 587 } 588 }; 589 } // end anonymous namespace 590 591 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 592 /// variable with lifetime. 593 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 594 Address addr, 595 Qualifiers::ObjCLifetime lifetime) { 596 switch (lifetime) { 597 case Qualifiers::OCL_None: 598 llvm_unreachable("present but none"); 599 600 case Qualifiers::OCL_ExplicitNone: 601 // nothing to do 602 break; 603 604 case Qualifiers::OCL_Strong: { 605 CodeGenFunction::Destroyer *destroyer = 606 (var.hasAttr<ObjCPreciseLifetimeAttr>() 607 ? CodeGenFunction::destroyARCStrongPrecise 608 : CodeGenFunction::destroyARCStrongImprecise); 609 610 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 611 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 612 cleanupKind & EHCleanup); 613 break; 614 } 615 case Qualifiers::OCL_Autoreleasing: 616 // nothing to do 617 break; 618 619 case Qualifiers::OCL_Weak: 620 // __weak objects always get EH cleanups; otherwise, exceptions 621 // could cause really nasty crashes instead of mere leaks. 622 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 623 CodeGenFunction::destroyARCWeak, 624 /*useEHCleanup*/ true); 625 break; 626 } 627 } 628 629 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 630 if (const Expr *e = dyn_cast<Expr>(s)) { 631 // Skip the most common kinds of expressions that make 632 // hierarchy-walking expensive. 633 s = e = e->IgnoreParenCasts(); 634 635 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 636 return (ref->getDecl() == &var); 637 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 638 const BlockDecl *block = be->getBlockDecl(); 639 for (const auto &I : block->captures()) { 640 if (I.getVariable() == &var) 641 return true; 642 } 643 } 644 } 645 646 for (const Stmt *SubStmt : s->children()) 647 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 648 if (SubStmt && isAccessedBy(var, SubStmt)) 649 return true; 650 651 return false; 652 } 653 654 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 655 if (!decl) return false; 656 if (!isa<VarDecl>(decl)) return false; 657 const VarDecl *var = cast<VarDecl>(decl); 658 return isAccessedBy(*var, e); 659 } 660 661 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 662 const LValue &destLV, const Expr *init) { 663 bool needsCast = false; 664 665 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 666 switch (castExpr->getCastKind()) { 667 // Look through casts that don't require representation changes. 668 case CK_NoOp: 669 case CK_BitCast: 670 case CK_BlockPointerToObjCPointerCast: 671 needsCast = true; 672 break; 673 674 // If we find an l-value to r-value cast from a __weak variable, 675 // emit this operation as a copy or move. 676 case CK_LValueToRValue: { 677 const Expr *srcExpr = castExpr->getSubExpr(); 678 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 679 return false; 680 681 // Emit the source l-value. 682 LValue srcLV = CGF.EmitLValue(srcExpr); 683 684 // Handle a formal type change to avoid asserting. 685 auto srcAddr = srcLV.getAddress(); 686 if (needsCast) { 687 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 688 destLV.getAddress().getElementType()); 689 } 690 691 // If it was an l-value, use objc_copyWeak. 692 if (srcExpr->getValueKind() == VK_LValue) { 693 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 694 } else { 695 assert(srcExpr->getValueKind() == VK_XValue); 696 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 697 } 698 return true; 699 } 700 701 // Stop at anything else. 702 default: 703 return false; 704 } 705 706 init = castExpr->getSubExpr(); 707 } 708 return false; 709 } 710 711 static void drillIntoBlockVariable(CodeGenFunction &CGF, 712 LValue &lvalue, 713 const VarDecl *var) { 714 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 715 } 716 717 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 718 SourceLocation Loc) { 719 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 720 return; 721 722 auto Nullability = LHS.getType()->getNullability(getContext()); 723 if (!Nullability || *Nullability != NullabilityKind::NonNull) 724 return; 725 726 // Check if the right hand side of the assignment is nonnull, if the left 727 // hand side must be nonnull. 728 SanitizerScope SanScope(this); 729 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 730 llvm::Constant *StaticData[] = { 731 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 732 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 733 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 734 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 735 SanitizerHandler::TypeMismatch, StaticData, RHS); 736 } 737 738 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 739 LValue lvalue, bool capturedByInit) { 740 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 741 if (!lifetime) { 742 llvm::Value *value = EmitScalarExpr(init); 743 if (capturedByInit) 744 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 745 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 746 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 747 return; 748 } 749 750 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 751 init = DIE->getExpr(); 752 753 // If we're emitting a value with lifetime, we have to do the 754 // initialization *before* we leave the cleanup scopes. 755 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 756 enterFullExpression(fe); 757 init = fe->getSubExpr(); 758 } 759 CodeGenFunction::RunCleanupsScope Scope(*this); 760 761 // We have to maintain the illusion that the variable is 762 // zero-initialized. If the variable might be accessed in its 763 // initializer, zero-initialize before running the initializer, then 764 // actually perform the initialization with an assign. 765 bool accessedByInit = false; 766 if (lifetime != Qualifiers::OCL_ExplicitNone) 767 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 768 if (accessedByInit) { 769 LValue tempLV = lvalue; 770 // Drill down to the __block object if necessary. 771 if (capturedByInit) { 772 // We can use a simple GEP for this because it can't have been 773 // moved yet. 774 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 775 cast<VarDecl>(D), 776 /*follow*/ false)); 777 } 778 779 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 780 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 781 782 // If __weak, we want to use a barrier under certain conditions. 783 if (lifetime == Qualifiers::OCL_Weak) 784 EmitARCInitWeak(tempLV.getAddress(), zero); 785 786 // Otherwise just do a simple store. 787 else 788 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 789 } 790 791 // Emit the initializer. 792 llvm::Value *value = nullptr; 793 794 switch (lifetime) { 795 case Qualifiers::OCL_None: 796 llvm_unreachable("present but none"); 797 798 case Qualifiers::OCL_Strong: { 799 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 800 value = EmitARCRetainScalarExpr(init); 801 break; 802 } 803 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 804 // that we omit the retain, and causes non-autoreleased return values to be 805 // immediately released. 806 LLVM_FALLTHROUGH; 807 } 808 809 case Qualifiers::OCL_ExplicitNone: 810 value = EmitARCUnsafeUnretainedScalarExpr(init); 811 break; 812 813 case Qualifiers::OCL_Weak: { 814 // If it's not accessed by the initializer, try to emit the 815 // initialization with a copy or move. 816 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 817 return; 818 } 819 820 // No way to optimize a producing initializer into this. It's not 821 // worth optimizing for, because the value will immediately 822 // disappear in the common case. 823 value = EmitScalarExpr(init); 824 825 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 826 if (accessedByInit) 827 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 828 else 829 EmitARCInitWeak(lvalue.getAddress(), value); 830 return; 831 } 832 833 case Qualifiers::OCL_Autoreleasing: 834 value = EmitARCRetainAutoreleaseScalarExpr(init); 835 break; 836 } 837 838 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 839 840 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 841 842 // If the variable might have been accessed by its initializer, we 843 // might have to initialize with a barrier. We have to do this for 844 // both __weak and __strong, but __weak got filtered out above. 845 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 846 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 847 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 848 EmitARCRelease(oldValue, ARCImpreciseLifetime); 849 return; 850 } 851 852 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 853 } 854 855 /// Decide whether we can emit the non-zero parts of the specified initializer 856 /// with equal or fewer than NumStores scalar stores. 857 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 858 unsigned &NumStores) { 859 // Zero and Undef never requires any extra stores. 860 if (isa<llvm::ConstantAggregateZero>(Init) || 861 isa<llvm::ConstantPointerNull>(Init) || 862 isa<llvm::UndefValue>(Init)) 863 return true; 864 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 865 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 866 isa<llvm::ConstantExpr>(Init)) 867 return Init->isNullValue() || NumStores--; 868 869 // See if we can emit each element. 870 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 871 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 872 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 873 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 874 return false; 875 } 876 return true; 877 } 878 879 if (llvm::ConstantDataSequential *CDS = 880 dyn_cast<llvm::ConstantDataSequential>(Init)) { 881 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 882 llvm::Constant *Elt = CDS->getElementAsConstant(i); 883 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 884 return false; 885 } 886 return true; 887 } 888 889 // Anything else is hard and scary. 890 return false; 891 } 892 893 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 894 /// the scalar stores that would be required. 895 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 896 llvm::Constant *Init, Address Loc, 897 bool isVolatile, CGBuilderTy &Builder) { 898 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 899 "called emitStoresForInitAfterBZero for zero or undef value."); 900 901 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 902 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 903 isa<llvm::ConstantExpr>(Init)) { 904 Builder.CreateStore(Init, Loc, isVolatile); 905 return; 906 } 907 908 if (llvm::ConstantDataSequential *CDS = 909 dyn_cast<llvm::ConstantDataSequential>(Init)) { 910 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 911 llvm::Constant *Elt = CDS->getElementAsConstant(i); 912 913 // If necessary, get a pointer to the element and emit it. 914 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 915 emitStoresForInitAfterBZero( 916 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 917 Builder); 918 } 919 return; 920 } 921 922 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 923 "Unknown value type!"); 924 925 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 926 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 927 928 // If necessary, get a pointer to the element and emit it. 929 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 930 emitStoresForInitAfterBZero(CGM, Elt, 931 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 932 isVolatile, Builder); 933 } 934 } 935 936 /// Decide whether we should use bzero plus some stores to initialize a local 937 /// variable instead of using a memcpy from a constant global. It is beneficial 938 /// to use bzero if the global is all zeros, or mostly zeros and large. 939 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 940 uint64_t GlobalSize) { 941 // If a global is all zeros, always use a bzero. 942 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 943 944 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 945 // do it if it will require 6 or fewer scalar stores. 946 // TODO: Should budget depends on the size? Avoiding a large global warrants 947 // plopping in more stores. 948 unsigned StoreBudget = 6; 949 uint64_t SizeLimit = 32; 950 951 return GlobalSize > SizeLimit && 952 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 953 } 954 955 /// Decide whether we should use memset to initialize a local variable instead 956 /// of using a memcpy from a constant global. Assumes we've already decided to 957 /// not user bzero. 958 /// FIXME We could be more clever, as we are for bzero above, and generate 959 /// memset followed by stores. It's unclear that's worth the effort. 960 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 961 uint64_t GlobalSize, 962 const llvm::DataLayout &DL) { 963 uint64_t SizeLimit = 32; 964 if (GlobalSize <= SizeLimit) 965 return nullptr; 966 return llvm::isBytewiseValue(Init, DL); 967 } 968 969 /// Decide whether we want to split a constant structure or array store into a 970 /// sequence of its fields' stores. This may cost us code size and compilation 971 /// speed, but plays better with store optimizations. 972 static bool shouldSplitConstantStore(CodeGenModule &CGM, 973 uint64_t GlobalByteSize) { 974 // Don't break things that occupy more than one cacheline. 975 uint64_t ByteSizeLimit = 64; 976 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 977 return false; 978 if (GlobalByteSize <= ByteSizeLimit) 979 return true; 980 return false; 981 } 982 983 enum class IsPattern { No, Yes }; 984 985 /// Generate a constant filled with either a pattern or zeroes. 986 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 987 llvm::Type *Ty) { 988 if (isPattern == IsPattern::Yes) 989 return initializationPatternFor(CGM, Ty); 990 else 991 return llvm::Constant::getNullValue(Ty); 992 } 993 994 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 995 llvm::Constant *constant); 996 997 /// Helper function for constWithPadding() to deal with padding in structures. 998 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 999 IsPattern isPattern, 1000 llvm::StructType *STy, 1001 llvm::Constant *constant) { 1002 const llvm::DataLayout &DL = CGM.getDataLayout(); 1003 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1004 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1005 unsigned SizeSoFar = 0; 1006 SmallVector<llvm::Constant *, 8> Values; 1007 bool NestedIntact = true; 1008 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1009 unsigned CurOff = Layout->getElementOffset(i); 1010 if (SizeSoFar < CurOff) { 1011 assert(!STy->isPacked()); 1012 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1013 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1014 } 1015 llvm::Constant *CurOp; 1016 if (constant->isZeroValue()) 1017 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1018 else 1019 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1020 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1021 if (CurOp != NewOp) 1022 NestedIntact = false; 1023 Values.push_back(NewOp); 1024 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1025 } 1026 unsigned TotalSize = Layout->getSizeInBytes(); 1027 if (SizeSoFar < TotalSize) { 1028 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1029 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1030 } 1031 if (NestedIntact && Values.size() == STy->getNumElements()) 1032 return constant; 1033 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1034 } 1035 1036 /// Replace all padding bytes in a given constant with either a pattern byte or 1037 /// 0x00. 1038 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1039 llvm::Constant *constant) { 1040 llvm::Type *OrigTy = constant->getType(); 1041 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1042 return constStructWithPadding(CGM, isPattern, STy, constant); 1043 if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) { 1044 llvm::SmallVector<llvm::Constant *, 8> Values; 1045 unsigned Size = STy->getNumElements(); 1046 if (!Size) 1047 return constant; 1048 llvm::Type *ElemTy = STy->getElementType(); 1049 bool ZeroInitializer = constant->isZeroValue(); 1050 llvm::Constant *OpValue, *PaddedOp; 1051 if (ZeroInitializer) { 1052 OpValue = llvm::Constant::getNullValue(ElemTy); 1053 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1054 } 1055 for (unsigned Op = 0; Op != Size; ++Op) { 1056 if (!ZeroInitializer) { 1057 OpValue = constant->getAggregateElement(Op); 1058 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1059 } 1060 Values.push_back(PaddedOp); 1061 } 1062 auto *NewElemTy = Values[0]->getType(); 1063 if (NewElemTy == ElemTy) 1064 return constant; 1065 if (OrigTy->isArrayTy()) { 1066 auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1067 return llvm::ConstantArray::get(ArrayTy, Values); 1068 } else { 1069 return llvm::ConstantVector::get(Values); 1070 } 1071 } 1072 return constant; 1073 } 1074 1075 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1076 llvm::Constant *Constant, 1077 CharUnits Align) { 1078 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1079 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1080 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1081 return CC->getNameAsString(); 1082 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1083 return CD->getNameAsString(); 1084 return getMangledName(FD); 1085 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1086 return OM->getNameAsString(); 1087 } else if (isa<BlockDecl>(DC)) { 1088 return "<block>"; 1089 } else if (isa<CapturedDecl>(DC)) { 1090 return "<captured>"; 1091 } else { 1092 llvm_unreachable("expected a function or method"); 1093 } 1094 }; 1095 1096 // Form a simple per-variable cache of these values in case we find we 1097 // want to reuse them. 1098 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1099 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1100 auto *Ty = Constant->getType(); 1101 bool isConstant = true; 1102 llvm::GlobalVariable *InsertBefore = nullptr; 1103 unsigned AS = 1104 getContext().getTargetAddressSpace(getStringLiteralAddressSpace()); 1105 std::string Name; 1106 if (D.hasGlobalStorage()) 1107 Name = getMangledName(&D).str() + ".const"; 1108 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1109 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1110 else 1111 llvm_unreachable("local variable has no parent function or method"); 1112 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1113 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1114 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1115 GV->setAlignment(Align.getAsAlign()); 1116 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1117 CacheEntry = GV; 1118 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1119 CacheEntry->setAlignment(Align.getAsAlign()); 1120 } 1121 1122 return Address(CacheEntry, Align); 1123 } 1124 1125 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1126 const VarDecl &D, 1127 CGBuilderTy &Builder, 1128 llvm::Constant *Constant, 1129 CharUnits Align) { 1130 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1131 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1132 SrcPtr.getAddressSpace()); 1133 if (SrcPtr.getType() != BP) 1134 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1135 return SrcPtr; 1136 } 1137 1138 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1139 Address Loc, bool isVolatile, 1140 CGBuilderTy &Builder, 1141 llvm::Constant *constant) { 1142 auto *Ty = constant->getType(); 1143 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1144 if (!ConstantSize) 1145 return; 1146 1147 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1148 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1149 if (canDoSingleStore) { 1150 Builder.CreateStore(constant, Loc, isVolatile); 1151 return; 1152 } 1153 1154 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1155 1156 // If the initializer is all or mostly the same, codegen with bzero / memset 1157 // then do a few stores afterward. 1158 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1159 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal, 1160 isVolatile); 1161 1162 bool valueAlreadyCorrect = 1163 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1164 if (!valueAlreadyCorrect) { 1165 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1166 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1167 } 1168 return; 1169 } 1170 1171 // If the initializer is a repeated byte pattern, use memset. 1172 llvm::Value *Pattern = 1173 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1174 if (Pattern) { 1175 uint64_t Value = 0x00; 1176 if (!isa<llvm::UndefValue>(Pattern)) { 1177 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1178 assert(AP.getBitWidth() <= 8); 1179 Value = AP.getLimitedValue(); 1180 } 1181 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, 1182 isVolatile); 1183 return; 1184 } 1185 1186 // If the initializer is small, use a handful of stores. 1187 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1188 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1189 // FIXME: handle the case when STy != Loc.getElementType(). 1190 if (STy == Loc.getElementType()) { 1191 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1192 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1193 emitStoresForConstant( 1194 CGM, D, EltPtr, isVolatile, Builder, 1195 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1196 } 1197 return; 1198 } 1199 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1200 // FIXME: handle the case when ATy != Loc.getElementType(). 1201 if (ATy == Loc.getElementType()) { 1202 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1203 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1204 emitStoresForConstant( 1205 CGM, D, EltPtr, isVolatile, Builder, 1206 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1207 } 1208 return; 1209 } 1210 } 1211 } 1212 1213 // Copy from a global. 1214 Builder.CreateMemCpy(Loc, 1215 createUnnamedGlobalForMemcpyFrom( 1216 CGM, D, Builder, constant, Loc.getAlignment()), 1217 SizeVal, isVolatile); 1218 } 1219 1220 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1221 Address Loc, bool isVolatile, 1222 CGBuilderTy &Builder) { 1223 llvm::Type *ElTy = Loc.getElementType(); 1224 llvm::Constant *constant = 1225 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1226 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1227 } 1228 1229 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1230 Address Loc, bool isVolatile, 1231 CGBuilderTy &Builder) { 1232 llvm::Type *ElTy = Loc.getElementType(); 1233 llvm::Constant *constant = constWithPadding( 1234 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1235 assert(!isa<llvm::UndefValue>(constant)); 1236 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1237 } 1238 1239 static bool containsUndef(llvm::Constant *constant) { 1240 auto *Ty = constant->getType(); 1241 if (isa<llvm::UndefValue>(constant)) 1242 return true; 1243 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1244 for (llvm::Use &Op : constant->operands()) 1245 if (containsUndef(cast<llvm::Constant>(Op))) 1246 return true; 1247 return false; 1248 } 1249 1250 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1251 llvm::Constant *constant) { 1252 auto *Ty = constant->getType(); 1253 if (isa<llvm::UndefValue>(constant)) 1254 return patternOrZeroFor(CGM, isPattern, Ty); 1255 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1256 return constant; 1257 if (!containsUndef(constant)) 1258 return constant; 1259 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1260 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1261 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1262 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1263 } 1264 if (Ty->isStructTy()) 1265 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1266 if (Ty->isArrayTy()) 1267 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1268 assert(Ty->isVectorTy()); 1269 return llvm::ConstantVector::get(Values); 1270 } 1271 1272 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1273 /// variable declaration with auto, register, or no storage class specifier. 1274 /// These turn into simple stack objects, or GlobalValues depending on target. 1275 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1276 AutoVarEmission emission = EmitAutoVarAlloca(D); 1277 EmitAutoVarInit(emission); 1278 EmitAutoVarCleanups(emission); 1279 } 1280 1281 /// Emit a lifetime.begin marker if some criteria are satisfied. 1282 /// \return a pointer to the temporary size Value if a marker was emitted, null 1283 /// otherwise 1284 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1285 llvm::Value *Addr) { 1286 if (!ShouldEmitLifetimeMarkers) 1287 return nullptr; 1288 1289 assert(Addr->getType()->getPointerAddressSpace() == 1290 CGM.getDataLayout().getAllocaAddrSpace() && 1291 "Pointer should be in alloca address space"); 1292 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1293 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1294 llvm::CallInst *C = 1295 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1296 C->setDoesNotThrow(); 1297 return SizeV; 1298 } 1299 1300 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1301 assert(Addr->getType()->getPointerAddressSpace() == 1302 CGM.getDataLayout().getAllocaAddrSpace() && 1303 "Pointer should be in alloca address space"); 1304 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1305 llvm::CallInst *C = 1306 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1307 C->setDoesNotThrow(); 1308 } 1309 1310 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1311 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1312 // For each dimension stores its QualType and corresponding 1313 // size-expression Value. 1314 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1315 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1316 1317 // Break down the array into individual dimensions. 1318 QualType Type1D = D.getType(); 1319 while (getContext().getAsVariableArrayType(Type1D)) { 1320 auto VlaSize = getVLAElements1D(Type1D); 1321 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1322 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1323 else { 1324 // Generate a locally unique name for the size expression. 1325 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1326 SmallString<12> Buffer; 1327 StringRef NameRef = Name.toStringRef(Buffer); 1328 auto &Ident = getContext().Idents.getOwn(NameRef); 1329 VLAExprNames.push_back(&Ident); 1330 auto SizeExprAddr = 1331 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1332 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1333 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1334 Type1D.getUnqualifiedType()); 1335 } 1336 Type1D = VlaSize.Type; 1337 } 1338 1339 if (!EmitDebugInfo) 1340 return; 1341 1342 // Register each dimension's size-expression with a DILocalVariable, 1343 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1344 // to describe this array. 1345 unsigned NameIdx = 0; 1346 for (auto &VlaSize : Dimensions) { 1347 llvm::Metadata *MD; 1348 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1349 MD = llvm::ConstantAsMetadata::get(C); 1350 else { 1351 // Create an artificial VarDecl to generate debug info for. 1352 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1353 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1354 auto QT = getContext().getIntTypeForBitwidth( 1355 VlaExprTy->getScalarSizeInBits(), false); 1356 auto *ArtificialDecl = VarDecl::Create( 1357 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1358 D.getLocation(), D.getLocation(), NameIdent, QT, 1359 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1360 ArtificialDecl->setImplicit(); 1361 1362 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1363 Builder); 1364 } 1365 assert(MD && "No Size expression debug node created"); 1366 DI->registerVLASizeExpression(VlaSize.Type, MD); 1367 } 1368 } 1369 1370 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1371 /// local variable. Does not emit initialization or destruction. 1372 CodeGenFunction::AutoVarEmission 1373 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1374 QualType Ty = D.getType(); 1375 assert( 1376 Ty.getAddressSpace() == LangAS::Default || 1377 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1378 1379 AutoVarEmission emission(D); 1380 1381 bool isEscapingByRef = D.isEscapingByref(); 1382 emission.IsEscapingByRef = isEscapingByRef; 1383 1384 CharUnits alignment = getContext().getDeclAlign(&D); 1385 1386 // If the type is variably-modified, emit all the VLA sizes for it. 1387 if (Ty->isVariablyModifiedType()) 1388 EmitVariablyModifiedType(Ty); 1389 1390 auto *DI = getDebugInfo(); 1391 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1392 codegenoptions::LimitedDebugInfo; 1393 1394 Address address = Address::invalid(); 1395 Address AllocaAddr = Address::invalid(); 1396 Address OpenMPLocalAddr = 1397 getLangOpts().OpenMP 1398 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1399 : Address::invalid(); 1400 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1401 1402 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1403 address = OpenMPLocalAddr; 1404 } else if (Ty->isConstantSizeType()) { 1405 // If this value is an array or struct with a statically determinable 1406 // constant initializer, there are optimizations we can do. 1407 // 1408 // TODO: We should constant-evaluate the initializer of any variable, 1409 // as long as it is initialized by a constant expression. Currently, 1410 // isConstantInitializer produces wrong answers for structs with 1411 // reference or bitfield members, and a few other cases, and checking 1412 // for POD-ness protects us from some of these. 1413 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1414 (D.isConstexpr() || 1415 ((Ty.isPODType(getContext()) || 1416 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1417 D.getInit()->isConstantInitializer(getContext(), false)))) { 1418 1419 // If the variable's a const type, and it's neither an NRVO 1420 // candidate nor a __block variable and has no mutable members, 1421 // emit it as a global instead. 1422 // Exception is if a variable is located in non-constant address space 1423 // in OpenCL. 1424 if ((!getLangOpts().OpenCL || 1425 Ty.getAddressSpace() == LangAS::opencl_constant) && 1426 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1427 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1428 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1429 1430 // Signal this condition to later callbacks. 1431 emission.Addr = Address::invalid(); 1432 assert(emission.wasEmittedAsGlobal()); 1433 return emission; 1434 } 1435 1436 // Otherwise, tell the initialization code that we're in this case. 1437 emission.IsConstantAggregate = true; 1438 } 1439 1440 // A normal fixed sized variable becomes an alloca in the entry block, 1441 // unless: 1442 // - it's an NRVO variable. 1443 // - we are compiling OpenMP and it's an OpenMP local variable. 1444 if (NRVO) { 1445 // The named return value optimization: allocate this variable in the 1446 // return slot, so that we can elide the copy when returning this 1447 // variable (C++0x [class.copy]p34). 1448 address = ReturnValue; 1449 1450 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1451 const auto *RD = RecordTy->getDecl(); 1452 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1453 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1454 RD->isNonTrivialToPrimitiveDestroy()) { 1455 // Create a flag that is used to indicate when the NRVO was applied 1456 // to this variable. Set it to zero to indicate that NRVO was not 1457 // applied. 1458 llvm::Value *Zero = Builder.getFalse(); 1459 Address NRVOFlag = 1460 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1461 EnsureInsertPoint(); 1462 Builder.CreateStore(Zero, NRVOFlag); 1463 1464 // Record the NRVO flag for this variable. 1465 NRVOFlags[&D] = NRVOFlag.getPointer(); 1466 emission.NRVOFlag = NRVOFlag.getPointer(); 1467 } 1468 } 1469 } else { 1470 CharUnits allocaAlignment; 1471 llvm::Type *allocaTy; 1472 if (isEscapingByRef) { 1473 auto &byrefInfo = getBlockByrefInfo(&D); 1474 allocaTy = byrefInfo.Type; 1475 allocaAlignment = byrefInfo.ByrefAlignment; 1476 } else { 1477 allocaTy = ConvertTypeForMem(Ty); 1478 allocaAlignment = alignment; 1479 } 1480 1481 // Create the alloca. Note that we set the name separately from 1482 // building the instruction so that it's there even in no-asserts 1483 // builds. 1484 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1485 /*ArraySize=*/nullptr, &AllocaAddr); 1486 1487 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1488 // the catch parameter starts in the catchpad instruction, and we can't 1489 // insert code in those basic blocks. 1490 bool IsMSCatchParam = 1491 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1492 1493 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1494 // if we don't have a valid insertion point (?). 1495 if (HaveInsertPoint() && !IsMSCatchParam) { 1496 // If there's a jump into the lifetime of this variable, its lifetime 1497 // gets broken up into several regions in IR, which requires more work 1498 // to handle correctly. For now, just omit the intrinsics; this is a 1499 // rare case, and it's better to just be conservatively correct. 1500 // PR28267. 1501 // 1502 // We have to do this in all language modes if there's a jump past the 1503 // declaration. We also have to do it in C if there's a jump to an 1504 // earlier point in the current block because non-VLA lifetimes begin as 1505 // soon as the containing block is entered, not when its variables 1506 // actually come into scope; suppressing the lifetime annotations 1507 // completely in this case is unnecessarily pessimistic, but again, this 1508 // is rare. 1509 if (!Bypasses.IsBypassed(&D) && 1510 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1511 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1512 emission.SizeForLifetimeMarkers = 1513 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1514 } 1515 } else { 1516 assert(!emission.useLifetimeMarkers()); 1517 } 1518 } 1519 } else { 1520 EnsureInsertPoint(); 1521 1522 if (!DidCallStackSave) { 1523 // Save the stack. 1524 Address Stack = 1525 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1526 1527 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1528 llvm::Value *V = Builder.CreateCall(F); 1529 Builder.CreateStore(V, Stack); 1530 1531 DidCallStackSave = true; 1532 1533 // Push a cleanup block and restore the stack there. 1534 // FIXME: in general circumstances, this should be an EH cleanup. 1535 pushStackRestore(NormalCleanup, Stack); 1536 } 1537 1538 auto VlaSize = getVLASize(Ty); 1539 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1540 1541 // Allocate memory for the array. 1542 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1543 &AllocaAddr); 1544 1545 // If we have debug info enabled, properly describe the VLA dimensions for 1546 // this type by registering the vla size expression for each of the 1547 // dimensions. 1548 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1549 } 1550 1551 setAddrOfLocalVar(&D, address); 1552 emission.Addr = address; 1553 emission.AllocaAddr = AllocaAddr; 1554 1555 // Emit debug info for local var declaration. 1556 if (EmitDebugInfo && HaveInsertPoint()) { 1557 Address DebugAddr = address; 1558 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1559 DI->setLocation(D.getLocation()); 1560 1561 // If NRVO, use a pointer to the return address. 1562 if (UsePointerValue) 1563 DebugAddr = ReturnValuePointer; 1564 1565 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1566 UsePointerValue); 1567 } 1568 1569 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1570 EmitVarAnnotations(&D, address.getPointer()); 1571 1572 // Make sure we call @llvm.lifetime.end. 1573 if (emission.useLifetimeMarkers()) 1574 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1575 emission.getOriginalAllocatedAddress(), 1576 emission.getSizeForLifetimeMarkers()); 1577 1578 return emission; 1579 } 1580 1581 static bool isCapturedBy(const VarDecl &, const Expr *); 1582 1583 /// Determines whether the given __block variable is potentially 1584 /// captured by the given statement. 1585 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1586 if (const Expr *E = dyn_cast<Expr>(S)) 1587 return isCapturedBy(Var, E); 1588 for (const Stmt *SubStmt : S->children()) 1589 if (isCapturedBy(Var, SubStmt)) 1590 return true; 1591 return false; 1592 } 1593 1594 /// Determines whether the given __block variable is potentially 1595 /// captured by the given expression. 1596 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1597 // Skip the most common kinds of expressions that make 1598 // hierarchy-walking expensive. 1599 E = E->IgnoreParenCasts(); 1600 1601 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1602 const BlockDecl *Block = BE->getBlockDecl(); 1603 for (const auto &I : Block->captures()) { 1604 if (I.getVariable() == &Var) 1605 return true; 1606 } 1607 1608 // No need to walk into the subexpressions. 1609 return false; 1610 } 1611 1612 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1613 const CompoundStmt *CS = SE->getSubStmt(); 1614 for (const auto *BI : CS->body()) 1615 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1616 if (isCapturedBy(Var, BIE)) 1617 return true; 1618 } 1619 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1620 // special case declarations 1621 for (const auto *I : DS->decls()) { 1622 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1623 const Expr *Init = VD->getInit(); 1624 if (Init && isCapturedBy(Var, Init)) 1625 return true; 1626 } 1627 } 1628 } 1629 else 1630 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1631 // Later, provide code to poke into statements for capture analysis. 1632 return true; 1633 return false; 1634 } 1635 1636 for (const Stmt *SubStmt : E->children()) 1637 if (isCapturedBy(Var, SubStmt)) 1638 return true; 1639 1640 return false; 1641 } 1642 1643 /// Determine whether the given initializer is trivial in the sense 1644 /// that it requires no code to be generated. 1645 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1646 if (!Init) 1647 return true; 1648 1649 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1650 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1651 if (Constructor->isTrivial() && 1652 Constructor->isDefaultConstructor() && 1653 !Construct->requiresZeroInitialization()) 1654 return true; 1655 1656 return false; 1657 } 1658 1659 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1660 const VarDecl &D, 1661 Address Loc) { 1662 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1663 CharUnits Size = getContext().getTypeSizeInChars(type); 1664 bool isVolatile = type.isVolatileQualified(); 1665 if (!Size.isZero()) { 1666 switch (trivialAutoVarInit) { 1667 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1668 llvm_unreachable("Uninitialized handled by caller"); 1669 case LangOptions::TrivialAutoVarInitKind::Zero: 1670 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1671 break; 1672 case LangOptions::TrivialAutoVarInitKind::Pattern: 1673 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1674 break; 1675 } 1676 return; 1677 } 1678 1679 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1680 // them, so emit a memcpy with the VLA size to initialize each element. 1681 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1682 // will catch that code, but there exists code which generates zero-sized 1683 // VLAs. Be nice and initialize whatever they requested. 1684 const auto *VlaType = getContext().getAsVariableArrayType(type); 1685 if (!VlaType) 1686 return; 1687 auto VlaSize = getVLASize(VlaType); 1688 auto SizeVal = VlaSize.NumElts; 1689 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1690 switch (trivialAutoVarInit) { 1691 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1692 llvm_unreachable("Uninitialized handled by caller"); 1693 1694 case LangOptions::TrivialAutoVarInitKind::Zero: 1695 if (!EltSize.isOne()) 1696 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1697 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1698 isVolatile); 1699 break; 1700 1701 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1702 llvm::Type *ElTy = Loc.getElementType(); 1703 llvm::Constant *Constant = constWithPadding( 1704 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1705 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1706 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1707 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1708 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1709 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1710 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1711 "vla.iszerosized"); 1712 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1713 EmitBlock(SetupBB); 1714 if (!EltSize.isOne()) 1715 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1716 llvm::Value *BaseSizeInChars = 1717 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1718 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1719 llvm::Value *End = 1720 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1721 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1722 EmitBlock(LoopBB); 1723 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1724 Cur->addIncoming(Begin.getPointer(), OriginBB); 1725 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1726 Builder.CreateMemCpy(Address(Cur, CurAlign), 1727 createUnnamedGlobalForMemcpyFrom( 1728 CGM, D, Builder, Constant, ConstantAlign), 1729 BaseSizeInChars, isVolatile); 1730 llvm::Value *Next = 1731 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1732 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1733 Builder.CreateCondBr(Done, ContBB, LoopBB); 1734 Cur->addIncoming(Next, LoopBB); 1735 EmitBlock(ContBB); 1736 } break; 1737 } 1738 } 1739 1740 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1741 assert(emission.Variable && "emission was not valid!"); 1742 1743 // If this was emitted as a global constant, we're done. 1744 if (emission.wasEmittedAsGlobal()) return; 1745 1746 const VarDecl &D = *emission.Variable; 1747 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1748 QualType type = D.getType(); 1749 1750 // If this local has an initializer, emit it now. 1751 const Expr *Init = D.getInit(); 1752 1753 // If we are at an unreachable point, we don't need to emit the initializer 1754 // unless it contains a label. 1755 if (!HaveInsertPoint()) { 1756 if (!Init || !ContainsLabel(Init)) return; 1757 EnsureInsertPoint(); 1758 } 1759 1760 // Initialize the structure of a __block variable. 1761 if (emission.IsEscapingByRef) 1762 emitByrefStructureInit(emission); 1763 1764 // Initialize the variable here if it doesn't have a initializer and it is a 1765 // C struct that is non-trivial to initialize or an array containing such a 1766 // struct. 1767 if (!Init && 1768 type.isNonTrivialToPrimitiveDefaultInitialize() == 1769 QualType::PDIK_Struct) { 1770 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1771 if (emission.IsEscapingByRef) 1772 drillIntoBlockVariable(*this, Dst, &D); 1773 defaultInitNonTrivialCStructVar(Dst); 1774 return; 1775 } 1776 1777 // Check whether this is a byref variable that's potentially 1778 // captured and moved by its own initializer. If so, we'll need to 1779 // emit the initializer first, then copy into the variable. 1780 bool capturedByInit = 1781 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1782 1783 bool locIsByrefHeader = !capturedByInit; 1784 const Address Loc = 1785 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1786 1787 // Note: constexpr already initializes everything correctly. 1788 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1789 (D.isConstexpr() 1790 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1791 : (D.getAttr<UninitializedAttr>() 1792 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1793 : getContext().getLangOpts().getTrivialAutoVarInit())); 1794 1795 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1796 if (trivialAutoVarInit == 1797 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1798 return; 1799 1800 // Only initialize a __block's storage: we always initialize the header. 1801 if (emission.IsEscapingByRef && !locIsByrefHeader) 1802 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1803 1804 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1805 }; 1806 1807 if (isTrivialInitializer(Init)) 1808 return initializeWhatIsTechnicallyUninitialized(Loc); 1809 1810 llvm::Constant *constant = nullptr; 1811 if (emission.IsConstantAggregate || 1812 D.mightBeUsableInConstantExpressions(getContext())) { 1813 assert(!capturedByInit && "constant init contains a capturing block?"); 1814 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1815 if (constant && !constant->isZeroValue() && 1816 (trivialAutoVarInit != 1817 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1818 IsPattern isPattern = 1819 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1820 ? IsPattern::Yes 1821 : IsPattern::No; 1822 // C guarantees that brace-init with fewer initializers than members in 1823 // the aggregate will initialize the rest of the aggregate as-if it were 1824 // static initialization. In turn static initialization guarantees that 1825 // padding is initialized to zero bits. We could instead pattern-init if D 1826 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1827 // behavior. 1828 constant = constWithPadding(CGM, IsPattern::No, 1829 replaceUndef(CGM, isPattern, constant)); 1830 } 1831 } 1832 1833 if (!constant) { 1834 initializeWhatIsTechnicallyUninitialized(Loc); 1835 LValue lv = MakeAddrLValue(Loc, type); 1836 lv.setNonGC(true); 1837 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1838 } 1839 1840 if (!emission.IsConstantAggregate) { 1841 // For simple scalar/complex initialization, store the value directly. 1842 LValue lv = MakeAddrLValue(Loc, type); 1843 lv.setNonGC(true); 1844 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1845 } 1846 1847 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1848 emitStoresForConstant( 1849 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1850 type.isVolatileQualified(), Builder, constant); 1851 } 1852 1853 /// Emit an expression as an initializer for an object (variable, field, etc.) 1854 /// at the given location. The expression is not necessarily the normal 1855 /// initializer for the object, and the address is not necessarily 1856 /// its normal location. 1857 /// 1858 /// \param init the initializing expression 1859 /// \param D the object to act as if we're initializing 1860 /// \param loc the address to initialize; its type is a pointer 1861 /// to the LLVM mapping of the object's type 1862 /// \param alignment the alignment of the address 1863 /// \param capturedByInit true if \p D is a __block variable 1864 /// whose address is potentially changed by the initializer 1865 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1866 LValue lvalue, bool capturedByInit) { 1867 QualType type = D->getType(); 1868 1869 if (type->isReferenceType()) { 1870 RValue rvalue = EmitReferenceBindingToExpr(init); 1871 if (capturedByInit) 1872 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1873 EmitStoreThroughLValue(rvalue, lvalue, true); 1874 return; 1875 } 1876 switch (getEvaluationKind(type)) { 1877 case TEK_Scalar: 1878 EmitScalarInit(init, D, lvalue, capturedByInit); 1879 return; 1880 case TEK_Complex: { 1881 ComplexPairTy complex = EmitComplexExpr(init); 1882 if (capturedByInit) 1883 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1884 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1885 return; 1886 } 1887 case TEK_Aggregate: 1888 if (type->isAtomicType()) { 1889 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1890 } else { 1891 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1892 if (isa<VarDecl>(D)) 1893 Overlap = AggValueSlot::DoesNotOverlap; 1894 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1895 Overlap = getOverlapForFieldInit(FD); 1896 // TODO: how can we delay here if D is captured by its initializer? 1897 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1898 AggValueSlot::IsDestructed, 1899 AggValueSlot::DoesNotNeedGCBarriers, 1900 AggValueSlot::IsNotAliased, 1901 Overlap)); 1902 } 1903 return; 1904 } 1905 llvm_unreachable("bad evaluation kind"); 1906 } 1907 1908 /// Enter a destroy cleanup for the given local variable. 1909 void CodeGenFunction::emitAutoVarTypeCleanup( 1910 const CodeGenFunction::AutoVarEmission &emission, 1911 QualType::DestructionKind dtorKind) { 1912 assert(dtorKind != QualType::DK_none); 1913 1914 // Note that for __block variables, we want to destroy the 1915 // original stack object, not the possibly forwarded object. 1916 Address addr = emission.getObjectAddress(*this); 1917 1918 const VarDecl *var = emission.Variable; 1919 QualType type = var->getType(); 1920 1921 CleanupKind cleanupKind = NormalAndEHCleanup; 1922 CodeGenFunction::Destroyer *destroyer = nullptr; 1923 1924 switch (dtorKind) { 1925 case QualType::DK_none: 1926 llvm_unreachable("no cleanup for trivially-destructible variable"); 1927 1928 case QualType::DK_cxx_destructor: 1929 // If there's an NRVO flag on the emission, we need a different 1930 // cleanup. 1931 if (emission.NRVOFlag) { 1932 assert(!type->isArrayType()); 1933 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1934 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1935 emission.NRVOFlag); 1936 return; 1937 } 1938 break; 1939 1940 case QualType::DK_objc_strong_lifetime: 1941 // Suppress cleanups for pseudo-strong variables. 1942 if (var->isARCPseudoStrong()) return; 1943 1944 // Otherwise, consider whether to use an EH cleanup or not. 1945 cleanupKind = getARCCleanupKind(); 1946 1947 // Use the imprecise destroyer by default. 1948 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1949 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1950 break; 1951 1952 case QualType::DK_objc_weak_lifetime: 1953 break; 1954 1955 case QualType::DK_nontrivial_c_struct: 1956 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1957 if (emission.NRVOFlag) { 1958 assert(!type->isArrayType()); 1959 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1960 emission.NRVOFlag, type); 1961 return; 1962 } 1963 break; 1964 } 1965 1966 // If we haven't chosen a more specific destroyer, use the default. 1967 if (!destroyer) destroyer = getDestroyer(dtorKind); 1968 1969 // Use an EH cleanup in array destructors iff the destructor itself 1970 // is being pushed as an EH cleanup. 1971 bool useEHCleanup = (cleanupKind & EHCleanup); 1972 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1973 useEHCleanup); 1974 } 1975 1976 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1977 assert(emission.Variable && "emission was not valid!"); 1978 1979 // If this was emitted as a global constant, we're done. 1980 if (emission.wasEmittedAsGlobal()) return; 1981 1982 // If we don't have an insertion point, we're done. Sema prevents 1983 // us from jumping into any of these scopes anyway. 1984 if (!HaveInsertPoint()) return; 1985 1986 const VarDecl &D = *emission.Variable; 1987 1988 // Check the type for a cleanup. 1989 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 1990 emitAutoVarTypeCleanup(emission, dtorKind); 1991 1992 // In GC mode, honor objc_precise_lifetime. 1993 if (getLangOpts().getGC() != LangOptions::NonGC && 1994 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1995 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1996 } 1997 1998 // Handle the cleanup attribute. 1999 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2000 const FunctionDecl *FD = CA->getFunctionDecl(); 2001 2002 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2003 assert(F && "Could not find function!"); 2004 2005 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2006 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2007 } 2008 2009 // If this is a block variable, call _Block_object_destroy 2010 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2011 // mode. 2012 if (emission.IsEscapingByRef && 2013 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2014 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2015 if (emission.Variable->getType().isObjCGCWeak()) 2016 Flags |= BLOCK_FIELD_IS_WEAK; 2017 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2018 /*LoadBlockVarAddr*/ false, 2019 cxxDestructorCanThrow(emission.Variable->getType())); 2020 } 2021 } 2022 2023 CodeGenFunction::Destroyer * 2024 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2025 switch (kind) { 2026 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2027 case QualType::DK_cxx_destructor: 2028 return destroyCXXObject; 2029 case QualType::DK_objc_strong_lifetime: 2030 return destroyARCStrongPrecise; 2031 case QualType::DK_objc_weak_lifetime: 2032 return destroyARCWeak; 2033 case QualType::DK_nontrivial_c_struct: 2034 return destroyNonTrivialCStruct; 2035 } 2036 llvm_unreachable("Unknown DestructionKind"); 2037 } 2038 2039 /// pushEHDestroy - Push the standard destructor for the given type as 2040 /// an EH-only cleanup. 2041 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2042 Address addr, QualType type) { 2043 assert(dtorKind && "cannot push destructor for trivial type"); 2044 assert(needsEHCleanup(dtorKind)); 2045 2046 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2047 } 2048 2049 /// pushDestroy - Push the standard destructor for the given type as 2050 /// at least a normal cleanup. 2051 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2052 Address addr, QualType type) { 2053 assert(dtorKind && "cannot push destructor for trivial type"); 2054 2055 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2056 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2057 cleanupKind & EHCleanup); 2058 } 2059 2060 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2061 QualType type, Destroyer *destroyer, 2062 bool useEHCleanupForArray) { 2063 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2064 destroyer, useEHCleanupForArray); 2065 } 2066 2067 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2068 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2069 } 2070 2071 void CodeGenFunction::pushLifetimeExtendedDestroy( 2072 CleanupKind cleanupKind, Address addr, QualType type, 2073 Destroyer *destroyer, bool useEHCleanupForArray) { 2074 // Push an EH-only cleanup for the object now. 2075 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2076 // around in case a temporary's destructor throws an exception. 2077 if (cleanupKind & EHCleanup) 2078 EHStack.pushCleanup<DestroyObject>( 2079 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2080 destroyer, useEHCleanupForArray); 2081 2082 // Remember that we need to push a full cleanup for the object at the 2083 // end of the full-expression. 2084 pushCleanupAfterFullExpr<DestroyObject>( 2085 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2086 } 2087 2088 /// emitDestroy - Immediately perform the destruction of the given 2089 /// object. 2090 /// 2091 /// \param addr - the address of the object; a type* 2092 /// \param type - the type of the object; if an array type, all 2093 /// objects are destroyed in reverse order 2094 /// \param destroyer - the function to call to destroy individual 2095 /// elements 2096 /// \param useEHCleanupForArray - whether an EH cleanup should be 2097 /// used when destroying array elements, in case one of the 2098 /// destructions throws an exception 2099 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2100 Destroyer *destroyer, 2101 bool useEHCleanupForArray) { 2102 const ArrayType *arrayType = getContext().getAsArrayType(type); 2103 if (!arrayType) 2104 return destroyer(*this, addr, type); 2105 2106 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2107 2108 CharUnits elementAlign = 2109 addr.getAlignment() 2110 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2111 2112 // Normally we have to check whether the array is zero-length. 2113 bool checkZeroLength = true; 2114 2115 // But if the array length is constant, we can suppress that. 2116 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2117 // ...and if it's constant zero, we can just skip the entire thing. 2118 if (constLength->isZero()) return; 2119 checkZeroLength = false; 2120 } 2121 2122 llvm::Value *begin = addr.getPointer(); 2123 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2124 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2125 checkZeroLength, useEHCleanupForArray); 2126 } 2127 2128 /// emitArrayDestroy - Destroys all the elements of the given array, 2129 /// beginning from last to first. The array cannot be zero-length. 2130 /// 2131 /// \param begin - a type* denoting the first element of the array 2132 /// \param end - a type* denoting one past the end of the array 2133 /// \param elementType - the element type of the array 2134 /// \param destroyer - the function to call to destroy elements 2135 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2136 /// the remaining elements in case the destruction of a single 2137 /// element throws 2138 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2139 llvm::Value *end, 2140 QualType elementType, 2141 CharUnits elementAlign, 2142 Destroyer *destroyer, 2143 bool checkZeroLength, 2144 bool useEHCleanup) { 2145 assert(!elementType->isArrayType()); 2146 2147 // The basic structure here is a do-while loop, because we don't 2148 // need to check for the zero-element case. 2149 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2150 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2151 2152 if (checkZeroLength) { 2153 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2154 "arraydestroy.isempty"); 2155 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2156 } 2157 2158 // Enter the loop body, making that address the current address. 2159 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2160 EmitBlock(bodyBB); 2161 llvm::PHINode *elementPast = 2162 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2163 elementPast->addIncoming(end, entryBB); 2164 2165 // Shift the address back by one element. 2166 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2167 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2168 "arraydestroy.element"); 2169 2170 if (useEHCleanup) 2171 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2172 destroyer); 2173 2174 // Perform the actual destruction there. 2175 destroyer(*this, Address(element, elementAlign), elementType); 2176 2177 if (useEHCleanup) 2178 PopCleanupBlock(); 2179 2180 // Check whether we've reached the end. 2181 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2182 Builder.CreateCondBr(done, doneBB, bodyBB); 2183 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2184 2185 // Done. 2186 EmitBlock(doneBB); 2187 } 2188 2189 /// Perform partial array destruction as if in an EH cleanup. Unlike 2190 /// emitArrayDestroy, the element type here may still be an array type. 2191 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2192 llvm::Value *begin, llvm::Value *end, 2193 QualType type, CharUnits elementAlign, 2194 CodeGenFunction::Destroyer *destroyer) { 2195 // If the element type is itself an array, drill down. 2196 unsigned arrayDepth = 0; 2197 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2198 // VLAs don't require a GEP index to walk into. 2199 if (!isa<VariableArrayType>(arrayType)) 2200 arrayDepth++; 2201 type = arrayType->getElementType(); 2202 } 2203 2204 if (arrayDepth) { 2205 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2206 2207 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2208 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2209 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2210 } 2211 2212 // Destroy the array. We don't ever need an EH cleanup because we 2213 // assume that we're in an EH cleanup ourselves, so a throwing 2214 // destructor causes an immediate terminate. 2215 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2216 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2217 } 2218 2219 namespace { 2220 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2221 /// array destroy where the end pointer is regularly determined and 2222 /// does not need to be loaded from a local. 2223 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2224 llvm::Value *ArrayBegin; 2225 llvm::Value *ArrayEnd; 2226 QualType ElementType; 2227 CodeGenFunction::Destroyer *Destroyer; 2228 CharUnits ElementAlign; 2229 public: 2230 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2231 QualType elementType, CharUnits elementAlign, 2232 CodeGenFunction::Destroyer *destroyer) 2233 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2234 ElementType(elementType), Destroyer(destroyer), 2235 ElementAlign(elementAlign) {} 2236 2237 void Emit(CodeGenFunction &CGF, Flags flags) override { 2238 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2239 ElementType, ElementAlign, Destroyer); 2240 } 2241 }; 2242 2243 /// IrregularPartialArrayDestroy - a cleanup which performs a 2244 /// partial array destroy where the end pointer is irregularly 2245 /// determined and must be loaded from a local. 2246 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2247 llvm::Value *ArrayBegin; 2248 Address ArrayEndPointer; 2249 QualType ElementType; 2250 CodeGenFunction::Destroyer *Destroyer; 2251 CharUnits ElementAlign; 2252 public: 2253 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2254 Address arrayEndPointer, 2255 QualType elementType, 2256 CharUnits elementAlign, 2257 CodeGenFunction::Destroyer *destroyer) 2258 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2259 ElementType(elementType), Destroyer(destroyer), 2260 ElementAlign(elementAlign) {} 2261 2262 void Emit(CodeGenFunction &CGF, Flags flags) override { 2263 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2264 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2265 ElementType, ElementAlign, Destroyer); 2266 } 2267 }; 2268 } // end anonymous namespace 2269 2270 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2271 /// already-constructed elements of the given array. The cleanup 2272 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2273 /// 2274 /// \param elementType - the immediate element type of the array; 2275 /// possibly still an array type 2276 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2277 Address arrayEndPointer, 2278 QualType elementType, 2279 CharUnits elementAlign, 2280 Destroyer *destroyer) { 2281 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2282 arrayBegin, arrayEndPointer, 2283 elementType, elementAlign, 2284 destroyer); 2285 } 2286 2287 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2288 /// already-constructed elements of the given array. The cleanup 2289 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2290 /// 2291 /// \param elementType - the immediate element type of the array; 2292 /// possibly still an array type 2293 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2294 llvm::Value *arrayEnd, 2295 QualType elementType, 2296 CharUnits elementAlign, 2297 Destroyer *destroyer) { 2298 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2299 arrayBegin, arrayEnd, 2300 elementType, elementAlign, 2301 destroyer); 2302 } 2303 2304 /// Lazily declare the @llvm.lifetime.start intrinsic. 2305 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2306 if (LifetimeStartFn) 2307 return LifetimeStartFn; 2308 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2309 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2310 return LifetimeStartFn; 2311 } 2312 2313 /// Lazily declare the @llvm.lifetime.end intrinsic. 2314 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2315 if (LifetimeEndFn) 2316 return LifetimeEndFn; 2317 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2318 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2319 return LifetimeEndFn; 2320 } 2321 2322 namespace { 2323 /// A cleanup to perform a release of an object at the end of a 2324 /// function. This is used to balance out the incoming +1 of a 2325 /// ns_consumed argument when we can't reasonably do that just by 2326 /// not doing the initial retain for a __block argument. 2327 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2328 ConsumeARCParameter(llvm::Value *param, 2329 ARCPreciseLifetime_t precise) 2330 : Param(param), Precise(precise) {} 2331 2332 llvm::Value *Param; 2333 ARCPreciseLifetime_t Precise; 2334 2335 void Emit(CodeGenFunction &CGF, Flags flags) override { 2336 CGF.EmitARCRelease(Param, Precise); 2337 } 2338 }; 2339 } // end anonymous namespace 2340 2341 /// Emit an alloca (or GlobalValue depending on target) 2342 /// for the specified parameter and set up LocalDeclMap. 2343 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2344 unsigned ArgNo) { 2345 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2346 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2347 "Invalid argument to EmitParmDecl"); 2348 2349 Arg.getAnyValue()->setName(D.getName()); 2350 2351 QualType Ty = D.getType(); 2352 2353 // Use better IR generation for certain implicit parameters. 2354 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2355 // The only implicit argument a block has is its literal. 2356 // This may be passed as an inalloca'ed value on Windows x86. 2357 if (BlockInfo) { 2358 llvm::Value *V = Arg.isIndirect() 2359 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2360 : Arg.getDirectValue(); 2361 setBlockContextParameter(IPD, ArgNo, V); 2362 return; 2363 } 2364 } 2365 2366 Address DeclPtr = Address::invalid(); 2367 bool DoStore = false; 2368 bool IsScalar = hasScalarEvaluationKind(Ty); 2369 // If we already have a pointer to the argument, reuse the input pointer. 2370 if (Arg.isIndirect()) { 2371 DeclPtr = Arg.getIndirectAddress(); 2372 // If we have a prettier pointer type at this point, bitcast to that. 2373 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2374 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2375 if (DeclPtr.getType() != IRTy) 2376 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2377 // Indirect argument is in alloca address space, which may be different 2378 // from the default address space. 2379 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2380 auto *V = DeclPtr.getPointer(); 2381 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2382 auto DestLangAS = 2383 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2384 if (SrcLangAS != DestLangAS) { 2385 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2386 CGM.getDataLayout().getAllocaAddrSpace()); 2387 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2388 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2389 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2390 *this, V, SrcLangAS, DestLangAS, T, true), 2391 DeclPtr.getAlignment()); 2392 } 2393 2394 // Push a destructor cleanup for this parameter if the ABI requires it. 2395 // Don't push a cleanup in a thunk for a method that will also emit a 2396 // cleanup. 2397 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2398 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2399 if (QualType::DestructionKind DtorKind = 2400 D.needsDestruction(getContext())) { 2401 assert((DtorKind == QualType::DK_cxx_destructor || 2402 DtorKind == QualType::DK_nontrivial_c_struct) && 2403 "unexpected destructor type"); 2404 pushDestroy(DtorKind, DeclPtr, Ty); 2405 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2406 EHStack.stable_begin(); 2407 } 2408 } 2409 } else { 2410 // Check if the parameter address is controlled by OpenMP runtime. 2411 Address OpenMPLocalAddr = 2412 getLangOpts().OpenMP 2413 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2414 : Address::invalid(); 2415 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2416 DeclPtr = OpenMPLocalAddr; 2417 } else { 2418 // Otherwise, create a temporary to hold the value. 2419 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2420 D.getName() + ".addr"); 2421 } 2422 DoStore = true; 2423 } 2424 2425 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2426 2427 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2428 if (IsScalar) { 2429 Qualifiers qs = Ty.getQualifiers(); 2430 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2431 // We honor __attribute__((ns_consumed)) for types with lifetime. 2432 // For __strong, it's handled by just skipping the initial retain; 2433 // otherwise we have to balance out the initial +1 with an extra 2434 // cleanup to do the release at the end of the function. 2435 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2436 2437 // If a parameter is pseudo-strong then we can omit the implicit retain. 2438 if (D.isARCPseudoStrong()) { 2439 assert(lt == Qualifiers::OCL_Strong && 2440 "pseudo-strong variable isn't strong?"); 2441 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2442 lt = Qualifiers::OCL_ExplicitNone; 2443 } 2444 2445 // Load objects passed indirectly. 2446 if (Arg.isIndirect() && !ArgVal) 2447 ArgVal = Builder.CreateLoad(DeclPtr); 2448 2449 if (lt == Qualifiers::OCL_Strong) { 2450 if (!isConsumed) { 2451 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2452 // use objc_storeStrong(&dest, value) for retaining the 2453 // object. But first, store a null into 'dest' because 2454 // objc_storeStrong attempts to release its old value. 2455 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2456 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2457 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2458 DoStore = false; 2459 } 2460 else 2461 // Don't use objc_retainBlock for block pointers, because we 2462 // don't want to Block_copy something just because we got it 2463 // as a parameter. 2464 ArgVal = EmitARCRetainNonBlock(ArgVal); 2465 } 2466 } else { 2467 // Push the cleanup for a consumed parameter. 2468 if (isConsumed) { 2469 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2470 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2471 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2472 precise); 2473 } 2474 2475 if (lt == Qualifiers::OCL_Weak) { 2476 EmitARCInitWeak(DeclPtr, ArgVal); 2477 DoStore = false; // The weak init is a store, no need to do two. 2478 } 2479 } 2480 2481 // Enter the cleanup scope. 2482 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2483 } 2484 } 2485 2486 // Store the initial value into the alloca. 2487 if (DoStore) 2488 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2489 2490 setAddrOfLocalVar(&D, DeclPtr); 2491 2492 // Emit debug info for param declarations in non-thunk functions. 2493 if (CGDebugInfo *DI = getDebugInfo()) { 2494 if (CGM.getCodeGenOpts().getDebugInfo() >= 2495 codegenoptions::LimitedDebugInfo && 2496 !CurFuncIsThunk) { 2497 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2498 } 2499 } 2500 2501 if (D.hasAttr<AnnotateAttr>()) 2502 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2503 2504 // We can only check return value nullability if all arguments to the 2505 // function satisfy their nullability preconditions. This makes it necessary 2506 // to emit null checks for args in the function body itself. 2507 if (requiresReturnValueNullabilityCheck()) { 2508 auto Nullability = Ty->getNullability(getContext()); 2509 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2510 SanitizerScope SanScope(this); 2511 RetValNullabilityPrecondition = 2512 Builder.CreateAnd(RetValNullabilityPrecondition, 2513 Builder.CreateIsNotNull(Arg.getAnyValue())); 2514 } 2515 } 2516 } 2517 2518 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2519 CodeGenFunction *CGF) { 2520 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2521 return; 2522 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2523 } 2524 2525 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2526 CodeGenFunction *CGF) { 2527 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2528 (!LangOpts.EmitAllDecls && !D->isUsed())) 2529 return; 2530 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2531 } 2532 2533 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2534 getOpenMPRuntime().checkArchForUnifiedAddressing(D); 2535 } 2536