1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/GlobalVariable.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Type.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 32 void CodeGenFunction::EmitDecl(const Decl &D) { 33 switch (D.getKind()) { 34 case Decl::TranslationUnit: 35 case Decl::Namespace: 36 case Decl::UnresolvedUsingTypename: 37 case Decl::ClassTemplateSpecialization: 38 case Decl::ClassTemplatePartialSpecialization: 39 case Decl::TemplateTypeParm: 40 case Decl::UnresolvedUsingValue: 41 case Decl::NonTypeTemplateParm: 42 case Decl::CXXMethod: 43 case Decl::CXXConstructor: 44 case Decl::CXXDestructor: 45 case Decl::CXXConversion: 46 case Decl::Field: 47 case Decl::IndirectField: 48 case Decl::ObjCIvar: 49 case Decl::ObjCAtDefsField: 50 case Decl::ParmVar: 51 case Decl::ImplicitParam: 52 case Decl::ClassTemplate: 53 case Decl::FunctionTemplate: 54 case Decl::TypeAliasTemplate: 55 case Decl::TemplateTemplateParm: 56 case Decl::ObjCMethod: 57 case Decl::ObjCCategory: 58 case Decl::ObjCProtocol: 59 case Decl::ObjCInterface: 60 case Decl::ObjCCategoryImpl: 61 case Decl::ObjCImplementation: 62 case Decl::ObjCProperty: 63 case Decl::ObjCCompatibleAlias: 64 case Decl::AccessSpec: 65 case Decl::LinkageSpec: 66 case Decl::ObjCPropertyImpl: 67 case Decl::ObjCClass: 68 case Decl::ObjCForwardProtocol: 69 case Decl::FileScopeAsm: 70 case Decl::Friend: 71 case Decl::FriendTemplate: 72 case Decl::Block: 73 assert(0 && "Declaration should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 // None of these decls require codegen support. 86 return; 87 88 case Decl::Var: { 89 const VarDecl &VD = cast<VarDecl>(D); 90 assert(VD.isLocalVarDecl() && 91 "Should not see file-scope variables inside a function!"); 92 return EmitVarDecl(VD); 93 } 94 95 case Decl::Typedef: // typedef int X; 96 case Decl::TypeAlias: { // using X = int; [C++0x] 97 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 98 QualType Ty = TD.getUnderlyingType(); 99 100 if (Ty->isVariablyModifiedType()) 101 EmitVariablyModifiedType(Ty); 102 } 103 } 104 } 105 106 /// EmitVarDecl - This method handles emission of any variable declaration 107 /// inside a function, including static vars etc. 108 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 109 switch (D.getStorageClass()) { 110 case SC_None: 111 case SC_Auto: 112 case SC_Register: 113 return EmitAutoVarDecl(D); 114 case SC_Static: { 115 llvm::GlobalValue::LinkageTypes Linkage = 116 llvm::GlobalValue::InternalLinkage; 117 118 // If the function definition has some sort of weak linkage, its 119 // static variables should also be weak so that they get properly 120 // uniqued. We can't do this in C, though, because there's no 121 // standard way to agree on which variables are the same (i.e. 122 // there's no mangling). 123 if (getContext().getLangOptions().CPlusPlus) 124 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 125 Linkage = CurFn->getLinkage(); 126 127 return EmitStaticVarDecl(D, Linkage); 128 } 129 case SC_Extern: 130 case SC_PrivateExtern: 131 // Don't emit it now, allow it to be emitted lazily on its first use. 132 return; 133 } 134 135 assert(0 && "Unknown storage class"); 136 } 137 138 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 139 const char *Separator) { 140 CodeGenModule &CGM = CGF.CGM; 141 if (CGF.getContext().getLangOptions().CPlusPlus) { 142 llvm::StringRef Name = CGM.getMangledName(&D); 143 return Name.str(); 144 } 145 146 std::string ContextName; 147 if (!CGF.CurFuncDecl) { 148 // Better be in a block declared in global scope. 149 const NamedDecl *ND = cast<NamedDecl>(&D); 150 const DeclContext *DC = ND->getDeclContext(); 151 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 152 MangleBuffer Name; 153 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 154 ContextName = Name.getString(); 155 } 156 else 157 assert(0 && "Unknown context for block static var decl"); 158 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 159 llvm::StringRef Name = CGM.getMangledName(FD); 160 ContextName = Name.str(); 161 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 162 ContextName = CGF.CurFn->getName(); 163 else 164 assert(0 && "Unknown context for static var decl"); 165 166 return ContextName + Separator + D.getNameAsString(); 167 } 168 169 llvm::GlobalVariable * 170 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 171 const char *Separator, 172 llvm::GlobalValue::LinkageTypes Linkage) { 173 QualType Ty = D.getType(); 174 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 175 176 std::string Name = GetStaticDeclName(*this, D, Separator); 177 178 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 179 llvm::GlobalVariable *GV = 180 new llvm::GlobalVariable(CGM.getModule(), LTy, 181 Ty.isConstant(getContext()), Linkage, 182 CGM.EmitNullConstant(D.getType()), Name, 0, 183 D.isThreadSpecified(), 184 CGM.getContext().getTargetAddressSpace(Ty)); 185 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 186 if (Linkage != llvm::GlobalValue::InternalLinkage) 187 GV->setVisibility(CurFn->getVisibility()); 188 return GV; 189 } 190 191 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 192 /// global variable that has already been created for it. If the initializer 193 /// has a different type than GV does, this may free GV and return a different 194 /// one. Otherwise it just returns GV. 195 llvm::GlobalVariable * 196 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 197 llvm::GlobalVariable *GV) { 198 llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this); 199 200 // If constant emission failed, then this should be a C++ static 201 // initializer. 202 if (!Init) { 203 if (!getContext().getLangOptions().CPlusPlus) 204 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 205 else if (Builder.GetInsertBlock()) { 206 // Since we have a static initializer, this global variable can't 207 // be constant. 208 GV->setConstant(false); 209 210 EmitCXXGuardedInit(D, GV); 211 } 212 return GV; 213 } 214 215 // The initializer may differ in type from the global. Rewrite 216 // the global to match the initializer. (We have to do this 217 // because some types, like unions, can't be completely represented 218 // in the LLVM type system.) 219 if (GV->getType()->getElementType() != Init->getType()) { 220 llvm::GlobalVariable *OldGV = GV; 221 222 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 223 OldGV->isConstant(), 224 OldGV->getLinkage(), Init, "", 225 /*InsertBefore*/ OldGV, 226 D.isThreadSpecified(), 227 CGM.getContext().getTargetAddressSpace(D.getType())); 228 GV->setVisibility(OldGV->getVisibility()); 229 230 // Steal the name of the old global 231 GV->takeName(OldGV); 232 233 // Replace all uses of the old global with the new global 234 llvm::Constant *NewPtrForOldDecl = 235 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 236 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 237 238 // Erase the old global, since it is no longer used. 239 OldGV->eraseFromParent(); 240 } 241 242 GV->setInitializer(Init); 243 return GV; 244 } 245 246 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 247 llvm::GlobalValue::LinkageTypes Linkage) { 248 llvm::Value *&DMEntry = LocalDeclMap[&D]; 249 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 250 251 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 252 253 // Store into LocalDeclMap before generating initializer to handle 254 // circular references. 255 DMEntry = GV; 256 257 // We can't have a VLA here, but we can have a pointer to a VLA, 258 // even though that doesn't really make any sense. 259 // Make sure to evaluate VLA bounds now so that we have them for later. 260 if (D.getType()->isVariablyModifiedType()) 261 EmitVariablyModifiedType(D.getType()); 262 263 // Local static block variables must be treated as globals as they may be 264 // referenced in their RHS initializer block-literal expresion. 265 CGM.setStaticLocalDeclAddress(&D, GV); 266 267 // If this value has an initializer, emit it. 268 if (D.getInit()) 269 GV = AddInitializerToStaticVarDecl(D, GV); 270 271 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 272 273 // FIXME: Merge attribute handling. 274 if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) { 275 SourceManager &SM = CGM.getContext().getSourceManager(); 276 llvm::Constant *Ann = 277 CGM.EmitAnnotateAttr(GV, AA, 278 SM.getInstantiationLineNumber(D.getLocation())); 279 CGM.AddAnnotation(Ann); 280 } 281 282 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 283 GV->setSection(SA->getName()); 284 285 if (D.hasAttr<UsedAttr>()) 286 CGM.AddUsedGlobal(GV); 287 288 // We may have to cast the constant because of the initializer 289 // mismatch above. 290 // 291 // FIXME: It is really dangerous to store this in the map; if anyone 292 // RAUW's the GV uses of this constant will be invalid. 293 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 294 const llvm::Type *LPtrTy = 295 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 296 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 297 298 // Emit global variable debug descriptor for static vars. 299 CGDebugInfo *DI = getDebugInfo(); 300 if (DI) { 301 DI->setLocation(D.getLocation()); 302 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 303 } 304 } 305 306 namespace { 307 struct DestroyObject : EHScopeStack::Cleanup { 308 DestroyObject(llvm::Value *addr, QualType type, 309 CodeGenFunction::Destroyer *destroyer, 310 bool useEHCleanupForArray) 311 : addr(addr), type(type), destroyer(*destroyer), 312 useEHCleanupForArray(useEHCleanupForArray) {} 313 314 llvm::Value *addr; 315 QualType type; 316 CodeGenFunction::Destroyer &destroyer; 317 bool useEHCleanupForArray; 318 319 void Emit(CodeGenFunction &CGF, bool isForEH) { 320 // Don't use an EH cleanup recursively from an EH cleanup. 321 bool useEHCleanupForArray = !isForEH && this->useEHCleanupForArray; 322 323 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 324 } 325 }; 326 327 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 328 DestroyNRVOVariable(llvm::Value *addr, 329 const CXXDestructorDecl *Dtor, 330 llvm::Value *NRVOFlag) 331 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 332 333 const CXXDestructorDecl *Dtor; 334 llvm::Value *NRVOFlag; 335 llvm::Value *Loc; 336 337 void Emit(CodeGenFunction &CGF, bool IsForEH) { 338 // Along the exceptions path we always execute the dtor. 339 bool NRVO = !IsForEH && NRVOFlag; 340 341 llvm::BasicBlock *SkipDtorBB = 0; 342 if (NRVO) { 343 // If we exited via NRVO, we skip the destructor call. 344 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 345 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 346 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 347 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 348 CGF.EmitBlock(RunDtorBB); 349 } 350 351 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 352 /*ForVirtualBase=*/false, Loc); 353 354 if (NRVO) CGF.EmitBlock(SkipDtorBB); 355 } 356 }; 357 358 struct CallStackRestore : EHScopeStack::Cleanup { 359 llvm::Value *Stack; 360 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 361 void Emit(CodeGenFunction &CGF, bool IsForEH) { 362 llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp"); 363 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 364 CGF.Builder.CreateCall(F, V); 365 } 366 }; 367 368 struct ExtendGCLifetime : EHScopeStack::Cleanup { 369 const VarDecl &Var; 370 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 371 372 void Emit(CodeGenFunction &CGF, bool forEH) { 373 // Compute the address of the local variable, in case it's a 374 // byref or something. 375 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 376 SourceLocation()); 377 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 378 CGF.EmitExtendGCLifetime(value); 379 } 380 }; 381 382 struct CallCleanupFunction : EHScopeStack::Cleanup { 383 llvm::Constant *CleanupFn; 384 const CGFunctionInfo &FnInfo; 385 const VarDecl &Var; 386 387 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 388 const VarDecl *Var) 389 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 390 391 void Emit(CodeGenFunction &CGF, bool IsForEH) { 392 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 393 SourceLocation()); 394 // Compute the address of the local variable, in case it's a byref 395 // or something. 396 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 397 398 // In some cases, the type of the function argument will be different from 399 // the type of the pointer. An example of this is 400 // void f(void* arg); 401 // __attribute__((cleanup(f))) void *g; 402 // 403 // To fix this we insert a bitcast here. 404 QualType ArgTy = FnInfo.arg_begin()->type; 405 llvm::Value *Arg = 406 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 407 408 CallArgList Args; 409 Args.add(RValue::get(Arg), 410 CGF.getContext().getPointerType(Var.getType())); 411 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 412 } 413 }; 414 } 415 416 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 417 /// variable with lifetime. 418 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 419 llvm::Value *addr, 420 Qualifiers::ObjCLifetime lifetime) { 421 switch (lifetime) { 422 case Qualifiers::OCL_None: 423 llvm_unreachable("present but none"); 424 425 case Qualifiers::OCL_ExplicitNone: 426 // nothing to do 427 break; 428 429 case Qualifiers::OCL_Strong: { 430 CGF.PushARCReleaseCleanup(CGF.getARCCleanupKind(), 431 var.getType(), addr, 432 var.hasAttr<ObjCPreciseLifetimeAttr>()); 433 break; 434 } 435 case Qualifiers::OCL_Autoreleasing: 436 // nothing to do 437 break; 438 439 case Qualifiers::OCL_Weak: 440 // __weak objects always get EH cleanups; otherwise, exceptions 441 // could cause really nasty crashes instead of mere leaks. 442 CGF.PushARCWeakReleaseCleanup(NormalAndEHCleanup, var.getType(), addr); 443 break; 444 } 445 } 446 447 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 448 if (const Expr *e = dyn_cast<Expr>(s)) { 449 // Skip the most common kinds of expressions that make 450 // hierarchy-walking expensive. 451 s = e = e->IgnoreParenCasts(); 452 453 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 454 return (ref->getDecl() == &var); 455 } 456 457 for (Stmt::const_child_range children = s->children(); children; ++children) 458 // children might be null; as in missing decl or conditional of an if-stmt. 459 if ((*children) && isAccessedBy(var, *children)) 460 return true; 461 462 return false; 463 } 464 465 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 466 if (!decl) return false; 467 if (!isa<VarDecl>(decl)) return false; 468 const VarDecl *var = cast<VarDecl>(decl); 469 return isAccessedBy(*var, e); 470 } 471 472 static void drillIntoBlockVariable(CodeGenFunction &CGF, 473 LValue &lvalue, 474 const VarDecl *var) { 475 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 476 } 477 478 void CodeGenFunction::EmitScalarInit(const Expr *init, 479 const ValueDecl *D, 480 LValue lvalue, 481 bool capturedByInit) { 482 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 483 if (!lifetime) { 484 llvm::Value *value = EmitScalarExpr(init); 485 if (capturedByInit) 486 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 487 EmitStoreThroughLValue(RValue::get(value), lvalue); 488 return; 489 } 490 491 // If we're emitting a value with lifetime, we have to do the 492 // initialization *before* we leave the cleanup scopes. 493 CodeGenFunction::RunCleanupsScope Scope(*this); 494 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) 495 init = ewc->getSubExpr(); 496 497 // We have to maintain the illusion that the variable is 498 // zero-initialized. If the variable might be accessed in its 499 // initializer, zero-initialize before running the initializer, then 500 // actually perform the initialization with an assign. 501 bool accessedByInit = false; 502 if (lifetime != Qualifiers::OCL_ExplicitNone) 503 accessedByInit = isAccessedBy(D, init); 504 if (accessedByInit) { 505 LValue tempLV = lvalue; 506 // Drill down to the __block object if necessary. 507 if (capturedByInit) { 508 // We can use a simple GEP for this because it can't have been 509 // moved yet. 510 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 511 getByRefValueLLVMField(cast<VarDecl>(D)))); 512 } 513 514 const llvm::PointerType *ty 515 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 516 ty = cast<llvm::PointerType>(ty->getElementType()); 517 518 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 519 520 // If __weak, we want to use a barrier under certain conditions. 521 if (lifetime == Qualifiers::OCL_Weak) 522 EmitARCInitWeak(tempLV.getAddress(), zero); 523 524 // Otherwise just do a simple store. 525 else 526 EmitStoreOfScalar(zero, tempLV); 527 } 528 529 // Emit the initializer. 530 llvm::Value *value = 0; 531 532 switch (lifetime) { 533 case Qualifiers::OCL_None: 534 llvm_unreachable("present but none"); 535 536 case Qualifiers::OCL_ExplicitNone: 537 // nothing to do 538 value = EmitScalarExpr(init); 539 break; 540 541 case Qualifiers::OCL_Strong: { 542 value = EmitARCRetainScalarExpr(init); 543 break; 544 } 545 546 case Qualifiers::OCL_Weak: { 547 // No way to optimize a producing initializer into this. It's not 548 // worth optimizing for, because the value will immediately 549 // disappear in the common case. 550 value = EmitScalarExpr(init); 551 552 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 553 if (accessedByInit) 554 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 555 else 556 EmitARCInitWeak(lvalue.getAddress(), value); 557 return; 558 } 559 560 case Qualifiers::OCL_Autoreleasing: 561 value = EmitARCRetainAutoreleaseScalarExpr(init); 562 break; 563 } 564 565 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 566 567 // If the variable might have been accessed by its initializer, we 568 // might have to initialize with a barrier. We have to do this for 569 // both __weak and __strong, but __weak got filtered out above. 570 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 571 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 572 EmitStoreOfScalar(value, lvalue); 573 EmitARCRelease(oldValue, /*precise*/ false); 574 return; 575 } 576 577 EmitStoreOfScalar(value, lvalue); 578 } 579 580 /// EmitScalarInit - Initialize the given lvalue with the given object. 581 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 582 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 583 if (!lifetime) 584 return EmitStoreThroughLValue(RValue::get(init), lvalue); 585 586 switch (lifetime) { 587 case Qualifiers::OCL_None: 588 llvm_unreachable("present but none"); 589 590 case Qualifiers::OCL_ExplicitNone: 591 // nothing to do 592 break; 593 594 case Qualifiers::OCL_Strong: 595 init = EmitARCRetain(lvalue.getType(), init); 596 break; 597 598 case Qualifiers::OCL_Weak: 599 // Initialize and then skip the primitive store. 600 EmitARCInitWeak(lvalue.getAddress(), init); 601 return; 602 603 case Qualifiers::OCL_Autoreleasing: 604 init = EmitARCRetainAutorelease(lvalue.getType(), init); 605 break; 606 } 607 608 EmitStoreOfScalar(init, lvalue); 609 } 610 611 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 612 /// non-zero parts of the specified initializer with equal or fewer than 613 /// NumStores scalar stores. 614 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 615 unsigned &NumStores) { 616 // Zero and Undef never requires any extra stores. 617 if (isa<llvm::ConstantAggregateZero>(Init) || 618 isa<llvm::ConstantPointerNull>(Init) || 619 isa<llvm::UndefValue>(Init)) 620 return true; 621 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 622 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 623 isa<llvm::ConstantExpr>(Init)) 624 return Init->isNullValue() || NumStores--; 625 626 // See if we can emit each element. 627 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 628 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 629 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 630 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 631 return false; 632 } 633 return true; 634 } 635 636 // Anything else is hard and scary. 637 return false; 638 } 639 640 /// emitStoresForInitAfterMemset - For inits that 641 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 642 /// stores that would be required. 643 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 644 bool isVolatile, CGBuilderTy &Builder) { 645 // Zero doesn't require any stores. 646 if (isa<llvm::ConstantAggregateZero>(Init) || 647 isa<llvm::ConstantPointerNull>(Init) || 648 isa<llvm::UndefValue>(Init)) 649 return; 650 651 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 652 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 653 isa<llvm::ConstantExpr>(Init)) { 654 if (!Init->isNullValue()) 655 Builder.CreateStore(Init, Loc, isVolatile); 656 return; 657 } 658 659 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 660 "Unknown value type!"); 661 662 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 663 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 664 if (Elt->isNullValue()) continue; 665 666 // Otherwise, get a pointer to the element and emit it. 667 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 668 isVolatile, Builder); 669 } 670 } 671 672 673 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 674 /// plus some stores to initialize a local variable instead of using a memcpy 675 /// from a constant global. It is beneficial to use memset if the global is all 676 /// zeros, or mostly zeros and large. 677 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 678 uint64_t GlobalSize) { 679 // If a global is all zeros, always use a memset. 680 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 681 682 683 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 684 // do it if it will require 6 or fewer scalar stores. 685 // TODO: Should budget depends on the size? Avoiding a large global warrants 686 // plopping in more stores. 687 unsigned StoreBudget = 6; 688 uint64_t SizeLimit = 32; 689 690 return GlobalSize > SizeLimit && 691 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 692 } 693 694 695 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 696 /// variable declaration with auto, register, or no storage class specifier. 697 /// These turn into simple stack objects, or GlobalValues depending on target. 698 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 699 AutoVarEmission emission = EmitAutoVarAlloca(D); 700 EmitAutoVarInit(emission); 701 EmitAutoVarCleanups(emission); 702 } 703 704 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 705 /// local variable. Does not emit initalization or destruction. 706 CodeGenFunction::AutoVarEmission 707 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 708 QualType Ty = D.getType(); 709 710 AutoVarEmission emission(D); 711 712 bool isByRef = D.hasAttr<BlocksAttr>(); 713 emission.IsByRef = isByRef; 714 715 CharUnits alignment = getContext().getDeclAlign(&D); 716 emission.Alignment = alignment; 717 718 // If the type is variably-modified, emit all the VLA sizes for it. 719 if (Ty->isVariablyModifiedType()) 720 EmitVariablyModifiedType(Ty); 721 722 llvm::Value *DeclPtr; 723 if (Ty->isConstantSizeType()) { 724 if (!Target.useGlobalsForAutomaticVariables()) { 725 bool NRVO = getContext().getLangOptions().ElideConstructors && 726 D.isNRVOVariable(); 727 728 // If this value is a POD array or struct with a statically 729 // determinable constant initializer, there are optimizations we 730 // can do. 731 // TODO: we can potentially constant-evaluate non-POD structs and 732 // arrays as long as the initialization is trivial (e.g. if they 733 // have a non-trivial destructor, but not a non-trivial constructor). 734 if (D.getInit() && 735 (Ty->isArrayType() || Ty->isRecordType()) && 736 (Ty.isPODType(getContext()) || 737 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 738 D.getInit()->isConstantInitializer(getContext(), false)) { 739 740 // If the variable's a const type, and it's neither an NRVO 741 // candidate nor a __block variable, emit it as a global instead. 742 if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() && 743 !NRVO && !isByRef) { 744 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 745 746 emission.Address = 0; // signal this condition to later callbacks 747 assert(emission.wasEmittedAsGlobal()); 748 return emission; 749 } 750 751 // Otherwise, tell the initialization code that we're in this case. 752 emission.IsConstantAggregate = true; 753 } 754 755 // A normal fixed sized variable becomes an alloca in the entry block, 756 // unless it's an NRVO variable. 757 const llvm::Type *LTy = ConvertTypeForMem(Ty); 758 759 if (NRVO) { 760 // The named return value optimization: allocate this variable in the 761 // return slot, so that we can elide the copy when returning this 762 // variable (C++0x [class.copy]p34). 763 DeclPtr = ReturnValue; 764 765 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 766 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 767 // Create a flag that is used to indicate when the NRVO was applied 768 // to this variable. Set it to zero to indicate that NRVO was not 769 // applied. 770 llvm::Value *Zero = Builder.getFalse(); 771 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 772 EnsureInsertPoint(); 773 Builder.CreateStore(Zero, NRVOFlag); 774 775 // Record the NRVO flag for this variable. 776 NRVOFlags[&D] = NRVOFlag; 777 emission.NRVOFlag = NRVOFlag; 778 } 779 } 780 } else { 781 if (isByRef) 782 LTy = BuildByRefType(&D); 783 784 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 785 Alloc->setName(D.getNameAsString()); 786 787 CharUnits allocaAlignment = alignment; 788 if (isByRef) 789 allocaAlignment = std::max(allocaAlignment, 790 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 791 Alloc->setAlignment(allocaAlignment.getQuantity()); 792 DeclPtr = Alloc; 793 } 794 } else { 795 // Targets that don't support recursion emit locals as globals. 796 const char *Class = 797 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 798 DeclPtr = CreateStaticVarDecl(D, Class, 799 llvm::GlobalValue::InternalLinkage); 800 } 801 } else { 802 EnsureInsertPoint(); 803 804 if (!DidCallStackSave) { 805 // Save the stack. 806 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 807 808 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 809 llvm::Value *V = Builder.CreateCall(F); 810 811 Builder.CreateStore(V, Stack); 812 813 DidCallStackSave = true; 814 815 // Push a cleanup block and restore the stack there. 816 // FIXME: in general circumstances, this should be an EH cleanup. 817 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 818 } 819 820 llvm::Value *elementCount; 821 QualType elementType; 822 llvm::tie(elementCount, elementType) = getVLASize(Ty); 823 824 const llvm::Type *llvmTy = ConvertTypeForMem(elementType); 825 826 // Allocate memory for the array. 827 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 828 vla->setAlignment(alignment.getQuantity()); 829 830 DeclPtr = vla; 831 } 832 833 llvm::Value *&DMEntry = LocalDeclMap[&D]; 834 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 835 DMEntry = DeclPtr; 836 emission.Address = DeclPtr; 837 838 // Emit debug info for local var declaration. 839 if (HaveInsertPoint()) 840 if (CGDebugInfo *DI = getDebugInfo()) { 841 DI->setLocation(D.getLocation()); 842 if (Target.useGlobalsForAutomaticVariables()) { 843 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 844 } else 845 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 846 } 847 848 return emission; 849 } 850 851 /// Determines whether the given __block variable is potentially 852 /// captured by the given expression. 853 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 854 // Skip the most common kinds of expressions that make 855 // hierarchy-walking expensive. 856 e = e->IgnoreParenCasts(); 857 858 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 859 const BlockDecl *block = be->getBlockDecl(); 860 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 861 e = block->capture_end(); i != e; ++i) { 862 if (i->getVariable() == &var) 863 return true; 864 } 865 866 // No need to walk into the subexpressions. 867 return false; 868 } 869 870 for (Stmt::const_child_range children = e->children(); children; ++children) 871 if (isCapturedBy(var, cast<Expr>(*children))) 872 return true; 873 874 return false; 875 } 876 877 /// \brief Determine whether the given initializer is trivial in the sense 878 /// that it requires no code to be generated. 879 static bool isTrivialInitializer(const Expr *Init) { 880 if (!Init) 881 return true; 882 883 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 884 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 885 if (Constructor->isTrivial() && 886 Constructor->isDefaultConstructor() && 887 !Construct->requiresZeroInitialization()) 888 return true; 889 890 return false; 891 } 892 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 893 assert(emission.Variable && "emission was not valid!"); 894 895 // If this was emitted as a global constant, we're done. 896 if (emission.wasEmittedAsGlobal()) return; 897 898 const VarDecl &D = *emission.Variable; 899 QualType type = D.getType(); 900 901 // If this local has an initializer, emit it now. 902 const Expr *Init = D.getInit(); 903 904 // If we are at an unreachable point, we don't need to emit the initializer 905 // unless it contains a label. 906 if (!HaveInsertPoint()) { 907 if (!Init || !ContainsLabel(Init)) return; 908 EnsureInsertPoint(); 909 } 910 911 // Initialize the structure of a __block variable. 912 if (emission.IsByRef) 913 emitByrefStructureInit(emission); 914 915 if (isTrivialInitializer(Init)) 916 return; 917 918 919 CharUnits alignment = emission.Alignment; 920 921 // Check whether this is a byref variable that's potentially 922 // captured and moved by its own initializer. If so, we'll need to 923 // emit the initializer first, then copy into the variable. 924 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 925 926 llvm::Value *Loc = 927 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 928 929 if (!emission.IsConstantAggregate) { 930 LValue lv = MakeAddrLValue(Loc, type, alignment.getQuantity()); 931 lv.setNonGC(true); 932 return EmitExprAsInit(Init, &D, lv, capturedByInit); 933 } 934 935 // If this is a simple aggregate initialization, we can optimize it 936 // in various ways. 937 assert(!capturedByInit && "constant init contains a capturing block?"); 938 939 bool isVolatile = type.isVolatileQualified(); 940 941 llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this); 942 assert(constant != 0 && "Wasn't a simple constant init?"); 943 944 llvm::Value *SizeVal = 945 llvm::ConstantInt::get(IntPtrTy, 946 getContext().getTypeSizeInChars(type).getQuantity()); 947 948 const llvm::Type *BP = Int8PtrTy; 949 if (Loc->getType() != BP) 950 Loc = Builder.CreateBitCast(Loc, BP, "tmp"); 951 952 // If the initializer is all or mostly zeros, codegen with memset then do 953 // a few stores afterward. 954 if (shouldUseMemSetPlusStoresToInitialize(constant, 955 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 956 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 957 alignment.getQuantity(), isVolatile); 958 if (!constant->isNullValue()) { 959 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 960 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 961 } 962 } else { 963 // Otherwise, create a temporary global with the initializer then 964 // memcpy from the global to the alloca. 965 std::string Name = GetStaticDeclName(*this, D, "."); 966 llvm::GlobalVariable *GV = 967 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 968 llvm::GlobalValue::InternalLinkage, 969 constant, Name, 0, false, 0); 970 GV->setAlignment(alignment.getQuantity()); 971 GV->setUnnamedAddr(true); 972 973 llvm::Value *SrcPtr = GV; 974 if (SrcPtr->getType() != BP) 975 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 976 977 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 978 isVolatile); 979 } 980 } 981 982 /// Emit an expression as an initializer for a variable at the given 983 /// location. The expression is not necessarily the normal 984 /// initializer for the variable, and the address is not necessarily 985 /// its normal location. 986 /// 987 /// \param init the initializing expression 988 /// \param var the variable to act as if we're initializing 989 /// \param loc the address to initialize; its type is a pointer 990 /// to the LLVM mapping of the variable's type 991 /// \param alignment the alignment of the address 992 /// \param capturedByInit true if the variable is a __block variable 993 /// whose address is potentially changed by the initializer 994 void CodeGenFunction::EmitExprAsInit(const Expr *init, 995 const ValueDecl *D, 996 LValue lvalue, 997 bool capturedByInit) { 998 QualType type = D->getType(); 999 1000 if (type->isReferenceType()) { 1001 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1002 if (capturedByInit) 1003 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1004 EmitStoreThroughLValue(rvalue, lvalue); 1005 } else if (!hasAggregateLLVMType(type)) { 1006 EmitScalarInit(init, D, lvalue, capturedByInit); 1007 } else if (type->isAnyComplexType()) { 1008 ComplexPairTy complex = EmitComplexExpr(init); 1009 if (capturedByInit) 1010 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1011 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile()); 1012 } else { 1013 // TODO: how can we delay here if D is captured by its initializer? 1014 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, true, false)); 1015 } 1016 } 1017 1018 /// Enter a destroy cleanup for the given local variable. 1019 void CodeGenFunction::emitAutoVarTypeCleanup( 1020 const CodeGenFunction::AutoVarEmission &emission, 1021 QualType::DestructionKind dtorKind) { 1022 assert(dtorKind != QualType::DK_none); 1023 1024 // Note that for __block variables, we want to destroy the 1025 // original stack object, not the possibly forwarded object. 1026 llvm::Value *addr = emission.getObjectAddress(*this); 1027 1028 const VarDecl *var = emission.Variable; 1029 QualType type = var->getType(); 1030 1031 CleanupKind cleanupKind = NormalAndEHCleanup; 1032 CodeGenFunction::Destroyer *destroyer = 0; 1033 1034 switch (dtorKind) { 1035 case QualType::DK_none: 1036 llvm_unreachable("no cleanup for trivially-destructible variable"); 1037 1038 case QualType::DK_cxx_destructor: 1039 // If there's an NRVO flag on the emission, we need a different 1040 // cleanup. 1041 if (emission.NRVOFlag) { 1042 assert(!type->isArrayType()); 1043 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1044 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1045 emission.NRVOFlag); 1046 return; 1047 } 1048 break; 1049 1050 case QualType::DK_objc_strong_lifetime: 1051 // Suppress cleanups for pseudo-strong variables. 1052 if (var->isARCPseudoStrong()) return; 1053 1054 // Otherwise, consider whether to use an EH cleanup or not. 1055 cleanupKind = getARCCleanupKind(); 1056 1057 // Use the imprecise destroyer by default. 1058 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1059 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1060 break; 1061 1062 case QualType::DK_objc_weak_lifetime: 1063 break; 1064 } 1065 1066 // If we haven't chosen a more specific destroyer, use the default. 1067 if (!destroyer) destroyer = &getDestroyer(dtorKind); 1068 1069 // Use an EH cleanup in array destructors iff the destructor itself 1070 // is being pushed as an EH cleanup. 1071 bool useEHCleanup = (cleanupKind & EHCleanup); 1072 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1073 useEHCleanup); 1074 } 1075 1076 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1077 assert(emission.Variable && "emission was not valid!"); 1078 1079 // If this was emitted as a global constant, we're done. 1080 if (emission.wasEmittedAsGlobal()) return; 1081 1082 const VarDecl &D = *emission.Variable; 1083 1084 // Check the type for a cleanup. 1085 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1086 emitAutoVarTypeCleanup(emission, dtorKind); 1087 1088 // In GC mode, honor objc_precise_lifetime. 1089 if (getLangOptions().getGCMode() != LangOptions::NonGC && 1090 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1091 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1092 } 1093 1094 // Handle the cleanup attribute. 1095 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1096 const FunctionDecl *FD = CA->getFunctionDecl(); 1097 1098 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1099 assert(F && "Could not find function!"); 1100 1101 const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD); 1102 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1103 } 1104 1105 // If this is a block variable, call _Block_object_destroy 1106 // (on the unforwarded address). 1107 if (emission.IsByRef) 1108 enterByrefCleanup(emission); 1109 } 1110 1111 CodeGenFunction::Destroyer & 1112 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1113 // This is surprisingly compiler-dependent. GCC 4.2 can't bind 1114 // references to functions directly in returns, and using '*&foo' 1115 // confuses MSVC. Luckily, the following code pattern works in both. 1116 Destroyer *destroyer = 0; 1117 switch (kind) { 1118 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1119 case QualType::DK_cxx_destructor: 1120 destroyer = &destroyCXXObject; 1121 break; 1122 case QualType::DK_objc_strong_lifetime: 1123 destroyer = &destroyARCStrongPrecise; 1124 break; 1125 case QualType::DK_objc_weak_lifetime: 1126 destroyer = &destroyARCWeak; 1127 break; 1128 } 1129 return *destroyer; 1130 } 1131 1132 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1133 QualType type, Destroyer &destroyer, 1134 bool useEHCleanupForArray) { 1135 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1136 useEHCleanupForArray); 1137 } 1138 1139 /// emitDestroy - Immediately perform the destruction of the given 1140 /// object. 1141 /// 1142 /// \param addr - the address of the object; a type* 1143 /// \param type - the type of the object; if an array type, all 1144 /// objects are destroyed in reverse order 1145 /// \param destroyer - the function to call to destroy individual 1146 /// elements 1147 /// \param useEHCleanupForArray - whether an EH cleanup should be 1148 /// used when destroying array elements, in case one of the 1149 /// destructions throws an exception 1150 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1151 Destroyer &destroyer, 1152 bool useEHCleanupForArray) { 1153 const ArrayType *arrayType = getContext().getAsArrayType(type); 1154 if (!arrayType) 1155 return destroyer(*this, addr, type); 1156 1157 llvm::Value *begin = addr; 1158 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1159 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1160 emitArrayDestroy(begin, end, type, destroyer, useEHCleanupForArray); 1161 } 1162 1163 /// emitArrayDestroy - Destroys all the elements of the given array, 1164 /// beginning from last to first. The array cannot be zero-length. 1165 /// 1166 /// \param begin - a type* denoting the first element of the array 1167 /// \param end - a type* denoting one past the end of the array 1168 /// \param type - the element type of the array 1169 /// \param destroyer - the function to call to destroy elements 1170 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1171 /// the remaining elements in case the destruction of a single 1172 /// element throws 1173 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1174 llvm::Value *end, 1175 QualType type, 1176 Destroyer &destroyer, 1177 bool useEHCleanup) { 1178 assert(!type->isArrayType()); 1179 1180 // The basic structure here is a do-while loop, because we don't 1181 // need to check for the zero-element case. 1182 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1183 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1184 1185 // Enter the loop body, making that address the current address. 1186 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1187 EmitBlock(bodyBB); 1188 llvm::PHINode *elementPast = 1189 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1190 elementPast->addIncoming(end, entryBB); 1191 1192 // Shift the address back by one element. 1193 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1194 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1195 "arraydestroy.element"); 1196 1197 if (useEHCleanup) 1198 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1199 1200 // Perform the actual destruction there. 1201 destroyer(*this, element, type); 1202 1203 if (useEHCleanup) 1204 PopCleanupBlock(); 1205 1206 // Check whether we've reached the end. 1207 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1208 Builder.CreateCondBr(done, doneBB, bodyBB); 1209 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1210 1211 // Done. 1212 EmitBlock(doneBB); 1213 } 1214 1215 /// Perform partial array destruction as if in an EH cleanup. Unlike 1216 /// emitArrayDestroy, the element type here may still be an array type. 1217 /// 1218 /// Essentially does an emitArrayDestroy, but checking for the 1219 /// possibility of a zero-length array (in case the initializer for 1220 /// the first element throws). 1221 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1222 llvm::Value *begin, llvm::Value *end, 1223 QualType type, 1224 CodeGenFunction::Destroyer &destroyer) { 1225 // Check whether the array is empty. For the sake of prettier IR, 1226 // we want to jump to the end of the array destroy loop instead of 1227 // jumping to yet another block. We can do this with some modest 1228 // assumptions about how emitArrayDestroy works. 1229 1230 llvm::Value *earlyTest = 1231 CGF.Builder.CreateICmpEQ(begin, end, "pad.isempty"); 1232 1233 llvm::BasicBlock *nextBB = CGF.createBasicBlock("pad.arraydestroy"); 1234 1235 // Temporarily, build the conditional branch with identical 1236 // successors. We'll patch this in a bit. 1237 llvm::BranchInst *br = 1238 CGF.Builder.CreateCondBr(earlyTest, nextBB, nextBB); 1239 CGF.EmitBlock(nextBB); 1240 1241 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1242 1243 // If the element type is itself an array, drill down. 1244 llvm::SmallVector<llvm::Value*,4> gepIndices; 1245 gepIndices.push_back(zero); 1246 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1247 // VLAs don't require a GEP index to walk into. 1248 if (!isa<VariableArrayType>(arrayType)) 1249 gepIndices.push_back(zero); 1250 type = arrayType->getElementType(); 1251 } 1252 if (gepIndices.size() != 1) { 1253 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices.begin(), 1254 gepIndices.end(), "pad.arraybegin"); 1255 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices.begin(), 1256 gepIndices.end(), "pad.arrayend"); 1257 } 1258 1259 // Now that we know that the array isn't empty, destroy it. We 1260 // don't ever need an EH cleanup because we assume that we're in an 1261 // EH cleanup ourselves, so a throwing destructor causes an 1262 // immediate terminate. 1263 CGF.emitArrayDestroy(begin, end, type, destroyer, /*useEHCleanup*/ false); 1264 1265 // Set the conditional branch's 'false' successor to doneBB. 1266 llvm::BasicBlock *doneBB = CGF.Builder.GetInsertBlock(); 1267 assert(CGF.Builder.GetInsertPoint() == doneBB->begin()); 1268 br->setSuccessor(0, doneBB); 1269 } 1270 1271 namespace { 1272 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1273 /// array destroy where the end pointer is regularly determined and 1274 /// does not need to be loaded from a local. 1275 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1276 llvm::Value *ArrayBegin; 1277 llvm::Value *ArrayEnd; 1278 QualType ElementType; 1279 CodeGenFunction::Destroyer &Destroyer; 1280 public: 1281 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1282 QualType elementType, 1283 CodeGenFunction::Destroyer *destroyer) 1284 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1285 ElementType(elementType), Destroyer(*destroyer) {} 1286 1287 void Emit(CodeGenFunction &CGF, bool isForEH) { 1288 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1289 ElementType, Destroyer); 1290 } 1291 }; 1292 1293 /// IrregularPartialArrayDestroy - a cleanup which performs a 1294 /// partial array destroy where the end pointer is irregularly 1295 /// determined and must be loaded from a local. 1296 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1297 llvm::Value *ArrayBegin; 1298 llvm::Value *ArrayEndPointer; 1299 QualType ElementType; 1300 CodeGenFunction::Destroyer &Destroyer; 1301 public: 1302 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1303 llvm::Value *arrayEndPointer, 1304 QualType elementType, 1305 CodeGenFunction::Destroyer *destroyer) 1306 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1307 ElementType(elementType), Destroyer(*destroyer) {} 1308 1309 void Emit(CodeGenFunction &CGF, bool isForEH) { 1310 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1311 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1312 ElementType, Destroyer); 1313 } 1314 }; 1315 } 1316 1317 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1318 /// already-constructed elements of the given array. The cleanup 1319 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1320 /// 1321 /// \param elementType - the immediate element type of the array; 1322 /// possibly still an array type 1323 /// \param array - a value of type elementType* 1324 /// \param destructionKind - the kind of destruction required 1325 /// \param initializedElementCount - a value of type size_t* holding 1326 /// the number of successfully-constructed elements 1327 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *array, 1328 llvm::Value *arrayEndPointer, 1329 QualType elementType, 1330 Destroyer &destroyer) { 1331 // FIXME: can this be in a conditional expression? 1332 EHStack.pushCleanup<IrregularPartialArrayDestroy>(EHCleanup, array, 1333 arrayEndPointer, 1334 elementType, &destroyer); 1335 } 1336 1337 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1338 /// already-constructed elements of the given array. The cleanup 1339 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1340 /// 1341 /// \param elementType - the immediate element type of the array; 1342 /// possibly still an array type 1343 /// \param array - a value of type elementType* 1344 /// \param destructionKind - the kind of destruction required 1345 /// \param initializedElementCount - a value of type size_t* holding 1346 /// the number of successfully-constructed elements 1347 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1348 llvm::Value *arrayEnd, 1349 QualType elementType, 1350 Destroyer &destroyer) { 1351 // FIXME: can this be in a conditional expression? 1352 EHStack.pushCleanup<RegularPartialArrayDestroy>(EHCleanup, 1353 arrayBegin, arrayEnd, 1354 elementType, &destroyer); 1355 } 1356 1357 namespace { 1358 /// A cleanup to perform a release of an object at the end of a 1359 /// function. This is used to balance out the incoming +1 of a 1360 /// ns_consumed argument when we can't reasonably do that just by 1361 /// not doing the initial retain for a __block argument. 1362 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1363 ConsumeARCParameter(llvm::Value *param) : Param(param) {} 1364 1365 llvm::Value *Param; 1366 1367 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1368 CGF.EmitARCRelease(Param, /*precise*/ false); 1369 } 1370 }; 1371 } 1372 1373 /// Emit an alloca (or GlobalValue depending on target) 1374 /// for the specified parameter and set up LocalDeclMap. 1375 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1376 unsigned ArgNo) { 1377 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1378 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1379 "Invalid argument to EmitParmDecl"); 1380 1381 Arg->setName(D.getName()); 1382 1383 // Use better IR generation for certain implicit parameters. 1384 if (isa<ImplicitParamDecl>(D)) { 1385 // The only implicit argument a block has is its literal. 1386 if (BlockInfo) { 1387 LocalDeclMap[&D] = Arg; 1388 1389 if (CGDebugInfo *DI = getDebugInfo()) { 1390 DI->setLocation(D.getLocation()); 1391 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 1392 } 1393 1394 return; 1395 } 1396 } 1397 1398 QualType Ty = D.getType(); 1399 1400 llvm::Value *DeclPtr; 1401 // If this is an aggregate or variable sized value, reuse the input pointer. 1402 if (!Ty->isConstantSizeType() || 1403 CodeGenFunction::hasAggregateLLVMType(Ty)) { 1404 DeclPtr = Arg; 1405 } else { 1406 // Otherwise, create a temporary to hold the value. 1407 DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr"); 1408 1409 bool doStore = true; 1410 1411 Qualifiers qs = Ty.getQualifiers(); 1412 1413 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1414 // We honor __attribute__((ns_consumed)) for types with lifetime. 1415 // For __strong, it's handled by just skipping the initial retain; 1416 // otherwise we have to balance out the initial +1 with an extra 1417 // cleanup to do the release at the end of the function. 1418 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1419 1420 // 'self' is always formally __strong, but if this is not an 1421 // init method then we don't want to retain it. 1422 if (D.isARCPseudoStrong()) { 1423 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1424 assert(&D == method->getSelfDecl()); 1425 assert(lt == Qualifiers::OCL_Strong); 1426 assert(qs.hasConst()); 1427 assert(method->getMethodFamily() != OMF_init); 1428 (void) method; 1429 lt = Qualifiers::OCL_ExplicitNone; 1430 } 1431 1432 if (lt == Qualifiers::OCL_Strong) { 1433 if (!isConsumed) 1434 // Don't use objc_retainBlock for block pointers, because we 1435 // don't want to Block_copy something just because we got it 1436 // as a parameter. 1437 Arg = EmitARCRetainNonBlock(Arg); 1438 } else { 1439 // Push the cleanup for a consumed parameter. 1440 if (isConsumed) 1441 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg); 1442 1443 if (lt == Qualifiers::OCL_Weak) { 1444 EmitARCInitWeak(DeclPtr, Arg); 1445 doStore = false; // The weak init is a store, no need to do two 1446 } 1447 } 1448 1449 // Enter the cleanup scope. 1450 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1451 } 1452 1453 // Store the initial value into the alloca. 1454 if (doStore) { 1455 LValue lv = MakeAddrLValue(DeclPtr, Ty, 1456 getContext().getDeclAlign(&D).getQuantity()); 1457 EmitStoreOfScalar(Arg, lv); 1458 } 1459 } 1460 1461 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1462 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1463 DMEntry = DeclPtr; 1464 1465 // Emit debug info for param declaration. 1466 if (CGDebugInfo *DI = getDebugInfo()) 1467 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1468 } 1469