1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Type.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 34 void CodeGenFunction::EmitDecl(const Decl &D) { 35 switch (D.getKind()) { 36 case Decl::TranslationUnit: 37 case Decl::Namespace: 38 case Decl::UnresolvedUsingTypename: 39 case Decl::ClassTemplateSpecialization: 40 case Decl::ClassTemplatePartialSpecialization: 41 case Decl::VarTemplateSpecialization: 42 case Decl::VarTemplatePartialSpecialization: 43 case Decl::TemplateTypeParm: 44 case Decl::UnresolvedUsingValue: 45 case Decl::NonTypeTemplateParm: 46 case Decl::CXXMethod: 47 case Decl::CXXConstructor: 48 case Decl::CXXDestructor: 49 case Decl::CXXConversion: 50 case Decl::Field: 51 case Decl::MSProperty: 52 case Decl::IndirectField: 53 case Decl::ObjCIvar: 54 case Decl::ObjCAtDefsField: 55 case Decl::ParmVar: 56 case Decl::ImplicitParam: 57 case Decl::ClassTemplate: 58 case Decl::VarTemplate: 59 case Decl::FunctionTemplate: 60 case Decl::TypeAliasTemplate: 61 case Decl::TemplateTemplateParm: 62 case Decl::ObjCMethod: 63 case Decl::ObjCCategory: 64 case Decl::ObjCProtocol: 65 case Decl::ObjCInterface: 66 case Decl::ObjCCategoryImpl: 67 case Decl::ObjCImplementation: 68 case Decl::ObjCProperty: 69 case Decl::ObjCCompatibleAlias: 70 case Decl::AccessSpec: 71 case Decl::LinkageSpec: 72 case Decl::ObjCPropertyImpl: 73 case Decl::FileScopeAsm: 74 case Decl::Friend: 75 case Decl::FriendTemplate: 76 case Decl::Block: 77 case Decl::Captured: 78 case Decl::ClassScopeFunctionSpecialization: 79 case Decl::UsingShadow: 80 llvm_unreachable("Declaration should not be in declstmts!"); 81 case Decl::Function: // void X(); 82 case Decl::Record: // struct/union/class X; 83 case Decl::Enum: // enum X; 84 case Decl::EnumConstant: // enum ? { X = ? } 85 case Decl::CXXRecord: // struct/union/class X; [C++] 86 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 87 case Decl::Label: // __label__ x; 88 case Decl::Import: 89 case Decl::OMPThreadPrivate: 90 case Decl::Empty: 91 // None of these decls require codegen support. 92 return; 93 94 case Decl::NamespaceAlias: 95 if (CGDebugInfo *DI = getDebugInfo()) 96 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 97 return; 98 case Decl::Using: // using X; [C++] 99 if (CGDebugInfo *DI = getDebugInfo()) 100 DI->EmitUsingDecl(cast<UsingDecl>(D)); 101 return; 102 case Decl::UsingDirective: // using namespace X; [C++] 103 if (CGDebugInfo *DI = getDebugInfo()) 104 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 105 return; 106 case Decl::Var: { 107 const VarDecl &VD = cast<VarDecl>(D); 108 assert(VD.isLocalVarDecl() && 109 "Should not see file-scope variables inside a function!"); 110 return EmitVarDecl(VD); 111 } 112 113 case Decl::Typedef: // typedef int X; 114 case Decl::TypeAlias: { // using X = int; [C++0x] 115 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 116 QualType Ty = TD.getUnderlyingType(); 117 118 if (Ty->isVariablyModifiedType()) 119 EmitVariablyModifiedType(Ty); 120 } 121 } 122 } 123 124 /// EmitVarDecl - This method handles emission of any variable declaration 125 /// inside a function, including static vars etc. 126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 127 if (D.isStaticLocal()) { 128 llvm::GlobalValue::LinkageTypes Linkage = 129 llvm::GlobalValue::InternalLinkage; 130 131 // If the variable is externally visible, it must have weak linkage so it 132 // can be uniqued. 133 if (D.isExternallyVisible()) { 134 Linkage = llvm::GlobalValue::LinkOnceODRLinkage; 135 136 // FIXME: We need to force the emission/use of a guard variable for 137 // some variables even if we can constant-evaluate them because 138 // we can't guarantee every translation unit will constant-evaluate them. 139 } 140 141 return EmitStaticVarDecl(D, Linkage); 142 } 143 144 if (D.hasExternalStorage()) 145 // Don't emit it now, allow it to be emitted lazily on its first use. 146 return; 147 148 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 149 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 150 151 assert(D.hasLocalStorage()); 152 return EmitAutoVarDecl(D); 153 } 154 155 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 156 const char *Separator) { 157 CodeGenModule &CGM = CGF.CGM; 158 if (CGF.getLangOpts().CPlusPlus) { 159 StringRef Name = CGM.getMangledName(&D); 160 return Name.str(); 161 } 162 163 std::string ContextName; 164 if (!CGF.CurFuncDecl) { 165 // Better be in a block declared in global scope. 166 const NamedDecl *ND = cast<NamedDecl>(&D); 167 const DeclContext *DC = ND->getDeclContext(); 168 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 169 MangleBuffer Name; 170 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 171 ContextName = Name.getString(); 172 } 173 else 174 llvm_unreachable("Unknown context for block static var decl"); 175 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 176 StringRef Name = CGM.getMangledName(FD); 177 ContextName = Name.str(); 178 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 179 ContextName = CGF.CurFn->getName(); 180 else 181 llvm_unreachable("Unknown context for static var decl"); 182 183 return ContextName + Separator + D.getNameAsString(); 184 } 185 186 llvm::GlobalVariable * 187 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 188 const char *Separator, 189 llvm::GlobalValue::LinkageTypes Linkage) { 190 QualType Ty = D.getType(); 191 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 192 193 // Use the label if the variable is renamed with the asm-label extension. 194 std::string Name; 195 if (D.hasAttr<AsmLabelAttr>()) 196 Name = CGM.getMangledName(&D); 197 else 198 Name = GetStaticDeclName(*this, D, Separator); 199 200 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 201 unsigned AddrSpace = 202 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); 203 llvm::GlobalVariable *GV = 204 new llvm::GlobalVariable(CGM.getModule(), LTy, 205 Ty.isConstant(getContext()), Linkage, 206 CGM.EmitNullConstant(D.getType()), Name, 0, 207 llvm::GlobalVariable::NotThreadLocal, 208 AddrSpace); 209 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 210 CGM.setGlobalVisibility(GV, &D); 211 212 if (D.getTLSKind()) 213 CGM.setTLSMode(GV, D); 214 215 return GV; 216 } 217 218 /// hasNontrivialDestruction - Determine whether a type's destruction is 219 /// non-trivial. If so, and the variable uses static initialization, we must 220 /// register its destructor to run on exit. 221 static bool hasNontrivialDestruction(QualType T) { 222 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 223 return RD && !RD->hasTrivialDestructor(); 224 } 225 226 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 227 /// global variable that has already been created for it. If the initializer 228 /// has a different type than GV does, this may free GV and return a different 229 /// one. Otherwise it just returns GV. 230 llvm::GlobalVariable * 231 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 232 llvm::GlobalVariable *GV) { 233 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 234 235 // If constant emission failed, then this should be a C++ static 236 // initializer. 237 if (!Init) { 238 if (!getLangOpts().CPlusPlus) 239 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 240 else if (Builder.GetInsertBlock()) { 241 // Since we have a static initializer, this global variable can't 242 // be constant. 243 GV->setConstant(false); 244 245 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 246 } 247 return GV; 248 } 249 250 // The initializer may differ in type from the global. Rewrite 251 // the global to match the initializer. (We have to do this 252 // because some types, like unions, can't be completely represented 253 // in the LLVM type system.) 254 if (GV->getType()->getElementType() != Init->getType()) { 255 llvm::GlobalVariable *OldGV = GV; 256 257 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 258 OldGV->isConstant(), 259 OldGV->getLinkage(), Init, "", 260 /*InsertBefore*/ OldGV, 261 OldGV->getThreadLocalMode(), 262 CGM.getContext().getTargetAddressSpace(D.getType())); 263 GV->setVisibility(OldGV->getVisibility()); 264 265 // Steal the name of the old global 266 GV->takeName(OldGV); 267 268 // Replace all uses of the old global with the new global 269 llvm::Constant *NewPtrForOldDecl = 270 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 271 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 272 273 // Erase the old global, since it is no longer used. 274 OldGV->eraseFromParent(); 275 } 276 277 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 278 GV->setInitializer(Init); 279 280 if (hasNontrivialDestruction(D.getType())) { 281 // We have a constant initializer, but a nontrivial destructor. We still 282 // need to perform a guarded "initialization" in order to register the 283 // destructor. 284 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 285 } 286 287 return GV; 288 } 289 290 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 291 llvm::GlobalValue::LinkageTypes Linkage) { 292 llvm::Value *&DMEntry = LocalDeclMap[&D]; 293 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 294 295 // Check to see if we already have a global variable for this 296 // declaration. This can happen when double-emitting function 297 // bodies, e.g. with complete and base constructors. 298 llvm::Constant *addr = 299 CGM.getStaticLocalDeclAddress(&D); 300 301 llvm::GlobalVariable *var; 302 if (addr) { 303 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 304 } else { 305 addr = var = CreateStaticVarDecl(D, ".", Linkage); 306 } 307 308 // Store into LocalDeclMap before generating initializer to handle 309 // circular references. 310 DMEntry = addr; 311 CGM.setStaticLocalDeclAddress(&D, addr); 312 313 // We can't have a VLA here, but we can have a pointer to a VLA, 314 // even though that doesn't really make any sense. 315 // Make sure to evaluate VLA bounds now so that we have them for later. 316 if (D.getType()->isVariablyModifiedType()) 317 EmitVariablyModifiedType(D.getType()); 318 319 // Save the type in case adding the initializer forces a type change. 320 llvm::Type *expectedType = addr->getType(); 321 322 // If this value has an initializer, emit it. 323 if (D.getInit()) 324 var = AddInitializerToStaticVarDecl(D, var); 325 326 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 327 328 if (D.hasAttr<AnnotateAttr>()) 329 CGM.AddGlobalAnnotations(&D, var); 330 331 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 332 var->setSection(SA->getName()); 333 334 if (D.hasAttr<UsedAttr>()) 335 CGM.addUsedGlobal(var); 336 337 // We may have to cast the constant because of the initializer 338 // mismatch above. 339 // 340 // FIXME: It is really dangerous to store this in the map; if anyone 341 // RAUW's the GV uses of this constant will be invalid. 342 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType); 343 DMEntry = castedAddr; 344 CGM.setStaticLocalDeclAddress(&D, castedAddr); 345 346 // Emit global variable debug descriptor for static vars. 347 CGDebugInfo *DI = getDebugInfo(); 348 if (DI && 349 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 350 DI->setLocation(D.getLocation()); 351 DI->EmitGlobalVariable(var, &D); 352 } 353 } 354 355 namespace { 356 struct DestroyObject : EHScopeStack::Cleanup { 357 DestroyObject(llvm::Value *addr, QualType type, 358 CodeGenFunction::Destroyer *destroyer, 359 bool useEHCleanupForArray) 360 : addr(addr), type(type), destroyer(destroyer), 361 useEHCleanupForArray(useEHCleanupForArray) {} 362 363 llvm::Value *addr; 364 QualType type; 365 CodeGenFunction::Destroyer *destroyer; 366 bool useEHCleanupForArray; 367 368 void Emit(CodeGenFunction &CGF, Flags flags) override { 369 // Don't use an EH cleanup recursively from an EH cleanup. 370 bool useEHCleanupForArray = 371 flags.isForNormalCleanup() && this->useEHCleanupForArray; 372 373 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 374 } 375 }; 376 377 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 378 DestroyNRVOVariable(llvm::Value *addr, 379 const CXXDestructorDecl *Dtor, 380 llvm::Value *NRVOFlag) 381 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 382 383 const CXXDestructorDecl *Dtor; 384 llvm::Value *NRVOFlag; 385 llvm::Value *Loc; 386 387 void Emit(CodeGenFunction &CGF, Flags flags) override { 388 // Along the exceptions path we always execute the dtor. 389 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 390 391 llvm::BasicBlock *SkipDtorBB = 0; 392 if (NRVO) { 393 // If we exited via NRVO, we skip the destructor call. 394 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 395 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 396 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 397 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 398 CGF.EmitBlock(RunDtorBB); 399 } 400 401 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 402 /*ForVirtualBase=*/false, 403 /*Delegating=*/false, 404 Loc); 405 406 if (NRVO) CGF.EmitBlock(SkipDtorBB); 407 } 408 }; 409 410 struct CallStackRestore : EHScopeStack::Cleanup { 411 llvm::Value *Stack; 412 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 413 void Emit(CodeGenFunction &CGF, Flags flags) override { 414 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 415 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 416 CGF.Builder.CreateCall(F, V); 417 } 418 }; 419 420 struct ExtendGCLifetime : EHScopeStack::Cleanup { 421 const VarDecl &Var; 422 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 423 424 void Emit(CodeGenFunction &CGF, Flags flags) override { 425 // Compute the address of the local variable, in case it's a 426 // byref or something. 427 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 428 Var.getType(), VK_LValue, SourceLocation()); 429 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 430 SourceLocation()); 431 CGF.EmitExtendGCLifetime(value); 432 } 433 }; 434 435 struct CallCleanupFunction : EHScopeStack::Cleanup { 436 llvm::Constant *CleanupFn; 437 const CGFunctionInfo &FnInfo; 438 const VarDecl &Var; 439 440 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 441 const VarDecl *Var) 442 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 443 444 void Emit(CodeGenFunction &CGF, Flags flags) override { 445 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 446 Var.getType(), VK_LValue, SourceLocation()); 447 // Compute the address of the local variable, in case it's a byref 448 // or something. 449 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 450 451 // In some cases, the type of the function argument will be different from 452 // the type of the pointer. An example of this is 453 // void f(void* arg); 454 // __attribute__((cleanup(f))) void *g; 455 // 456 // To fix this we insert a bitcast here. 457 QualType ArgTy = FnInfo.arg_begin()->type; 458 llvm::Value *Arg = 459 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 460 461 CallArgList Args; 462 Args.add(RValue::get(Arg), 463 CGF.getContext().getPointerType(Var.getType())); 464 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 465 } 466 }; 467 468 /// A cleanup to call @llvm.lifetime.end. 469 class CallLifetimeEnd : public EHScopeStack::Cleanup { 470 llvm::Value *Addr; 471 llvm::Value *Size; 472 public: 473 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 474 : Addr(addr), Size(size) {} 475 476 void Emit(CodeGenFunction &CGF, Flags flags) override { 477 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 478 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 479 Size, castAddr) 480 ->setDoesNotThrow(); 481 } 482 }; 483 } 484 485 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 486 /// variable with lifetime. 487 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 488 llvm::Value *addr, 489 Qualifiers::ObjCLifetime lifetime) { 490 switch (lifetime) { 491 case Qualifiers::OCL_None: 492 llvm_unreachable("present but none"); 493 494 case Qualifiers::OCL_ExplicitNone: 495 // nothing to do 496 break; 497 498 case Qualifiers::OCL_Strong: { 499 CodeGenFunction::Destroyer *destroyer = 500 (var.hasAttr<ObjCPreciseLifetimeAttr>() 501 ? CodeGenFunction::destroyARCStrongPrecise 502 : CodeGenFunction::destroyARCStrongImprecise); 503 504 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 505 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 506 cleanupKind & EHCleanup); 507 break; 508 } 509 case Qualifiers::OCL_Autoreleasing: 510 // nothing to do 511 break; 512 513 case Qualifiers::OCL_Weak: 514 // __weak objects always get EH cleanups; otherwise, exceptions 515 // could cause really nasty crashes instead of mere leaks. 516 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 517 CodeGenFunction::destroyARCWeak, 518 /*useEHCleanup*/ true); 519 break; 520 } 521 } 522 523 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 524 if (const Expr *e = dyn_cast<Expr>(s)) { 525 // Skip the most common kinds of expressions that make 526 // hierarchy-walking expensive. 527 s = e = e->IgnoreParenCasts(); 528 529 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 530 return (ref->getDecl() == &var); 531 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 532 const BlockDecl *block = be->getBlockDecl(); 533 for (const auto &I : block->captures()) { 534 if (I.getVariable() == &var) 535 return true; 536 } 537 } 538 } 539 540 for (Stmt::const_child_range children = s->children(); children; ++children) 541 // children might be null; as in missing decl or conditional of an if-stmt. 542 if ((*children) && isAccessedBy(var, *children)) 543 return true; 544 545 return false; 546 } 547 548 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 549 if (!decl) return false; 550 if (!isa<VarDecl>(decl)) return false; 551 const VarDecl *var = cast<VarDecl>(decl); 552 return isAccessedBy(*var, e); 553 } 554 555 static void drillIntoBlockVariable(CodeGenFunction &CGF, 556 LValue &lvalue, 557 const VarDecl *var) { 558 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 559 } 560 561 void CodeGenFunction::EmitScalarInit(const Expr *init, 562 const ValueDecl *D, 563 LValue lvalue, 564 bool capturedByInit) { 565 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 566 if (!lifetime) { 567 llvm::Value *value = EmitScalarExpr(init); 568 if (capturedByInit) 569 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 570 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 571 return; 572 } 573 574 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 575 init = DIE->getExpr(); 576 577 // If we're emitting a value with lifetime, we have to do the 578 // initialization *before* we leave the cleanup scopes. 579 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 580 enterFullExpression(ewc); 581 init = ewc->getSubExpr(); 582 } 583 CodeGenFunction::RunCleanupsScope Scope(*this); 584 585 // We have to maintain the illusion that the variable is 586 // zero-initialized. If the variable might be accessed in its 587 // initializer, zero-initialize before running the initializer, then 588 // actually perform the initialization with an assign. 589 bool accessedByInit = false; 590 if (lifetime != Qualifiers::OCL_ExplicitNone) 591 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 592 if (accessedByInit) { 593 LValue tempLV = lvalue; 594 // Drill down to the __block object if necessary. 595 if (capturedByInit) { 596 // We can use a simple GEP for this because it can't have been 597 // moved yet. 598 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 599 getByRefValueLLVMField(cast<VarDecl>(D)))); 600 } 601 602 llvm::PointerType *ty 603 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 604 ty = cast<llvm::PointerType>(ty->getElementType()); 605 606 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 607 608 // If __weak, we want to use a barrier under certain conditions. 609 if (lifetime == Qualifiers::OCL_Weak) 610 EmitARCInitWeak(tempLV.getAddress(), zero); 611 612 // Otherwise just do a simple store. 613 else 614 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 615 } 616 617 // Emit the initializer. 618 llvm::Value *value = 0; 619 620 switch (lifetime) { 621 case Qualifiers::OCL_None: 622 llvm_unreachable("present but none"); 623 624 case Qualifiers::OCL_ExplicitNone: 625 // nothing to do 626 value = EmitScalarExpr(init); 627 break; 628 629 case Qualifiers::OCL_Strong: { 630 value = EmitARCRetainScalarExpr(init); 631 break; 632 } 633 634 case Qualifiers::OCL_Weak: { 635 // No way to optimize a producing initializer into this. It's not 636 // worth optimizing for, because the value will immediately 637 // disappear in the common case. 638 value = EmitScalarExpr(init); 639 640 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 641 if (accessedByInit) 642 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 643 else 644 EmitARCInitWeak(lvalue.getAddress(), value); 645 return; 646 } 647 648 case Qualifiers::OCL_Autoreleasing: 649 value = EmitARCRetainAutoreleaseScalarExpr(init); 650 break; 651 } 652 653 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 654 655 // If the variable might have been accessed by its initializer, we 656 // might have to initialize with a barrier. We have to do this for 657 // both __weak and __strong, but __weak got filtered out above. 658 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 659 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 660 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 661 EmitARCRelease(oldValue, ARCImpreciseLifetime); 662 return; 663 } 664 665 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 666 } 667 668 /// EmitScalarInit - Initialize the given lvalue with the given object. 669 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 670 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 671 if (!lifetime) 672 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 673 674 switch (lifetime) { 675 case Qualifiers::OCL_None: 676 llvm_unreachable("present but none"); 677 678 case Qualifiers::OCL_ExplicitNone: 679 // nothing to do 680 break; 681 682 case Qualifiers::OCL_Strong: 683 init = EmitARCRetain(lvalue.getType(), init); 684 break; 685 686 case Qualifiers::OCL_Weak: 687 // Initialize and then skip the primitive store. 688 EmitARCInitWeak(lvalue.getAddress(), init); 689 return; 690 691 case Qualifiers::OCL_Autoreleasing: 692 init = EmitARCRetainAutorelease(lvalue.getType(), init); 693 break; 694 } 695 696 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 697 } 698 699 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 700 /// non-zero parts of the specified initializer with equal or fewer than 701 /// NumStores scalar stores. 702 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 703 unsigned &NumStores) { 704 // Zero and Undef never requires any extra stores. 705 if (isa<llvm::ConstantAggregateZero>(Init) || 706 isa<llvm::ConstantPointerNull>(Init) || 707 isa<llvm::UndefValue>(Init)) 708 return true; 709 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 710 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 711 isa<llvm::ConstantExpr>(Init)) 712 return Init->isNullValue() || NumStores--; 713 714 // See if we can emit each element. 715 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 716 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 717 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 718 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 719 return false; 720 } 721 return true; 722 } 723 724 if (llvm::ConstantDataSequential *CDS = 725 dyn_cast<llvm::ConstantDataSequential>(Init)) { 726 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 727 llvm::Constant *Elt = CDS->getElementAsConstant(i); 728 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 729 return false; 730 } 731 return true; 732 } 733 734 // Anything else is hard and scary. 735 return false; 736 } 737 738 /// emitStoresForInitAfterMemset - For inits that 739 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 740 /// stores that would be required. 741 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 742 bool isVolatile, CGBuilderTy &Builder) { 743 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 744 "called emitStoresForInitAfterMemset for zero or undef value."); 745 746 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 747 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 748 isa<llvm::ConstantExpr>(Init)) { 749 Builder.CreateStore(Init, Loc, isVolatile); 750 return; 751 } 752 753 if (llvm::ConstantDataSequential *CDS = 754 dyn_cast<llvm::ConstantDataSequential>(Init)) { 755 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 756 llvm::Constant *Elt = CDS->getElementAsConstant(i); 757 758 // If necessary, get a pointer to the element and emit it. 759 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 760 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 761 isVolatile, Builder); 762 } 763 return; 764 } 765 766 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 767 "Unknown value type!"); 768 769 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 770 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 771 772 // If necessary, get a pointer to the element and emit it. 773 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 774 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 775 isVolatile, Builder); 776 } 777 } 778 779 780 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 781 /// plus some stores to initialize a local variable instead of using a memcpy 782 /// from a constant global. It is beneficial to use memset if the global is all 783 /// zeros, or mostly zeros and large. 784 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 785 uint64_t GlobalSize) { 786 // If a global is all zeros, always use a memset. 787 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 788 789 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 790 // do it if it will require 6 or fewer scalar stores. 791 // TODO: Should budget depends on the size? Avoiding a large global warrants 792 // plopping in more stores. 793 unsigned StoreBudget = 6; 794 uint64_t SizeLimit = 32; 795 796 return GlobalSize > SizeLimit && 797 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 798 } 799 800 /// Should we use the LLVM lifetime intrinsics for the given local variable? 801 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 802 unsigned Size) { 803 // Always emit lifetime markers in -fsanitize=use-after-scope mode. 804 if (CGF.getLangOpts().Sanitize.UseAfterScope) 805 return true; 806 // For now, only in optimized builds. 807 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 808 return false; 809 810 // Limit the size of marked objects to 32 bytes. We don't want to increase 811 // compile time by marking tiny objects. 812 unsigned SizeThreshold = 32; 813 814 return Size > SizeThreshold; 815 } 816 817 818 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 819 /// variable declaration with auto, register, or no storage class specifier. 820 /// These turn into simple stack objects, or GlobalValues depending on target. 821 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 822 AutoVarEmission emission = EmitAutoVarAlloca(D); 823 EmitAutoVarInit(emission); 824 EmitAutoVarCleanups(emission); 825 } 826 827 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 828 /// local variable. Does not emit initialization or destruction. 829 CodeGenFunction::AutoVarEmission 830 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 831 QualType Ty = D.getType(); 832 833 AutoVarEmission emission(D); 834 835 bool isByRef = D.hasAttr<BlocksAttr>(); 836 emission.IsByRef = isByRef; 837 838 CharUnits alignment = getContext().getDeclAlign(&D); 839 emission.Alignment = alignment; 840 841 // If the type is variably-modified, emit all the VLA sizes for it. 842 if (Ty->isVariablyModifiedType()) 843 EmitVariablyModifiedType(Ty); 844 845 llvm::Value *DeclPtr; 846 if (Ty->isConstantSizeType()) { 847 bool NRVO = getLangOpts().ElideConstructors && 848 D.isNRVOVariable(); 849 850 // If this value is an array or struct with a statically determinable 851 // constant initializer, there are optimizations we can do. 852 // 853 // TODO: We should constant-evaluate the initializer of any variable, 854 // as long as it is initialized by a constant expression. Currently, 855 // isConstantInitializer produces wrong answers for structs with 856 // reference or bitfield members, and a few other cases, and checking 857 // for POD-ness protects us from some of these. 858 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 859 (D.isConstexpr() || 860 ((Ty.isPODType(getContext()) || 861 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 862 D.getInit()->isConstantInitializer(getContext(), false)))) { 863 864 // If the variable's a const type, and it's neither an NRVO 865 // candidate nor a __block variable and has no mutable members, 866 // emit it as a global instead. 867 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 868 CGM.isTypeConstant(Ty, true)) { 869 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 870 871 emission.Address = 0; // signal this condition to later callbacks 872 assert(emission.wasEmittedAsGlobal()); 873 return emission; 874 } 875 876 // Otherwise, tell the initialization code that we're in this case. 877 emission.IsConstantAggregate = true; 878 } 879 880 // A normal fixed sized variable becomes an alloca in the entry block, 881 // unless it's an NRVO variable. 882 llvm::Type *LTy = ConvertTypeForMem(Ty); 883 884 if (NRVO) { 885 // The named return value optimization: allocate this variable in the 886 // return slot, so that we can elide the copy when returning this 887 // variable (C++0x [class.copy]p34). 888 DeclPtr = ReturnValue; 889 890 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 891 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 892 // Create a flag that is used to indicate when the NRVO was applied 893 // to this variable. Set it to zero to indicate that NRVO was not 894 // applied. 895 llvm::Value *Zero = Builder.getFalse(); 896 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 897 EnsureInsertPoint(); 898 Builder.CreateStore(Zero, NRVOFlag); 899 900 // Record the NRVO flag for this variable. 901 NRVOFlags[&D] = NRVOFlag; 902 emission.NRVOFlag = NRVOFlag; 903 } 904 } 905 } else { 906 if (isByRef) 907 LTy = BuildByRefType(&D); 908 909 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 910 Alloc->setName(D.getName()); 911 912 CharUnits allocaAlignment = alignment; 913 if (isByRef) 914 allocaAlignment = std::max(allocaAlignment, 915 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 916 Alloc->setAlignment(allocaAlignment.getQuantity()); 917 DeclPtr = Alloc; 918 919 // Emit a lifetime intrinsic if meaningful. There's no point 920 // in doing this if we don't have a valid insertion point (?). 921 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 922 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 923 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 924 925 emission.SizeForLifetimeMarkers = sizeV; 926 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 927 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 928 ->setDoesNotThrow(); 929 } else { 930 assert(!emission.useLifetimeMarkers()); 931 } 932 } 933 } else { 934 EnsureInsertPoint(); 935 936 if (!DidCallStackSave) { 937 // Save the stack. 938 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 939 940 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 941 llvm::Value *V = Builder.CreateCall(F); 942 943 Builder.CreateStore(V, Stack); 944 945 DidCallStackSave = true; 946 947 // Push a cleanup block and restore the stack there. 948 // FIXME: in general circumstances, this should be an EH cleanup. 949 pushStackRestore(NormalCleanup, Stack); 950 } 951 952 llvm::Value *elementCount; 953 QualType elementType; 954 std::tie(elementCount, elementType) = getVLASize(Ty); 955 956 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 957 958 // Allocate memory for the array. 959 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 960 vla->setAlignment(alignment.getQuantity()); 961 962 DeclPtr = vla; 963 } 964 965 llvm::Value *&DMEntry = LocalDeclMap[&D]; 966 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 967 DMEntry = DeclPtr; 968 emission.Address = DeclPtr; 969 970 // Emit debug info for local var declaration. 971 if (HaveInsertPoint()) 972 if (CGDebugInfo *DI = getDebugInfo()) { 973 if (CGM.getCodeGenOpts().getDebugInfo() 974 >= CodeGenOptions::LimitedDebugInfo) { 975 DI->setLocation(D.getLocation()); 976 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 977 } 978 } 979 980 if (D.hasAttr<AnnotateAttr>()) 981 EmitVarAnnotations(&D, emission.Address); 982 983 return emission; 984 } 985 986 /// Determines whether the given __block variable is potentially 987 /// captured by the given expression. 988 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 989 // Skip the most common kinds of expressions that make 990 // hierarchy-walking expensive. 991 e = e->IgnoreParenCasts(); 992 993 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 994 const BlockDecl *block = be->getBlockDecl(); 995 for (const auto &I : block->captures()) { 996 if (I.getVariable() == &var) 997 return true; 998 } 999 1000 // No need to walk into the subexpressions. 1001 return false; 1002 } 1003 1004 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1005 const CompoundStmt *CS = SE->getSubStmt(); 1006 for (const auto *BI : CS->body()) 1007 if (const auto *E = dyn_cast<Expr>(BI)) { 1008 if (isCapturedBy(var, E)) 1009 return true; 1010 } 1011 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1012 // special case declarations 1013 for (const auto *I : DS->decls()) { 1014 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1015 const Expr *Init = VD->getInit(); 1016 if (Init && isCapturedBy(var, Init)) 1017 return true; 1018 } 1019 } 1020 } 1021 else 1022 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1023 // Later, provide code to poke into statements for capture analysis. 1024 return true; 1025 return false; 1026 } 1027 1028 for (Stmt::const_child_range children = e->children(); children; ++children) 1029 if (isCapturedBy(var, cast<Expr>(*children))) 1030 return true; 1031 1032 return false; 1033 } 1034 1035 /// \brief Determine whether the given initializer is trivial in the sense 1036 /// that it requires no code to be generated. 1037 static bool isTrivialInitializer(const Expr *Init) { 1038 if (!Init) 1039 return true; 1040 1041 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1042 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1043 if (Constructor->isTrivial() && 1044 Constructor->isDefaultConstructor() && 1045 !Construct->requiresZeroInitialization()) 1046 return true; 1047 1048 return false; 1049 } 1050 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1051 assert(emission.Variable && "emission was not valid!"); 1052 1053 // If this was emitted as a global constant, we're done. 1054 if (emission.wasEmittedAsGlobal()) return; 1055 1056 const VarDecl &D = *emission.Variable; 1057 QualType type = D.getType(); 1058 1059 // If this local has an initializer, emit it now. 1060 const Expr *Init = D.getInit(); 1061 1062 // If we are at an unreachable point, we don't need to emit the initializer 1063 // unless it contains a label. 1064 if (!HaveInsertPoint()) { 1065 if (!Init || !ContainsLabel(Init)) return; 1066 EnsureInsertPoint(); 1067 } 1068 1069 // Initialize the structure of a __block variable. 1070 if (emission.IsByRef) 1071 emitByrefStructureInit(emission); 1072 1073 if (isTrivialInitializer(Init)) 1074 return; 1075 1076 CharUnits alignment = emission.Alignment; 1077 1078 // Check whether this is a byref variable that's potentially 1079 // captured and moved by its own initializer. If so, we'll need to 1080 // emit the initializer first, then copy into the variable. 1081 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1082 1083 llvm::Value *Loc = 1084 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1085 1086 llvm::Constant *constant = 0; 1087 if (emission.IsConstantAggregate || D.isConstexpr()) { 1088 assert(!capturedByInit && "constant init contains a capturing block?"); 1089 constant = CGM.EmitConstantInit(D, this); 1090 } 1091 1092 if (!constant) { 1093 LValue lv = MakeAddrLValue(Loc, type, alignment); 1094 lv.setNonGC(true); 1095 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1096 } 1097 1098 if (!emission.IsConstantAggregate) { 1099 // For simple scalar/complex initialization, store the value directly. 1100 LValue lv = MakeAddrLValue(Loc, type, alignment); 1101 lv.setNonGC(true); 1102 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1103 } 1104 1105 // If this is a simple aggregate initialization, we can optimize it 1106 // in various ways. 1107 bool isVolatile = type.isVolatileQualified(); 1108 1109 llvm::Value *SizeVal = 1110 llvm::ConstantInt::get(IntPtrTy, 1111 getContext().getTypeSizeInChars(type).getQuantity()); 1112 1113 llvm::Type *BP = Int8PtrTy; 1114 if (Loc->getType() != BP) 1115 Loc = Builder.CreateBitCast(Loc, BP); 1116 1117 // If the initializer is all or mostly zeros, codegen with memset then do 1118 // a few stores afterward. 1119 if (shouldUseMemSetPlusStoresToInitialize(constant, 1120 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1121 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1122 alignment.getQuantity(), isVolatile); 1123 // Zero and undef don't require a stores. 1124 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1125 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1126 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1127 } 1128 } else { 1129 // Otherwise, create a temporary global with the initializer then 1130 // memcpy from the global to the alloca. 1131 std::string Name = GetStaticDeclName(*this, D, "."); 1132 llvm::GlobalVariable *GV = 1133 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1134 llvm::GlobalValue::PrivateLinkage, 1135 constant, Name); 1136 GV->setAlignment(alignment.getQuantity()); 1137 GV->setUnnamedAddr(true); 1138 1139 llvm::Value *SrcPtr = GV; 1140 if (SrcPtr->getType() != BP) 1141 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1142 1143 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1144 isVolatile); 1145 } 1146 } 1147 1148 /// Emit an expression as an initializer for a variable at the given 1149 /// location. The expression is not necessarily the normal 1150 /// initializer for the variable, and the address is not necessarily 1151 /// its normal location. 1152 /// 1153 /// \param init the initializing expression 1154 /// \param var the variable to act as if we're initializing 1155 /// \param loc the address to initialize; its type is a pointer 1156 /// to the LLVM mapping of the variable's type 1157 /// \param alignment the alignment of the address 1158 /// \param capturedByInit true if the variable is a __block variable 1159 /// whose address is potentially changed by the initializer 1160 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1161 const ValueDecl *D, 1162 LValue lvalue, 1163 bool capturedByInit) { 1164 QualType type = D->getType(); 1165 1166 if (type->isReferenceType()) { 1167 RValue rvalue = EmitReferenceBindingToExpr(init); 1168 if (capturedByInit) 1169 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1170 EmitStoreThroughLValue(rvalue, lvalue, true); 1171 return; 1172 } 1173 switch (getEvaluationKind(type)) { 1174 case TEK_Scalar: 1175 EmitScalarInit(init, D, lvalue, capturedByInit); 1176 return; 1177 case TEK_Complex: { 1178 ComplexPairTy complex = EmitComplexExpr(init); 1179 if (capturedByInit) 1180 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1181 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1182 return; 1183 } 1184 case TEK_Aggregate: 1185 if (type->isAtomicType()) { 1186 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1187 } else { 1188 // TODO: how can we delay here if D is captured by its initializer? 1189 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1190 AggValueSlot::IsDestructed, 1191 AggValueSlot::DoesNotNeedGCBarriers, 1192 AggValueSlot::IsNotAliased)); 1193 } 1194 return; 1195 } 1196 llvm_unreachable("bad evaluation kind"); 1197 } 1198 1199 /// Enter a destroy cleanup for the given local variable. 1200 void CodeGenFunction::emitAutoVarTypeCleanup( 1201 const CodeGenFunction::AutoVarEmission &emission, 1202 QualType::DestructionKind dtorKind) { 1203 assert(dtorKind != QualType::DK_none); 1204 1205 // Note that for __block variables, we want to destroy the 1206 // original stack object, not the possibly forwarded object. 1207 llvm::Value *addr = emission.getObjectAddress(*this); 1208 1209 const VarDecl *var = emission.Variable; 1210 QualType type = var->getType(); 1211 1212 CleanupKind cleanupKind = NormalAndEHCleanup; 1213 CodeGenFunction::Destroyer *destroyer = 0; 1214 1215 switch (dtorKind) { 1216 case QualType::DK_none: 1217 llvm_unreachable("no cleanup for trivially-destructible variable"); 1218 1219 case QualType::DK_cxx_destructor: 1220 // If there's an NRVO flag on the emission, we need a different 1221 // cleanup. 1222 if (emission.NRVOFlag) { 1223 assert(!type->isArrayType()); 1224 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1225 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1226 emission.NRVOFlag); 1227 return; 1228 } 1229 break; 1230 1231 case QualType::DK_objc_strong_lifetime: 1232 // Suppress cleanups for pseudo-strong variables. 1233 if (var->isARCPseudoStrong()) return; 1234 1235 // Otherwise, consider whether to use an EH cleanup or not. 1236 cleanupKind = getARCCleanupKind(); 1237 1238 // Use the imprecise destroyer by default. 1239 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1240 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1241 break; 1242 1243 case QualType::DK_objc_weak_lifetime: 1244 break; 1245 } 1246 1247 // If we haven't chosen a more specific destroyer, use the default. 1248 if (!destroyer) destroyer = getDestroyer(dtorKind); 1249 1250 // Use an EH cleanup in array destructors iff the destructor itself 1251 // is being pushed as an EH cleanup. 1252 bool useEHCleanup = (cleanupKind & EHCleanup); 1253 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1254 useEHCleanup); 1255 } 1256 1257 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1258 assert(emission.Variable && "emission was not valid!"); 1259 1260 // If this was emitted as a global constant, we're done. 1261 if (emission.wasEmittedAsGlobal()) return; 1262 1263 // If we don't have an insertion point, we're done. Sema prevents 1264 // us from jumping into any of these scopes anyway. 1265 if (!HaveInsertPoint()) return; 1266 1267 const VarDecl &D = *emission.Variable; 1268 1269 // Make sure we call @llvm.lifetime.end. This needs to happen 1270 // *last*, so the cleanup needs to be pushed *first*. 1271 if (emission.useLifetimeMarkers()) { 1272 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1273 emission.getAllocatedAddress(), 1274 emission.getSizeForLifetimeMarkers()); 1275 } 1276 1277 // Check the type for a cleanup. 1278 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1279 emitAutoVarTypeCleanup(emission, dtorKind); 1280 1281 // In GC mode, honor objc_precise_lifetime. 1282 if (getLangOpts().getGC() != LangOptions::NonGC && 1283 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1284 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1285 } 1286 1287 // Handle the cleanup attribute. 1288 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1289 const FunctionDecl *FD = CA->getFunctionDecl(); 1290 1291 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1292 assert(F && "Could not find function!"); 1293 1294 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1295 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1296 } 1297 1298 // If this is a block variable, call _Block_object_destroy 1299 // (on the unforwarded address). 1300 if (emission.IsByRef) 1301 enterByrefCleanup(emission); 1302 } 1303 1304 CodeGenFunction::Destroyer * 1305 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1306 switch (kind) { 1307 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1308 case QualType::DK_cxx_destructor: 1309 return destroyCXXObject; 1310 case QualType::DK_objc_strong_lifetime: 1311 return destroyARCStrongPrecise; 1312 case QualType::DK_objc_weak_lifetime: 1313 return destroyARCWeak; 1314 } 1315 llvm_unreachable("Unknown DestructionKind"); 1316 } 1317 1318 /// pushEHDestroy - Push the standard destructor for the given type as 1319 /// an EH-only cleanup. 1320 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1321 llvm::Value *addr, QualType type) { 1322 assert(dtorKind && "cannot push destructor for trivial type"); 1323 assert(needsEHCleanup(dtorKind)); 1324 1325 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1326 } 1327 1328 /// pushDestroy - Push the standard destructor for the given type as 1329 /// at least a normal cleanup. 1330 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1331 llvm::Value *addr, QualType type) { 1332 assert(dtorKind && "cannot push destructor for trivial type"); 1333 1334 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1335 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1336 cleanupKind & EHCleanup); 1337 } 1338 1339 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1340 QualType type, Destroyer *destroyer, 1341 bool useEHCleanupForArray) { 1342 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1343 destroyer, useEHCleanupForArray); 1344 } 1345 1346 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) { 1347 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1348 } 1349 1350 void CodeGenFunction::pushLifetimeExtendedDestroy( 1351 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 1352 Destroyer *destroyer, bool useEHCleanupForArray) { 1353 assert(!isInConditionalBranch() && 1354 "performing lifetime extension from within conditional"); 1355 1356 // Push an EH-only cleanup for the object now. 1357 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1358 // around in case a temporary's destructor throws an exception. 1359 if (cleanupKind & EHCleanup) 1360 EHStack.pushCleanup<DestroyObject>( 1361 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1362 destroyer, useEHCleanupForArray); 1363 1364 // Remember that we need to push a full cleanup for the object at the 1365 // end of the full-expression. 1366 pushCleanupAfterFullExpr<DestroyObject>( 1367 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1368 } 1369 1370 /// emitDestroy - Immediately perform the destruction of the given 1371 /// object. 1372 /// 1373 /// \param addr - the address of the object; a type* 1374 /// \param type - the type of the object; if an array type, all 1375 /// objects are destroyed in reverse order 1376 /// \param destroyer - the function to call to destroy individual 1377 /// elements 1378 /// \param useEHCleanupForArray - whether an EH cleanup should be 1379 /// used when destroying array elements, in case one of the 1380 /// destructions throws an exception 1381 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1382 Destroyer *destroyer, 1383 bool useEHCleanupForArray) { 1384 const ArrayType *arrayType = getContext().getAsArrayType(type); 1385 if (!arrayType) 1386 return destroyer(*this, addr, type); 1387 1388 llvm::Value *begin = addr; 1389 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1390 1391 // Normally we have to check whether the array is zero-length. 1392 bool checkZeroLength = true; 1393 1394 // But if the array length is constant, we can suppress that. 1395 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1396 // ...and if it's constant zero, we can just skip the entire thing. 1397 if (constLength->isZero()) return; 1398 checkZeroLength = false; 1399 } 1400 1401 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1402 emitArrayDestroy(begin, end, type, destroyer, 1403 checkZeroLength, useEHCleanupForArray); 1404 } 1405 1406 /// emitArrayDestroy - Destroys all the elements of the given array, 1407 /// beginning from last to first. The array cannot be zero-length. 1408 /// 1409 /// \param begin - a type* denoting the first element of the array 1410 /// \param end - a type* denoting one past the end of the array 1411 /// \param type - the element type of the array 1412 /// \param destroyer - the function to call to destroy elements 1413 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1414 /// the remaining elements in case the destruction of a single 1415 /// element throws 1416 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1417 llvm::Value *end, 1418 QualType type, 1419 Destroyer *destroyer, 1420 bool checkZeroLength, 1421 bool useEHCleanup) { 1422 assert(!type->isArrayType()); 1423 1424 // The basic structure here is a do-while loop, because we don't 1425 // need to check for the zero-element case. 1426 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1427 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1428 1429 if (checkZeroLength) { 1430 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1431 "arraydestroy.isempty"); 1432 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1433 } 1434 1435 // Enter the loop body, making that address the current address. 1436 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1437 EmitBlock(bodyBB); 1438 llvm::PHINode *elementPast = 1439 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1440 elementPast->addIncoming(end, entryBB); 1441 1442 // Shift the address back by one element. 1443 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1444 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1445 "arraydestroy.element"); 1446 1447 if (useEHCleanup) 1448 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1449 1450 // Perform the actual destruction there. 1451 destroyer(*this, element, type); 1452 1453 if (useEHCleanup) 1454 PopCleanupBlock(); 1455 1456 // Check whether we've reached the end. 1457 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1458 Builder.CreateCondBr(done, doneBB, bodyBB); 1459 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1460 1461 // Done. 1462 EmitBlock(doneBB); 1463 } 1464 1465 /// Perform partial array destruction as if in an EH cleanup. Unlike 1466 /// emitArrayDestroy, the element type here may still be an array type. 1467 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1468 llvm::Value *begin, llvm::Value *end, 1469 QualType type, 1470 CodeGenFunction::Destroyer *destroyer) { 1471 // If the element type is itself an array, drill down. 1472 unsigned arrayDepth = 0; 1473 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1474 // VLAs don't require a GEP index to walk into. 1475 if (!isa<VariableArrayType>(arrayType)) 1476 arrayDepth++; 1477 type = arrayType->getElementType(); 1478 } 1479 1480 if (arrayDepth) { 1481 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1482 1483 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1484 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1485 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1486 } 1487 1488 // Destroy the array. We don't ever need an EH cleanup because we 1489 // assume that we're in an EH cleanup ourselves, so a throwing 1490 // destructor causes an immediate terminate. 1491 CGF.emitArrayDestroy(begin, end, type, destroyer, 1492 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1493 } 1494 1495 namespace { 1496 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1497 /// array destroy where the end pointer is regularly determined and 1498 /// does not need to be loaded from a local. 1499 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1500 llvm::Value *ArrayBegin; 1501 llvm::Value *ArrayEnd; 1502 QualType ElementType; 1503 CodeGenFunction::Destroyer *Destroyer; 1504 public: 1505 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1506 QualType elementType, 1507 CodeGenFunction::Destroyer *destroyer) 1508 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1509 ElementType(elementType), Destroyer(destroyer) {} 1510 1511 void Emit(CodeGenFunction &CGF, Flags flags) override { 1512 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1513 ElementType, Destroyer); 1514 } 1515 }; 1516 1517 /// IrregularPartialArrayDestroy - a cleanup which performs a 1518 /// partial array destroy where the end pointer is irregularly 1519 /// determined and must be loaded from a local. 1520 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1521 llvm::Value *ArrayBegin; 1522 llvm::Value *ArrayEndPointer; 1523 QualType ElementType; 1524 CodeGenFunction::Destroyer *Destroyer; 1525 public: 1526 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1527 llvm::Value *arrayEndPointer, 1528 QualType elementType, 1529 CodeGenFunction::Destroyer *destroyer) 1530 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1531 ElementType(elementType), Destroyer(destroyer) {} 1532 1533 void Emit(CodeGenFunction &CGF, Flags flags) override { 1534 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1535 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1536 ElementType, Destroyer); 1537 } 1538 }; 1539 } 1540 1541 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1542 /// already-constructed elements of the given array. The cleanup 1543 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1544 /// 1545 /// \param elementType - the immediate element type of the array; 1546 /// possibly still an array type 1547 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1548 llvm::Value *arrayEndPointer, 1549 QualType elementType, 1550 Destroyer *destroyer) { 1551 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1552 arrayBegin, arrayEndPointer, 1553 elementType, destroyer); 1554 } 1555 1556 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1557 /// already-constructed elements of the given array. The cleanup 1558 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1559 /// 1560 /// \param elementType - the immediate element type of the array; 1561 /// possibly still an array type 1562 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1563 llvm::Value *arrayEnd, 1564 QualType elementType, 1565 Destroyer *destroyer) { 1566 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1567 arrayBegin, arrayEnd, 1568 elementType, destroyer); 1569 } 1570 1571 /// Lazily declare the @llvm.lifetime.start intrinsic. 1572 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1573 if (LifetimeStartFn) return LifetimeStartFn; 1574 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1575 llvm::Intrinsic::lifetime_start); 1576 return LifetimeStartFn; 1577 } 1578 1579 /// Lazily declare the @llvm.lifetime.end intrinsic. 1580 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1581 if (LifetimeEndFn) return LifetimeEndFn; 1582 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1583 llvm::Intrinsic::lifetime_end); 1584 return LifetimeEndFn; 1585 } 1586 1587 namespace { 1588 /// A cleanup to perform a release of an object at the end of a 1589 /// function. This is used to balance out the incoming +1 of a 1590 /// ns_consumed argument when we can't reasonably do that just by 1591 /// not doing the initial retain for a __block argument. 1592 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1593 ConsumeARCParameter(llvm::Value *param, 1594 ARCPreciseLifetime_t precise) 1595 : Param(param), Precise(precise) {} 1596 1597 llvm::Value *Param; 1598 ARCPreciseLifetime_t Precise; 1599 1600 void Emit(CodeGenFunction &CGF, Flags flags) override { 1601 CGF.EmitARCRelease(Param, Precise); 1602 } 1603 }; 1604 } 1605 1606 /// Emit an alloca (or GlobalValue depending on target) 1607 /// for the specified parameter and set up LocalDeclMap. 1608 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1609 bool ArgIsPointer, unsigned ArgNo) { 1610 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1611 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1612 "Invalid argument to EmitParmDecl"); 1613 1614 Arg->setName(D.getName()); 1615 1616 QualType Ty = D.getType(); 1617 1618 // Use better IR generation for certain implicit parameters. 1619 if (isa<ImplicitParamDecl>(D)) { 1620 // The only implicit argument a block has is its literal. 1621 if (BlockInfo) { 1622 LocalDeclMap[&D] = Arg; 1623 llvm::Value *LocalAddr = 0; 1624 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1625 // Allocate a stack slot to let the debug info survive the RA. 1626 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1627 D.getName() + ".addr"); 1628 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1629 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1630 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1631 LocalAddr = Builder.CreateLoad(Alloc); 1632 } 1633 1634 if (CGDebugInfo *DI = getDebugInfo()) { 1635 if (CGM.getCodeGenOpts().getDebugInfo() 1636 >= CodeGenOptions::LimitedDebugInfo) { 1637 DI->setLocation(D.getLocation()); 1638 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); 1639 } 1640 } 1641 1642 return; 1643 } 1644 } 1645 1646 llvm::Value *DeclPtr; 1647 bool DoStore = false; 1648 bool IsScalar = hasScalarEvaluationKind(Ty); 1649 CharUnits Align = getContext().getDeclAlign(&D); 1650 // If we already have a pointer to the argument, reuse the input pointer. 1651 if (ArgIsPointer) { 1652 assert(isa<llvm::PointerType>(Arg->getType())); 1653 DeclPtr = Arg; 1654 // Push a destructor cleanup for this parameter if the ABI requires it. 1655 if (!IsScalar && 1656 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1657 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1658 if (RD && RD->hasNonTrivialDestructor()) 1659 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1660 } 1661 } else { 1662 // Otherwise, create a temporary to hold the value. 1663 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1664 D.getName() + ".addr"); 1665 Alloc->setAlignment(Align.getQuantity()); 1666 DeclPtr = Alloc; 1667 DoStore = true; 1668 } 1669 1670 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1671 if (IsScalar) { 1672 Qualifiers qs = Ty.getQualifiers(); 1673 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1674 // We honor __attribute__((ns_consumed)) for types with lifetime. 1675 // For __strong, it's handled by just skipping the initial retain; 1676 // otherwise we have to balance out the initial +1 with an extra 1677 // cleanup to do the release at the end of the function. 1678 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1679 1680 // 'self' is always formally __strong, but if this is not an 1681 // init method then we don't want to retain it. 1682 if (D.isARCPseudoStrong()) { 1683 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1684 assert(&D == method->getSelfDecl()); 1685 assert(lt == Qualifiers::OCL_Strong); 1686 assert(qs.hasConst()); 1687 assert(method->getMethodFamily() != OMF_init); 1688 (void) method; 1689 lt = Qualifiers::OCL_ExplicitNone; 1690 } 1691 1692 if (lt == Qualifiers::OCL_Strong) { 1693 if (!isConsumed) { 1694 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1695 // use objc_storeStrong(&dest, value) for retaining the 1696 // object. But first, store a null into 'dest' because 1697 // objc_storeStrong attempts to release its old value. 1698 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1699 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1700 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1701 DoStore = false; 1702 } 1703 else 1704 // Don't use objc_retainBlock for block pointers, because we 1705 // don't want to Block_copy something just because we got it 1706 // as a parameter. 1707 Arg = EmitARCRetainNonBlock(Arg); 1708 } 1709 } else { 1710 // Push the cleanup for a consumed parameter. 1711 if (isConsumed) { 1712 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1713 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1714 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1715 precise); 1716 } 1717 1718 if (lt == Qualifiers::OCL_Weak) { 1719 EmitARCInitWeak(DeclPtr, Arg); 1720 DoStore = false; // The weak init is a store, no need to do two. 1721 } 1722 } 1723 1724 // Enter the cleanup scope. 1725 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1726 } 1727 } 1728 1729 // Store the initial value into the alloca. 1730 if (DoStore) 1731 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1732 1733 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1734 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1735 DMEntry = DeclPtr; 1736 1737 // Emit debug info for param declaration. 1738 if (CGDebugInfo *DI = getDebugInfo()) { 1739 if (CGM.getCodeGenOpts().getDebugInfo() 1740 >= CodeGenOptions::LimitedDebugInfo) { 1741 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1742 } 1743 } 1744 1745 if (D.hasAttr<AnnotateAttr>()) 1746 EmitVarAnnotations(&D, DeclPtr); 1747 } 1748