1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Type.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 
32 void CodeGenFunction::EmitDecl(const Decl &D) {
33   switch (D.getKind()) {
34   case Decl::TranslationUnit:
35   case Decl::Namespace:
36   case Decl::UnresolvedUsingTypename:
37   case Decl::ClassTemplateSpecialization:
38   case Decl::ClassTemplatePartialSpecialization:
39   case Decl::TemplateTypeParm:
40   case Decl::UnresolvedUsingValue:
41   case Decl::NonTypeTemplateParm:
42   case Decl::CXXMethod:
43   case Decl::CXXConstructor:
44   case Decl::CXXDestructor:
45   case Decl::CXXConversion:
46   case Decl::Field:
47   case Decl::IndirectField:
48   case Decl::ObjCIvar:
49   case Decl::ObjCAtDefsField:
50   case Decl::ParmVar:
51   case Decl::ImplicitParam:
52   case Decl::ClassTemplate:
53   case Decl::FunctionTemplate:
54   case Decl::TypeAliasTemplate:
55   case Decl::TemplateTemplateParm:
56   case Decl::ObjCMethod:
57   case Decl::ObjCCategory:
58   case Decl::ObjCProtocol:
59   case Decl::ObjCInterface:
60   case Decl::ObjCCategoryImpl:
61   case Decl::ObjCImplementation:
62   case Decl::ObjCProperty:
63   case Decl::ObjCCompatibleAlias:
64   case Decl::AccessSpec:
65   case Decl::LinkageSpec:
66   case Decl::ObjCPropertyImpl:
67   case Decl::ObjCClass:
68   case Decl::ObjCForwardProtocol:
69   case Decl::FileScopeAsm:
70   case Decl::Friend:
71   case Decl::FriendTemplate:
72   case Decl::Block:
73     assert(0 && "Declaration should not be in declstmts!");
74   case Decl::Function:  // void X();
75   case Decl::Record:    // struct/union/class X;
76   case Decl::Enum:      // enum X;
77   case Decl::EnumConstant: // enum ? { X = ? }
78   case Decl::CXXRecord: // struct/union/class X; [C++]
79   case Decl::Using:          // using X; [C++]
80   case Decl::UsingShadow:
81   case Decl::UsingDirective: // using namespace X; [C++]
82   case Decl::NamespaceAlias:
83   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84   case Decl::Label:        // __label__ x;
85     // None of these decls require codegen support.
86     return;
87 
88   case Decl::Var: {
89     const VarDecl &VD = cast<VarDecl>(D);
90     assert(VD.isLocalVarDecl() &&
91            "Should not see file-scope variables inside a function!");
92     return EmitVarDecl(VD);
93   }
94 
95   case Decl::Typedef:      // typedef int X;
96   case Decl::TypeAlias: {  // using X = int; [C++0x]
97     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
98     QualType Ty = TD.getUnderlyingType();
99 
100     if (Ty->isVariablyModifiedType())
101       EmitVariablyModifiedType(Ty);
102   }
103   }
104 }
105 
106 /// EmitVarDecl - This method handles emission of any variable declaration
107 /// inside a function, including static vars etc.
108 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
109   switch (D.getStorageClass()) {
110   case SC_None:
111   case SC_Auto:
112   case SC_Register:
113     return EmitAutoVarDecl(D);
114   case SC_Static: {
115     llvm::GlobalValue::LinkageTypes Linkage =
116       llvm::GlobalValue::InternalLinkage;
117 
118     // If the function definition has some sort of weak linkage, its
119     // static variables should also be weak so that they get properly
120     // uniqued.  We can't do this in C, though, because there's no
121     // standard way to agree on which variables are the same (i.e.
122     // there's no mangling).
123     if (getContext().getLangOptions().CPlusPlus)
124       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
125         Linkage = CurFn->getLinkage();
126 
127     return EmitStaticVarDecl(D, Linkage);
128   }
129   case SC_Extern:
130   case SC_PrivateExtern:
131     // Don't emit it now, allow it to be emitted lazily on its first use.
132     return;
133   }
134 
135   assert(0 && "Unknown storage class");
136 }
137 
138 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
139                                      const char *Separator) {
140   CodeGenModule &CGM = CGF.CGM;
141   if (CGF.getContext().getLangOptions().CPlusPlus) {
142     llvm::StringRef Name = CGM.getMangledName(&D);
143     return Name.str();
144   }
145 
146   std::string ContextName;
147   if (!CGF.CurFuncDecl) {
148     // Better be in a block declared in global scope.
149     const NamedDecl *ND = cast<NamedDecl>(&D);
150     const DeclContext *DC = ND->getDeclContext();
151     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
152       MangleBuffer Name;
153       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
154       ContextName = Name.getString();
155     }
156     else
157       assert(0 && "Unknown context for block static var decl");
158   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
159     llvm::StringRef Name = CGM.getMangledName(FD);
160     ContextName = Name.str();
161   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
162     ContextName = CGF.CurFn->getName();
163   else
164     assert(0 && "Unknown context for static var decl");
165 
166   return ContextName + Separator + D.getNameAsString();
167 }
168 
169 llvm::GlobalVariable *
170 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
171                                      const char *Separator,
172                                      llvm::GlobalValue::LinkageTypes Linkage) {
173   QualType Ty = D.getType();
174   assert(Ty->isConstantSizeType() && "VLAs can't be static");
175 
176   std::string Name = GetStaticDeclName(*this, D, Separator);
177 
178   const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
179   llvm::GlobalVariable *GV =
180     new llvm::GlobalVariable(CGM.getModule(), LTy,
181                              Ty.isConstant(getContext()), Linkage,
182                              CGM.EmitNullConstant(D.getType()), Name, 0,
183                              D.isThreadSpecified(),
184                              CGM.getContext().getTargetAddressSpace(Ty));
185   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
186   if (Linkage != llvm::GlobalValue::InternalLinkage)
187     GV->setVisibility(CurFn->getVisibility());
188   return GV;
189 }
190 
191 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
192 /// global variable that has already been created for it.  If the initializer
193 /// has a different type than GV does, this may free GV and return a different
194 /// one.  Otherwise it just returns GV.
195 llvm::GlobalVariable *
196 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
197                                                llvm::GlobalVariable *GV) {
198   llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this);
199 
200   // If constant emission failed, then this should be a C++ static
201   // initializer.
202   if (!Init) {
203     if (!getContext().getLangOptions().CPlusPlus)
204       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
205     else if (Builder.GetInsertBlock()) {
206       // Since we have a static initializer, this global variable can't
207       // be constant.
208       GV->setConstant(false);
209 
210       EmitCXXGuardedInit(D, GV);
211     }
212     return GV;
213   }
214 
215   // The initializer may differ in type from the global. Rewrite
216   // the global to match the initializer.  (We have to do this
217   // because some types, like unions, can't be completely represented
218   // in the LLVM type system.)
219   if (GV->getType()->getElementType() != Init->getType()) {
220     llvm::GlobalVariable *OldGV = GV;
221 
222     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
223                                   OldGV->isConstant(),
224                                   OldGV->getLinkage(), Init, "",
225                                   /*InsertBefore*/ OldGV,
226                                   D.isThreadSpecified(),
227                            CGM.getContext().getTargetAddressSpace(D.getType()));
228     GV->setVisibility(OldGV->getVisibility());
229 
230     // Steal the name of the old global
231     GV->takeName(OldGV);
232 
233     // Replace all uses of the old global with the new global
234     llvm::Constant *NewPtrForOldDecl =
235     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
236     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
237 
238     // Erase the old global, since it is no longer used.
239     OldGV->eraseFromParent();
240   }
241 
242   GV->setInitializer(Init);
243   return GV;
244 }
245 
246 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
247                                       llvm::GlobalValue::LinkageTypes Linkage) {
248   llvm::Value *&DMEntry = LocalDeclMap[&D];
249   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
250 
251   llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
252 
253   // Store into LocalDeclMap before generating initializer to handle
254   // circular references.
255   DMEntry = GV;
256 
257   // We can't have a VLA here, but we can have a pointer to a VLA,
258   // even though that doesn't really make any sense.
259   // Make sure to evaluate VLA bounds now so that we have them for later.
260   if (D.getType()->isVariablyModifiedType())
261     EmitVariablyModifiedType(D.getType());
262 
263   // Local static block variables must be treated as globals as they may be
264   // referenced in their RHS initializer block-literal expresion.
265   CGM.setStaticLocalDeclAddress(&D, GV);
266 
267   // If this value has an initializer, emit it.
268   if (D.getInit())
269     GV = AddInitializerToStaticVarDecl(D, GV);
270 
271   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
272 
273   // FIXME: Merge attribute handling.
274   if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) {
275     SourceManager &SM = CGM.getContext().getSourceManager();
276     llvm::Constant *Ann =
277       CGM.EmitAnnotateAttr(GV, AA,
278                            SM.getInstantiationLineNumber(D.getLocation()));
279     CGM.AddAnnotation(Ann);
280   }
281 
282   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
283     GV->setSection(SA->getName());
284 
285   if (D.hasAttr<UsedAttr>())
286     CGM.AddUsedGlobal(GV);
287 
288   // We may have to cast the constant because of the initializer
289   // mismatch above.
290   //
291   // FIXME: It is really dangerous to store this in the map; if anyone
292   // RAUW's the GV uses of this constant will be invalid.
293   const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
294   const llvm::Type *LPtrTy =
295     LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
296   DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
297 
298   // Emit global variable debug descriptor for static vars.
299   CGDebugInfo *DI = getDebugInfo();
300   if (DI) {
301     DI->setLocation(D.getLocation());
302     DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
303   }
304 }
305 
306 namespace {
307   struct DestroyObject : EHScopeStack::Cleanup {
308     DestroyObject(llvm::Value *addr, QualType type,
309                   CodeGenFunction::Destroyer *destroyer,
310                   bool useEHCleanupForArray)
311       : addr(addr), type(type), destroyer(*destroyer),
312         useEHCleanupForArray(useEHCleanupForArray) {}
313 
314     llvm::Value *addr;
315     QualType type;
316     CodeGenFunction::Destroyer &destroyer;
317     bool useEHCleanupForArray;
318 
319     void Emit(CodeGenFunction &CGF, bool isForEH) {
320       // Don't use an EH cleanup recursively from an EH cleanup.
321       bool useEHCleanupForArray = !isForEH && this->useEHCleanupForArray;
322 
323       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
324     }
325   };
326 
327   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
328     DestroyNRVOVariable(llvm::Value *addr,
329                         const CXXDestructorDecl *Dtor,
330                         llvm::Value *NRVOFlag)
331       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
332 
333     const CXXDestructorDecl *Dtor;
334     llvm::Value *NRVOFlag;
335     llvm::Value *Loc;
336 
337     void Emit(CodeGenFunction &CGF, bool IsForEH) {
338       // Along the exceptions path we always execute the dtor.
339       bool NRVO = !IsForEH && NRVOFlag;
340 
341       llvm::BasicBlock *SkipDtorBB = 0;
342       if (NRVO) {
343         // If we exited via NRVO, we skip the destructor call.
344         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
345         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
346         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
347         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
348         CGF.EmitBlock(RunDtorBB);
349       }
350 
351       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
352                                 /*ForVirtualBase=*/false, Loc);
353 
354       if (NRVO) CGF.EmitBlock(SkipDtorBB);
355     }
356   };
357 
358   struct CallStackRestore : EHScopeStack::Cleanup {
359     llvm::Value *Stack;
360     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
361     void Emit(CodeGenFunction &CGF, bool IsForEH) {
362       llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp");
363       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
364       CGF.Builder.CreateCall(F, V);
365     }
366   };
367 
368   struct ExtendGCLifetime : EHScopeStack::Cleanup {
369     const VarDecl &Var;
370     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
371 
372     void Emit(CodeGenFunction &CGF, bool forEH) {
373       // Compute the address of the local variable, in case it's a
374       // byref or something.
375       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
376                       SourceLocation());
377       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
378       CGF.EmitExtendGCLifetime(value);
379     }
380   };
381 
382   struct CallCleanupFunction : EHScopeStack::Cleanup {
383     llvm::Constant *CleanupFn;
384     const CGFunctionInfo &FnInfo;
385     const VarDecl &Var;
386 
387     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
388                         const VarDecl *Var)
389       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
390 
391     void Emit(CodeGenFunction &CGF, bool IsForEH) {
392       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
393                       SourceLocation());
394       // Compute the address of the local variable, in case it's a byref
395       // or something.
396       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
397 
398       // In some cases, the type of the function argument will be different from
399       // the type of the pointer. An example of this is
400       // void f(void* arg);
401       // __attribute__((cleanup(f))) void *g;
402       //
403       // To fix this we insert a bitcast here.
404       QualType ArgTy = FnInfo.arg_begin()->type;
405       llvm::Value *Arg =
406         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
407 
408       CallArgList Args;
409       Args.add(RValue::get(Arg),
410                CGF.getContext().getPointerType(Var.getType()));
411       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
412     }
413   };
414 }
415 
416 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
417 /// variable with lifetime.
418 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
419                                     llvm::Value *addr,
420                                     Qualifiers::ObjCLifetime lifetime) {
421   switch (lifetime) {
422   case Qualifiers::OCL_None:
423     llvm_unreachable("present but none");
424 
425   case Qualifiers::OCL_ExplicitNone:
426     // nothing to do
427     break;
428 
429   case Qualifiers::OCL_Strong: {
430     CGF.PushARCReleaseCleanup(CGF.getARCCleanupKind(),
431                               var.getType(), addr,
432                               var.hasAttr<ObjCPreciseLifetimeAttr>());
433     break;
434   }
435   case Qualifiers::OCL_Autoreleasing:
436     // nothing to do
437     break;
438 
439   case Qualifiers::OCL_Weak:
440     // __weak objects always get EH cleanups; otherwise, exceptions
441     // could cause really nasty crashes instead of mere leaks.
442     CGF.PushARCWeakReleaseCleanup(NormalAndEHCleanup, var.getType(), addr);
443     break;
444   }
445 }
446 
447 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
448   if (const Expr *e = dyn_cast<Expr>(s)) {
449     // Skip the most common kinds of expressions that make
450     // hierarchy-walking expensive.
451     s = e = e->IgnoreParenCasts();
452 
453     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
454       return (ref->getDecl() == &var);
455   }
456 
457   for (Stmt::const_child_range children = s->children(); children; ++children)
458     // children might be null; as in missing decl or conditional of an if-stmt.
459     if ((*children) && isAccessedBy(var, *children))
460       return true;
461 
462   return false;
463 }
464 
465 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
466   if (!decl) return false;
467   if (!isa<VarDecl>(decl)) return false;
468   const VarDecl *var = cast<VarDecl>(decl);
469   return isAccessedBy(*var, e);
470 }
471 
472 static void drillIntoBlockVariable(CodeGenFunction &CGF,
473                                    LValue &lvalue,
474                                    const VarDecl *var) {
475   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
476 }
477 
478 void CodeGenFunction::EmitScalarInit(const Expr *init,
479                                      const ValueDecl *D,
480                                      LValue lvalue,
481                                      bool capturedByInit) {
482   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
483   if (!lifetime) {
484     llvm::Value *value = EmitScalarExpr(init);
485     if (capturedByInit)
486       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
487     EmitStoreThroughLValue(RValue::get(value), lvalue);
488     return;
489   }
490 
491   // If we're emitting a value with lifetime, we have to do the
492   // initialization *before* we leave the cleanup scopes.
493   CodeGenFunction::RunCleanupsScope Scope(*this);
494   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init))
495     init = ewc->getSubExpr();
496 
497   // We have to maintain the illusion that the variable is
498   // zero-initialized.  If the variable might be accessed in its
499   // initializer, zero-initialize before running the initializer, then
500   // actually perform the initialization with an assign.
501   bool accessedByInit = false;
502   if (lifetime != Qualifiers::OCL_ExplicitNone)
503     accessedByInit = isAccessedBy(D, init);
504   if (accessedByInit) {
505     LValue tempLV = lvalue;
506     // Drill down to the __block object if necessary.
507     if (capturedByInit) {
508       // We can use a simple GEP for this because it can't have been
509       // moved yet.
510       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
511                                    getByRefValueLLVMField(cast<VarDecl>(D))));
512     }
513 
514     const llvm::PointerType *ty
515       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
516     ty = cast<llvm::PointerType>(ty->getElementType());
517 
518     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
519 
520     // If __weak, we want to use a barrier under certain conditions.
521     if (lifetime == Qualifiers::OCL_Weak)
522       EmitARCInitWeak(tempLV.getAddress(), zero);
523 
524     // Otherwise just do a simple store.
525     else
526       EmitStoreOfScalar(zero, tempLV);
527   }
528 
529   // Emit the initializer.
530   llvm::Value *value = 0;
531 
532   switch (lifetime) {
533   case Qualifiers::OCL_None:
534     llvm_unreachable("present but none");
535 
536   case Qualifiers::OCL_ExplicitNone:
537     // nothing to do
538     value = EmitScalarExpr(init);
539     break;
540 
541   case Qualifiers::OCL_Strong: {
542     value = EmitARCRetainScalarExpr(init);
543     break;
544   }
545 
546   case Qualifiers::OCL_Weak: {
547     // No way to optimize a producing initializer into this.  It's not
548     // worth optimizing for, because the value will immediately
549     // disappear in the common case.
550     value = EmitScalarExpr(init);
551 
552     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
553     if (accessedByInit)
554       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
555     else
556       EmitARCInitWeak(lvalue.getAddress(), value);
557     return;
558   }
559 
560   case Qualifiers::OCL_Autoreleasing:
561     value = EmitARCRetainAutoreleaseScalarExpr(init);
562     break;
563   }
564 
565   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
566 
567   // If the variable might have been accessed by its initializer, we
568   // might have to initialize with a barrier.  We have to do this for
569   // both __weak and __strong, but __weak got filtered out above.
570   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
571     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
572     EmitStoreOfScalar(value, lvalue);
573     EmitARCRelease(oldValue, /*precise*/ false);
574     return;
575   }
576 
577   EmitStoreOfScalar(value, lvalue);
578 }
579 
580 /// EmitScalarInit - Initialize the given lvalue with the given object.
581 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
582   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
583   if (!lifetime)
584     return EmitStoreThroughLValue(RValue::get(init), lvalue);
585 
586   switch (lifetime) {
587   case Qualifiers::OCL_None:
588     llvm_unreachable("present but none");
589 
590   case Qualifiers::OCL_ExplicitNone:
591     // nothing to do
592     break;
593 
594   case Qualifiers::OCL_Strong:
595     init = EmitARCRetain(lvalue.getType(), init);
596     break;
597 
598   case Qualifiers::OCL_Weak:
599     // Initialize and then skip the primitive store.
600     EmitARCInitWeak(lvalue.getAddress(), init);
601     return;
602 
603   case Qualifiers::OCL_Autoreleasing:
604     init = EmitARCRetainAutorelease(lvalue.getType(), init);
605     break;
606   }
607 
608   EmitStoreOfScalar(init, lvalue);
609 }
610 
611 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
612 /// non-zero parts of the specified initializer with equal or fewer than
613 /// NumStores scalar stores.
614 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
615                                                 unsigned &NumStores) {
616   // Zero and Undef never requires any extra stores.
617   if (isa<llvm::ConstantAggregateZero>(Init) ||
618       isa<llvm::ConstantPointerNull>(Init) ||
619       isa<llvm::UndefValue>(Init))
620     return true;
621   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
622       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
623       isa<llvm::ConstantExpr>(Init))
624     return Init->isNullValue() || NumStores--;
625 
626   // See if we can emit each element.
627   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
628     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
629       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
630       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
631         return false;
632     }
633     return true;
634   }
635 
636   // Anything else is hard and scary.
637   return false;
638 }
639 
640 /// emitStoresForInitAfterMemset - For inits that
641 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
642 /// stores that would be required.
643 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
644                                          bool isVolatile, CGBuilderTy &Builder) {
645   // Zero doesn't require any stores.
646   if (isa<llvm::ConstantAggregateZero>(Init) ||
647       isa<llvm::ConstantPointerNull>(Init) ||
648       isa<llvm::UndefValue>(Init))
649     return;
650 
651   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
652       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
653       isa<llvm::ConstantExpr>(Init)) {
654     if (!Init->isNullValue())
655       Builder.CreateStore(Init, Loc, isVolatile);
656     return;
657   }
658 
659   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
660          "Unknown value type!");
661 
662   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
663     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
664     if (Elt->isNullValue()) continue;
665 
666     // Otherwise, get a pointer to the element and emit it.
667     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
668                                  isVolatile, Builder);
669   }
670 }
671 
672 
673 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
674 /// plus some stores to initialize a local variable instead of using a memcpy
675 /// from a constant global.  It is beneficial to use memset if the global is all
676 /// zeros, or mostly zeros and large.
677 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
678                                                   uint64_t GlobalSize) {
679   // If a global is all zeros, always use a memset.
680   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
681 
682 
683   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
684   // do it if it will require 6 or fewer scalar stores.
685   // TODO: Should budget depends on the size?  Avoiding a large global warrants
686   // plopping in more stores.
687   unsigned StoreBudget = 6;
688   uint64_t SizeLimit = 32;
689 
690   return GlobalSize > SizeLimit &&
691          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
692 }
693 
694 
695 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
696 /// variable declaration with auto, register, or no storage class specifier.
697 /// These turn into simple stack objects, or GlobalValues depending on target.
698 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
699   AutoVarEmission emission = EmitAutoVarAlloca(D);
700   EmitAutoVarInit(emission);
701   EmitAutoVarCleanups(emission);
702 }
703 
704 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
705 /// local variable.  Does not emit initalization or destruction.
706 CodeGenFunction::AutoVarEmission
707 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
708   QualType Ty = D.getType();
709 
710   AutoVarEmission emission(D);
711 
712   bool isByRef = D.hasAttr<BlocksAttr>();
713   emission.IsByRef = isByRef;
714 
715   CharUnits alignment = getContext().getDeclAlign(&D);
716   emission.Alignment = alignment;
717 
718   // If the type is variably-modified, emit all the VLA sizes for it.
719   if (Ty->isVariablyModifiedType())
720     EmitVariablyModifiedType(Ty);
721 
722   llvm::Value *DeclPtr;
723   if (Ty->isConstantSizeType()) {
724     if (!Target.useGlobalsForAutomaticVariables()) {
725       bool NRVO = getContext().getLangOptions().ElideConstructors &&
726                   D.isNRVOVariable();
727 
728       // If this value is a POD array or struct with a statically
729       // determinable constant initializer, there are optimizations we
730       // can do.
731       // TODO: we can potentially constant-evaluate non-POD structs and
732       // arrays as long as the initialization is trivial (e.g. if they
733       // have a non-trivial destructor, but not a non-trivial constructor).
734       if (D.getInit() &&
735           (Ty->isArrayType() || Ty->isRecordType()) &&
736           (Ty.isPODType(getContext()) ||
737            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
738           D.getInit()->isConstantInitializer(getContext(), false)) {
739 
740         // If the variable's a const type, and it's neither an NRVO
741         // candidate nor a __block variable, emit it as a global instead.
742         if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
743             !NRVO && !isByRef) {
744           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
745 
746           emission.Address = 0; // signal this condition to later callbacks
747           assert(emission.wasEmittedAsGlobal());
748           return emission;
749         }
750 
751         // Otherwise, tell the initialization code that we're in this case.
752         emission.IsConstantAggregate = true;
753       }
754 
755       // A normal fixed sized variable becomes an alloca in the entry block,
756       // unless it's an NRVO variable.
757       const llvm::Type *LTy = ConvertTypeForMem(Ty);
758 
759       if (NRVO) {
760         // The named return value optimization: allocate this variable in the
761         // return slot, so that we can elide the copy when returning this
762         // variable (C++0x [class.copy]p34).
763         DeclPtr = ReturnValue;
764 
765         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
766           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
767             // Create a flag that is used to indicate when the NRVO was applied
768             // to this variable. Set it to zero to indicate that NRVO was not
769             // applied.
770             llvm::Value *Zero = Builder.getFalse();
771             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
772             EnsureInsertPoint();
773             Builder.CreateStore(Zero, NRVOFlag);
774 
775             // Record the NRVO flag for this variable.
776             NRVOFlags[&D] = NRVOFlag;
777             emission.NRVOFlag = NRVOFlag;
778           }
779         }
780       } else {
781         if (isByRef)
782           LTy = BuildByRefType(&D);
783 
784         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
785         Alloc->setName(D.getNameAsString());
786 
787         CharUnits allocaAlignment = alignment;
788         if (isByRef)
789           allocaAlignment = std::max(allocaAlignment,
790               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
791         Alloc->setAlignment(allocaAlignment.getQuantity());
792         DeclPtr = Alloc;
793       }
794     } else {
795       // Targets that don't support recursion emit locals as globals.
796       const char *Class =
797         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
798       DeclPtr = CreateStaticVarDecl(D, Class,
799                                     llvm::GlobalValue::InternalLinkage);
800     }
801   } else {
802     EnsureInsertPoint();
803 
804     if (!DidCallStackSave) {
805       // Save the stack.
806       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
807 
808       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
809       llvm::Value *V = Builder.CreateCall(F);
810 
811       Builder.CreateStore(V, Stack);
812 
813       DidCallStackSave = true;
814 
815       // Push a cleanup block and restore the stack there.
816       // FIXME: in general circumstances, this should be an EH cleanup.
817       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
818     }
819 
820     llvm::Value *elementCount;
821     QualType elementType;
822     llvm::tie(elementCount, elementType) = getVLASize(Ty);
823 
824     const llvm::Type *llvmTy = ConvertTypeForMem(elementType);
825 
826     // Allocate memory for the array.
827     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
828     vla->setAlignment(alignment.getQuantity());
829 
830     DeclPtr = vla;
831   }
832 
833   llvm::Value *&DMEntry = LocalDeclMap[&D];
834   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
835   DMEntry = DeclPtr;
836   emission.Address = DeclPtr;
837 
838   // Emit debug info for local var declaration.
839   if (HaveInsertPoint())
840     if (CGDebugInfo *DI = getDebugInfo()) {
841       DI->setLocation(D.getLocation());
842       if (Target.useGlobalsForAutomaticVariables()) {
843         DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
844       } else
845         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
846     }
847 
848   return emission;
849 }
850 
851 /// Determines whether the given __block variable is potentially
852 /// captured by the given expression.
853 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
854   // Skip the most common kinds of expressions that make
855   // hierarchy-walking expensive.
856   e = e->IgnoreParenCasts();
857 
858   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
859     const BlockDecl *block = be->getBlockDecl();
860     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
861            e = block->capture_end(); i != e; ++i) {
862       if (i->getVariable() == &var)
863         return true;
864     }
865 
866     // No need to walk into the subexpressions.
867     return false;
868   }
869 
870   for (Stmt::const_child_range children = e->children(); children; ++children)
871     if (isCapturedBy(var, cast<Expr>(*children)))
872       return true;
873 
874   return false;
875 }
876 
877 /// \brief Determine whether the given initializer is trivial in the sense
878 /// that it requires no code to be generated.
879 static bool isTrivialInitializer(const Expr *Init) {
880   if (!Init)
881     return true;
882 
883   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
884     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
885       if (Constructor->isTrivial() &&
886           Constructor->isDefaultConstructor() &&
887           !Construct->requiresZeroInitialization())
888         return true;
889 
890   return false;
891 }
892 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
893   assert(emission.Variable && "emission was not valid!");
894 
895   // If this was emitted as a global constant, we're done.
896   if (emission.wasEmittedAsGlobal()) return;
897 
898   const VarDecl &D = *emission.Variable;
899   QualType type = D.getType();
900 
901   // If this local has an initializer, emit it now.
902   const Expr *Init = D.getInit();
903 
904   // If we are at an unreachable point, we don't need to emit the initializer
905   // unless it contains a label.
906   if (!HaveInsertPoint()) {
907     if (!Init || !ContainsLabel(Init)) return;
908     EnsureInsertPoint();
909   }
910 
911   // Initialize the structure of a __block variable.
912   if (emission.IsByRef)
913     emitByrefStructureInit(emission);
914 
915   if (isTrivialInitializer(Init))
916     return;
917 
918 
919   CharUnits alignment = emission.Alignment;
920 
921   // Check whether this is a byref variable that's potentially
922   // captured and moved by its own initializer.  If so, we'll need to
923   // emit the initializer first, then copy into the variable.
924   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
925 
926   llvm::Value *Loc =
927     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
928 
929   if (!emission.IsConstantAggregate) {
930     LValue lv = MakeAddrLValue(Loc, type, alignment.getQuantity());
931     lv.setNonGC(true);
932     return EmitExprAsInit(Init, &D, lv, capturedByInit);
933   }
934 
935   // If this is a simple aggregate initialization, we can optimize it
936   // in various ways.
937   assert(!capturedByInit && "constant init contains a capturing block?");
938 
939   bool isVolatile = type.isVolatileQualified();
940 
941   llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this);
942   assert(constant != 0 && "Wasn't a simple constant init?");
943 
944   llvm::Value *SizeVal =
945     llvm::ConstantInt::get(IntPtrTy,
946                            getContext().getTypeSizeInChars(type).getQuantity());
947 
948   const llvm::Type *BP = Int8PtrTy;
949   if (Loc->getType() != BP)
950     Loc = Builder.CreateBitCast(Loc, BP, "tmp");
951 
952   // If the initializer is all or mostly zeros, codegen with memset then do
953   // a few stores afterward.
954   if (shouldUseMemSetPlusStoresToInitialize(constant,
955                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
956     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
957                          alignment.getQuantity(), isVolatile);
958     if (!constant->isNullValue()) {
959       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
960       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
961     }
962   } else {
963     // Otherwise, create a temporary global with the initializer then
964     // memcpy from the global to the alloca.
965     std::string Name = GetStaticDeclName(*this, D, ".");
966     llvm::GlobalVariable *GV =
967       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
968                                llvm::GlobalValue::InternalLinkage,
969                                constant, Name, 0, false, 0);
970     GV->setAlignment(alignment.getQuantity());
971     GV->setUnnamedAddr(true);
972 
973     llvm::Value *SrcPtr = GV;
974     if (SrcPtr->getType() != BP)
975       SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
976 
977     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
978                          isVolatile);
979   }
980 }
981 
982 /// Emit an expression as an initializer for a variable at the given
983 /// location.  The expression is not necessarily the normal
984 /// initializer for the variable, and the address is not necessarily
985 /// its normal location.
986 ///
987 /// \param init the initializing expression
988 /// \param var the variable to act as if we're initializing
989 /// \param loc the address to initialize; its type is a pointer
990 ///   to the LLVM mapping of the variable's type
991 /// \param alignment the alignment of the address
992 /// \param capturedByInit true if the variable is a __block variable
993 ///   whose address is potentially changed by the initializer
994 void CodeGenFunction::EmitExprAsInit(const Expr *init,
995                                      const ValueDecl *D,
996                                      LValue lvalue,
997                                      bool capturedByInit) {
998   QualType type = D->getType();
999 
1000   if (type->isReferenceType()) {
1001     RValue rvalue = EmitReferenceBindingToExpr(init, D);
1002     if (capturedByInit)
1003       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1004     EmitStoreThroughLValue(rvalue, lvalue);
1005   } else if (!hasAggregateLLVMType(type)) {
1006     EmitScalarInit(init, D, lvalue, capturedByInit);
1007   } else if (type->isAnyComplexType()) {
1008     ComplexPairTy complex = EmitComplexExpr(init);
1009     if (capturedByInit)
1010       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1011     StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1012   } else {
1013     // TODO: how can we delay here if D is captured by its initializer?
1014     EmitAggExpr(init, AggValueSlot::forLValue(lvalue, true, false));
1015   }
1016 }
1017 
1018 /// Enter a destroy cleanup for the given local variable.
1019 void CodeGenFunction::emitAutoVarTypeCleanup(
1020                             const CodeGenFunction::AutoVarEmission &emission,
1021                             QualType::DestructionKind dtorKind) {
1022   assert(dtorKind != QualType::DK_none);
1023 
1024   // Note that for __block variables, we want to destroy the
1025   // original stack object, not the possibly forwarded object.
1026   llvm::Value *addr = emission.getObjectAddress(*this);
1027 
1028   const VarDecl *var = emission.Variable;
1029   QualType type = var->getType();
1030 
1031   CleanupKind cleanupKind = NormalAndEHCleanup;
1032   CodeGenFunction::Destroyer *destroyer = 0;
1033 
1034   switch (dtorKind) {
1035   case QualType::DK_none:
1036     llvm_unreachable("no cleanup for trivially-destructible variable");
1037 
1038   case QualType::DK_cxx_destructor:
1039     // If there's an NRVO flag on the emission, we need a different
1040     // cleanup.
1041     if (emission.NRVOFlag) {
1042       assert(!type->isArrayType());
1043       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1044       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1045                                                emission.NRVOFlag);
1046       return;
1047     }
1048     break;
1049 
1050   case QualType::DK_objc_strong_lifetime:
1051     // Suppress cleanups for pseudo-strong variables.
1052     if (var->isARCPseudoStrong()) return;
1053 
1054     // Otherwise, consider whether to use an EH cleanup or not.
1055     cleanupKind = getARCCleanupKind();
1056 
1057     // Use the imprecise destroyer by default.
1058     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1059       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1060     break;
1061 
1062   case QualType::DK_objc_weak_lifetime:
1063     break;
1064   }
1065 
1066   // If we haven't chosen a more specific destroyer, use the default.
1067   if (!destroyer) destroyer = &getDestroyer(dtorKind);
1068 
1069   // Use an EH cleanup in array destructors iff the destructor itself
1070   // is being pushed as an EH cleanup.
1071   bool useEHCleanup = (cleanupKind & EHCleanup);
1072   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1073                                      useEHCleanup);
1074 }
1075 
1076 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1077   assert(emission.Variable && "emission was not valid!");
1078 
1079   // If this was emitted as a global constant, we're done.
1080   if (emission.wasEmittedAsGlobal()) return;
1081 
1082   const VarDecl &D = *emission.Variable;
1083 
1084   // Check the type for a cleanup.
1085   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1086     emitAutoVarTypeCleanup(emission, dtorKind);
1087 
1088   // In GC mode, honor objc_precise_lifetime.
1089   if (getLangOptions().getGCMode() != LangOptions::NonGC &&
1090       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1091     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1092   }
1093 
1094   // Handle the cleanup attribute.
1095   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1096     const FunctionDecl *FD = CA->getFunctionDecl();
1097 
1098     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1099     assert(F && "Could not find function!");
1100 
1101     const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
1102     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1103   }
1104 
1105   // If this is a block variable, call _Block_object_destroy
1106   // (on the unforwarded address).
1107   if (emission.IsByRef)
1108     enterByrefCleanup(emission);
1109 }
1110 
1111 CodeGenFunction::Destroyer &
1112 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1113   // This is surprisingly compiler-dependent.  GCC 4.2 can't bind
1114   // references to functions directly in returns, and using '*&foo'
1115   // confuses MSVC.  Luckily, the following code pattern works in both.
1116   Destroyer *destroyer = 0;
1117   switch (kind) {
1118   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1119   case QualType::DK_cxx_destructor:
1120     destroyer = &destroyCXXObject;
1121     break;
1122   case QualType::DK_objc_strong_lifetime:
1123     destroyer = &destroyARCStrongPrecise;
1124     break;
1125   case QualType::DK_objc_weak_lifetime:
1126     destroyer = &destroyARCWeak;
1127     break;
1128   }
1129   return *destroyer;
1130 }
1131 
1132 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1133                                   QualType type, Destroyer &destroyer,
1134                                   bool useEHCleanupForArray) {
1135   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1136                                      useEHCleanupForArray);
1137 }
1138 
1139 /// emitDestroy - Immediately perform the destruction of the given
1140 /// object.
1141 ///
1142 /// \param addr - the address of the object; a type*
1143 /// \param type - the type of the object; if an array type, all
1144 ///   objects are destroyed in reverse order
1145 /// \param destroyer - the function to call to destroy individual
1146 ///   elements
1147 /// \param useEHCleanupForArray - whether an EH cleanup should be
1148 ///   used when destroying array elements, in case one of the
1149 ///   destructions throws an exception
1150 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1151                                   Destroyer &destroyer,
1152                                   bool useEHCleanupForArray) {
1153   const ArrayType *arrayType = getContext().getAsArrayType(type);
1154   if (!arrayType)
1155     return destroyer(*this, addr, type);
1156 
1157   llvm::Value *begin = addr;
1158   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1159   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1160   emitArrayDestroy(begin, end, type, destroyer, useEHCleanupForArray);
1161 }
1162 
1163 /// emitArrayDestroy - Destroys all the elements of the given array,
1164 /// beginning from last to first.  The array cannot be zero-length.
1165 ///
1166 /// \param begin - a type* denoting the first element of the array
1167 /// \param end - a type* denoting one past the end of the array
1168 /// \param type - the element type of the array
1169 /// \param destroyer - the function to call to destroy elements
1170 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1171 ///   the remaining elements in case the destruction of a single
1172 ///   element throws
1173 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1174                                        llvm::Value *end,
1175                                        QualType type,
1176                                        Destroyer &destroyer,
1177                                        bool useEHCleanup) {
1178   assert(!type->isArrayType());
1179 
1180   // The basic structure here is a do-while loop, because we don't
1181   // need to check for the zero-element case.
1182   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1183   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1184 
1185   // Enter the loop body, making that address the current address.
1186   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1187   EmitBlock(bodyBB);
1188   llvm::PHINode *elementPast =
1189     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1190   elementPast->addIncoming(end, entryBB);
1191 
1192   // Shift the address back by one element.
1193   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1194   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1195                                                    "arraydestroy.element");
1196 
1197   if (useEHCleanup)
1198     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1199 
1200   // Perform the actual destruction there.
1201   destroyer(*this, element, type);
1202 
1203   if (useEHCleanup)
1204     PopCleanupBlock();
1205 
1206   // Check whether we've reached the end.
1207   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1208   Builder.CreateCondBr(done, doneBB, bodyBB);
1209   elementPast->addIncoming(element, Builder.GetInsertBlock());
1210 
1211   // Done.
1212   EmitBlock(doneBB);
1213 }
1214 
1215 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1216 /// emitArrayDestroy, the element type here may still be an array type.
1217 ///
1218 /// Essentially does an emitArrayDestroy, but checking for the
1219 /// possibility of a zero-length array (in case the initializer for
1220 /// the first element throws).
1221 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1222                                     llvm::Value *begin, llvm::Value *end,
1223                                     QualType type,
1224                                     CodeGenFunction::Destroyer &destroyer) {
1225   // Check whether the array is empty.  For the sake of prettier IR,
1226   // we want to jump to the end of the array destroy loop instead of
1227   // jumping to yet another block.  We can do this with some modest
1228   // assumptions about how emitArrayDestroy works.
1229 
1230   llvm::Value *earlyTest =
1231     CGF.Builder.CreateICmpEQ(begin, end, "pad.isempty");
1232 
1233   llvm::BasicBlock *nextBB = CGF.createBasicBlock("pad.arraydestroy");
1234 
1235   // Temporarily, build the conditional branch with identical
1236   // successors.  We'll patch this in a bit.
1237   llvm::BranchInst *br =
1238     CGF.Builder.CreateCondBr(earlyTest, nextBB, nextBB);
1239   CGF.EmitBlock(nextBB);
1240 
1241   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1242 
1243   // If the element type is itself an array, drill down.
1244   llvm::SmallVector<llvm::Value*,4> gepIndices;
1245   gepIndices.push_back(zero);
1246   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1247     // VLAs don't require a GEP index to walk into.
1248     if (!isa<VariableArrayType>(arrayType))
1249       gepIndices.push_back(zero);
1250     type = arrayType->getElementType();
1251   }
1252   if (gepIndices.size() != 1) {
1253     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices.begin(),
1254                                           gepIndices.end(), "pad.arraybegin");
1255     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices.begin(),
1256                                         gepIndices.end(), "pad.arrayend");
1257   }
1258 
1259   // Now that we know that the array isn't empty, destroy it.  We
1260   // don't ever need an EH cleanup because we assume that we're in an
1261   // EH cleanup ourselves, so a throwing destructor causes an
1262   // immediate terminate.
1263   CGF.emitArrayDestroy(begin, end, type, destroyer, /*useEHCleanup*/ false);
1264 
1265   // Set the conditional branch's 'false' successor to doneBB.
1266   llvm::BasicBlock *doneBB = CGF.Builder.GetInsertBlock();
1267   assert(CGF.Builder.GetInsertPoint() == doneBB->begin());
1268   br->setSuccessor(0, doneBB);
1269 }
1270 
1271 namespace {
1272   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1273   /// array destroy where the end pointer is regularly determined and
1274   /// does not need to be loaded from a local.
1275   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1276     llvm::Value *ArrayBegin;
1277     llvm::Value *ArrayEnd;
1278     QualType ElementType;
1279     CodeGenFunction::Destroyer &Destroyer;
1280   public:
1281     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1282                                QualType elementType,
1283                                CodeGenFunction::Destroyer *destroyer)
1284       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1285         ElementType(elementType), Destroyer(*destroyer) {}
1286 
1287     void Emit(CodeGenFunction &CGF, bool isForEH) {
1288       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1289                               ElementType, Destroyer);
1290     }
1291   };
1292 
1293   /// IrregularPartialArrayDestroy - a cleanup which performs a
1294   /// partial array destroy where the end pointer is irregularly
1295   /// determined and must be loaded from a local.
1296   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1297     llvm::Value *ArrayBegin;
1298     llvm::Value *ArrayEndPointer;
1299     QualType ElementType;
1300     CodeGenFunction::Destroyer &Destroyer;
1301   public:
1302     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1303                                  llvm::Value *arrayEndPointer,
1304                                  QualType elementType,
1305                                  CodeGenFunction::Destroyer *destroyer)
1306       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1307         ElementType(elementType), Destroyer(*destroyer) {}
1308 
1309     void Emit(CodeGenFunction &CGF, bool isForEH) {
1310       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1311       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1312                               ElementType, Destroyer);
1313     }
1314   };
1315 }
1316 
1317 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1318 /// already-constructed elements of the given array.  The cleanup
1319 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1320 ///
1321 /// \param elementType - the immediate element type of the array;
1322 ///   possibly still an array type
1323 /// \param array - a value of type elementType*
1324 /// \param destructionKind - the kind of destruction required
1325 /// \param initializedElementCount - a value of type size_t* holding
1326 ///   the number of successfully-constructed elements
1327 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *array,
1328                                                  llvm::Value *arrayEndPointer,
1329                                                        QualType elementType,
1330                                                        Destroyer &destroyer) {
1331   // FIXME: can this be in a conditional expression?
1332   EHStack.pushCleanup<IrregularPartialArrayDestroy>(EHCleanup, array,
1333                                                     arrayEndPointer,
1334                                                     elementType, &destroyer);
1335 }
1336 
1337 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1338 /// already-constructed elements of the given array.  The cleanup
1339 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1340 ///
1341 /// \param elementType - the immediate element type of the array;
1342 ///   possibly still an array type
1343 /// \param array - a value of type elementType*
1344 /// \param destructionKind - the kind of destruction required
1345 /// \param initializedElementCount - a value of type size_t* holding
1346 ///   the number of successfully-constructed elements
1347 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1348                                                      llvm::Value *arrayEnd,
1349                                                      QualType elementType,
1350                                                      Destroyer &destroyer) {
1351   // FIXME: can this be in a conditional expression?
1352   EHStack.pushCleanup<RegularPartialArrayDestroy>(EHCleanup,
1353                                                   arrayBegin, arrayEnd,
1354                                                   elementType, &destroyer);
1355 }
1356 
1357 namespace {
1358   /// A cleanup to perform a release of an object at the end of a
1359   /// function.  This is used to balance out the incoming +1 of a
1360   /// ns_consumed argument when we can't reasonably do that just by
1361   /// not doing the initial retain for a __block argument.
1362   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1363     ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1364 
1365     llvm::Value *Param;
1366 
1367     void Emit(CodeGenFunction &CGF, bool IsForEH) {
1368       CGF.EmitARCRelease(Param, /*precise*/ false);
1369     }
1370   };
1371 }
1372 
1373 /// Emit an alloca (or GlobalValue depending on target)
1374 /// for the specified parameter and set up LocalDeclMap.
1375 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1376                                    unsigned ArgNo) {
1377   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1378   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1379          "Invalid argument to EmitParmDecl");
1380 
1381   Arg->setName(D.getName());
1382 
1383   // Use better IR generation for certain implicit parameters.
1384   if (isa<ImplicitParamDecl>(D)) {
1385     // The only implicit argument a block has is its literal.
1386     if (BlockInfo) {
1387       LocalDeclMap[&D] = Arg;
1388 
1389       if (CGDebugInfo *DI = getDebugInfo()) {
1390         DI->setLocation(D.getLocation());
1391         DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1392       }
1393 
1394       return;
1395     }
1396   }
1397 
1398   QualType Ty = D.getType();
1399 
1400   llvm::Value *DeclPtr;
1401   // If this is an aggregate or variable sized value, reuse the input pointer.
1402   if (!Ty->isConstantSizeType() ||
1403       CodeGenFunction::hasAggregateLLVMType(Ty)) {
1404     DeclPtr = Arg;
1405   } else {
1406     // Otherwise, create a temporary to hold the value.
1407     DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr");
1408 
1409     bool doStore = true;
1410 
1411     Qualifiers qs = Ty.getQualifiers();
1412 
1413     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1414       // We honor __attribute__((ns_consumed)) for types with lifetime.
1415       // For __strong, it's handled by just skipping the initial retain;
1416       // otherwise we have to balance out the initial +1 with an extra
1417       // cleanup to do the release at the end of the function.
1418       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1419 
1420       // 'self' is always formally __strong, but if this is not an
1421       // init method then we don't want to retain it.
1422       if (D.isARCPseudoStrong()) {
1423         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1424         assert(&D == method->getSelfDecl());
1425         assert(lt == Qualifiers::OCL_Strong);
1426         assert(qs.hasConst());
1427         assert(method->getMethodFamily() != OMF_init);
1428         (void) method;
1429         lt = Qualifiers::OCL_ExplicitNone;
1430       }
1431 
1432       if (lt == Qualifiers::OCL_Strong) {
1433         if (!isConsumed)
1434           // Don't use objc_retainBlock for block pointers, because we
1435           // don't want to Block_copy something just because we got it
1436           // as a parameter.
1437           Arg = EmitARCRetainNonBlock(Arg);
1438       } else {
1439         // Push the cleanup for a consumed parameter.
1440         if (isConsumed)
1441           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1442 
1443         if (lt == Qualifiers::OCL_Weak) {
1444           EmitARCInitWeak(DeclPtr, Arg);
1445           doStore = false; // The weak init is a store, no need to do two
1446         }
1447       }
1448 
1449       // Enter the cleanup scope.
1450       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1451     }
1452 
1453     // Store the initial value into the alloca.
1454     if (doStore) {
1455       LValue lv = MakeAddrLValue(DeclPtr, Ty,
1456                                  getContext().getDeclAlign(&D).getQuantity());
1457       EmitStoreOfScalar(Arg, lv);
1458     }
1459   }
1460 
1461   llvm::Value *&DMEntry = LocalDeclMap[&D];
1462   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1463   DMEntry = DeclPtr;
1464 
1465   // Emit debug info for param declaration.
1466   if (CGDebugInfo *DI = getDebugInfo())
1467     DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1468 }
1469