1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 
34 void CodeGenFunction::EmitDecl(const Decl &D) {
35   switch (D.getKind()) {
36   case Decl::TranslationUnit:
37   case Decl::ExternCContext:
38   case Decl::Namespace:
39   case Decl::UnresolvedUsingTypename:
40   case Decl::ClassTemplateSpecialization:
41   case Decl::ClassTemplatePartialSpecialization:
42   case Decl::VarTemplateSpecialization:
43   case Decl::VarTemplatePartialSpecialization:
44   case Decl::TemplateTypeParm:
45   case Decl::UnresolvedUsingValue:
46   case Decl::NonTypeTemplateParm:
47   case Decl::CXXMethod:
48   case Decl::CXXConstructor:
49   case Decl::CXXDestructor:
50   case Decl::CXXConversion:
51   case Decl::Field:
52   case Decl::MSProperty:
53   case Decl::IndirectField:
54   case Decl::ObjCIvar:
55   case Decl::ObjCAtDefsField:
56   case Decl::ParmVar:
57   case Decl::ImplicitParam:
58   case Decl::ClassTemplate:
59   case Decl::VarTemplate:
60   case Decl::FunctionTemplate:
61   case Decl::TypeAliasTemplate:
62   case Decl::TemplateTemplateParm:
63   case Decl::ObjCMethod:
64   case Decl::ObjCCategory:
65   case Decl::ObjCProtocol:
66   case Decl::ObjCInterface:
67   case Decl::ObjCCategoryImpl:
68   case Decl::ObjCImplementation:
69   case Decl::ObjCProperty:
70   case Decl::ObjCCompatibleAlias:
71   case Decl::AccessSpec:
72   case Decl::LinkageSpec:
73   case Decl::ObjCPropertyImpl:
74   case Decl::FileScopeAsm:
75   case Decl::Friend:
76   case Decl::FriendTemplate:
77   case Decl::Block:
78   case Decl::Captured:
79   case Decl::ClassScopeFunctionSpecialization:
80   case Decl::UsingShadow:
81     llvm_unreachable("Declaration should not be in declstmts!");
82   case Decl::Function:  // void X();
83   case Decl::Record:    // struct/union/class X;
84   case Decl::Enum:      // enum X;
85   case Decl::EnumConstant: // enum ? { X = ? }
86   case Decl::CXXRecord: // struct/union/class X; [C++]
87   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
88   case Decl::Label:        // __label__ x;
89   case Decl::Import:
90   case Decl::OMPThreadPrivate:
91   case Decl::Empty:
92     // None of these decls require codegen support.
93     return;
94 
95   case Decl::NamespaceAlias:
96     if (CGDebugInfo *DI = getDebugInfo())
97         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
98     return;
99   case Decl::Using:          // using X; [C++]
100     if (CGDebugInfo *DI = getDebugInfo())
101         DI->EmitUsingDecl(cast<UsingDecl>(D));
102     return;
103   case Decl::UsingDirective: // using namespace X; [C++]
104     if (CGDebugInfo *DI = getDebugInfo())
105       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
106     return;
107   case Decl::Var: {
108     const VarDecl &VD = cast<VarDecl>(D);
109     assert(VD.isLocalVarDecl() &&
110            "Should not see file-scope variables inside a function!");
111     return EmitVarDecl(VD);
112   }
113 
114   case Decl::Typedef:      // typedef int X;
115   case Decl::TypeAlias: {  // using X = int; [C++0x]
116     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
117     QualType Ty = TD.getUnderlyingType();
118 
119     if (Ty->isVariablyModifiedType())
120       EmitVariablyModifiedType(Ty);
121   }
122   }
123 }
124 
125 /// EmitVarDecl - This method handles emission of any variable declaration
126 /// inside a function, including static vars etc.
127 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
128   if (D.isStaticLocal()) {
129     llvm::GlobalValue::LinkageTypes Linkage =
130         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
131 
132     // FIXME: We need to force the emission/use of a guard variable for
133     // some variables even if we can constant-evaluate them because
134     // we can't guarantee every translation unit will constant-evaluate them.
135 
136     return EmitStaticVarDecl(D, Linkage);
137   }
138 
139   if (D.hasExternalStorage())
140     // Don't emit it now, allow it to be emitted lazily on its first use.
141     return;
142 
143   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
144     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
145 
146   assert(D.hasLocalStorage());
147   return EmitAutoVarDecl(D);
148 }
149 
150 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
151   if (CGM.getLangOpts().CPlusPlus)
152     return CGM.getMangledName(&D).str();
153 
154   // If this isn't C++, we don't need a mangled name, just a pretty one.
155   assert(!D.isExternallyVisible() && "name shouldn't matter");
156   std::string ContextName;
157   const DeclContext *DC = D.getDeclContext();
158   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
159     ContextName = CGM.getMangledName(FD);
160   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
161     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
162   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
163     ContextName = OMD->getSelector().getAsString();
164   else
165     llvm_unreachable("Unknown context for static var decl");
166 
167   ContextName += "." + D.getNameAsString();
168   return ContextName;
169 }
170 
171 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
172     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
173   // In general, we don't always emit static var decls once before we reference
174   // them. It is possible to reference them before emitting the function that
175   // contains them, and it is possible to emit the containing function multiple
176   // times.
177   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
178     return ExistingGV;
179 
180   QualType Ty = D.getType();
181   assert(Ty->isConstantSizeType() && "VLAs can't be static");
182 
183   // Use the label if the variable is renamed with the asm-label extension.
184   std::string Name;
185   if (D.hasAttr<AsmLabelAttr>())
186     Name = getMangledName(&D);
187   else
188     Name = getStaticDeclName(*this, D);
189 
190   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
191   unsigned AddrSpace =
192       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
193 
194   // Local address space cannot have an initializer.
195   llvm::Constant *Init = nullptr;
196   if (Ty.getAddressSpace() != LangAS::opencl_local)
197     Init = EmitNullConstant(Ty);
198   else
199     Init = llvm::UndefValue::get(LTy);
200 
201   llvm::GlobalVariable *GV =
202     new llvm::GlobalVariable(getModule(), LTy,
203                              Ty.isConstant(getContext()), Linkage,
204                              Init, Name, nullptr,
205                              llvm::GlobalVariable::NotThreadLocal,
206                              AddrSpace);
207   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
208   setGlobalVisibility(GV, &D);
209 
210   if (supportsCOMDAT() && GV->isWeakForLinker())
211     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
212 
213   if (D.getTLSKind())
214     setTLSMode(GV, D);
215 
216   if (D.isExternallyVisible()) {
217     if (D.hasAttr<DLLImportAttr>())
218       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
219     else if (D.hasAttr<DLLExportAttr>())
220       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
221   }
222 
223   // Make sure the result is of the correct type.
224   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
225   llvm::Constant *Addr = GV;
226   if (AddrSpace != ExpectedAddrSpace) {
227     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
228     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
229   }
230 
231   setStaticLocalDeclAddress(&D, Addr);
232 
233   // Ensure that the static local gets initialized by making sure the parent
234   // function gets emitted eventually.
235   const Decl *DC = cast<Decl>(D.getDeclContext());
236 
237   // We can't name blocks or captured statements directly, so try to emit their
238   // parents.
239   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
240     DC = DC->getNonClosureContext();
241     // FIXME: Ensure that global blocks get emitted.
242     if (!DC)
243       return Addr;
244   }
245 
246   GlobalDecl GD;
247   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
248     GD = GlobalDecl(CD, Ctor_Base);
249   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
250     GD = GlobalDecl(DD, Dtor_Base);
251   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
252     GD = GlobalDecl(FD);
253   else {
254     // Don't do anything for Obj-C method decls or global closures. We should
255     // never defer them.
256     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
257   }
258   if (GD.getDecl())
259     (void)GetAddrOfGlobal(GD);
260 
261   return Addr;
262 }
263 
264 /// hasNontrivialDestruction - Determine whether a type's destruction is
265 /// non-trivial. If so, and the variable uses static initialization, we must
266 /// register its destructor to run on exit.
267 static bool hasNontrivialDestruction(QualType T) {
268   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
269   return RD && !RD->hasTrivialDestructor();
270 }
271 
272 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
273 /// global variable that has already been created for it.  If the initializer
274 /// has a different type than GV does, this may free GV and return a different
275 /// one.  Otherwise it just returns GV.
276 llvm::GlobalVariable *
277 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
278                                                llvm::GlobalVariable *GV) {
279   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
280 
281   // If constant emission failed, then this should be a C++ static
282   // initializer.
283   if (!Init) {
284     if (!getLangOpts().CPlusPlus)
285       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
286     else if (Builder.GetInsertBlock()) {
287       // Since we have a static initializer, this global variable can't
288       // be constant.
289       GV->setConstant(false);
290 
291       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
292     }
293     return GV;
294   }
295 
296   // The initializer may differ in type from the global. Rewrite
297   // the global to match the initializer.  (We have to do this
298   // because some types, like unions, can't be completely represented
299   // in the LLVM type system.)
300   if (GV->getType()->getElementType() != Init->getType()) {
301     llvm::GlobalVariable *OldGV = GV;
302 
303     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
304                                   OldGV->isConstant(),
305                                   OldGV->getLinkage(), Init, "",
306                                   /*InsertBefore*/ OldGV,
307                                   OldGV->getThreadLocalMode(),
308                            CGM.getContext().getTargetAddressSpace(D.getType()));
309     GV->setVisibility(OldGV->getVisibility());
310 
311     // Steal the name of the old global
312     GV->takeName(OldGV);
313 
314     // Replace all uses of the old global with the new global
315     llvm::Constant *NewPtrForOldDecl =
316     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
317     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
318 
319     // Erase the old global, since it is no longer used.
320     OldGV->eraseFromParent();
321   }
322 
323   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
324   GV->setInitializer(Init);
325 
326   if (hasNontrivialDestruction(D.getType())) {
327     // We have a constant initializer, but a nontrivial destructor. We still
328     // need to perform a guarded "initialization" in order to register the
329     // destructor.
330     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
331   }
332 
333   return GV;
334 }
335 
336 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
337                                       llvm::GlobalValue::LinkageTypes Linkage) {
338   llvm::Value *&DMEntry = LocalDeclMap[&D];
339   assert(!DMEntry && "Decl already exists in localdeclmap!");
340 
341   // Check to see if we already have a global variable for this
342   // declaration.  This can happen when double-emitting function
343   // bodies, e.g. with complete and base constructors.
344   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
345 
346   // Store into LocalDeclMap before generating initializer to handle
347   // circular references.
348   DMEntry = addr;
349 
350   // We can't have a VLA here, but we can have a pointer to a VLA,
351   // even though that doesn't really make any sense.
352   // Make sure to evaluate VLA bounds now so that we have them for later.
353   if (D.getType()->isVariablyModifiedType())
354     EmitVariablyModifiedType(D.getType());
355 
356   // Save the type in case adding the initializer forces a type change.
357   llvm::Type *expectedType = addr->getType();
358 
359   llvm::GlobalVariable *var =
360     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
361   // If this value has an initializer, emit it.
362   if (D.getInit())
363     var = AddInitializerToStaticVarDecl(D, var);
364 
365   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
366 
367   if (D.hasAttr<AnnotateAttr>())
368     CGM.AddGlobalAnnotations(&D, var);
369 
370   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
371     var->setSection(SA->getName());
372 
373   if (D.hasAttr<UsedAttr>())
374     CGM.addUsedGlobal(var);
375 
376   // We may have to cast the constant because of the initializer
377   // mismatch above.
378   //
379   // FIXME: It is really dangerous to store this in the map; if anyone
380   // RAUW's the GV uses of this constant will be invalid.
381   llvm::Constant *castedAddr =
382     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
383   DMEntry = castedAddr;
384   CGM.setStaticLocalDeclAddress(&D, castedAddr);
385 
386   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
387 
388   // Emit global variable debug descriptor for static vars.
389   CGDebugInfo *DI = getDebugInfo();
390   if (DI &&
391       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
392     DI->setLocation(D.getLocation());
393     DI->EmitGlobalVariable(var, &D);
394   }
395 }
396 
397 namespace {
398   struct DestroyObject : EHScopeStack::Cleanup {
399     DestroyObject(llvm::Value *addr, QualType type,
400                   CodeGenFunction::Destroyer *destroyer,
401                   bool useEHCleanupForArray)
402       : addr(addr), type(type), destroyer(destroyer),
403         useEHCleanupForArray(useEHCleanupForArray) {}
404 
405     llvm::Value *addr;
406     QualType type;
407     CodeGenFunction::Destroyer *destroyer;
408     bool useEHCleanupForArray;
409 
410     void Emit(CodeGenFunction &CGF, Flags flags) override {
411       // Don't use an EH cleanup recursively from an EH cleanup.
412       bool useEHCleanupForArray =
413         flags.isForNormalCleanup() && this->useEHCleanupForArray;
414 
415       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
416     }
417   };
418 
419   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
420     DestroyNRVOVariable(llvm::Value *addr,
421                         const CXXDestructorDecl *Dtor,
422                         llvm::Value *NRVOFlag)
423       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
424 
425     const CXXDestructorDecl *Dtor;
426     llvm::Value *NRVOFlag;
427     llvm::Value *Loc;
428 
429     void Emit(CodeGenFunction &CGF, Flags flags) override {
430       // Along the exceptions path we always execute the dtor.
431       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
432 
433       llvm::BasicBlock *SkipDtorBB = nullptr;
434       if (NRVO) {
435         // If we exited via NRVO, we skip the destructor call.
436         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
437         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
438         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
439         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
440         CGF.EmitBlock(RunDtorBB);
441       }
442 
443       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
444                                 /*ForVirtualBase=*/false,
445                                 /*Delegating=*/false,
446                                 Loc);
447 
448       if (NRVO) CGF.EmitBlock(SkipDtorBB);
449     }
450   };
451 
452   struct CallStackRestore : EHScopeStack::Cleanup {
453     llvm::Value *Stack;
454     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
455     void Emit(CodeGenFunction &CGF, Flags flags) override {
456       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
457       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
458       CGF.Builder.CreateCall(F, V);
459     }
460   };
461 
462   struct ExtendGCLifetime : EHScopeStack::Cleanup {
463     const VarDecl &Var;
464     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
465 
466     void Emit(CodeGenFunction &CGF, Flags flags) override {
467       // Compute the address of the local variable, in case it's a
468       // byref or something.
469       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
470                       Var.getType(), VK_LValue, SourceLocation());
471       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
472                                                 SourceLocation());
473       CGF.EmitExtendGCLifetime(value);
474     }
475   };
476 
477   struct CallCleanupFunction : EHScopeStack::Cleanup {
478     llvm::Constant *CleanupFn;
479     const CGFunctionInfo &FnInfo;
480     const VarDecl &Var;
481 
482     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
483                         const VarDecl *Var)
484       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
485 
486     void Emit(CodeGenFunction &CGF, Flags flags) override {
487       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
488                       Var.getType(), VK_LValue, SourceLocation());
489       // Compute the address of the local variable, in case it's a byref
490       // or something.
491       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
492 
493       // In some cases, the type of the function argument will be different from
494       // the type of the pointer. An example of this is
495       // void f(void* arg);
496       // __attribute__((cleanup(f))) void *g;
497       //
498       // To fix this we insert a bitcast here.
499       QualType ArgTy = FnInfo.arg_begin()->type;
500       llvm::Value *Arg =
501         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
502 
503       CallArgList Args;
504       Args.add(RValue::get(Arg),
505                CGF.getContext().getPointerType(Var.getType()));
506       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
507     }
508   };
509 
510   /// A cleanup to call @llvm.lifetime.end.
511   class CallLifetimeEnd : public EHScopeStack::Cleanup {
512     llvm::Value *Addr;
513     llvm::Value *Size;
514   public:
515     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
516       : Addr(addr), Size(size) {}
517 
518     void Emit(CodeGenFunction &CGF, Flags flags) override {
519       llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
520       CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
521                               Size, castAddr)
522         ->setDoesNotThrow();
523     }
524   };
525 }
526 
527 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
528 /// variable with lifetime.
529 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
530                                     llvm::Value *addr,
531                                     Qualifiers::ObjCLifetime lifetime) {
532   switch (lifetime) {
533   case Qualifiers::OCL_None:
534     llvm_unreachable("present but none");
535 
536   case Qualifiers::OCL_ExplicitNone:
537     // nothing to do
538     break;
539 
540   case Qualifiers::OCL_Strong: {
541     CodeGenFunction::Destroyer *destroyer =
542       (var.hasAttr<ObjCPreciseLifetimeAttr>()
543        ? CodeGenFunction::destroyARCStrongPrecise
544        : CodeGenFunction::destroyARCStrongImprecise);
545 
546     CleanupKind cleanupKind = CGF.getARCCleanupKind();
547     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
548                     cleanupKind & EHCleanup);
549     break;
550   }
551   case Qualifiers::OCL_Autoreleasing:
552     // nothing to do
553     break;
554 
555   case Qualifiers::OCL_Weak:
556     // __weak objects always get EH cleanups; otherwise, exceptions
557     // could cause really nasty crashes instead of mere leaks.
558     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
559                     CodeGenFunction::destroyARCWeak,
560                     /*useEHCleanup*/ true);
561     break;
562   }
563 }
564 
565 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
566   if (const Expr *e = dyn_cast<Expr>(s)) {
567     // Skip the most common kinds of expressions that make
568     // hierarchy-walking expensive.
569     s = e = e->IgnoreParenCasts();
570 
571     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
572       return (ref->getDecl() == &var);
573     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
574       const BlockDecl *block = be->getBlockDecl();
575       for (const auto &I : block->captures()) {
576         if (I.getVariable() == &var)
577           return true;
578       }
579     }
580   }
581 
582   for (Stmt::const_child_range children = s->children(); children; ++children)
583     // children might be null; as in missing decl or conditional of an if-stmt.
584     if ((*children) && isAccessedBy(var, *children))
585       return true;
586 
587   return false;
588 }
589 
590 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
591   if (!decl) return false;
592   if (!isa<VarDecl>(decl)) return false;
593   const VarDecl *var = cast<VarDecl>(decl);
594   return isAccessedBy(*var, e);
595 }
596 
597 static void drillIntoBlockVariable(CodeGenFunction &CGF,
598                                    LValue &lvalue,
599                                    const VarDecl *var) {
600   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
601 }
602 
603 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
604                                      LValue lvalue, bool capturedByInit) {
605   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
606   if (!lifetime) {
607     llvm::Value *value = EmitScalarExpr(init);
608     if (capturedByInit)
609       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
610     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
611     return;
612   }
613 
614   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
615     init = DIE->getExpr();
616 
617   // If we're emitting a value with lifetime, we have to do the
618   // initialization *before* we leave the cleanup scopes.
619   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
620     enterFullExpression(ewc);
621     init = ewc->getSubExpr();
622   }
623   CodeGenFunction::RunCleanupsScope Scope(*this);
624 
625   // We have to maintain the illusion that the variable is
626   // zero-initialized.  If the variable might be accessed in its
627   // initializer, zero-initialize before running the initializer, then
628   // actually perform the initialization with an assign.
629   bool accessedByInit = false;
630   if (lifetime != Qualifiers::OCL_ExplicitNone)
631     accessedByInit = (capturedByInit || isAccessedBy(D, init));
632   if (accessedByInit) {
633     LValue tempLV = lvalue;
634     // Drill down to the __block object if necessary.
635     if (capturedByInit) {
636       // We can use a simple GEP for this because it can't have been
637       // moved yet.
638       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
639                                    getByRefValueLLVMField(cast<VarDecl>(D))));
640     }
641 
642     llvm::PointerType *ty
643       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
644     ty = cast<llvm::PointerType>(ty->getElementType());
645 
646     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
647 
648     // If __weak, we want to use a barrier under certain conditions.
649     if (lifetime == Qualifiers::OCL_Weak)
650       EmitARCInitWeak(tempLV.getAddress(), zero);
651 
652     // Otherwise just do a simple store.
653     else
654       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
655   }
656 
657   // Emit the initializer.
658   llvm::Value *value = nullptr;
659 
660   switch (lifetime) {
661   case Qualifiers::OCL_None:
662     llvm_unreachable("present but none");
663 
664   case Qualifiers::OCL_ExplicitNone:
665     // nothing to do
666     value = EmitScalarExpr(init);
667     break;
668 
669   case Qualifiers::OCL_Strong: {
670     value = EmitARCRetainScalarExpr(init);
671     break;
672   }
673 
674   case Qualifiers::OCL_Weak: {
675     // No way to optimize a producing initializer into this.  It's not
676     // worth optimizing for, because the value will immediately
677     // disappear in the common case.
678     value = EmitScalarExpr(init);
679 
680     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
681     if (accessedByInit)
682       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
683     else
684       EmitARCInitWeak(lvalue.getAddress(), value);
685     return;
686   }
687 
688   case Qualifiers::OCL_Autoreleasing:
689     value = EmitARCRetainAutoreleaseScalarExpr(init);
690     break;
691   }
692 
693   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
694 
695   // If the variable might have been accessed by its initializer, we
696   // might have to initialize with a barrier.  We have to do this for
697   // both __weak and __strong, but __weak got filtered out above.
698   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
699     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
700     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
701     EmitARCRelease(oldValue, ARCImpreciseLifetime);
702     return;
703   }
704 
705   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
706 }
707 
708 /// EmitScalarInit - Initialize the given lvalue with the given object.
709 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
710   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
711   if (!lifetime)
712     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
713 
714   switch (lifetime) {
715   case Qualifiers::OCL_None:
716     llvm_unreachable("present but none");
717 
718   case Qualifiers::OCL_ExplicitNone:
719     // nothing to do
720     break;
721 
722   case Qualifiers::OCL_Strong:
723     init = EmitARCRetain(lvalue.getType(), init);
724     break;
725 
726   case Qualifiers::OCL_Weak:
727     // Initialize and then skip the primitive store.
728     EmitARCInitWeak(lvalue.getAddress(), init);
729     return;
730 
731   case Qualifiers::OCL_Autoreleasing:
732     init = EmitARCRetainAutorelease(lvalue.getType(), init);
733     break;
734   }
735 
736   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
737 }
738 
739 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
740 /// non-zero parts of the specified initializer with equal or fewer than
741 /// NumStores scalar stores.
742 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
743                                                 unsigned &NumStores) {
744   // Zero and Undef never requires any extra stores.
745   if (isa<llvm::ConstantAggregateZero>(Init) ||
746       isa<llvm::ConstantPointerNull>(Init) ||
747       isa<llvm::UndefValue>(Init))
748     return true;
749   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
750       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
751       isa<llvm::ConstantExpr>(Init))
752     return Init->isNullValue() || NumStores--;
753 
754   // See if we can emit each element.
755   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
756     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
757       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
758       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
759         return false;
760     }
761     return true;
762   }
763 
764   if (llvm::ConstantDataSequential *CDS =
765         dyn_cast<llvm::ConstantDataSequential>(Init)) {
766     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
767       llvm::Constant *Elt = CDS->getElementAsConstant(i);
768       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
769         return false;
770     }
771     return true;
772   }
773 
774   // Anything else is hard and scary.
775   return false;
776 }
777 
778 /// emitStoresForInitAfterMemset - For inits that
779 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
780 /// stores that would be required.
781 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
782                                          bool isVolatile, CGBuilderTy &Builder) {
783   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
784          "called emitStoresForInitAfterMemset for zero or undef value.");
785 
786   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
787       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
788       isa<llvm::ConstantExpr>(Init)) {
789     Builder.CreateStore(Init, Loc, isVolatile);
790     return;
791   }
792 
793   if (llvm::ConstantDataSequential *CDS =
794         dyn_cast<llvm::ConstantDataSequential>(Init)) {
795     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
796       llvm::Constant *Elt = CDS->getElementAsConstant(i);
797 
798       // If necessary, get a pointer to the element and emit it.
799       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
800         emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
801                                      isVolatile, Builder);
802     }
803     return;
804   }
805 
806   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
807          "Unknown value type!");
808 
809   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
810     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
811 
812     // If necessary, get a pointer to the element and emit it.
813     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
814       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
815                                    isVolatile, Builder);
816   }
817 }
818 
819 
820 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
821 /// plus some stores to initialize a local variable instead of using a memcpy
822 /// from a constant global.  It is beneficial to use memset if the global is all
823 /// zeros, or mostly zeros and large.
824 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
825                                                   uint64_t GlobalSize) {
826   // If a global is all zeros, always use a memset.
827   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
828 
829   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
830   // do it if it will require 6 or fewer scalar stores.
831   // TODO: Should budget depends on the size?  Avoiding a large global warrants
832   // plopping in more stores.
833   unsigned StoreBudget = 6;
834   uint64_t SizeLimit = 32;
835 
836   return GlobalSize > SizeLimit &&
837          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
838 }
839 
840 /// Should we use the LLVM lifetime intrinsics for the given local variable?
841 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
842                                      unsigned Size) {
843   // For now, only in optimized builds.
844   if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
845     return false;
846 
847   // Limit the size of marked objects to 32 bytes. We don't want to increase
848   // compile time by marking tiny objects.
849   unsigned SizeThreshold = 32;
850 
851   return Size > SizeThreshold;
852 }
853 
854 
855 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
856 /// variable declaration with auto, register, or no storage class specifier.
857 /// These turn into simple stack objects, or GlobalValues depending on target.
858 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
859   AutoVarEmission emission = EmitAutoVarAlloca(D);
860   EmitAutoVarInit(emission);
861   EmitAutoVarCleanups(emission);
862 }
863 
864 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
865 /// local variable.  Does not emit initialization or destruction.
866 CodeGenFunction::AutoVarEmission
867 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
868   QualType Ty = D.getType();
869 
870   AutoVarEmission emission(D);
871 
872   bool isByRef = D.hasAttr<BlocksAttr>();
873   emission.IsByRef = isByRef;
874 
875   CharUnits alignment = getContext().getDeclAlign(&D);
876   emission.Alignment = alignment;
877 
878   // If the type is variably-modified, emit all the VLA sizes for it.
879   if (Ty->isVariablyModifiedType())
880     EmitVariablyModifiedType(Ty);
881 
882   llvm::Value *DeclPtr;
883   if (Ty->isConstantSizeType()) {
884     bool NRVO = getLangOpts().ElideConstructors &&
885       D.isNRVOVariable();
886 
887     // If this value is an array or struct with a statically determinable
888     // constant initializer, there are optimizations we can do.
889     //
890     // TODO: We should constant-evaluate the initializer of any variable,
891     // as long as it is initialized by a constant expression. Currently,
892     // isConstantInitializer produces wrong answers for structs with
893     // reference or bitfield members, and a few other cases, and checking
894     // for POD-ness protects us from some of these.
895     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
896         (D.isConstexpr() ||
897          ((Ty.isPODType(getContext()) ||
898            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
899           D.getInit()->isConstantInitializer(getContext(), false)))) {
900 
901       // If the variable's a const type, and it's neither an NRVO
902       // candidate nor a __block variable and has no mutable members,
903       // emit it as a global instead.
904       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
905           CGM.isTypeConstant(Ty, true)) {
906         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
907 
908         emission.Address = nullptr; // signal this condition to later callbacks
909         assert(emission.wasEmittedAsGlobal());
910         return emission;
911       }
912 
913       // Otherwise, tell the initialization code that we're in this case.
914       emission.IsConstantAggregate = true;
915     }
916 
917     // A normal fixed sized variable becomes an alloca in the entry block,
918     // unless it's an NRVO variable.
919     llvm::Type *LTy = ConvertTypeForMem(Ty);
920 
921     if (NRVO) {
922       // The named return value optimization: allocate this variable in the
923       // return slot, so that we can elide the copy when returning this
924       // variable (C++0x [class.copy]p34).
925       DeclPtr = ReturnValue;
926 
927       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
928         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
929           // Create a flag that is used to indicate when the NRVO was applied
930           // to this variable. Set it to zero to indicate that NRVO was not
931           // applied.
932           llvm::Value *Zero = Builder.getFalse();
933           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
934           EnsureInsertPoint();
935           Builder.CreateStore(Zero, NRVOFlag);
936 
937           // Record the NRVO flag for this variable.
938           NRVOFlags[&D] = NRVOFlag;
939           emission.NRVOFlag = NRVOFlag;
940         }
941       }
942     } else {
943       if (isByRef)
944         LTy = BuildByRefType(&D);
945 
946       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
947       Alloc->setName(D.getName());
948 
949       CharUnits allocaAlignment = alignment;
950       if (isByRef)
951         allocaAlignment = std::max(allocaAlignment,
952             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
953       Alloc->setAlignment(allocaAlignment.getQuantity());
954       DeclPtr = Alloc;
955 
956       // Emit a lifetime intrinsic if meaningful.  There's no point
957       // in doing this if we don't have a valid insertion point (?).
958       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
959       if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
960         llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
961 
962         emission.SizeForLifetimeMarkers = sizeV;
963         llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
964         Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
965           ->setDoesNotThrow();
966       } else {
967         assert(!emission.useLifetimeMarkers());
968       }
969     }
970   } else {
971     EnsureInsertPoint();
972 
973     if (!DidCallStackSave) {
974       // Save the stack.
975       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
976 
977       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
978       llvm::Value *V = Builder.CreateCall(F);
979 
980       Builder.CreateStore(V, Stack);
981 
982       DidCallStackSave = true;
983 
984       // Push a cleanup block and restore the stack there.
985       // FIXME: in general circumstances, this should be an EH cleanup.
986       pushStackRestore(NormalCleanup, Stack);
987     }
988 
989     llvm::Value *elementCount;
990     QualType elementType;
991     std::tie(elementCount, elementType) = getVLASize(Ty);
992 
993     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
994 
995     // Allocate memory for the array.
996     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
997     vla->setAlignment(alignment.getQuantity());
998 
999     DeclPtr = vla;
1000   }
1001 
1002   llvm::Value *&DMEntry = LocalDeclMap[&D];
1003   assert(!DMEntry && "Decl already exists in localdeclmap!");
1004   DMEntry = DeclPtr;
1005   emission.Address = DeclPtr;
1006 
1007   // Emit debug info for local var declaration.
1008   if (HaveInsertPoint())
1009     if (CGDebugInfo *DI = getDebugInfo()) {
1010       if (CGM.getCodeGenOpts().getDebugInfo()
1011             >= CodeGenOptions::LimitedDebugInfo) {
1012         DI->setLocation(D.getLocation());
1013         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
1014       }
1015     }
1016 
1017   if (D.hasAttr<AnnotateAttr>())
1018       EmitVarAnnotations(&D, emission.Address);
1019 
1020   return emission;
1021 }
1022 
1023 /// Determines whether the given __block variable is potentially
1024 /// captured by the given expression.
1025 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1026   // Skip the most common kinds of expressions that make
1027   // hierarchy-walking expensive.
1028   e = e->IgnoreParenCasts();
1029 
1030   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1031     const BlockDecl *block = be->getBlockDecl();
1032     for (const auto &I : block->captures()) {
1033       if (I.getVariable() == &var)
1034         return true;
1035     }
1036 
1037     // No need to walk into the subexpressions.
1038     return false;
1039   }
1040 
1041   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1042     const CompoundStmt *CS = SE->getSubStmt();
1043     for (const auto *BI : CS->body())
1044       if (const auto *E = dyn_cast<Expr>(BI)) {
1045         if (isCapturedBy(var, E))
1046             return true;
1047       }
1048       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1049           // special case declarations
1050           for (const auto *I : DS->decls()) {
1051               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1052                 const Expr *Init = VD->getInit();
1053                 if (Init && isCapturedBy(var, Init))
1054                   return true;
1055               }
1056           }
1057       }
1058       else
1059         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1060         // Later, provide code to poke into statements for capture analysis.
1061         return true;
1062     return false;
1063   }
1064 
1065   for (Stmt::const_child_range children = e->children(); children; ++children)
1066     if (isCapturedBy(var, cast<Expr>(*children)))
1067       return true;
1068 
1069   return false;
1070 }
1071 
1072 /// \brief Determine whether the given initializer is trivial in the sense
1073 /// that it requires no code to be generated.
1074 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1075   if (!Init)
1076     return true;
1077 
1078   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1079     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1080       if (Constructor->isTrivial() &&
1081           Constructor->isDefaultConstructor() &&
1082           !Construct->requiresZeroInitialization())
1083         return true;
1084 
1085   return false;
1086 }
1087 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1088   assert(emission.Variable && "emission was not valid!");
1089 
1090   // If this was emitted as a global constant, we're done.
1091   if (emission.wasEmittedAsGlobal()) return;
1092 
1093   const VarDecl &D = *emission.Variable;
1094   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1095   QualType type = D.getType();
1096 
1097   // If this local has an initializer, emit it now.
1098   const Expr *Init = D.getInit();
1099 
1100   // If we are at an unreachable point, we don't need to emit the initializer
1101   // unless it contains a label.
1102   if (!HaveInsertPoint()) {
1103     if (!Init || !ContainsLabel(Init)) return;
1104     EnsureInsertPoint();
1105   }
1106 
1107   // Initialize the structure of a __block variable.
1108   if (emission.IsByRef)
1109     emitByrefStructureInit(emission);
1110 
1111   if (isTrivialInitializer(Init))
1112     return;
1113 
1114   CharUnits alignment = emission.Alignment;
1115 
1116   // Check whether this is a byref variable that's potentially
1117   // captured and moved by its own initializer.  If so, we'll need to
1118   // emit the initializer first, then copy into the variable.
1119   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1120 
1121   llvm::Value *Loc =
1122     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1123 
1124   llvm::Constant *constant = nullptr;
1125   if (emission.IsConstantAggregate || D.isConstexpr()) {
1126     assert(!capturedByInit && "constant init contains a capturing block?");
1127     constant = CGM.EmitConstantInit(D, this);
1128   }
1129 
1130   if (!constant) {
1131     LValue lv = MakeAddrLValue(Loc, type, alignment);
1132     lv.setNonGC(true);
1133     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1134   }
1135 
1136   if (!emission.IsConstantAggregate) {
1137     // For simple scalar/complex initialization, store the value directly.
1138     LValue lv = MakeAddrLValue(Loc, type, alignment);
1139     lv.setNonGC(true);
1140     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1141   }
1142 
1143   // If this is a simple aggregate initialization, we can optimize it
1144   // in various ways.
1145   bool isVolatile = type.isVolatileQualified();
1146 
1147   llvm::Value *SizeVal =
1148     llvm::ConstantInt::get(IntPtrTy,
1149                            getContext().getTypeSizeInChars(type).getQuantity());
1150 
1151   llvm::Type *BP = Int8PtrTy;
1152   if (Loc->getType() != BP)
1153     Loc = Builder.CreateBitCast(Loc, BP);
1154 
1155   // If the initializer is all or mostly zeros, codegen with memset then do
1156   // a few stores afterward.
1157   if (shouldUseMemSetPlusStoresToInitialize(constant,
1158                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1159     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1160                          alignment.getQuantity(), isVolatile);
1161     // Zero and undef don't require a stores.
1162     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1163       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1164       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1165     }
1166   } else {
1167     // Otherwise, create a temporary global with the initializer then
1168     // memcpy from the global to the alloca.
1169     std::string Name = getStaticDeclName(CGM, D);
1170     llvm::GlobalVariable *GV =
1171       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1172                                llvm::GlobalValue::PrivateLinkage,
1173                                constant, Name);
1174     GV->setAlignment(alignment.getQuantity());
1175     GV->setUnnamedAddr(true);
1176 
1177     llvm::Value *SrcPtr = GV;
1178     if (SrcPtr->getType() != BP)
1179       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1180 
1181     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1182                          isVolatile);
1183   }
1184 }
1185 
1186 /// Emit an expression as an initializer for a variable at the given
1187 /// location.  The expression is not necessarily the normal
1188 /// initializer for the variable, and the address is not necessarily
1189 /// its normal location.
1190 ///
1191 /// \param init the initializing expression
1192 /// \param var the variable to act as if we're initializing
1193 /// \param loc the address to initialize; its type is a pointer
1194 ///   to the LLVM mapping of the variable's type
1195 /// \param alignment the alignment of the address
1196 /// \param capturedByInit true if the variable is a __block variable
1197 ///   whose address is potentially changed by the initializer
1198 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1199                                      LValue lvalue, bool capturedByInit) {
1200   QualType type = D->getType();
1201 
1202   if (type->isReferenceType()) {
1203     RValue rvalue = EmitReferenceBindingToExpr(init);
1204     if (capturedByInit)
1205       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1206     EmitStoreThroughLValue(rvalue, lvalue, true);
1207     return;
1208   }
1209   switch (getEvaluationKind(type)) {
1210   case TEK_Scalar:
1211     EmitScalarInit(init, D, lvalue, capturedByInit);
1212     return;
1213   case TEK_Complex: {
1214     ComplexPairTy complex = EmitComplexExpr(init);
1215     if (capturedByInit)
1216       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1217     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1218     return;
1219   }
1220   case TEK_Aggregate:
1221     if (type->isAtomicType()) {
1222       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1223     } else {
1224       // TODO: how can we delay here if D is captured by its initializer?
1225       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1226                                               AggValueSlot::IsDestructed,
1227                                          AggValueSlot::DoesNotNeedGCBarriers,
1228                                               AggValueSlot::IsNotAliased));
1229     }
1230     return;
1231   }
1232   llvm_unreachable("bad evaluation kind");
1233 }
1234 
1235 /// Enter a destroy cleanup for the given local variable.
1236 void CodeGenFunction::emitAutoVarTypeCleanup(
1237                             const CodeGenFunction::AutoVarEmission &emission,
1238                             QualType::DestructionKind dtorKind) {
1239   assert(dtorKind != QualType::DK_none);
1240 
1241   // Note that for __block variables, we want to destroy the
1242   // original stack object, not the possibly forwarded object.
1243   llvm::Value *addr = emission.getObjectAddress(*this);
1244 
1245   const VarDecl *var = emission.Variable;
1246   QualType type = var->getType();
1247 
1248   CleanupKind cleanupKind = NormalAndEHCleanup;
1249   CodeGenFunction::Destroyer *destroyer = nullptr;
1250 
1251   switch (dtorKind) {
1252   case QualType::DK_none:
1253     llvm_unreachable("no cleanup for trivially-destructible variable");
1254 
1255   case QualType::DK_cxx_destructor:
1256     // If there's an NRVO flag on the emission, we need a different
1257     // cleanup.
1258     if (emission.NRVOFlag) {
1259       assert(!type->isArrayType());
1260       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1261       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1262                                                emission.NRVOFlag);
1263       return;
1264     }
1265     break;
1266 
1267   case QualType::DK_objc_strong_lifetime:
1268     // Suppress cleanups for pseudo-strong variables.
1269     if (var->isARCPseudoStrong()) return;
1270 
1271     // Otherwise, consider whether to use an EH cleanup or not.
1272     cleanupKind = getARCCleanupKind();
1273 
1274     // Use the imprecise destroyer by default.
1275     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1276       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1277     break;
1278 
1279   case QualType::DK_objc_weak_lifetime:
1280     break;
1281   }
1282 
1283   // If we haven't chosen a more specific destroyer, use the default.
1284   if (!destroyer) destroyer = getDestroyer(dtorKind);
1285 
1286   // Use an EH cleanup in array destructors iff the destructor itself
1287   // is being pushed as an EH cleanup.
1288   bool useEHCleanup = (cleanupKind & EHCleanup);
1289   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1290                                      useEHCleanup);
1291 }
1292 
1293 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1294   assert(emission.Variable && "emission was not valid!");
1295 
1296   // If this was emitted as a global constant, we're done.
1297   if (emission.wasEmittedAsGlobal()) return;
1298 
1299   // If we don't have an insertion point, we're done.  Sema prevents
1300   // us from jumping into any of these scopes anyway.
1301   if (!HaveInsertPoint()) return;
1302 
1303   const VarDecl &D = *emission.Variable;
1304 
1305   // Make sure we call @llvm.lifetime.end.  This needs to happen
1306   // *last*, so the cleanup needs to be pushed *first*.
1307   if (emission.useLifetimeMarkers()) {
1308     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1309                                          emission.getAllocatedAddress(),
1310                                          emission.getSizeForLifetimeMarkers());
1311   }
1312 
1313   // Check the type for a cleanup.
1314   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1315     emitAutoVarTypeCleanup(emission, dtorKind);
1316 
1317   // In GC mode, honor objc_precise_lifetime.
1318   if (getLangOpts().getGC() != LangOptions::NonGC &&
1319       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1320     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1321   }
1322 
1323   // Handle the cleanup attribute.
1324   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1325     const FunctionDecl *FD = CA->getFunctionDecl();
1326 
1327     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1328     assert(F && "Could not find function!");
1329 
1330     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1331     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1332   }
1333 
1334   // If this is a block variable, call _Block_object_destroy
1335   // (on the unforwarded address).
1336   if (emission.IsByRef)
1337     enterByrefCleanup(emission);
1338 }
1339 
1340 CodeGenFunction::Destroyer *
1341 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1342   switch (kind) {
1343   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1344   case QualType::DK_cxx_destructor:
1345     return destroyCXXObject;
1346   case QualType::DK_objc_strong_lifetime:
1347     return destroyARCStrongPrecise;
1348   case QualType::DK_objc_weak_lifetime:
1349     return destroyARCWeak;
1350   }
1351   llvm_unreachable("Unknown DestructionKind");
1352 }
1353 
1354 /// pushEHDestroy - Push the standard destructor for the given type as
1355 /// an EH-only cleanup.
1356 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1357                                   llvm::Value *addr, QualType type) {
1358   assert(dtorKind && "cannot push destructor for trivial type");
1359   assert(needsEHCleanup(dtorKind));
1360 
1361   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1362 }
1363 
1364 /// pushDestroy - Push the standard destructor for the given type as
1365 /// at least a normal cleanup.
1366 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1367                                   llvm::Value *addr, QualType type) {
1368   assert(dtorKind && "cannot push destructor for trivial type");
1369 
1370   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1371   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1372               cleanupKind & EHCleanup);
1373 }
1374 
1375 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1376                                   QualType type, Destroyer *destroyer,
1377                                   bool useEHCleanupForArray) {
1378   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1379                                      destroyer, useEHCleanupForArray);
1380 }
1381 
1382 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1383   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1384 }
1385 
1386 void CodeGenFunction::pushLifetimeExtendedDestroy(
1387     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1388     Destroyer *destroyer, bool useEHCleanupForArray) {
1389   assert(!isInConditionalBranch() &&
1390          "performing lifetime extension from within conditional");
1391 
1392   // Push an EH-only cleanup for the object now.
1393   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1394   // around in case a temporary's destructor throws an exception.
1395   if (cleanupKind & EHCleanup)
1396     EHStack.pushCleanup<DestroyObject>(
1397         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1398         destroyer, useEHCleanupForArray);
1399 
1400   // Remember that we need to push a full cleanup for the object at the
1401   // end of the full-expression.
1402   pushCleanupAfterFullExpr<DestroyObject>(
1403       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1404 }
1405 
1406 /// emitDestroy - Immediately perform the destruction of the given
1407 /// object.
1408 ///
1409 /// \param addr - the address of the object; a type*
1410 /// \param type - the type of the object; if an array type, all
1411 ///   objects are destroyed in reverse order
1412 /// \param destroyer - the function to call to destroy individual
1413 ///   elements
1414 /// \param useEHCleanupForArray - whether an EH cleanup should be
1415 ///   used when destroying array elements, in case one of the
1416 ///   destructions throws an exception
1417 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1418                                   Destroyer *destroyer,
1419                                   bool useEHCleanupForArray) {
1420   const ArrayType *arrayType = getContext().getAsArrayType(type);
1421   if (!arrayType)
1422     return destroyer(*this, addr, type);
1423 
1424   llvm::Value *begin = addr;
1425   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1426 
1427   // Normally we have to check whether the array is zero-length.
1428   bool checkZeroLength = true;
1429 
1430   // But if the array length is constant, we can suppress that.
1431   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1432     // ...and if it's constant zero, we can just skip the entire thing.
1433     if (constLength->isZero()) return;
1434     checkZeroLength = false;
1435   }
1436 
1437   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1438   emitArrayDestroy(begin, end, type, destroyer,
1439                    checkZeroLength, useEHCleanupForArray);
1440 }
1441 
1442 /// emitArrayDestroy - Destroys all the elements of the given array,
1443 /// beginning from last to first.  The array cannot be zero-length.
1444 ///
1445 /// \param begin - a type* denoting the first element of the array
1446 /// \param end - a type* denoting one past the end of the array
1447 /// \param type - the element type of the array
1448 /// \param destroyer - the function to call to destroy elements
1449 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1450 ///   the remaining elements in case the destruction of a single
1451 ///   element throws
1452 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1453                                        llvm::Value *end,
1454                                        QualType type,
1455                                        Destroyer *destroyer,
1456                                        bool checkZeroLength,
1457                                        bool useEHCleanup) {
1458   assert(!type->isArrayType());
1459 
1460   // The basic structure here is a do-while loop, because we don't
1461   // need to check for the zero-element case.
1462   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1463   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1464 
1465   if (checkZeroLength) {
1466     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1467                                                 "arraydestroy.isempty");
1468     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1469   }
1470 
1471   // Enter the loop body, making that address the current address.
1472   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1473   EmitBlock(bodyBB);
1474   llvm::PHINode *elementPast =
1475     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1476   elementPast->addIncoming(end, entryBB);
1477 
1478   // Shift the address back by one element.
1479   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1480   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1481                                                    "arraydestroy.element");
1482 
1483   if (useEHCleanup)
1484     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1485 
1486   // Perform the actual destruction there.
1487   destroyer(*this, element, type);
1488 
1489   if (useEHCleanup)
1490     PopCleanupBlock();
1491 
1492   // Check whether we've reached the end.
1493   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1494   Builder.CreateCondBr(done, doneBB, bodyBB);
1495   elementPast->addIncoming(element, Builder.GetInsertBlock());
1496 
1497   // Done.
1498   EmitBlock(doneBB);
1499 }
1500 
1501 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1502 /// emitArrayDestroy, the element type here may still be an array type.
1503 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1504                                     llvm::Value *begin, llvm::Value *end,
1505                                     QualType type,
1506                                     CodeGenFunction::Destroyer *destroyer) {
1507   // If the element type is itself an array, drill down.
1508   unsigned arrayDepth = 0;
1509   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1510     // VLAs don't require a GEP index to walk into.
1511     if (!isa<VariableArrayType>(arrayType))
1512       arrayDepth++;
1513     type = arrayType->getElementType();
1514   }
1515 
1516   if (arrayDepth) {
1517     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1518 
1519     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1520     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1521     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1522   }
1523 
1524   // Destroy the array.  We don't ever need an EH cleanup because we
1525   // assume that we're in an EH cleanup ourselves, so a throwing
1526   // destructor causes an immediate terminate.
1527   CGF.emitArrayDestroy(begin, end, type, destroyer,
1528                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1529 }
1530 
1531 namespace {
1532   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1533   /// array destroy where the end pointer is regularly determined and
1534   /// does not need to be loaded from a local.
1535   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1536     llvm::Value *ArrayBegin;
1537     llvm::Value *ArrayEnd;
1538     QualType ElementType;
1539     CodeGenFunction::Destroyer *Destroyer;
1540   public:
1541     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1542                                QualType elementType,
1543                                CodeGenFunction::Destroyer *destroyer)
1544       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1545         ElementType(elementType), Destroyer(destroyer) {}
1546 
1547     void Emit(CodeGenFunction &CGF, Flags flags) override {
1548       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1549                               ElementType, Destroyer);
1550     }
1551   };
1552 
1553   /// IrregularPartialArrayDestroy - a cleanup which performs a
1554   /// partial array destroy where the end pointer is irregularly
1555   /// determined and must be loaded from a local.
1556   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1557     llvm::Value *ArrayBegin;
1558     llvm::Value *ArrayEndPointer;
1559     QualType ElementType;
1560     CodeGenFunction::Destroyer *Destroyer;
1561   public:
1562     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1563                                  llvm::Value *arrayEndPointer,
1564                                  QualType elementType,
1565                                  CodeGenFunction::Destroyer *destroyer)
1566       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1567         ElementType(elementType), Destroyer(destroyer) {}
1568 
1569     void Emit(CodeGenFunction &CGF, Flags flags) override {
1570       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1571       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1572                               ElementType, Destroyer);
1573     }
1574   };
1575 }
1576 
1577 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1578 /// already-constructed elements of the given array.  The cleanup
1579 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1580 ///
1581 /// \param elementType - the immediate element type of the array;
1582 ///   possibly still an array type
1583 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1584                                                  llvm::Value *arrayEndPointer,
1585                                                        QualType elementType,
1586                                                        Destroyer *destroyer) {
1587   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1588                                                     arrayBegin, arrayEndPointer,
1589                                                     elementType, destroyer);
1590 }
1591 
1592 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1593 /// already-constructed elements of the given array.  The cleanup
1594 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1595 ///
1596 /// \param elementType - the immediate element type of the array;
1597 ///   possibly still an array type
1598 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1599                                                      llvm::Value *arrayEnd,
1600                                                      QualType elementType,
1601                                                      Destroyer *destroyer) {
1602   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1603                                                   arrayBegin, arrayEnd,
1604                                                   elementType, destroyer);
1605 }
1606 
1607 /// Lazily declare the @llvm.lifetime.start intrinsic.
1608 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1609   if (LifetimeStartFn) return LifetimeStartFn;
1610   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1611                                             llvm::Intrinsic::lifetime_start);
1612   return LifetimeStartFn;
1613 }
1614 
1615 /// Lazily declare the @llvm.lifetime.end intrinsic.
1616 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1617   if (LifetimeEndFn) return LifetimeEndFn;
1618   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1619                                               llvm::Intrinsic::lifetime_end);
1620   return LifetimeEndFn;
1621 }
1622 
1623 namespace {
1624   /// A cleanup to perform a release of an object at the end of a
1625   /// function.  This is used to balance out the incoming +1 of a
1626   /// ns_consumed argument when we can't reasonably do that just by
1627   /// not doing the initial retain for a __block argument.
1628   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1629     ConsumeARCParameter(llvm::Value *param,
1630                         ARCPreciseLifetime_t precise)
1631       : Param(param), Precise(precise) {}
1632 
1633     llvm::Value *Param;
1634     ARCPreciseLifetime_t Precise;
1635 
1636     void Emit(CodeGenFunction &CGF, Flags flags) override {
1637       CGF.EmitARCRelease(Param, Precise);
1638     }
1639   };
1640 }
1641 
1642 /// Emit an alloca (or GlobalValue depending on target)
1643 /// for the specified parameter and set up LocalDeclMap.
1644 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1645                                    bool ArgIsPointer, unsigned ArgNo) {
1646   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1647   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1648          "Invalid argument to EmitParmDecl");
1649 
1650   Arg->setName(D.getName());
1651 
1652   QualType Ty = D.getType();
1653 
1654   // Use better IR generation for certain implicit parameters.
1655   if (isa<ImplicitParamDecl>(D)) {
1656     // The only implicit argument a block has is its literal.
1657     if (BlockInfo) {
1658       LocalDeclMap[&D] = Arg;
1659       llvm::Value *LocalAddr = nullptr;
1660       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1661         // Allocate a stack slot to let the debug info survive the RA.
1662         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1663                                                    D.getName() + ".addr");
1664         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1665         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1666         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1667         LocalAddr = Builder.CreateLoad(Alloc);
1668       }
1669 
1670       if (CGDebugInfo *DI = getDebugInfo()) {
1671         if (CGM.getCodeGenOpts().getDebugInfo()
1672               >= CodeGenOptions::LimitedDebugInfo) {
1673           DI->setLocation(D.getLocation());
1674           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo,
1675                                                    LocalAddr, Builder);
1676         }
1677       }
1678 
1679       return;
1680     }
1681   }
1682 
1683   llvm::Value *DeclPtr;
1684   bool DoStore = false;
1685   bool IsScalar = hasScalarEvaluationKind(Ty);
1686   CharUnits Align = getContext().getDeclAlign(&D);
1687   // If we already have a pointer to the argument, reuse the input pointer.
1688   if (ArgIsPointer) {
1689     // If we have a prettier pointer type at this point, bitcast to that.
1690     unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1691     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1692     DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1693                                                                    D.getName());
1694     // Push a destructor cleanup for this parameter if the ABI requires it.
1695     // Don't push a cleanup in a thunk for a method that will also emit a
1696     // cleanup.
1697     if (!IsScalar && !CurFuncIsThunk &&
1698         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1699       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1700       if (RD && RD->hasNonTrivialDestructor())
1701         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1702     }
1703   } else {
1704     // Otherwise, create a temporary to hold the value.
1705     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1706                                                D.getName() + ".addr");
1707     Alloc->setAlignment(Align.getQuantity());
1708     DeclPtr = Alloc;
1709     DoStore = true;
1710   }
1711 
1712   LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1713   if (IsScalar) {
1714     Qualifiers qs = Ty.getQualifiers();
1715     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1716       // We honor __attribute__((ns_consumed)) for types with lifetime.
1717       // For __strong, it's handled by just skipping the initial retain;
1718       // otherwise we have to balance out the initial +1 with an extra
1719       // cleanup to do the release at the end of the function.
1720       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1721 
1722       // 'self' is always formally __strong, but if this is not an
1723       // init method then we don't want to retain it.
1724       if (D.isARCPseudoStrong()) {
1725         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1726         assert(&D == method->getSelfDecl());
1727         assert(lt == Qualifiers::OCL_Strong);
1728         assert(qs.hasConst());
1729         assert(method->getMethodFamily() != OMF_init);
1730         (void) method;
1731         lt = Qualifiers::OCL_ExplicitNone;
1732       }
1733 
1734       if (lt == Qualifiers::OCL_Strong) {
1735         if (!isConsumed) {
1736           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1737             // use objc_storeStrong(&dest, value) for retaining the
1738             // object. But first, store a null into 'dest' because
1739             // objc_storeStrong attempts to release its old value.
1740             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1741             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1742             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1743             DoStore = false;
1744           }
1745           else
1746           // Don't use objc_retainBlock for block pointers, because we
1747           // don't want to Block_copy something just because we got it
1748           // as a parameter.
1749             Arg = EmitARCRetainNonBlock(Arg);
1750         }
1751       } else {
1752         // Push the cleanup for a consumed parameter.
1753         if (isConsumed) {
1754           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1755                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1756           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1757                                                    precise);
1758         }
1759 
1760         if (lt == Qualifiers::OCL_Weak) {
1761           EmitARCInitWeak(DeclPtr, Arg);
1762           DoStore = false; // The weak init is a store, no need to do two.
1763         }
1764       }
1765 
1766       // Enter the cleanup scope.
1767       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1768     }
1769   }
1770 
1771   // Store the initial value into the alloca.
1772   if (DoStore)
1773     EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1774 
1775   llvm::Value *&DMEntry = LocalDeclMap[&D];
1776   assert(!DMEntry && "Decl already exists in localdeclmap!");
1777   DMEntry = DeclPtr;
1778 
1779   // Emit debug info for param declaration.
1780   if (CGDebugInfo *DI = getDebugInfo()) {
1781     if (CGM.getCodeGenOpts().getDebugInfo()
1782           >= CodeGenOptions::LimitedDebugInfo) {
1783       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1784     }
1785   }
1786 
1787   if (D.hasAttr<AnnotateAttr>())
1788       EmitVarAnnotations(&D, DeclPtr);
1789 }
1790