1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "CGOpenCLRuntime.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/GlobalVariable.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 
33 void CodeGenFunction::EmitDecl(const Decl &D) {
34   switch (D.getKind()) {
35   case Decl::TranslationUnit:
36   case Decl::Namespace:
37   case Decl::UnresolvedUsingTypename:
38   case Decl::ClassTemplateSpecialization:
39   case Decl::ClassTemplatePartialSpecialization:
40   case Decl::TemplateTypeParm:
41   case Decl::UnresolvedUsingValue:
42   case Decl::NonTypeTemplateParm:
43   case Decl::CXXMethod:
44   case Decl::CXXConstructor:
45   case Decl::CXXDestructor:
46   case Decl::CXXConversion:
47   case Decl::Field:
48   case Decl::IndirectField:
49   case Decl::ObjCIvar:
50   case Decl::ObjCAtDefsField:
51   case Decl::ParmVar:
52   case Decl::ImplicitParam:
53   case Decl::ClassTemplate:
54   case Decl::FunctionTemplate:
55   case Decl::TypeAliasTemplate:
56   case Decl::TemplateTemplateParm:
57   case Decl::ObjCMethod:
58   case Decl::ObjCCategory:
59   case Decl::ObjCProtocol:
60   case Decl::ObjCInterface:
61   case Decl::ObjCCategoryImpl:
62   case Decl::ObjCImplementation:
63   case Decl::ObjCProperty:
64   case Decl::ObjCCompatibleAlias:
65   case Decl::AccessSpec:
66   case Decl::LinkageSpec:
67   case Decl::ObjCPropertyImpl:
68   case Decl::FileScopeAsm:
69   case Decl::Friend:
70   case Decl::FriendTemplate:
71   case Decl::Block:
72   case Decl::ClassScopeFunctionSpecialization:
73     llvm_unreachable("Declaration should not be in declstmts!");
74   case Decl::Function:  // void X();
75   case Decl::Record:    // struct/union/class X;
76   case Decl::Enum:      // enum X;
77   case Decl::EnumConstant: // enum ? { X = ? }
78   case Decl::CXXRecord: // struct/union/class X; [C++]
79   case Decl::Using:          // using X; [C++]
80   case Decl::UsingShadow:
81   case Decl::UsingDirective: // using namespace X; [C++]
82   case Decl::NamespaceAlias:
83   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84   case Decl::Label:        // __label__ x;
85   case Decl::Import:
86     // None of these decls require codegen support.
87     return;
88 
89   case Decl::Var: {
90     const VarDecl &VD = cast<VarDecl>(D);
91     assert(VD.isLocalVarDecl() &&
92            "Should not see file-scope variables inside a function!");
93     return EmitVarDecl(VD);
94   }
95 
96   case Decl::Typedef:      // typedef int X;
97   case Decl::TypeAlias: {  // using X = int; [C++0x]
98     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
99     QualType Ty = TD.getUnderlyingType();
100 
101     if (Ty->isVariablyModifiedType())
102       EmitVariablyModifiedType(Ty);
103   }
104   }
105 }
106 
107 /// EmitVarDecl - This method handles emission of any variable declaration
108 /// inside a function, including static vars etc.
109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
110   switch (D.getStorageClass()) {
111   case SC_None:
112   case SC_Auto:
113   case SC_Register:
114     return EmitAutoVarDecl(D);
115   case SC_Static: {
116     llvm::GlobalValue::LinkageTypes Linkage =
117       llvm::GlobalValue::InternalLinkage;
118 
119     // If the function definition has some sort of weak linkage, its
120     // static variables should also be weak so that they get properly
121     // uniqued.  We can't do this in C, though, because there's no
122     // standard way to agree on which variables are the same (i.e.
123     // there's no mangling).
124     if (getContext().getLangOpts().CPlusPlus)
125       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
126         Linkage = CurFn->getLinkage();
127 
128     return EmitStaticVarDecl(D, Linkage);
129   }
130   case SC_Extern:
131   case SC_PrivateExtern:
132     // Don't emit it now, allow it to be emitted lazily on its first use.
133     return;
134   case SC_OpenCLWorkGroupLocal:
135     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
136   }
137 
138   llvm_unreachable("Unknown storage class");
139 }
140 
141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
142                                      const char *Separator) {
143   CodeGenModule &CGM = CGF.CGM;
144   if (CGF.getContext().getLangOpts().CPlusPlus) {
145     StringRef Name = CGM.getMangledName(&D);
146     return Name.str();
147   }
148 
149   std::string ContextName;
150   if (!CGF.CurFuncDecl) {
151     // Better be in a block declared in global scope.
152     const NamedDecl *ND = cast<NamedDecl>(&D);
153     const DeclContext *DC = ND->getDeclContext();
154     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
155       MangleBuffer Name;
156       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
157       ContextName = Name.getString();
158     }
159     else
160       llvm_unreachable("Unknown context for block static var decl");
161   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
162     StringRef Name = CGM.getMangledName(FD);
163     ContextName = Name.str();
164   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
165     ContextName = CGF.CurFn->getName();
166   else
167     llvm_unreachable("Unknown context for static var decl");
168 
169   return ContextName + Separator + D.getNameAsString();
170 }
171 
172 llvm::GlobalVariable *
173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
174                                      const char *Separator,
175                                      llvm::GlobalValue::LinkageTypes Linkage) {
176   QualType Ty = D.getType();
177   assert(Ty->isConstantSizeType() && "VLAs can't be static");
178 
179   // Use the label if the variable is renamed with the asm-label extension.
180   std::string Name;
181   if (D.hasAttr<AsmLabelAttr>())
182     Name = CGM.getMangledName(&D);
183   else
184     Name = GetStaticDeclName(*this, D, Separator);
185 
186   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
187   llvm::GlobalVariable *GV =
188     new llvm::GlobalVariable(CGM.getModule(), LTy,
189                              Ty.isConstant(getContext()), Linkage,
190                              CGM.EmitNullConstant(D.getType()), Name, 0,
191                              D.isThreadSpecified(),
192                              CGM.getContext().getTargetAddressSpace(Ty));
193   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
194   if (Linkage != llvm::GlobalValue::InternalLinkage)
195     GV->setVisibility(CurFn->getVisibility());
196   return GV;
197 }
198 
199 /// hasNontrivialDestruction - Determine whether a type's destruction is
200 /// non-trivial. If so, and the variable uses static initialization, we must
201 /// register its destructor to run on exit.
202 static bool hasNontrivialDestruction(QualType T) {
203   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
204   return RD && !RD->hasTrivialDestructor();
205 }
206 
207 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
208 /// global variable that has already been created for it.  If the initializer
209 /// has a different type than GV does, this may free GV and return a different
210 /// one.  Otherwise it just returns GV.
211 llvm::GlobalVariable *
212 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
213                                                llvm::GlobalVariable *GV) {
214   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
215 
216   // If constant emission failed, then this should be a C++ static
217   // initializer.
218   if (!Init) {
219     if (!getContext().getLangOpts().CPlusPlus)
220       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
221     else if (Builder.GetInsertBlock()) {
222       // Since we have a static initializer, this global variable can't
223       // be constant.
224       GV->setConstant(false);
225 
226       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
227     }
228     return GV;
229   }
230 
231   // The initializer may differ in type from the global. Rewrite
232   // the global to match the initializer.  (We have to do this
233   // because some types, like unions, can't be completely represented
234   // in the LLVM type system.)
235   if (GV->getType()->getElementType() != Init->getType()) {
236     llvm::GlobalVariable *OldGV = GV;
237 
238     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
239                                   OldGV->isConstant(),
240                                   OldGV->getLinkage(), Init, "",
241                                   /*InsertBefore*/ OldGV,
242                                   D.isThreadSpecified(),
243                            CGM.getContext().getTargetAddressSpace(D.getType()));
244     GV->setVisibility(OldGV->getVisibility());
245 
246     // Steal the name of the old global
247     GV->takeName(OldGV);
248 
249     // Replace all uses of the old global with the new global
250     llvm::Constant *NewPtrForOldDecl =
251     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
252     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
253 
254     // Erase the old global, since it is no longer used.
255     OldGV->eraseFromParent();
256   }
257 
258   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
259   GV->setInitializer(Init);
260 
261   if (hasNontrivialDestruction(D.getType())) {
262     // We have a constant initializer, but a nontrivial destructor. We still
263     // need to perform a guarded "initialization" in order to register the
264     // destructor.
265     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
266   }
267 
268   return GV;
269 }
270 
271 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
272                                       llvm::GlobalValue::LinkageTypes Linkage) {
273   llvm::Value *&DMEntry = LocalDeclMap[&D];
274   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
275 
276   // Check to see if we already have a global variable for this
277   // declaration.  This can happen when double-emitting function
278   // bodies, e.g. with complete and base constructors.
279   llvm::Constant *addr =
280     CGM.getStaticLocalDeclAddress(&D);
281 
282   llvm::GlobalVariable *var;
283   if (addr) {
284     var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
285   } else {
286     addr = var = CreateStaticVarDecl(D, ".", Linkage);
287   }
288 
289   // Store into LocalDeclMap before generating initializer to handle
290   // circular references.
291   DMEntry = addr;
292   CGM.setStaticLocalDeclAddress(&D, addr);
293 
294   // We can't have a VLA here, but we can have a pointer to a VLA,
295   // even though that doesn't really make any sense.
296   // Make sure to evaluate VLA bounds now so that we have them for later.
297   if (D.getType()->isVariablyModifiedType())
298     EmitVariablyModifiedType(D.getType());
299 
300   // Save the type in case adding the initializer forces a type change.
301   llvm::Type *expectedType = addr->getType();
302 
303   // If this value has an initializer, emit it.
304   if (D.getInit())
305     var = AddInitializerToStaticVarDecl(D, var);
306 
307   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
308 
309   if (D.hasAttr<AnnotateAttr>())
310     CGM.AddGlobalAnnotations(&D, var);
311 
312   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
313     var->setSection(SA->getName());
314 
315   if (D.hasAttr<UsedAttr>())
316     CGM.AddUsedGlobal(var);
317 
318   // We may have to cast the constant because of the initializer
319   // mismatch above.
320   //
321   // FIXME: It is really dangerous to store this in the map; if anyone
322   // RAUW's the GV uses of this constant will be invalid.
323   llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
324   DMEntry = castedAddr;
325   CGM.setStaticLocalDeclAddress(&D, castedAddr);
326 
327   // Emit global variable debug descriptor for static vars.
328   CGDebugInfo *DI = getDebugInfo();
329   if (DI &&
330       CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) {
331     DI->setLocation(D.getLocation());
332     DI->EmitGlobalVariable(var, &D);
333   }
334 }
335 
336 namespace {
337   struct DestroyObject : EHScopeStack::Cleanup {
338     DestroyObject(llvm::Value *addr, QualType type,
339                   CodeGenFunction::Destroyer *destroyer,
340                   bool useEHCleanupForArray)
341       : addr(addr), type(type), destroyer(destroyer),
342         useEHCleanupForArray(useEHCleanupForArray) {}
343 
344     llvm::Value *addr;
345     QualType type;
346     CodeGenFunction::Destroyer *destroyer;
347     bool useEHCleanupForArray;
348 
349     void Emit(CodeGenFunction &CGF, Flags flags) {
350       // Don't use an EH cleanup recursively from an EH cleanup.
351       bool useEHCleanupForArray =
352         flags.isForNormalCleanup() && this->useEHCleanupForArray;
353 
354       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
355     }
356   };
357 
358   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
359     DestroyNRVOVariable(llvm::Value *addr,
360                         const CXXDestructorDecl *Dtor,
361                         llvm::Value *NRVOFlag)
362       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
363 
364     const CXXDestructorDecl *Dtor;
365     llvm::Value *NRVOFlag;
366     llvm::Value *Loc;
367 
368     void Emit(CodeGenFunction &CGF, Flags flags) {
369       // Along the exceptions path we always execute the dtor.
370       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
371 
372       llvm::BasicBlock *SkipDtorBB = 0;
373       if (NRVO) {
374         // If we exited via NRVO, we skip the destructor call.
375         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
376         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
377         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
378         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
379         CGF.EmitBlock(RunDtorBB);
380       }
381 
382       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
383                                 /*ForVirtualBase=*/false, Loc);
384 
385       if (NRVO) CGF.EmitBlock(SkipDtorBB);
386     }
387   };
388 
389   struct CallStackRestore : EHScopeStack::Cleanup {
390     llvm::Value *Stack;
391     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
392     void Emit(CodeGenFunction &CGF, Flags flags) {
393       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
394       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
395       CGF.Builder.CreateCall(F, V);
396     }
397   };
398 
399   struct ExtendGCLifetime : EHScopeStack::Cleanup {
400     const VarDecl &Var;
401     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
402 
403     void Emit(CodeGenFunction &CGF, Flags flags) {
404       // Compute the address of the local variable, in case it's a
405       // byref or something.
406       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
407                       Var.getType(), VK_LValue, SourceLocation());
408       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
409       CGF.EmitExtendGCLifetime(value);
410     }
411   };
412 
413   struct CallCleanupFunction : EHScopeStack::Cleanup {
414     llvm::Constant *CleanupFn;
415     const CGFunctionInfo &FnInfo;
416     const VarDecl &Var;
417 
418     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
419                         const VarDecl *Var)
420       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
421 
422     void Emit(CodeGenFunction &CGF, Flags flags) {
423       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
424                       Var.getType(), VK_LValue, SourceLocation());
425       // Compute the address of the local variable, in case it's a byref
426       // or something.
427       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
428 
429       // In some cases, the type of the function argument will be different from
430       // the type of the pointer. An example of this is
431       // void f(void* arg);
432       // __attribute__((cleanup(f))) void *g;
433       //
434       // To fix this we insert a bitcast here.
435       QualType ArgTy = FnInfo.arg_begin()->type;
436       llvm::Value *Arg =
437         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
438 
439       CallArgList Args;
440       Args.add(RValue::get(Arg),
441                CGF.getContext().getPointerType(Var.getType()));
442       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
443     }
444   };
445 }
446 
447 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
448 /// variable with lifetime.
449 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
450                                     llvm::Value *addr,
451                                     Qualifiers::ObjCLifetime lifetime) {
452   switch (lifetime) {
453   case Qualifiers::OCL_None:
454     llvm_unreachable("present but none");
455 
456   case Qualifiers::OCL_ExplicitNone:
457     // nothing to do
458     break;
459 
460   case Qualifiers::OCL_Strong: {
461     CodeGenFunction::Destroyer *destroyer =
462       (var.hasAttr<ObjCPreciseLifetimeAttr>()
463        ? CodeGenFunction::destroyARCStrongPrecise
464        : CodeGenFunction::destroyARCStrongImprecise);
465 
466     CleanupKind cleanupKind = CGF.getARCCleanupKind();
467     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
468                     cleanupKind & EHCleanup);
469     break;
470   }
471   case Qualifiers::OCL_Autoreleasing:
472     // nothing to do
473     break;
474 
475   case Qualifiers::OCL_Weak:
476     // __weak objects always get EH cleanups; otherwise, exceptions
477     // could cause really nasty crashes instead of mere leaks.
478     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
479                     CodeGenFunction::destroyARCWeak,
480                     /*useEHCleanup*/ true);
481     break;
482   }
483 }
484 
485 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
486   if (const Expr *e = dyn_cast<Expr>(s)) {
487     // Skip the most common kinds of expressions that make
488     // hierarchy-walking expensive.
489     s = e = e->IgnoreParenCasts();
490 
491     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
492       return (ref->getDecl() == &var);
493   }
494 
495   for (Stmt::const_child_range children = s->children(); children; ++children)
496     // children might be null; as in missing decl or conditional of an if-stmt.
497     if ((*children) && isAccessedBy(var, *children))
498       return true;
499 
500   return false;
501 }
502 
503 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
504   if (!decl) return false;
505   if (!isa<VarDecl>(decl)) return false;
506   const VarDecl *var = cast<VarDecl>(decl);
507   return isAccessedBy(*var, e);
508 }
509 
510 static void drillIntoBlockVariable(CodeGenFunction &CGF,
511                                    LValue &lvalue,
512                                    const VarDecl *var) {
513   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
514 }
515 
516 void CodeGenFunction::EmitScalarInit(const Expr *init,
517                                      const ValueDecl *D,
518                                      LValue lvalue,
519                                      bool capturedByInit) {
520   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
521   if (!lifetime) {
522     llvm::Value *value = EmitScalarExpr(init);
523     if (capturedByInit)
524       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
525     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
526     return;
527   }
528 
529   // If we're emitting a value with lifetime, we have to do the
530   // initialization *before* we leave the cleanup scopes.
531   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
532     enterFullExpression(ewc);
533     init = ewc->getSubExpr();
534   }
535   CodeGenFunction::RunCleanupsScope Scope(*this);
536 
537   // We have to maintain the illusion that the variable is
538   // zero-initialized.  If the variable might be accessed in its
539   // initializer, zero-initialize before running the initializer, then
540   // actually perform the initialization with an assign.
541   bool accessedByInit = false;
542   if (lifetime != Qualifiers::OCL_ExplicitNone)
543     accessedByInit = (capturedByInit || isAccessedBy(D, init));
544   if (accessedByInit) {
545     LValue tempLV = lvalue;
546     // Drill down to the __block object if necessary.
547     if (capturedByInit) {
548       // We can use a simple GEP for this because it can't have been
549       // moved yet.
550       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
551                                    getByRefValueLLVMField(cast<VarDecl>(D))));
552     }
553 
554     llvm::PointerType *ty
555       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
556     ty = cast<llvm::PointerType>(ty->getElementType());
557 
558     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
559 
560     // If __weak, we want to use a barrier under certain conditions.
561     if (lifetime == Qualifiers::OCL_Weak)
562       EmitARCInitWeak(tempLV.getAddress(), zero);
563 
564     // Otherwise just do a simple store.
565     else
566       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
567   }
568 
569   // Emit the initializer.
570   llvm::Value *value = 0;
571 
572   switch (lifetime) {
573   case Qualifiers::OCL_None:
574     llvm_unreachable("present but none");
575 
576   case Qualifiers::OCL_ExplicitNone:
577     // nothing to do
578     value = EmitScalarExpr(init);
579     break;
580 
581   case Qualifiers::OCL_Strong: {
582     value = EmitARCRetainScalarExpr(init);
583     break;
584   }
585 
586   case Qualifiers::OCL_Weak: {
587     // No way to optimize a producing initializer into this.  It's not
588     // worth optimizing for, because the value will immediately
589     // disappear in the common case.
590     value = EmitScalarExpr(init);
591 
592     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
593     if (accessedByInit)
594       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
595     else
596       EmitARCInitWeak(lvalue.getAddress(), value);
597     return;
598   }
599 
600   case Qualifiers::OCL_Autoreleasing:
601     value = EmitARCRetainAutoreleaseScalarExpr(init);
602     break;
603   }
604 
605   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
606 
607   // If the variable might have been accessed by its initializer, we
608   // might have to initialize with a barrier.  We have to do this for
609   // both __weak and __strong, but __weak got filtered out above.
610   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
611     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
612     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
613     EmitARCRelease(oldValue, /*precise*/ false);
614     return;
615   }
616 
617   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
618 }
619 
620 /// EmitScalarInit - Initialize the given lvalue with the given object.
621 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
622   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
623   if (!lifetime)
624     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
625 
626   switch (lifetime) {
627   case Qualifiers::OCL_None:
628     llvm_unreachable("present but none");
629 
630   case Qualifiers::OCL_ExplicitNone:
631     // nothing to do
632     break;
633 
634   case Qualifiers::OCL_Strong:
635     init = EmitARCRetain(lvalue.getType(), init);
636     break;
637 
638   case Qualifiers::OCL_Weak:
639     // Initialize and then skip the primitive store.
640     EmitARCInitWeak(lvalue.getAddress(), init);
641     return;
642 
643   case Qualifiers::OCL_Autoreleasing:
644     init = EmitARCRetainAutorelease(lvalue.getType(), init);
645     break;
646   }
647 
648   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
649 }
650 
651 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
652 /// non-zero parts of the specified initializer with equal or fewer than
653 /// NumStores scalar stores.
654 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
655                                                 unsigned &NumStores) {
656   // Zero and Undef never requires any extra stores.
657   if (isa<llvm::ConstantAggregateZero>(Init) ||
658       isa<llvm::ConstantPointerNull>(Init) ||
659       isa<llvm::UndefValue>(Init))
660     return true;
661   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
662       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
663       isa<llvm::ConstantExpr>(Init))
664     return Init->isNullValue() || NumStores--;
665 
666   // See if we can emit each element.
667   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
668     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
669       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
670       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
671         return false;
672     }
673     return true;
674   }
675 
676   if (llvm::ConstantDataSequential *CDS =
677         dyn_cast<llvm::ConstantDataSequential>(Init)) {
678     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
679       llvm::Constant *Elt = CDS->getElementAsConstant(i);
680       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
681         return false;
682     }
683     return true;
684   }
685 
686   // Anything else is hard and scary.
687   return false;
688 }
689 
690 /// emitStoresForInitAfterMemset - For inits that
691 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
692 /// stores that would be required.
693 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
694                                          bool isVolatile, CGBuilderTy &Builder) {
695   // Zero doesn't require a store.
696   if (Init->isNullValue() || isa<llvm::UndefValue>(Init))
697     return;
698 
699   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
700       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
701       isa<llvm::ConstantExpr>(Init)) {
702     Builder.CreateStore(Init, Loc, isVolatile);
703     return;
704   }
705 
706   if (llvm::ConstantDataSequential *CDS =
707         dyn_cast<llvm::ConstantDataSequential>(Init)) {
708     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
709       llvm::Constant *Elt = CDS->getElementAsConstant(i);
710 
711       // Get a pointer to the element and emit it.
712       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
713                                    isVolatile, Builder);
714     }
715     return;
716   }
717 
718   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
719          "Unknown value type!");
720 
721   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
722     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
723     // Get a pointer to the element and emit it.
724     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
725                                  isVolatile, Builder);
726   }
727 }
728 
729 
730 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
731 /// plus some stores to initialize a local variable instead of using a memcpy
732 /// from a constant global.  It is beneficial to use memset if the global is all
733 /// zeros, or mostly zeros and large.
734 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
735                                                   uint64_t GlobalSize) {
736   // If a global is all zeros, always use a memset.
737   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
738 
739 
740   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
741   // do it if it will require 6 or fewer scalar stores.
742   // TODO: Should budget depends on the size?  Avoiding a large global warrants
743   // plopping in more stores.
744   unsigned StoreBudget = 6;
745   uint64_t SizeLimit = 32;
746 
747   return GlobalSize > SizeLimit &&
748          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
749 }
750 
751 
752 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
753 /// variable declaration with auto, register, or no storage class specifier.
754 /// These turn into simple stack objects, or GlobalValues depending on target.
755 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
756   AutoVarEmission emission = EmitAutoVarAlloca(D);
757   EmitAutoVarInit(emission);
758   EmitAutoVarCleanups(emission);
759 }
760 
761 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
762 /// local variable.  Does not emit initalization or destruction.
763 CodeGenFunction::AutoVarEmission
764 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
765   QualType Ty = D.getType();
766 
767   AutoVarEmission emission(D);
768 
769   bool isByRef = D.hasAttr<BlocksAttr>();
770   emission.IsByRef = isByRef;
771 
772   CharUnits alignment = getContext().getDeclAlign(&D);
773   emission.Alignment = alignment;
774 
775   // If the type is variably-modified, emit all the VLA sizes for it.
776   if (Ty->isVariablyModifiedType())
777     EmitVariablyModifiedType(Ty);
778 
779   llvm::Value *DeclPtr;
780   if (Ty->isConstantSizeType()) {
781     if (!Target.useGlobalsForAutomaticVariables()) {
782       bool NRVO = getContext().getLangOpts().ElideConstructors &&
783                   D.isNRVOVariable();
784 
785       // If this value is a POD array or struct with a statically
786       // determinable constant initializer, there are optimizations we can do.
787       //
788       // TODO: We should constant-evaluate the initializer of any variable,
789       // as long as it is initialized by a constant expression. Currently,
790       // isConstantInitializer produces wrong answers for structs with
791       // reference or bitfield members, and a few other cases, and checking
792       // for POD-ness protects us from some of these.
793       if (D.getInit() &&
794           (Ty->isArrayType() || Ty->isRecordType()) &&
795           (Ty.isPODType(getContext()) ||
796            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
797           D.getInit()->isConstantInitializer(getContext(), false)) {
798 
799         // If the variable's a const type, and it's neither an NRVO
800         // candidate nor a __block variable and has no mutable members,
801         // emit it as a global instead.
802         if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
803             CGM.isTypeConstant(Ty, true)) {
804           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
805 
806           emission.Address = 0; // signal this condition to later callbacks
807           assert(emission.wasEmittedAsGlobal());
808           return emission;
809         }
810 
811         // Otherwise, tell the initialization code that we're in this case.
812         emission.IsConstantAggregate = true;
813       }
814 
815       // A normal fixed sized variable becomes an alloca in the entry block,
816       // unless it's an NRVO variable.
817       llvm::Type *LTy = ConvertTypeForMem(Ty);
818 
819       if (NRVO) {
820         // The named return value optimization: allocate this variable in the
821         // return slot, so that we can elide the copy when returning this
822         // variable (C++0x [class.copy]p34).
823         DeclPtr = ReturnValue;
824 
825         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
826           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
827             // Create a flag that is used to indicate when the NRVO was applied
828             // to this variable. Set it to zero to indicate that NRVO was not
829             // applied.
830             llvm::Value *Zero = Builder.getFalse();
831             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
832             EnsureInsertPoint();
833             Builder.CreateStore(Zero, NRVOFlag);
834 
835             // Record the NRVO flag for this variable.
836             NRVOFlags[&D] = NRVOFlag;
837             emission.NRVOFlag = NRVOFlag;
838           }
839         }
840       } else {
841         if (isByRef)
842           LTy = BuildByRefType(&D);
843 
844         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
845         Alloc->setName(D.getName());
846 
847         CharUnits allocaAlignment = alignment;
848         if (isByRef)
849           allocaAlignment = std::max(allocaAlignment,
850               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
851         Alloc->setAlignment(allocaAlignment.getQuantity());
852         DeclPtr = Alloc;
853       }
854     } else {
855       // Targets that don't support recursion emit locals as globals.
856       const char *Class =
857         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
858       DeclPtr = CreateStaticVarDecl(D, Class,
859                                     llvm::GlobalValue::InternalLinkage);
860     }
861   } else {
862     EnsureInsertPoint();
863 
864     if (!DidCallStackSave) {
865       // Save the stack.
866       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
867 
868       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
869       llvm::Value *V = Builder.CreateCall(F);
870 
871       Builder.CreateStore(V, Stack);
872 
873       DidCallStackSave = true;
874 
875       // Push a cleanup block and restore the stack there.
876       // FIXME: in general circumstances, this should be an EH cleanup.
877       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
878     }
879 
880     llvm::Value *elementCount;
881     QualType elementType;
882     llvm::tie(elementCount, elementType) = getVLASize(Ty);
883 
884     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
885 
886     // Allocate memory for the array.
887     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
888     vla->setAlignment(alignment.getQuantity());
889 
890     DeclPtr = vla;
891   }
892 
893   llvm::Value *&DMEntry = LocalDeclMap[&D];
894   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
895   DMEntry = DeclPtr;
896   emission.Address = DeclPtr;
897 
898   // Emit debug info for local var declaration.
899   if (HaveInsertPoint())
900     if (CGDebugInfo *DI = getDebugInfo()) {
901       if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) {
902         DI->setLocation(D.getLocation());
903         if (Target.useGlobalsForAutomaticVariables()) {
904           DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr),
905                                  &D);
906         } else
907           DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
908       }
909     }
910 
911   if (D.hasAttr<AnnotateAttr>())
912       EmitVarAnnotations(&D, emission.Address);
913 
914   return emission;
915 }
916 
917 /// Determines whether the given __block variable is potentially
918 /// captured by the given expression.
919 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
920   // Skip the most common kinds of expressions that make
921   // hierarchy-walking expensive.
922   e = e->IgnoreParenCasts();
923 
924   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
925     const BlockDecl *block = be->getBlockDecl();
926     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
927            e = block->capture_end(); i != e; ++i) {
928       if (i->getVariable() == &var)
929         return true;
930     }
931 
932     // No need to walk into the subexpressions.
933     return false;
934   }
935 
936   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
937     const CompoundStmt *CS = SE->getSubStmt();
938     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
939 	   BE = CS->body_end(); BI != BE; ++BI)
940       if (Expr *E = dyn_cast<Expr>((*BI))) {
941         if (isCapturedBy(var, E))
942             return true;
943       }
944       else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
945           // special case declarations
946           for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
947                I != E; ++I) {
948               if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
949                 Expr *Init = VD->getInit();
950                 if (Init && isCapturedBy(var, Init))
951                   return true;
952               }
953           }
954       }
955       else
956         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
957         // Later, provide code to poke into statements for capture analysis.
958         return true;
959     return false;
960   }
961 
962   for (Stmt::const_child_range children = e->children(); children; ++children)
963     if (isCapturedBy(var, cast<Expr>(*children)))
964       return true;
965 
966   return false;
967 }
968 
969 /// \brief Determine whether the given initializer is trivial in the sense
970 /// that it requires no code to be generated.
971 static bool isTrivialInitializer(const Expr *Init) {
972   if (!Init)
973     return true;
974 
975   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
976     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
977       if (Constructor->isTrivial() &&
978           Constructor->isDefaultConstructor() &&
979           !Construct->requiresZeroInitialization())
980         return true;
981 
982   return false;
983 }
984 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
985   assert(emission.Variable && "emission was not valid!");
986 
987   // If this was emitted as a global constant, we're done.
988   if (emission.wasEmittedAsGlobal()) return;
989 
990   const VarDecl &D = *emission.Variable;
991   QualType type = D.getType();
992 
993   // If this local has an initializer, emit it now.
994   const Expr *Init = D.getInit();
995 
996   // If we are at an unreachable point, we don't need to emit the initializer
997   // unless it contains a label.
998   if (!HaveInsertPoint()) {
999     if (!Init || !ContainsLabel(Init)) return;
1000     EnsureInsertPoint();
1001   }
1002 
1003   // Initialize the structure of a __block variable.
1004   if (emission.IsByRef)
1005     emitByrefStructureInit(emission);
1006 
1007   if (isTrivialInitializer(Init))
1008     return;
1009 
1010   CharUnits alignment = emission.Alignment;
1011 
1012   // Check whether this is a byref variable that's potentially
1013   // captured and moved by its own initializer.  If so, we'll need to
1014   // emit the initializer first, then copy into the variable.
1015   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1016 
1017   llvm::Value *Loc =
1018     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1019 
1020   llvm::Constant *constant = 0;
1021   if (emission.IsConstantAggregate) {
1022     assert(!capturedByInit && "constant init contains a capturing block?");
1023     constant = CGM.EmitConstantInit(D, this);
1024   }
1025 
1026   if (!constant) {
1027     LValue lv = MakeAddrLValue(Loc, type, alignment);
1028     lv.setNonGC(true);
1029     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1030   }
1031 
1032   // If this is a simple aggregate initialization, we can optimize it
1033   // in various ways.
1034   bool isVolatile = type.isVolatileQualified();
1035 
1036   llvm::Value *SizeVal =
1037     llvm::ConstantInt::get(IntPtrTy,
1038                            getContext().getTypeSizeInChars(type).getQuantity());
1039 
1040   llvm::Type *BP = Int8PtrTy;
1041   if (Loc->getType() != BP)
1042     Loc = Builder.CreateBitCast(Loc, BP);
1043 
1044   // If the initializer is all or mostly zeros, codegen with memset then do
1045   // a few stores afterward.
1046   if (shouldUseMemSetPlusStoresToInitialize(constant,
1047                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
1048     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1049                          alignment.getQuantity(), isVolatile);
1050     if (!constant->isNullValue()) {
1051       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1052       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1053     }
1054   } else {
1055     // Otherwise, create a temporary global with the initializer then
1056     // memcpy from the global to the alloca.
1057     std::string Name = GetStaticDeclName(*this, D, ".");
1058     llvm::GlobalVariable *GV =
1059       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1060                                llvm::GlobalValue::PrivateLinkage,
1061                                constant, Name, 0, false, 0);
1062     GV->setAlignment(alignment.getQuantity());
1063     GV->setUnnamedAddr(true);
1064 
1065     llvm::Value *SrcPtr = GV;
1066     if (SrcPtr->getType() != BP)
1067       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1068 
1069     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1070                          isVolatile);
1071   }
1072 }
1073 
1074 /// Emit an expression as an initializer for a variable at the given
1075 /// location.  The expression is not necessarily the normal
1076 /// initializer for the variable, and the address is not necessarily
1077 /// its normal location.
1078 ///
1079 /// \param init the initializing expression
1080 /// \param var the variable to act as if we're initializing
1081 /// \param loc the address to initialize; its type is a pointer
1082 ///   to the LLVM mapping of the variable's type
1083 /// \param alignment the alignment of the address
1084 /// \param capturedByInit true if the variable is a __block variable
1085 ///   whose address is potentially changed by the initializer
1086 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1087                                      const ValueDecl *D,
1088                                      LValue lvalue,
1089                                      bool capturedByInit) {
1090   QualType type = D->getType();
1091 
1092   if (type->isReferenceType()) {
1093     RValue rvalue = EmitReferenceBindingToExpr(init, D);
1094     if (capturedByInit)
1095       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1096     EmitStoreThroughLValue(rvalue, lvalue, true);
1097   } else if (!hasAggregateLLVMType(type)) {
1098     EmitScalarInit(init, D, lvalue, capturedByInit);
1099   } else if (type->isAnyComplexType()) {
1100     ComplexPairTy complex = EmitComplexExpr(init);
1101     if (capturedByInit)
1102       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1103     StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1104   } else {
1105     // TODO: how can we delay here if D is captured by its initializer?
1106     EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1107                                               AggValueSlot::IsDestructed,
1108                                          AggValueSlot::DoesNotNeedGCBarriers,
1109                                               AggValueSlot::IsNotAliased));
1110     MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init);
1111   }
1112 }
1113 
1114 /// Enter a destroy cleanup for the given local variable.
1115 void CodeGenFunction::emitAutoVarTypeCleanup(
1116                             const CodeGenFunction::AutoVarEmission &emission,
1117                             QualType::DestructionKind dtorKind) {
1118   assert(dtorKind != QualType::DK_none);
1119 
1120   // Note that for __block variables, we want to destroy the
1121   // original stack object, not the possibly forwarded object.
1122   llvm::Value *addr = emission.getObjectAddress(*this);
1123 
1124   const VarDecl *var = emission.Variable;
1125   QualType type = var->getType();
1126 
1127   CleanupKind cleanupKind = NormalAndEHCleanup;
1128   CodeGenFunction::Destroyer *destroyer = 0;
1129 
1130   switch (dtorKind) {
1131   case QualType::DK_none:
1132     llvm_unreachable("no cleanup for trivially-destructible variable");
1133 
1134   case QualType::DK_cxx_destructor:
1135     // If there's an NRVO flag on the emission, we need a different
1136     // cleanup.
1137     if (emission.NRVOFlag) {
1138       assert(!type->isArrayType());
1139       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1140       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1141                                                emission.NRVOFlag);
1142       return;
1143     }
1144     break;
1145 
1146   case QualType::DK_objc_strong_lifetime:
1147     // Suppress cleanups for pseudo-strong variables.
1148     if (var->isARCPseudoStrong()) return;
1149 
1150     // Otherwise, consider whether to use an EH cleanup or not.
1151     cleanupKind = getARCCleanupKind();
1152 
1153     // Use the imprecise destroyer by default.
1154     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1155       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1156     break;
1157 
1158   case QualType::DK_objc_weak_lifetime:
1159     break;
1160   }
1161 
1162   // If we haven't chosen a more specific destroyer, use the default.
1163   if (!destroyer) destroyer = getDestroyer(dtorKind);
1164 
1165   // Use an EH cleanup in array destructors iff the destructor itself
1166   // is being pushed as an EH cleanup.
1167   bool useEHCleanup = (cleanupKind & EHCleanup);
1168   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1169                                      useEHCleanup);
1170 }
1171 
1172 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1173   assert(emission.Variable && "emission was not valid!");
1174 
1175   // If this was emitted as a global constant, we're done.
1176   if (emission.wasEmittedAsGlobal()) return;
1177 
1178   // If we don't have an insertion point, we're done.  Sema prevents
1179   // us from jumping into any of these scopes anyway.
1180   if (!HaveInsertPoint()) return;
1181 
1182   const VarDecl &D = *emission.Variable;
1183 
1184   // Check the type for a cleanup.
1185   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1186     emitAutoVarTypeCleanup(emission, dtorKind);
1187 
1188   // In GC mode, honor objc_precise_lifetime.
1189   if (getLangOpts().getGC() != LangOptions::NonGC &&
1190       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1191     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1192   }
1193 
1194   // Handle the cleanup attribute.
1195   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1196     const FunctionDecl *FD = CA->getFunctionDecl();
1197 
1198     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1199     assert(F && "Could not find function!");
1200 
1201     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1202     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1203   }
1204 
1205   // If this is a block variable, call _Block_object_destroy
1206   // (on the unforwarded address).
1207   if (emission.IsByRef)
1208     enterByrefCleanup(emission);
1209 }
1210 
1211 CodeGenFunction::Destroyer *
1212 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1213   switch (kind) {
1214   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1215   case QualType::DK_cxx_destructor:
1216     return destroyCXXObject;
1217   case QualType::DK_objc_strong_lifetime:
1218     return destroyARCStrongPrecise;
1219   case QualType::DK_objc_weak_lifetime:
1220     return destroyARCWeak;
1221   }
1222   llvm_unreachable("Unknown DestructionKind");
1223 }
1224 
1225 /// pushDestroy - Push the standard destructor for the given type.
1226 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1227                                   llvm::Value *addr, QualType type) {
1228   assert(dtorKind && "cannot push destructor for trivial type");
1229 
1230   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1231   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1232               cleanupKind & EHCleanup);
1233 }
1234 
1235 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1236                                   QualType type, Destroyer *destroyer,
1237                                   bool useEHCleanupForArray) {
1238   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1239                                      destroyer, useEHCleanupForArray);
1240 }
1241 
1242 /// emitDestroy - Immediately perform the destruction of the given
1243 /// object.
1244 ///
1245 /// \param addr - the address of the object; a type*
1246 /// \param type - the type of the object; if an array type, all
1247 ///   objects are destroyed in reverse order
1248 /// \param destroyer - the function to call to destroy individual
1249 ///   elements
1250 /// \param useEHCleanupForArray - whether an EH cleanup should be
1251 ///   used when destroying array elements, in case one of the
1252 ///   destructions throws an exception
1253 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1254                                   Destroyer *destroyer,
1255                                   bool useEHCleanupForArray) {
1256   const ArrayType *arrayType = getContext().getAsArrayType(type);
1257   if (!arrayType)
1258     return destroyer(*this, addr, type);
1259 
1260   llvm::Value *begin = addr;
1261   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1262 
1263   // Normally we have to check whether the array is zero-length.
1264   bool checkZeroLength = true;
1265 
1266   // But if the array length is constant, we can suppress that.
1267   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1268     // ...and if it's constant zero, we can just skip the entire thing.
1269     if (constLength->isZero()) return;
1270     checkZeroLength = false;
1271   }
1272 
1273   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1274   emitArrayDestroy(begin, end, type, destroyer,
1275                    checkZeroLength, useEHCleanupForArray);
1276 }
1277 
1278 /// emitArrayDestroy - Destroys all the elements of the given array,
1279 /// beginning from last to first.  The array cannot be zero-length.
1280 ///
1281 /// \param begin - a type* denoting the first element of the array
1282 /// \param end - a type* denoting one past the end of the array
1283 /// \param type - the element type of the array
1284 /// \param destroyer - the function to call to destroy elements
1285 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1286 ///   the remaining elements in case the destruction of a single
1287 ///   element throws
1288 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1289                                        llvm::Value *end,
1290                                        QualType type,
1291                                        Destroyer *destroyer,
1292                                        bool checkZeroLength,
1293                                        bool useEHCleanup) {
1294   assert(!type->isArrayType());
1295 
1296   // The basic structure here is a do-while loop, because we don't
1297   // need to check for the zero-element case.
1298   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1299   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1300 
1301   if (checkZeroLength) {
1302     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1303                                                 "arraydestroy.isempty");
1304     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1305   }
1306 
1307   // Enter the loop body, making that address the current address.
1308   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1309   EmitBlock(bodyBB);
1310   llvm::PHINode *elementPast =
1311     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1312   elementPast->addIncoming(end, entryBB);
1313 
1314   // Shift the address back by one element.
1315   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1316   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1317                                                    "arraydestroy.element");
1318 
1319   if (useEHCleanup)
1320     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1321 
1322   // Perform the actual destruction there.
1323   destroyer(*this, element, type);
1324 
1325   if (useEHCleanup)
1326     PopCleanupBlock();
1327 
1328   // Check whether we've reached the end.
1329   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1330   Builder.CreateCondBr(done, doneBB, bodyBB);
1331   elementPast->addIncoming(element, Builder.GetInsertBlock());
1332 
1333   // Done.
1334   EmitBlock(doneBB);
1335 }
1336 
1337 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1338 /// emitArrayDestroy, the element type here may still be an array type.
1339 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1340                                     llvm::Value *begin, llvm::Value *end,
1341                                     QualType type,
1342                                     CodeGenFunction::Destroyer *destroyer) {
1343   // If the element type is itself an array, drill down.
1344   unsigned arrayDepth = 0;
1345   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1346     // VLAs don't require a GEP index to walk into.
1347     if (!isa<VariableArrayType>(arrayType))
1348       arrayDepth++;
1349     type = arrayType->getElementType();
1350   }
1351 
1352   if (arrayDepth) {
1353     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1354 
1355     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1356     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1357     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1358   }
1359 
1360   // Destroy the array.  We don't ever need an EH cleanup because we
1361   // assume that we're in an EH cleanup ourselves, so a throwing
1362   // destructor causes an immediate terminate.
1363   CGF.emitArrayDestroy(begin, end, type, destroyer,
1364                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1365 }
1366 
1367 namespace {
1368   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1369   /// array destroy where the end pointer is regularly determined and
1370   /// does not need to be loaded from a local.
1371   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1372     llvm::Value *ArrayBegin;
1373     llvm::Value *ArrayEnd;
1374     QualType ElementType;
1375     CodeGenFunction::Destroyer *Destroyer;
1376   public:
1377     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1378                                QualType elementType,
1379                                CodeGenFunction::Destroyer *destroyer)
1380       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1381         ElementType(elementType), Destroyer(destroyer) {}
1382 
1383     void Emit(CodeGenFunction &CGF, Flags flags) {
1384       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1385                               ElementType, Destroyer);
1386     }
1387   };
1388 
1389   /// IrregularPartialArrayDestroy - a cleanup which performs a
1390   /// partial array destroy where the end pointer is irregularly
1391   /// determined and must be loaded from a local.
1392   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1393     llvm::Value *ArrayBegin;
1394     llvm::Value *ArrayEndPointer;
1395     QualType ElementType;
1396     CodeGenFunction::Destroyer *Destroyer;
1397   public:
1398     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1399                                  llvm::Value *arrayEndPointer,
1400                                  QualType elementType,
1401                                  CodeGenFunction::Destroyer *destroyer)
1402       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1403         ElementType(elementType), Destroyer(destroyer) {}
1404 
1405     void Emit(CodeGenFunction &CGF, Flags flags) {
1406       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1407       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1408                               ElementType, Destroyer);
1409     }
1410   };
1411 }
1412 
1413 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1414 /// already-constructed elements of the given array.  The cleanup
1415 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1416 ///
1417 /// \param elementType - the immediate element type of the array;
1418 ///   possibly still an array type
1419 /// \param array - a value of type elementType*
1420 /// \param destructionKind - the kind of destruction required
1421 /// \param initializedElementCount - a value of type size_t* holding
1422 ///   the number of successfully-constructed elements
1423 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1424                                                  llvm::Value *arrayEndPointer,
1425                                                        QualType elementType,
1426                                                        Destroyer *destroyer) {
1427   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1428                                                     arrayBegin, arrayEndPointer,
1429                                                     elementType, destroyer);
1430 }
1431 
1432 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1433 /// already-constructed elements of the given array.  The cleanup
1434 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1435 ///
1436 /// \param elementType - the immediate element type of the array;
1437 ///   possibly still an array type
1438 /// \param array - a value of type elementType*
1439 /// \param destructionKind - the kind of destruction required
1440 /// \param initializedElementCount - a value of type size_t* holding
1441 ///   the number of successfully-constructed elements
1442 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1443                                                      llvm::Value *arrayEnd,
1444                                                      QualType elementType,
1445                                                      Destroyer *destroyer) {
1446   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1447                                                   arrayBegin, arrayEnd,
1448                                                   elementType, destroyer);
1449 }
1450 
1451 namespace {
1452   /// A cleanup to perform a release of an object at the end of a
1453   /// function.  This is used to balance out the incoming +1 of a
1454   /// ns_consumed argument when we can't reasonably do that just by
1455   /// not doing the initial retain for a __block argument.
1456   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1457     ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1458 
1459     llvm::Value *Param;
1460 
1461     void Emit(CodeGenFunction &CGF, Flags flags) {
1462       CGF.EmitARCRelease(Param, /*precise*/ false);
1463     }
1464   };
1465 }
1466 
1467 /// Emit an alloca (or GlobalValue depending on target)
1468 /// for the specified parameter and set up LocalDeclMap.
1469 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1470                                    unsigned ArgNo) {
1471   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1472   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1473          "Invalid argument to EmitParmDecl");
1474 
1475   Arg->setName(D.getName());
1476 
1477   // Use better IR generation for certain implicit parameters.
1478   if (isa<ImplicitParamDecl>(D)) {
1479     // The only implicit argument a block has is its literal.
1480     if (BlockInfo) {
1481       LocalDeclMap[&D] = Arg;
1482 
1483       if (CGDebugInfo *DI = getDebugInfo()) {
1484         if (CGM.getCodeGenOpts().DebugInfo >=
1485             CodeGenOptions::LimitedDebugInfo) {
1486           DI->setLocation(D.getLocation());
1487           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1488         }
1489       }
1490 
1491       return;
1492     }
1493   }
1494 
1495   QualType Ty = D.getType();
1496 
1497   llvm::Value *DeclPtr;
1498   // If this is an aggregate or variable sized value, reuse the input pointer.
1499   if (!Ty->isConstantSizeType() ||
1500       CodeGenFunction::hasAggregateLLVMType(Ty)) {
1501     DeclPtr = Arg;
1502   } else {
1503     // Otherwise, create a temporary to hold the value.
1504     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1505                                                D.getName() + ".addr");
1506     Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1507     DeclPtr = Alloc;
1508 
1509     bool doStore = true;
1510 
1511     Qualifiers qs = Ty.getQualifiers();
1512 
1513     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1514       // We honor __attribute__((ns_consumed)) for types with lifetime.
1515       // For __strong, it's handled by just skipping the initial retain;
1516       // otherwise we have to balance out the initial +1 with an extra
1517       // cleanup to do the release at the end of the function.
1518       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1519 
1520       // 'self' is always formally __strong, but if this is not an
1521       // init method then we don't want to retain it.
1522       if (D.isARCPseudoStrong()) {
1523         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1524         assert(&D == method->getSelfDecl());
1525         assert(lt == Qualifiers::OCL_Strong);
1526         assert(qs.hasConst());
1527         assert(method->getMethodFamily() != OMF_init);
1528         (void) method;
1529         lt = Qualifiers::OCL_ExplicitNone;
1530       }
1531 
1532       if (lt == Qualifiers::OCL_Strong) {
1533         if (!isConsumed)
1534           // Don't use objc_retainBlock for block pointers, because we
1535           // don't want to Block_copy something just because we got it
1536           // as a parameter.
1537           Arg = EmitARCRetainNonBlock(Arg);
1538       } else {
1539         // Push the cleanup for a consumed parameter.
1540         if (isConsumed)
1541           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1542 
1543         if (lt == Qualifiers::OCL_Weak) {
1544           EmitARCInitWeak(DeclPtr, Arg);
1545           doStore = false; // The weak init is a store, no need to do two.
1546         }
1547       }
1548 
1549       // Enter the cleanup scope.
1550       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1551     }
1552 
1553     // Store the initial value into the alloca.
1554     if (doStore) {
1555       LValue lv = MakeAddrLValue(DeclPtr, Ty,
1556                                  getContext().getDeclAlign(&D));
1557       EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1558     }
1559   }
1560 
1561   llvm::Value *&DMEntry = LocalDeclMap[&D];
1562   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1563   DMEntry = DeclPtr;
1564 
1565   // Emit debug info for param declaration.
1566   if (CGDebugInfo *DI = getDebugInfo()) {
1567     if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) {
1568       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1569     }
1570   }
1571 
1572   if (D.hasAttr<AnnotateAttr>())
1573       EmitVarAnnotations(&D, DeclPtr);
1574 }
1575