1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CodeGenModule.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Type.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 void CodeGenFunction::EmitDecl(const Decl &D) {
37   switch (D.getKind()) {
38   case Decl::TranslationUnit:
39   case Decl::ExternCContext:
40   case Decl::Namespace:
41   case Decl::UnresolvedUsingTypename:
42   case Decl::ClassTemplateSpecialization:
43   case Decl::ClassTemplatePartialSpecialization:
44   case Decl::VarTemplateSpecialization:
45   case Decl::VarTemplatePartialSpecialization:
46   case Decl::TemplateTypeParm:
47   case Decl::UnresolvedUsingValue:
48   case Decl::NonTypeTemplateParm:
49   case Decl::CXXMethod:
50   case Decl::CXXConstructor:
51   case Decl::CXXDestructor:
52   case Decl::CXXConversion:
53   case Decl::Field:
54   case Decl::MSProperty:
55   case Decl::IndirectField:
56   case Decl::ObjCIvar:
57   case Decl::ObjCAtDefsField:
58   case Decl::ParmVar:
59   case Decl::ImplicitParam:
60   case Decl::ClassTemplate:
61   case Decl::VarTemplate:
62   case Decl::FunctionTemplate:
63   case Decl::TypeAliasTemplate:
64   case Decl::TemplateTemplateParm:
65   case Decl::ObjCMethod:
66   case Decl::ObjCCategory:
67   case Decl::ObjCProtocol:
68   case Decl::ObjCInterface:
69   case Decl::ObjCCategoryImpl:
70   case Decl::ObjCImplementation:
71   case Decl::ObjCProperty:
72   case Decl::ObjCCompatibleAlias:
73   case Decl::AccessSpec:
74   case Decl::LinkageSpec:
75   case Decl::ObjCPropertyImpl:
76   case Decl::FileScopeAsm:
77   case Decl::Friend:
78   case Decl::FriendTemplate:
79   case Decl::Block:
80   case Decl::Captured:
81   case Decl::ClassScopeFunctionSpecialization:
82   case Decl::UsingShadow:
83   case Decl::ObjCTypeParam:
84     llvm_unreachable("Declaration should not be in declstmts!");
85   case Decl::Function:  // void X();
86   case Decl::Record:    // struct/union/class X;
87   case Decl::Enum:      // enum X;
88   case Decl::EnumConstant: // enum ? { X = ? }
89   case Decl::CXXRecord: // struct/union/class X; [C++]
90   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
91   case Decl::Label:        // __label__ x;
92   case Decl::Import:
93   case Decl::OMPThreadPrivate:
94   case Decl::Empty:
95     // None of these decls require codegen support.
96     return;
97 
98   case Decl::NamespaceAlias:
99     if (CGDebugInfo *DI = getDebugInfo())
100         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
101     return;
102   case Decl::Using:          // using X; [C++]
103     if (CGDebugInfo *DI = getDebugInfo())
104         DI->EmitUsingDecl(cast<UsingDecl>(D));
105     return;
106   case Decl::UsingDirective: // using namespace X; [C++]
107     if (CGDebugInfo *DI = getDebugInfo())
108       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
109     return;
110   case Decl::Var: {
111     const VarDecl &VD = cast<VarDecl>(D);
112     assert(VD.isLocalVarDecl() &&
113            "Should not see file-scope variables inside a function!");
114     return EmitVarDecl(VD);
115   }
116 
117   case Decl::Typedef:      // typedef int X;
118   case Decl::TypeAlias: {  // using X = int; [C++0x]
119     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
120     QualType Ty = TD.getUnderlyingType();
121 
122     if (Ty->isVariablyModifiedType())
123       EmitVariablyModifiedType(Ty);
124   }
125   }
126 }
127 
128 /// EmitVarDecl - This method handles emission of any variable declaration
129 /// inside a function, including static vars etc.
130 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
131   if (D.isStaticLocal()) {
132     llvm::GlobalValue::LinkageTypes Linkage =
133         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
134 
135     // FIXME: We need to force the emission/use of a guard variable for
136     // some variables even if we can constant-evaluate them because
137     // we can't guarantee every translation unit will constant-evaluate them.
138 
139     return EmitStaticVarDecl(D, Linkage);
140   }
141 
142   if (D.hasExternalStorage())
143     // Don't emit it now, allow it to be emitted lazily on its first use.
144     return;
145 
146   if (D.getType().getAddressSpace() == LangAS::opencl_local)
147     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
148 
149   assert(D.hasLocalStorage());
150   return EmitAutoVarDecl(D);
151 }
152 
153 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
154   if (CGM.getLangOpts().CPlusPlus)
155     return CGM.getMangledName(&D).str();
156 
157   // If this isn't C++, we don't need a mangled name, just a pretty one.
158   assert(!D.isExternallyVisible() && "name shouldn't matter");
159   std::string ContextName;
160   const DeclContext *DC = D.getDeclContext();
161   if (auto *CD = dyn_cast<CapturedDecl>(DC))
162     DC = cast<DeclContext>(CD->getNonClosureContext());
163   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
164     ContextName = CGM.getMangledName(FD);
165   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
166     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
167   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
168     ContextName = OMD->getSelector().getAsString();
169   else
170     llvm_unreachable("Unknown context for static var decl");
171 
172   ContextName += "." + D.getNameAsString();
173   return ContextName;
174 }
175 
176 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
177     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
178   // In general, we don't always emit static var decls once before we reference
179   // them. It is possible to reference them before emitting the function that
180   // contains them, and it is possible to emit the containing function multiple
181   // times.
182   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
183     return ExistingGV;
184 
185   QualType Ty = D.getType();
186   assert(Ty->isConstantSizeType() && "VLAs can't be static");
187 
188   // Use the label if the variable is renamed with the asm-label extension.
189   std::string Name;
190   if (D.hasAttr<AsmLabelAttr>())
191     Name = getMangledName(&D);
192   else
193     Name = getStaticDeclName(*this, D);
194 
195   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
196   unsigned AddrSpace =
197       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
198 
199   // Local address space cannot have an initializer.
200   llvm::Constant *Init = nullptr;
201   if (Ty.getAddressSpace() != LangAS::opencl_local)
202     Init = EmitNullConstant(Ty);
203   else
204     Init = llvm::UndefValue::get(LTy);
205 
206   llvm::GlobalVariable *GV =
207     new llvm::GlobalVariable(getModule(), LTy,
208                              Ty.isConstant(getContext()), Linkage,
209                              Init, Name, nullptr,
210                              llvm::GlobalVariable::NotThreadLocal,
211                              AddrSpace);
212   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
213   setGlobalVisibility(GV, &D);
214 
215   if (supportsCOMDAT() && GV->isWeakForLinker())
216     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
217 
218   if (D.getTLSKind())
219     setTLSMode(GV, D);
220 
221   if (D.isExternallyVisible()) {
222     if (D.hasAttr<DLLImportAttr>())
223       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
224     else if (D.hasAttr<DLLExportAttr>())
225       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
226   }
227 
228   // Make sure the result is of the correct type.
229   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
230   llvm::Constant *Addr = GV;
231   if (AddrSpace != ExpectedAddrSpace) {
232     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
233     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
234   }
235 
236   setStaticLocalDeclAddress(&D, Addr);
237 
238   // Ensure that the static local gets initialized by making sure the parent
239   // function gets emitted eventually.
240   const Decl *DC = cast<Decl>(D.getDeclContext());
241 
242   // We can't name blocks or captured statements directly, so try to emit their
243   // parents.
244   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
245     DC = DC->getNonClosureContext();
246     // FIXME: Ensure that global blocks get emitted.
247     if (!DC)
248       return Addr;
249   }
250 
251   GlobalDecl GD;
252   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
253     GD = GlobalDecl(CD, Ctor_Base);
254   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
255     GD = GlobalDecl(DD, Dtor_Base);
256   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
257     GD = GlobalDecl(FD);
258   else {
259     // Don't do anything for Obj-C method decls or global closures. We should
260     // never defer them.
261     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
262   }
263   if (GD.getDecl())
264     (void)GetAddrOfGlobal(GD);
265 
266   return Addr;
267 }
268 
269 /// hasNontrivialDestruction - Determine whether a type's destruction is
270 /// non-trivial. If so, and the variable uses static initialization, we must
271 /// register its destructor to run on exit.
272 static bool hasNontrivialDestruction(QualType T) {
273   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
274   return RD && !RD->hasTrivialDestructor();
275 }
276 
277 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
278 /// global variable that has already been created for it.  If the initializer
279 /// has a different type than GV does, this may free GV and return a different
280 /// one.  Otherwise it just returns GV.
281 llvm::GlobalVariable *
282 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
283                                                llvm::GlobalVariable *GV) {
284   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
285 
286   // If constant emission failed, then this should be a C++ static
287   // initializer.
288   if (!Init) {
289     if (!getLangOpts().CPlusPlus)
290       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
291     else if (Builder.GetInsertBlock()) {
292       // Since we have a static initializer, this global variable can't
293       // be constant.
294       GV->setConstant(false);
295 
296       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
297     }
298     return GV;
299   }
300 
301   // The initializer may differ in type from the global. Rewrite
302   // the global to match the initializer.  (We have to do this
303   // because some types, like unions, can't be completely represented
304   // in the LLVM type system.)
305   if (GV->getType()->getElementType() != Init->getType()) {
306     llvm::GlobalVariable *OldGV = GV;
307 
308     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
309                                   OldGV->isConstant(),
310                                   OldGV->getLinkage(), Init, "",
311                                   /*InsertBefore*/ OldGV,
312                                   OldGV->getThreadLocalMode(),
313                            CGM.getContext().getTargetAddressSpace(D.getType()));
314     GV->setVisibility(OldGV->getVisibility());
315     GV->setComdat(OldGV->getComdat());
316 
317     // Steal the name of the old global
318     GV->takeName(OldGV);
319 
320     // Replace all uses of the old global with the new global
321     llvm::Constant *NewPtrForOldDecl =
322     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
323     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
324 
325     // Erase the old global, since it is no longer used.
326     OldGV->eraseFromParent();
327   }
328 
329   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
330   GV->setInitializer(Init);
331 
332   if (hasNontrivialDestruction(D.getType())) {
333     // We have a constant initializer, but a nontrivial destructor. We still
334     // need to perform a guarded "initialization" in order to register the
335     // destructor.
336     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
337   }
338 
339   return GV;
340 }
341 
342 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
343                                       llvm::GlobalValue::LinkageTypes Linkage) {
344   // Check to see if we already have a global variable for this
345   // declaration.  This can happen when double-emitting function
346   // bodies, e.g. with complete and base constructors.
347   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
348   CharUnits alignment = getContext().getDeclAlign(&D);
349 
350   // Store into LocalDeclMap before generating initializer to handle
351   // circular references.
352   setAddrOfLocalVar(&D, Address(addr, alignment));
353 
354   // We can't have a VLA here, but we can have a pointer to a VLA,
355   // even though that doesn't really make any sense.
356   // Make sure to evaluate VLA bounds now so that we have them for later.
357   if (D.getType()->isVariablyModifiedType())
358     EmitVariablyModifiedType(D.getType());
359 
360   // Save the type in case adding the initializer forces a type change.
361   llvm::Type *expectedType = addr->getType();
362 
363   llvm::GlobalVariable *var =
364     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
365   // If this value has an initializer, emit it.
366   if (D.getInit())
367     var = AddInitializerToStaticVarDecl(D, var);
368 
369   var->setAlignment(alignment.getQuantity());
370 
371   if (D.hasAttr<AnnotateAttr>())
372     CGM.AddGlobalAnnotations(&D, var);
373 
374   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
375     var->setSection(SA->getName());
376 
377   if (D.hasAttr<UsedAttr>())
378     CGM.addUsedGlobal(var);
379 
380   // We may have to cast the constant because of the initializer
381   // mismatch above.
382   //
383   // FIXME: It is really dangerous to store this in the map; if anyone
384   // RAUW's the GV uses of this constant will be invalid.
385   llvm::Constant *castedAddr =
386     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
387   if (var != castedAddr)
388     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
389   CGM.setStaticLocalDeclAddress(&D, castedAddr);
390 
391   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
392 
393   // Emit global variable debug descriptor for static vars.
394   CGDebugInfo *DI = getDebugInfo();
395   if (DI &&
396       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
397     DI->setLocation(D.getLocation());
398     DI->EmitGlobalVariable(var, &D);
399   }
400 }
401 
402 namespace {
403   struct DestroyObject final : EHScopeStack::Cleanup {
404     DestroyObject(Address addr, QualType type,
405                   CodeGenFunction::Destroyer *destroyer,
406                   bool useEHCleanupForArray)
407       : addr(addr), type(type), destroyer(destroyer),
408         useEHCleanupForArray(useEHCleanupForArray) {}
409 
410     Address addr;
411     QualType type;
412     CodeGenFunction::Destroyer *destroyer;
413     bool useEHCleanupForArray;
414 
415     void Emit(CodeGenFunction &CGF, Flags flags) override {
416       // Don't use an EH cleanup recursively from an EH cleanup.
417       bool useEHCleanupForArray =
418         flags.isForNormalCleanup() && this->useEHCleanupForArray;
419 
420       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
421     }
422   };
423 
424   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
425     DestroyNRVOVariable(Address addr,
426                         const CXXDestructorDecl *Dtor,
427                         llvm::Value *NRVOFlag)
428       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
429 
430     const CXXDestructorDecl *Dtor;
431     llvm::Value *NRVOFlag;
432     Address Loc;
433 
434     void Emit(CodeGenFunction &CGF, Flags flags) override {
435       // Along the exceptions path we always execute the dtor.
436       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
437 
438       llvm::BasicBlock *SkipDtorBB = nullptr;
439       if (NRVO) {
440         // If we exited via NRVO, we skip the destructor call.
441         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
442         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
443         llvm::Value *DidNRVO =
444           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
445         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
446         CGF.EmitBlock(RunDtorBB);
447       }
448 
449       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
450                                 /*ForVirtualBase=*/false,
451                                 /*Delegating=*/false,
452                                 Loc);
453 
454       if (NRVO) CGF.EmitBlock(SkipDtorBB);
455     }
456   };
457 
458   struct CallStackRestore final : EHScopeStack::Cleanup {
459     Address Stack;
460     CallStackRestore(Address Stack) : Stack(Stack) {}
461     void Emit(CodeGenFunction &CGF, Flags flags) override {
462       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
463       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
464       CGF.Builder.CreateCall(F, V);
465     }
466   };
467 
468   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
469     const VarDecl &Var;
470     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
471 
472     void Emit(CodeGenFunction &CGF, Flags flags) override {
473       // Compute the address of the local variable, in case it's a
474       // byref or something.
475       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
476                       Var.getType(), VK_LValue, SourceLocation());
477       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
478                                                 SourceLocation());
479       CGF.EmitExtendGCLifetime(value);
480     }
481   };
482 
483   struct CallCleanupFunction final : EHScopeStack::Cleanup {
484     llvm::Constant *CleanupFn;
485     const CGFunctionInfo &FnInfo;
486     const VarDecl &Var;
487 
488     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
489                         const VarDecl *Var)
490       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
491 
492     void Emit(CodeGenFunction &CGF, Flags flags) override {
493       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
494                       Var.getType(), VK_LValue, SourceLocation());
495       // Compute the address of the local variable, in case it's a byref
496       // or something.
497       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
498 
499       // In some cases, the type of the function argument will be different from
500       // the type of the pointer. An example of this is
501       // void f(void* arg);
502       // __attribute__((cleanup(f))) void *g;
503       //
504       // To fix this we insert a bitcast here.
505       QualType ArgTy = FnInfo.arg_begin()->type;
506       llvm::Value *Arg =
507         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
508 
509       CallArgList Args;
510       Args.add(RValue::get(Arg),
511                CGF.getContext().getPointerType(Var.getType()));
512       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
513     }
514   };
515 
516   /// A cleanup to call @llvm.lifetime.end.
517   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
518     llvm::Value *Addr;
519     llvm::Value *Size;
520   public:
521     CallLifetimeEnd(Address addr, llvm::Value *size)
522       : Addr(addr.getPointer()), Size(size) {}
523 
524     void Emit(CodeGenFunction &CGF, Flags flags) override {
525       CGF.EmitLifetimeEnd(Size, Addr);
526     }
527   };
528 }
529 
530 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
531 /// variable with lifetime.
532 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
533                                     Address addr,
534                                     Qualifiers::ObjCLifetime lifetime) {
535   switch (lifetime) {
536   case Qualifiers::OCL_None:
537     llvm_unreachable("present but none");
538 
539   case Qualifiers::OCL_ExplicitNone:
540     // nothing to do
541     break;
542 
543   case Qualifiers::OCL_Strong: {
544     CodeGenFunction::Destroyer *destroyer =
545       (var.hasAttr<ObjCPreciseLifetimeAttr>()
546        ? CodeGenFunction::destroyARCStrongPrecise
547        : CodeGenFunction::destroyARCStrongImprecise);
548 
549     CleanupKind cleanupKind = CGF.getARCCleanupKind();
550     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
551                     cleanupKind & EHCleanup);
552     break;
553   }
554   case Qualifiers::OCL_Autoreleasing:
555     // nothing to do
556     break;
557 
558   case Qualifiers::OCL_Weak:
559     // __weak objects always get EH cleanups; otherwise, exceptions
560     // could cause really nasty crashes instead of mere leaks.
561     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
562                     CodeGenFunction::destroyARCWeak,
563                     /*useEHCleanup*/ true);
564     break;
565   }
566 }
567 
568 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
569   if (const Expr *e = dyn_cast<Expr>(s)) {
570     // Skip the most common kinds of expressions that make
571     // hierarchy-walking expensive.
572     s = e = e->IgnoreParenCasts();
573 
574     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
575       return (ref->getDecl() == &var);
576     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
577       const BlockDecl *block = be->getBlockDecl();
578       for (const auto &I : block->captures()) {
579         if (I.getVariable() == &var)
580           return true;
581       }
582     }
583   }
584 
585   for (const Stmt *SubStmt : s->children())
586     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
587     if (SubStmt && isAccessedBy(var, SubStmt))
588       return true;
589 
590   return false;
591 }
592 
593 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
594   if (!decl) return false;
595   if (!isa<VarDecl>(decl)) return false;
596   const VarDecl *var = cast<VarDecl>(decl);
597   return isAccessedBy(*var, e);
598 }
599 
600 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
601                                    const LValue &destLV, const Expr *init) {
602   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
603     switch (castExpr->getCastKind()) {
604     // Look through casts that don't require representation changes.
605     case CK_NoOp:
606     case CK_BitCast:
607     case CK_BlockPointerToObjCPointerCast:
608       break;
609 
610     // If we find an l-value to r-value cast from a __weak variable,
611     // emit this operation as a copy or move.
612     case CK_LValueToRValue: {
613       const Expr *srcExpr = castExpr->getSubExpr();
614       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
615         return false;
616 
617       // Emit the source l-value.
618       LValue srcLV = CGF.EmitLValue(srcExpr);
619 
620       // If it was an l-value, use objc_copyWeak.
621       if (srcExpr->getValueKind() == VK_LValue) {
622         CGF.EmitARCCopyWeak(destLV.getAddress(), srcLV.getAddress());
623       } else {
624         assert(srcExpr->getValueKind() == VK_XValue);
625         CGF.EmitARCMoveWeak(destLV.getAddress(), srcLV.getAddress());
626       }
627       return true;
628     }
629 
630     // Stop at anything else.
631     default:
632       return false;
633     }
634 
635     init = castExpr->getSubExpr();
636     continue;
637   }
638   return false;
639 }
640 
641 static void drillIntoBlockVariable(CodeGenFunction &CGF,
642                                    LValue &lvalue,
643                                    const VarDecl *var) {
644   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
645 }
646 
647 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
648                                      LValue lvalue, bool capturedByInit) {
649   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
650   if (!lifetime) {
651     llvm::Value *value = EmitScalarExpr(init);
652     if (capturedByInit)
653       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
654     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
655     return;
656   }
657 
658   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
659     init = DIE->getExpr();
660 
661   // If we're emitting a value with lifetime, we have to do the
662   // initialization *before* we leave the cleanup scopes.
663   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
664     enterFullExpression(ewc);
665     init = ewc->getSubExpr();
666   }
667   CodeGenFunction::RunCleanupsScope Scope(*this);
668 
669   // We have to maintain the illusion that the variable is
670   // zero-initialized.  If the variable might be accessed in its
671   // initializer, zero-initialize before running the initializer, then
672   // actually perform the initialization with an assign.
673   bool accessedByInit = false;
674   if (lifetime != Qualifiers::OCL_ExplicitNone)
675     accessedByInit = (capturedByInit || isAccessedBy(D, init));
676   if (accessedByInit) {
677     LValue tempLV = lvalue;
678     // Drill down to the __block object if necessary.
679     if (capturedByInit) {
680       // We can use a simple GEP for this because it can't have been
681       // moved yet.
682       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
683                                               cast<VarDecl>(D),
684                                               /*follow*/ false));
685     }
686 
687     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
688     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
689 
690     // If __weak, we want to use a barrier under certain conditions.
691     if (lifetime == Qualifiers::OCL_Weak)
692       EmitARCInitWeak(tempLV.getAddress(), zero);
693 
694     // Otherwise just do a simple store.
695     else
696       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
697   }
698 
699   // Emit the initializer.
700   llvm::Value *value = nullptr;
701 
702   switch (lifetime) {
703   case Qualifiers::OCL_None:
704     llvm_unreachable("present but none");
705 
706   case Qualifiers::OCL_ExplicitNone:
707     // nothing to do
708     value = EmitScalarExpr(init);
709     break;
710 
711   case Qualifiers::OCL_Strong: {
712     value = EmitARCRetainScalarExpr(init);
713     break;
714   }
715 
716   case Qualifiers::OCL_Weak: {
717     // If it's not accessed by the initializer, try to emit the
718     // initialization with a copy or move.
719     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
720       return;
721     }
722 
723     // No way to optimize a producing initializer into this.  It's not
724     // worth optimizing for, because the value will immediately
725     // disappear in the common case.
726     value = EmitScalarExpr(init);
727 
728     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
729     if (accessedByInit)
730       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
731     else
732       EmitARCInitWeak(lvalue.getAddress(), value);
733     return;
734   }
735 
736   case Qualifiers::OCL_Autoreleasing:
737     value = EmitARCRetainAutoreleaseScalarExpr(init);
738     break;
739   }
740 
741   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
742 
743   // If the variable might have been accessed by its initializer, we
744   // might have to initialize with a barrier.  We have to do this for
745   // both __weak and __strong, but __weak got filtered out above.
746   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
747     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
748     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
749     EmitARCRelease(oldValue, ARCImpreciseLifetime);
750     return;
751   }
752 
753   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
754 }
755 
756 /// EmitScalarInit - Initialize the given lvalue with the given object.
757 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
758   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
759   if (!lifetime)
760     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
761 
762   switch (lifetime) {
763   case Qualifiers::OCL_None:
764     llvm_unreachable("present but none");
765 
766   case Qualifiers::OCL_ExplicitNone:
767     // nothing to do
768     break;
769 
770   case Qualifiers::OCL_Strong:
771     init = EmitARCRetain(lvalue.getType(), init);
772     break;
773 
774   case Qualifiers::OCL_Weak:
775     // Initialize and then skip the primitive store.
776     EmitARCInitWeak(lvalue.getAddress(), init);
777     return;
778 
779   case Qualifiers::OCL_Autoreleasing:
780     init = EmitARCRetainAutorelease(lvalue.getType(), init);
781     break;
782   }
783 
784   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
785 }
786 
787 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
788 /// non-zero parts of the specified initializer with equal or fewer than
789 /// NumStores scalar stores.
790 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
791                                                 unsigned &NumStores) {
792   // Zero and Undef never requires any extra stores.
793   if (isa<llvm::ConstantAggregateZero>(Init) ||
794       isa<llvm::ConstantPointerNull>(Init) ||
795       isa<llvm::UndefValue>(Init))
796     return true;
797   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
798       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
799       isa<llvm::ConstantExpr>(Init))
800     return Init->isNullValue() || NumStores--;
801 
802   // See if we can emit each element.
803   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
804     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
805       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
806       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
807         return false;
808     }
809     return true;
810   }
811 
812   if (llvm::ConstantDataSequential *CDS =
813         dyn_cast<llvm::ConstantDataSequential>(Init)) {
814     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
815       llvm::Constant *Elt = CDS->getElementAsConstant(i);
816       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
817         return false;
818     }
819     return true;
820   }
821 
822   // Anything else is hard and scary.
823   return false;
824 }
825 
826 /// emitStoresForInitAfterMemset - For inits that
827 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
828 /// stores that would be required.
829 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
830                                          bool isVolatile, CGBuilderTy &Builder) {
831   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
832          "called emitStoresForInitAfterMemset for zero or undef value.");
833 
834   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
835       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
836       isa<llvm::ConstantExpr>(Init)) {
837     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
838     return;
839   }
840 
841   if (llvm::ConstantDataSequential *CDS =
842         dyn_cast<llvm::ConstantDataSequential>(Init)) {
843     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
844       llvm::Constant *Elt = CDS->getElementAsConstant(i);
845 
846       // If necessary, get a pointer to the element and emit it.
847       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
848         emitStoresForInitAfterMemset(
849             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
850             isVolatile, Builder);
851     }
852     return;
853   }
854 
855   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
856          "Unknown value type!");
857 
858   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
859     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
860 
861     // If necessary, get a pointer to the element and emit it.
862     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
863       emitStoresForInitAfterMemset(
864           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
865           isVolatile, Builder);
866   }
867 }
868 
869 
870 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
871 /// plus some stores to initialize a local variable instead of using a memcpy
872 /// from a constant global.  It is beneficial to use memset if the global is all
873 /// zeros, or mostly zeros and large.
874 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
875                                                   uint64_t GlobalSize) {
876   // If a global is all zeros, always use a memset.
877   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
878 
879   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
880   // do it if it will require 6 or fewer scalar stores.
881   // TODO: Should budget depends on the size?  Avoiding a large global warrants
882   // plopping in more stores.
883   unsigned StoreBudget = 6;
884   uint64_t SizeLimit = 32;
885 
886   return GlobalSize > SizeLimit &&
887          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
888 }
889 
890 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
891 /// variable declaration with auto, register, or no storage class specifier.
892 /// These turn into simple stack objects, or GlobalValues depending on target.
893 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
894   AutoVarEmission emission = EmitAutoVarAlloca(D);
895   EmitAutoVarInit(emission);
896   EmitAutoVarCleanups(emission);
897 }
898 
899 /// Emit a lifetime.begin marker if some criteria are satisfied.
900 /// \return a pointer to the temporary size Value if a marker was emitted, null
901 /// otherwise
902 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
903                                                 llvm::Value *Addr) {
904   // For now, only in optimized builds.
905   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
906     return nullptr;
907 
908   // Disable lifetime markers in msan builds.
909   // FIXME: Remove this when msan works with lifetime markers.
910   if (getLangOpts().Sanitize.has(SanitizerKind::Memory))
911     return nullptr;
912 
913   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
914   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
915   llvm::CallInst *C =
916       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
917   C->setDoesNotThrow();
918   return SizeV;
919 }
920 
921 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
922   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
923   llvm::CallInst *C =
924       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
925   C->setDoesNotThrow();
926 }
927 
928 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
929 /// local variable.  Does not emit initialization or destruction.
930 CodeGenFunction::AutoVarEmission
931 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
932   QualType Ty = D.getType();
933 
934   AutoVarEmission emission(D);
935 
936   bool isByRef = D.hasAttr<BlocksAttr>();
937   emission.IsByRef = isByRef;
938 
939   CharUnits alignment = getContext().getDeclAlign(&D);
940 
941   // If the type is variably-modified, emit all the VLA sizes for it.
942   if (Ty->isVariablyModifiedType())
943     EmitVariablyModifiedType(Ty);
944 
945   Address address = Address::invalid();
946   if (Ty->isConstantSizeType()) {
947     bool NRVO = getLangOpts().ElideConstructors &&
948       D.isNRVOVariable();
949 
950     // If this value is an array or struct with a statically determinable
951     // constant initializer, there are optimizations we can do.
952     //
953     // TODO: We should constant-evaluate the initializer of any variable,
954     // as long as it is initialized by a constant expression. Currently,
955     // isConstantInitializer produces wrong answers for structs with
956     // reference or bitfield members, and a few other cases, and checking
957     // for POD-ness protects us from some of these.
958     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
959         (D.isConstexpr() ||
960          ((Ty.isPODType(getContext()) ||
961            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
962           D.getInit()->isConstantInitializer(getContext(), false)))) {
963 
964       // If the variable's a const type, and it's neither an NRVO
965       // candidate nor a __block variable and has no mutable members,
966       // emit it as a global instead.
967       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
968           CGM.isTypeConstant(Ty, true)) {
969         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
970 
971         // Signal this condition to later callbacks.
972         emission.Addr = Address::invalid();
973         assert(emission.wasEmittedAsGlobal());
974         return emission;
975       }
976 
977       // Otherwise, tell the initialization code that we're in this case.
978       emission.IsConstantAggregate = true;
979     }
980 
981     // A normal fixed sized variable becomes an alloca in the entry block,
982     // unless it's an NRVO variable.
983 
984     if (NRVO) {
985       // The named return value optimization: allocate this variable in the
986       // return slot, so that we can elide the copy when returning this
987       // variable (C++0x [class.copy]p34).
988       address = ReturnValue;
989 
990       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
991         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
992           // Create a flag that is used to indicate when the NRVO was applied
993           // to this variable. Set it to zero to indicate that NRVO was not
994           // applied.
995           llvm::Value *Zero = Builder.getFalse();
996           Address NRVOFlag =
997             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
998           EnsureInsertPoint();
999           Builder.CreateStore(Zero, NRVOFlag);
1000 
1001           // Record the NRVO flag for this variable.
1002           NRVOFlags[&D] = NRVOFlag.getPointer();
1003           emission.NRVOFlag = NRVOFlag.getPointer();
1004         }
1005       }
1006     } else {
1007       CharUnits allocaAlignment;
1008       llvm::Type *allocaTy;
1009       if (isByRef) {
1010         auto &byrefInfo = getBlockByrefInfo(&D);
1011         allocaTy = byrefInfo.Type;
1012         allocaAlignment = byrefInfo.ByrefAlignment;
1013       } else {
1014         allocaTy = ConvertTypeForMem(Ty);
1015         allocaAlignment = alignment;
1016       }
1017 
1018       // Create the alloca.  Note that we set the name separately from
1019       // building the instruction so that it's there even in no-asserts
1020       // builds.
1021       address = CreateTempAlloca(allocaTy, allocaAlignment);
1022       address.getPointer()->setName(D.getName());
1023 
1024       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1025       // the catch parameter starts in the catchpad instruction, and we can't
1026       // insert code in those basic blocks.
1027       bool IsMSCatchParam =
1028           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1029 
1030       // Emit a lifetime intrinsic if meaningful.  There's no point
1031       // in doing this if we don't have a valid insertion point (?).
1032       if (HaveInsertPoint() && !IsMSCatchParam) {
1033         uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1034         emission.SizeForLifetimeMarkers =
1035           EmitLifetimeStart(size, address.getPointer());
1036       } else {
1037         assert(!emission.useLifetimeMarkers());
1038       }
1039     }
1040   } else {
1041     EnsureInsertPoint();
1042 
1043     if (!DidCallStackSave) {
1044       // Save the stack.
1045       Address Stack =
1046         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1047 
1048       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1049       llvm::Value *V = Builder.CreateCall(F);
1050       Builder.CreateStore(V, Stack);
1051 
1052       DidCallStackSave = true;
1053 
1054       // Push a cleanup block and restore the stack there.
1055       // FIXME: in general circumstances, this should be an EH cleanup.
1056       pushStackRestore(NormalCleanup, Stack);
1057     }
1058 
1059     llvm::Value *elementCount;
1060     QualType elementType;
1061     std::tie(elementCount, elementType) = getVLASize(Ty);
1062 
1063     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
1064 
1065     // Allocate memory for the array.
1066     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1067     vla->setAlignment(alignment.getQuantity());
1068 
1069     address = Address(vla, alignment);
1070   }
1071 
1072   setAddrOfLocalVar(&D, address);
1073   emission.Addr = address;
1074 
1075   // Emit debug info for local var declaration.
1076   if (HaveInsertPoint())
1077     if (CGDebugInfo *DI = getDebugInfo()) {
1078       if (CGM.getCodeGenOpts().getDebugInfo()
1079             >= CodeGenOptions::LimitedDebugInfo) {
1080         DI->setLocation(D.getLocation());
1081         DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1082       }
1083     }
1084 
1085   if (D.hasAttr<AnnotateAttr>())
1086     EmitVarAnnotations(&D, address.getPointer());
1087 
1088   return emission;
1089 }
1090 
1091 /// Determines whether the given __block variable is potentially
1092 /// captured by the given expression.
1093 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1094   // Skip the most common kinds of expressions that make
1095   // hierarchy-walking expensive.
1096   e = e->IgnoreParenCasts();
1097 
1098   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1099     const BlockDecl *block = be->getBlockDecl();
1100     for (const auto &I : block->captures()) {
1101       if (I.getVariable() == &var)
1102         return true;
1103     }
1104 
1105     // No need to walk into the subexpressions.
1106     return false;
1107   }
1108 
1109   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1110     const CompoundStmt *CS = SE->getSubStmt();
1111     for (const auto *BI : CS->body())
1112       if (const auto *E = dyn_cast<Expr>(BI)) {
1113         if (isCapturedBy(var, E))
1114             return true;
1115       }
1116       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1117           // special case declarations
1118           for (const auto *I : DS->decls()) {
1119               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1120                 const Expr *Init = VD->getInit();
1121                 if (Init && isCapturedBy(var, Init))
1122                   return true;
1123               }
1124           }
1125       }
1126       else
1127         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1128         // Later, provide code to poke into statements for capture analysis.
1129         return true;
1130     return false;
1131   }
1132 
1133   for (const Stmt *SubStmt : e->children())
1134     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1135       return true;
1136 
1137   return false;
1138 }
1139 
1140 /// \brief Determine whether the given initializer is trivial in the sense
1141 /// that it requires no code to be generated.
1142 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1143   if (!Init)
1144     return true;
1145 
1146   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1147     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1148       if (Constructor->isTrivial() &&
1149           Constructor->isDefaultConstructor() &&
1150           !Construct->requiresZeroInitialization())
1151         return true;
1152 
1153   return false;
1154 }
1155 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1156   assert(emission.Variable && "emission was not valid!");
1157 
1158   // If this was emitted as a global constant, we're done.
1159   if (emission.wasEmittedAsGlobal()) return;
1160 
1161   const VarDecl &D = *emission.Variable;
1162   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1163   QualType type = D.getType();
1164 
1165   // If this local has an initializer, emit it now.
1166   const Expr *Init = D.getInit();
1167 
1168   // If we are at an unreachable point, we don't need to emit the initializer
1169   // unless it contains a label.
1170   if (!HaveInsertPoint()) {
1171     if (!Init || !ContainsLabel(Init)) return;
1172     EnsureInsertPoint();
1173   }
1174 
1175   // Initialize the structure of a __block variable.
1176   if (emission.IsByRef)
1177     emitByrefStructureInit(emission);
1178 
1179   if (isTrivialInitializer(Init))
1180     return;
1181 
1182   // Check whether this is a byref variable that's potentially
1183   // captured and moved by its own initializer.  If so, we'll need to
1184   // emit the initializer first, then copy into the variable.
1185   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1186 
1187   Address Loc =
1188     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1189 
1190   llvm::Constant *constant = nullptr;
1191   if (emission.IsConstantAggregate || D.isConstexpr()) {
1192     assert(!capturedByInit && "constant init contains a capturing block?");
1193     constant = CGM.EmitConstantInit(D, this);
1194   }
1195 
1196   if (!constant) {
1197     LValue lv = MakeAddrLValue(Loc, type);
1198     lv.setNonGC(true);
1199     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1200   }
1201 
1202   if (!emission.IsConstantAggregate) {
1203     // For simple scalar/complex initialization, store the value directly.
1204     LValue lv = MakeAddrLValue(Loc, type);
1205     lv.setNonGC(true);
1206     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1207   }
1208 
1209   // If this is a simple aggregate initialization, we can optimize it
1210   // in various ways.
1211   bool isVolatile = type.isVolatileQualified();
1212 
1213   llvm::Value *SizeVal =
1214     llvm::ConstantInt::get(IntPtrTy,
1215                            getContext().getTypeSizeInChars(type).getQuantity());
1216 
1217   llvm::Type *BP = Int8PtrTy;
1218   if (Loc.getType() != BP)
1219     Loc = Builder.CreateBitCast(Loc, BP);
1220 
1221   // If the initializer is all or mostly zeros, codegen with memset then do
1222   // a few stores afterward.
1223   if (shouldUseMemSetPlusStoresToInitialize(constant,
1224                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1225     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1226                          isVolatile);
1227     // Zero and undef don't require a stores.
1228     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1229       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1230       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
1231                                    isVolatile, Builder);
1232     }
1233   } else {
1234     // Otherwise, create a temporary global with the initializer then
1235     // memcpy from the global to the alloca.
1236     std::string Name = getStaticDeclName(CGM, D);
1237     llvm::GlobalVariable *GV =
1238       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1239                                llvm::GlobalValue::PrivateLinkage,
1240                                constant, Name);
1241     GV->setAlignment(Loc.getAlignment().getQuantity());
1242     GV->setUnnamedAddr(true);
1243 
1244     Address SrcPtr = Address(GV, Loc.getAlignment());
1245     if (SrcPtr.getType() != BP)
1246       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1247 
1248     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1249   }
1250 }
1251 
1252 /// Emit an expression as an initializer for a variable at the given
1253 /// location.  The expression is not necessarily the normal
1254 /// initializer for the variable, and the address is not necessarily
1255 /// its normal location.
1256 ///
1257 /// \param init the initializing expression
1258 /// \param var the variable to act as if we're initializing
1259 /// \param loc the address to initialize; its type is a pointer
1260 ///   to the LLVM mapping of the variable's type
1261 /// \param alignment the alignment of the address
1262 /// \param capturedByInit true if the variable is a __block variable
1263 ///   whose address is potentially changed by the initializer
1264 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1265                                      LValue lvalue, bool capturedByInit) {
1266   QualType type = D->getType();
1267 
1268   if (type->isReferenceType()) {
1269     RValue rvalue = EmitReferenceBindingToExpr(init);
1270     if (capturedByInit)
1271       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1272     EmitStoreThroughLValue(rvalue, lvalue, true);
1273     return;
1274   }
1275   switch (getEvaluationKind(type)) {
1276   case TEK_Scalar:
1277     EmitScalarInit(init, D, lvalue, capturedByInit);
1278     return;
1279   case TEK_Complex: {
1280     ComplexPairTy complex = EmitComplexExpr(init);
1281     if (capturedByInit)
1282       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1283     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1284     return;
1285   }
1286   case TEK_Aggregate:
1287     if (type->isAtomicType()) {
1288       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1289     } else {
1290       // TODO: how can we delay here if D is captured by its initializer?
1291       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1292                                               AggValueSlot::IsDestructed,
1293                                          AggValueSlot::DoesNotNeedGCBarriers,
1294                                               AggValueSlot::IsNotAliased));
1295     }
1296     return;
1297   }
1298   llvm_unreachable("bad evaluation kind");
1299 }
1300 
1301 /// Enter a destroy cleanup for the given local variable.
1302 void CodeGenFunction::emitAutoVarTypeCleanup(
1303                             const CodeGenFunction::AutoVarEmission &emission,
1304                             QualType::DestructionKind dtorKind) {
1305   assert(dtorKind != QualType::DK_none);
1306 
1307   // Note that for __block variables, we want to destroy the
1308   // original stack object, not the possibly forwarded object.
1309   Address addr = emission.getObjectAddress(*this);
1310 
1311   const VarDecl *var = emission.Variable;
1312   QualType type = var->getType();
1313 
1314   CleanupKind cleanupKind = NormalAndEHCleanup;
1315   CodeGenFunction::Destroyer *destroyer = nullptr;
1316 
1317   switch (dtorKind) {
1318   case QualType::DK_none:
1319     llvm_unreachable("no cleanup for trivially-destructible variable");
1320 
1321   case QualType::DK_cxx_destructor:
1322     // If there's an NRVO flag on the emission, we need a different
1323     // cleanup.
1324     if (emission.NRVOFlag) {
1325       assert(!type->isArrayType());
1326       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1327       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
1328                                                dtor, emission.NRVOFlag);
1329       return;
1330     }
1331     break;
1332 
1333   case QualType::DK_objc_strong_lifetime:
1334     // Suppress cleanups for pseudo-strong variables.
1335     if (var->isARCPseudoStrong()) return;
1336 
1337     // Otherwise, consider whether to use an EH cleanup or not.
1338     cleanupKind = getARCCleanupKind();
1339 
1340     // Use the imprecise destroyer by default.
1341     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1342       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1343     break;
1344 
1345   case QualType::DK_objc_weak_lifetime:
1346     break;
1347   }
1348 
1349   // If we haven't chosen a more specific destroyer, use the default.
1350   if (!destroyer) destroyer = getDestroyer(dtorKind);
1351 
1352   // Use an EH cleanup in array destructors iff the destructor itself
1353   // is being pushed as an EH cleanup.
1354   bool useEHCleanup = (cleanupKind & EHCleanup);
1355   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1356                                      useEHCleanup);
1357 }
1358 
1359 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1360   assert(emission.Variable && "emission was not valid!");
1361 
1362   // If this was emitted as a global constant, we're done.
1363   if (emission.wasEmittedAsGlobal()) return;
1364 
1365   // If we don't have an insertion point, we're done.  Sema prevents
1366   // us from jumping into any of these scopes anyway.
1367   if (!HaveInsertPoint()) return;
1368 
1369   const VarDecl &D = *emission.Variable;
1370 
1371   // Make sure we call @llvm.lifetime.end.  This needs to happen
1372   // *last*, so the cleanup needs to be pushed *first*.
1373   if (emission.useLifetimeMarkers()) {
1374     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1375                                          emission.getAllocatedAddress(),
1376                                          emission.getSizeForLifetimeMarkers());
1377     EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
1378     cleanup.setLifetimeMarker();
1379   }
1380 
1381   // Check the type for a cleanup.
1382   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1383     emitAutoVarTypeCleanup(emission, dtorKind);
1384 
1385   // In GC mode, honor objc_precise_lifetime.
1386   if (getLangOpts().getGC() != LangOptions::NonGC &&
1387       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1388     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1389   }
1390 
1391   // Handle the cleanup attribute.
1392   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1393     const FunctionDecl *FD = CA->getFunctionDecl();
1394 
1395     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1396     assert(F && "Could not find function!");
1397 
1398     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1399     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1400   }
1401 
1402   // If this is a block variable, call _Block_object_destroy
1403   // (on the unforwarded address).
1404   if (emission.IsByRef)
1405     enterByrefCleanup(emission);
1406 }
1407 
1408 CodeGenFunction::Destroyer *
1409 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1410   switch (kind) {
1411   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1412   case QualType::DK_cxx_destructor:
1413     return destroyCXXObject;
1414   case QualType::DK_objc_strong_lifetime:
1415     return destroyARCStrongPrecise;
1416   case QualType::DK_objc_weak_lifetime:
1417     return destroyARCWeak;
1418   }
1419   llvm_unreachable("Unknown DestructionKind");
1420 }
1421 
1422 /// pushEHDestroy - Push the standard destructor for the given type as
1423 /// an EH-only cleanup.
1424 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1425                                     Address addr, QualType type) {
1426   assert(dtorKind && "cannot push destructor for trivial type");
1427   assert(needsEHCleanup(dtorKind));
1428 
1429   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1430 }
1431 
1432 /// pushDestroy - Push the standard destructor for the given type as
1433 /// at least a normal cleanup.
1434 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1435                                   Address addr, QualType type) {
1436   assert(dtorKind && "cannot push destructor for trivial type");
1437 
1438   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1439   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1440               cleanupKind & EHCleanup);
1441 }
1442 
1443 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1444                                   QualType type, Destroyer *destroyer,
1445                                   bool useEHCleanupForArray) {
1446   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1447                                      destroyer, useEHCleanupForArray);
1448 }
1449 
1450 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1451   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1452 }
1453 
1454 void CodeGenFunction::pushLifetimeExtendedDestroy(
1455     CleanupKind cleanupKind, Address addr, QualType type,
1456     Destroyer *destroyer, bool useEHCleanupForArray) {
1457   assert(!isInConditionalBranch() &&
1458          "performing lifetime extension from within conditional");
1459 
1460   // Push an EH-only cleanup for the object now.
1461   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1462   // around in case a temporary's destructor throws an exception.
1463   if (cleanupKind & EHCleanup)
1464     EHStack.pushCleanup<DestroyObject>(
1465         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1466         destroyer, useEHCleanupForArray);
1467 
1468   // Remember that we need to push a full cleanup for the object at the
1469   // end of the full-expression.
1470   pushCleanupAfterFullExpr<DestroyObject>(
1471       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1472 }
1473 
1474 /// emitDestroy - Immediately perform the destruction of the given
1475 /// object.
1476 ///
1477 /// \param addr - the address of the object; a type*
1478 /// \param type - the type of the object; if an array type, all
1479 ///   objects are destroyed in reverse order
1480 /// \param destroyer - the function to call to destroy individual
1481 ///   elements
1482 /// \param useEHCleanupForArray - whether an EH cleanup should be
1483 ///   used when destroying array elements, in case one of the
1484 ///   destructions throws an exception
1485 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1486                                   Destroyer *destroyer,
1487                                   bool useEHCleanupForArray) {
1488   const ArrayType *arrayType = getContext().getAsArrayType(type);
1489   if (!arrayType)
1490     return destroyer(*this, addr, type);
1491 
1492   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1493 
1494   CharUnits elementAlign =
1495     addr.getAlignment()
1496         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1497 
1498   // Normally we have to check whether the array is zero-length.
1499   bool checkZeroLength = true;
1500 
1501   // But if the array length is constant, we can suppress that.
1502   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1503     // ...and if it's constant zero, we can just skip the entire thing.
1504     if (constLength->isZero()) return;
1505     checkZeroLength = false;
1506   }
1507 
1508   llvm::Value *begin = addr.getPointer();
1509   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1510   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1511                    checkZeroLength, useEHCleanupForArray);
1512 }
1513 
1514 /// emitArrayDestroy - Destroys all the elements of the given array,
1515 /// beginning from last to first.  The array cannot be zero-length.
1516 ///
1517 /// \param begin - a type* denoting the first element of the array
1518 /// \param end - a type* denoting one past the end of the array
1519 /// \param elementType - the element type of the array
1520 /// \param destroyer - the function to call to destroy elements
1521 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1522 ///   the remaining elements in case the destruction of a single
1523 ///   element throws
1524 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1525                                        llvm::Value *end,
1526                                        QualType elementType,
1527                                        CharUnits elementAlign,
1528                                        Destroyer *destroyer,
1529                                        bool checkZeroLength,
1530                                        bool useEHCleanup) {
1531   assert(!elementType->isArrayType());
1532 
1533   // The basic structure here is a do-while loop, because we don't
1534   // need to check for the zero-element case.
1535   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1536   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1537 
1538   if (checkZeroLength) {
1539     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1540                                                 "arraydestroy.isempty");
1541     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1542   }
1543 
1544   // Enter the loop body, making that address the current address.
1545   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1546   EmitBlock(bodyBB);
1547   llvm::PHINode *elementPast =
1548     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1549   elementPast->addIncoming(end, entryBB);
1550 
1551   // Shift the address back by one element.
1552   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1553   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1554                                                    "arraydestroy.element");
1555 
1556   if (useEHCleanup)
1557     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1558                                    destroyer);
1559 
1560   // Perform the actual destruction there.
1561   destroyer(*this, Address(element, elementAlign), elementType);
1562 
1563   if (useEHCleanup)
1564     PopCleanupBlock();
1565 
1566   // Check whether we've reached the end.
1567   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1568   Builder.CreateCondBr(done, doneBB, bodyBB);
1569   elementPast->addIncoming(element, Builder.GetInsertBlock());
1570 
1571   // Done.
1572   EmitBlock(doneBB);
1573 }
1574 
1575 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1576 /// emitArrayDestroy, the element type here may still be an array type.
1577 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1578                                     llvm::Value *begin, llvm::Value *end,
1579                                     QualType type, CharUnits elementAlign,
1580                                     CodeGenFunction::Destroyer *destroyer) {
1581   // If the element type is itself an array, drill down.
1582   unsigned arrayDepth = 0;
1583   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1584     // VLAs don't require a GEP index to walk into.
1585     if (!isa<VariableArrayType>(arrayType))
1586       arrayDepth++;
1587     type = arrayType->getElementType();
1588   }
1589 
1590   if (arrayDepth) {
1591     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1592 
1593     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1594     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1595     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1596   }
1597 
1598   // Destroy the array.  We don't ever need an EH cleanup because we
1599   // assume that we're in an EH cleanup ourselves, so a throwing
1600   // destructor causes an immediate terminate.
1601   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1602                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1603 }
1604 
1605 namespace {
1606   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1607   /// array destroy where the end pointer is regularly determined and
1608   /// does not need to be loaded from a local.
1609   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1610     llvm::Value *ArrayBegin;
1611     llvm::Value *ArrayEnd;
1612     QualType ElementType;
1613     CodeGenFunction::Destroyer *Destroyer;
1614     CharUnits ElementAlign;
1615   public:
1616     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1617                                QualType elementType, CharUnits elementAlign,
1618                                CodeGenFunction::Destroyer *destroyer)
1619       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1620         ElementType(elementType), Destroyer(destroyer),
1621         ElementAlign(elementAlign) {}
1622 
1623     void Emit(CodeGenFunction &CGF, Flags flags) override {
1624       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1625                               ElementType, ElementAlign, Destroyer);
1626     }
1627   };
1628 
1629   /// IrregularPartialArrayDestroy - a cleanup which performs a
1630   /// partial array destroy where the end pointer is irregularly
1631   /// determined and must be loaded from a local.
1632   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1633     llvm::Value *ArrayBegin;
1634     Address ArrayEndPointer;
1635     QualType ElementType;
1636     CodeGenFunction::Destroyer *Destroyer;
1637     CharUnits ElementAlign;
1638   public:
1639     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1640                                  Address arrayEndPointer,
1641                                  QualType elementType,
1642                                  CharUnits elementAlign,
1643                                  CodeGenFunction::Destroyer *destroyer)
1644       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1645         ElementType(elementType), Destroyer(destroyer),
1646         ElementAlign(elementAlign) {}
1647 
1648     void Emit(CodeGenFunction &CGF, Flags flags) override {
1649       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1650       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1651                               ElementType, ElementAlign, Destroyer);
1652     }
1653   };
1654 }
1655 
1656 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1657 /// already-constructed elements of the given array.  The cleanup
1658 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1659 ///
1660 /// \param elementType - the immediate element type of the array;
1661 ///   possibly still an array type
1662 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1663                                                        Address arrayEndPointer,
1664                                                        QualType elementType,
1665                                                        CharUnits elementAlign,
1666                                                        Destroyer *destroyer) {
1667   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1668                                                     arrayBegin, arrayEndPointer,
1669                                                     elementType, elementAlign,
1670                                                     destroyer);
1671 }
1672 
1673 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1674 /// already-constructed elements of the given array.  The cleanup
1675 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1676 ///
1677 /// \param elementType - the immediate element type of the array;
1678 ///   possibly still an array type
1679 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1680                                                      llvm::Value *arrayEnd,
1681                                                      QualType elementType,
1682                                                      CharUnits elementAlign,
1683                                                      Destroyer *destroyer) {
1684   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1685                                                   arrayBegin, arrayEnd,
1686                                                   elementType, elementAlign,
1687                                                   destroyer);
1688 }
1689 
1690 /// Lazily declare the @llvm.lifetime.start intrinsic.
1691 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1692   if (LifetimeStartFn) return LifetimeStartFn;
1693   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1694                                             llvm::Intrinsic::lifetime_start);
1695   return LifetimeStartFn;
1696 }
1697 
1698 /// Lazily declare the @llvm.lifetime.end intrinsic.
1699 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1700   if (LifetimeEndFn) return LifetimeEndFn;
1701   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1702                                               llvm::Intrinsic::lifetime_end);
1703   return LifetimeEndFn;
1704 }
1705 
1706 namespace {
1707   /// A cleanup to perform a release of an object at the end of a
1708   /// function.  This is used to balance out the incoming +1 of a
1709   /// ns_consumed argument when we can't reasonably do that just by
1710   /// not doing the initial retain for a __block argument.
1711   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1712     ConsumeARCParameter(llvm::Value *param,
1713                         ARCPreciseLifetime_t precise)
1714       : Param(param), Precise(precise) {}
1715 
1716     llvm::Value *Param;
1717     ARCPreciseLifetime_t Precise;
1718 
1719     void Emit(CodeGenFunction &CGF, Flags flags) override {
1720       CGF.EmitARCRelease(Param, Precise);
1721     }
1722   };
1723 }
1724 
1725 /// Emit an alloca (or GlobalValue depending on target)
1726 /// for the specified parameter and set up LocalDeclMap.
1727 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1728                                    unsigned ArgNo) {
1729   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1730   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1731          "Invalid argument to EmitParmDecl");
1732 
1733   Arg.getAnyValue()->setName(D.getName());
1734 
1735   QualType Ty = D.getType();
1736 
1737   // Use better IR generation for certain implicit parameters.
1738   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1739     // The only implicit argument a block has is its literal.
1740     // We assume this is always passed directly.
1741     if (BlockInfo) {
1742       setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue());
1743       return;
1744     }
1745   }
1746 
1747   Address DeclPtr = Address::invalid();
1748   bool DoStore = false;
1749   bool IsScalar = hasScalarEvaluationKind(Ty);
1750   // If we already have a pointer to the argument, reuse the input pointer.
1751   if (Arg.isIndirect()) {
1752     DeclPtr = Arg.getIndirectAddress();
1753     // If we have a prettier pointer type at this point, bitcast to that.
1754     unsigned AS = DeclPtr.getType()->getAddressSpace();
1755     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1756     if (DeclPtr.getType() != IRTy)
1757       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
1758 
1759     // Push a destructor cleanup for this parameter if the ABI requires it.
1760     // Don't push a cleanup in a thunk for a method that will also emit a
1761     // cleanup.
1762     if (!IsScalar && !CurFuncIsThunk &&
1763         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1764       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1765       if (RD && RD->hasNonTrivialDestructor())
1766         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1767     }
1768   } else {
1769     // Otherwise, create a temporary to hold the value.
1770     DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
1771                             D.getName() + ".addr");
1772     DoStore = true;
1773   }
1774 
1775   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
1776 
1777   LValue lv = MakeAddrLValue(DeclPtr, Ty);
1778   if (IsScalar) {
1779     Qualifiers qs = Ty.getQualifiers();
1780     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1781       // We honor __attribute__((ns_consumed)) for types with lifetime.
1782       // For __strong, it's handled by just skipping the initial retain;
1783       // otherwise we have to balance out the initial +1 with an extra
1784       // cleanup to do the release at the end of the function.
1785       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1786 
1787       // 'self' is always formally __strong, but if this is not an
1788       // init method then we don't want to retain it.
1789       if (D.isARCPseudoStrong()) {
1790         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1791         assert(&D == method->getSelfDecl());
1792         assert(lt == Qualifiers::OCL_Strong);
1793         assert(qs.hasConst());
1794         assert(method->getMethodFamily() != OMF_init);
1795         (void) method;
1796         lt = Qualifiers::OCL_ExplicitNone;
1797       }
1798 
1799       if (lt == Qualifiers::OCL_Strong) {
1800         if (!isConsumed) {
1801           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1802             // use objc_storeStrong(&dest, value) for retaining the
1803             // object. But first, store a null into 'dest' because
1804             // objc_storeStrong attempts to release its old value.
1805             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1806             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1807             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
1808             DoStore = false;
1809           }
1810           else
1811           // Don't use objc_retainBlock for block pointers, because we
1812           // don't want to Block_copy something just because we got it
1813           // as a parameter.
1814             ArgVal = EmitARCRetainNonBlock(ArgVal);
1815         }
1816       } else {
1817         // Push the cleanup for a consumed parameter.
1818         if (isConsumed) {
1819           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1820                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1821           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
1822                                                    precise);
1823         }
1824 
1825         if (lt == Qualifiers::OCL_Weak) {
1826           EmitARCInitWeak(DeclPtr, ArgVal);
1827           DoStore = false; // The weak init is a store, no need to do two.
1828         }
1829       }
1830 
1831       // Enter the cleanup scope.
1832       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1833     }
1834   }
1835 
1836   // Store the initial value into the alloca.
1837   if (DoStore)
1838     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
1839 
1840   setAddrOfLocalVar(&D, DeclPtr);
1841 
1842   // Emit debug info for param declaration.
1843   if (CGDebugInfo *DI = getDebugInfo()) {
1844     if (CGM.getCodeGenOpts().getDebugInfo()
1845           >= CodeGenOptions::LimitedDebugInfo) {
1846       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
1847     }
1848   }
1849 
1850   if (D.hasAttr<AnnotateAttr>())
1851     EmitVarAnnotations(&D, DeclPtr.getPointer());
1852 }
1853