1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Type.h"
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 void CodeGenFunction::EmitDecl(const Decl &D) {
43   switch (D.getKind()) {
44   case Decl::BuiltinTemplate:
45   case Decl::TranslationUnit:
46   case Decl::ExternCContext:
47   case Decl::Namespace:
48   case Decl::UnresolvedUsingTypename:
49   case Decl::ClassTemplateSpecialization:
50   case Decl::ClassTemplatePartialSpecialization:
51   case Decl::VarTemplateSpecialization:
52   case Decl::VarTemplatePartialSpecialization:
53   case Decl::TemplateTypeParm:
54   case Decl::UnresolvedUsingValue:
55   case Decl::NonTypeTemplateParm:
56   case Decl::CXXDeductionGuide:
57   case Decl::CXXMethod:
58   case Decl::CXXConstructor:
59   case Decl::CXXDestructor:
60   case Decl::CXXConversion:
61   case Decl::Field:
62   case Decl::MSProperty:
63   case Decl::IndirectField:
64   case Decl::ObjCIvar:
65   case Decl::ObjCAtDefsField:
66   case Decl::ParmVar:
67   case Decl::ImplicitParam:
68   case Decl::ClassTemplate:
69   case Decl::VarTemplate:
70   case Decl::FunctionTemplate:
71   case Decl::TypeAliasTemplate:
72   case Decl::TemplateTemplateParm:
73   case Decl::ObjCMethod:
74   case Decl::ObjCCategory:
75   case Decl::ObjCProtocol:
76   case Decl::ObjCInterface:
77   case Decl::ObjCCategoryImpl:
78   case Decl::ObjCImplementation:
79   case Decl::ObjCProperty:
80   case Decl::ObjCCompatibleAlias:
81   case Decl::PragmaComment:
82   case Decl::PragmaDetectMismatch:
83   case Decl::AccessSpec:
84   case Decl::LinkageSpec:
85   case Decl::Export:
86   case Decl::ObjCPropertyImpl:
87   case Decl::FileScopeAsm:
88   case Decl::Friend:
89   case Decl::FriendTemplate:
90   case Decl::Block:
91   case Decl::Captured:
92   case Decl::ClassScopeFunctionSpecialization:
93   case Decl::UsingShadow:
94   case Decl::ConstructorUsingShadow:
95   case Decl::ObjCTypeParam:
96   case Decl::Binding:
97     llvm_unreachable("Declaration should not be in declstmts!");
98   case Decl::Function:  // void X();
99   case Decl::Record:    // struct/union/class X;
100   case Decl::Enum:      // enum X;
101   case Decl::EnumConstant: // enum ? { X = ? }
102   case Decl::CXXRecord: // struct/union/class X; [C++]
103   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
104   case Decl::Label:        // __label__ x;
105   case Decl::Import:
106   case Decl::OMPThreadPrivate:
107   case Decl::OMPCapturedExpr:
108   case Decl::OMPRequires:
109   case Decl::Empty:
110     // None of these decls require codegen support.
111     return;
112 
113   case Decl::NamespaceAlias:
114     if (CGDebugInfo *DI = getDebugInfo())
115         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
116     return;
117   case Decl::Using:          // using X; [C++]
118     if (CGDebugInfo *DI = getDebugInfo())
119         DI->EmitUsingDecl(cast<UsingDecl>(D));
120     return;
121   case Decl::UsingPack:
122     for (auto *Using : cast<UsingPackDecl>(D).expansions())
123       EmitDecl(*Using);
124     return;
125   case Decl::UsingDirective: // using namespace X; [C++]
126     if (CGDebugInfo *DI = getDebugInfo())
127       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
128     return;
129   case Decl::Var:
130   case Decl::Decomposition: {
131     const VarDecl &VD = cast<VarDecl>(D);
132     assert(VD.isLocalVarDecl() &&
133            "Should not see file-scope variables inside a function!");
134     EmitVarDecl(VD);
135     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
136       for (auto *B : DD->bindings())
137         if (auto *HD = B->getHoldingVar())
138           EmitVarDecl(*HD);
139     return;
140   }
141 
142   case Decl::OMPDeclareReduction:
143     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
144 
145   case Decl::Typedef:      // typedef int X;
146   case Decl::TypeAlias: {  // using X = int; [C++0x]
147     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
148     QualType Ty = TD.getUnderlyingType();
149 
150     if (Ty->isVariablyModifiedType())
151       EmitVariablyModifiedType(Ty);
152   }
153   }
154 }
155 
156 /// EmitVarDecl - This method handles emission of any variable declaration
157 /// inside a function, including static vars etc.
158 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
159   if (D.hasExternalStorage())
160     // Don't emit it now, allow it to be emitted lazily on its first use.
161     return;
162 
163   // Some function-scope variable does not have static storage but still
164   // needs to be emitted like a static variable, e.g. a function-scope
165   // variable in constant address space in OpenCL.
166   if (D.getStorageDuration() != SD_Automatic) {
167     // Static sampler variables translated to function calls.
168     if (D.getType()->isSamplerT())
169       return;
170 
171     llvm::GlobalValue::LinkageTypes Linkage =
172         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
173 
174     // FIXME: We need to force the emission/use of a guard variable for
175     // some variables even if we can constant-evaluate them because
176     // we can't guarantee every translation unit will constant-evaluate them.
177 
178     return EmitStaticVarDecl(D, Linkage);
179   }
180 
181   if (D.getType().getAddressSpace() == LangAS::opencl_local)
182     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
183 
184   assert(D.hasLocalStorage());
185   return EmitAutoVarDecl(D);
186 }
187 
188 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
189   if (CGM.getLangOpts().CPlusPlus)
190     return CGM.getMangledName(&D).str();
191 
192   // If this isn't C++, we don't need a mangled name, just a pretty one.
193   assert(!D.isExternallyVisible() && "name shouldn't matter");
194   std::string ContextName;
195   const DeclContext *DC = D.getDeclContext();
196   if (auto *CD = dyn_cast<CapturedDecl>(DC))
197     DC = cast<DeclContext>(CD->getNonClosureContext());
198   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
199     ContextName = CGM.getMangledName(FD);
200   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
201     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
202   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
203     ContextName = OMD->getSelector().getAsString();
204   else
205     llvm_unreachable("Unknown context for static var decl");
206 
207   ContextName += "." + D.getNameAsString();
208   return ContextName;
209 }
210 
211 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
212     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
213   // In general, we don't always emit static var decls once before we reference
214   // them. It is possible to reference them before emitting the function that
215   // contains them, and it is possible to emit the containing function multiple
216   // times.
217   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
218     return ExistingGV;
219 
220   QualType Ty = D.getType();
221   assert(Ty->isConstantSizeType() && "VLAs can't be static");
222 
223   // Use the label if the variable is renamed with the asm-label extension.
224   std::string Name;
225   if (D.hasAttr<AsmLabelAttr>())
226     Name = getMangledName(&D);
227   else
228     Name = getStaticDeclName(*this, D);
229 
230   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
231   LangAS AS = GetGlobalVarAddressSpace(&D);
232   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
233 
234   // OpenCL variables in local address space and CUDA shared
235   // variables cannot have an initializer.
236   llvm::Constant *Init = nullptr;
237   if (Ty.getAddressSpace() == LangAS::opencl_local ||
238       D.hasAttr<CUDASharedAttr>())
239     Init = llvm::UndefValue::get(LTy);
240   else
241     Init = EmitNullConstant(Ty);
242 
243   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
244       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
245       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
246   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
247 
248   if (supportsCOMDAT() && GV->isWeakForLinker())
249     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
250 
251   if (D.getTLSKind())
252     setTLSMode(GV, D);
253 
254   setGVProperties(GV, &D);
255 
256   // Make sure the result is of the correct type.
257   LangAS ExpectedAS = Ty.getAddressSpace();
258   llvm::Constant *Addr = GV;
259   if (AS != ExpectedAS) {
260     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
261         *this, GV, AS, ExpectedAS,
262         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
263   }
264 
265   setStaticLocalDeclAddress(&D, Addr);
266 
267   // Ensure that the static local gets initialized by making sure the parent
268   // function gets emitted eventually.
269   const Decl *DC = cast<Decl>(D.getDeclContext());
270 
271   // We can't name blocks or captured statements directly, so try to emit their
272   // parents.
273   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
274     DC = DC->getNonClosureContext();
275     // FIXME: Ensure that global blocks get emitted.
276     if (!DC)
277       return Addr;
278   }
279 
280   GlobalDecl GD;
281   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
282     GD = GlobalDecl(CD, Ctor_Base);
283   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
284     GD = GlobalDecl(DD, Dtor_Base);
285   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
286     GD = GlobalDecl(FD);
287   else {
288     // Don't do anything for Obj-C method decls or global closures. We should
289     // never defer them.
290     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
291   }
292   if (GD.getDecl()) {
293     // Disable emission of the parent function for the OpenMP device codegen.
294     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
295     (void)GetAddrOfGlobal(GD);
296   }
297 
298   return Addr;
299 }
300 
301 /// hasNontrivialDestruction - Determine whether a type's destruction is
302 /// non-trivial. If so, and the variable uses static initialization, we must
303 /// register its destructor to run on exit.
304 static bool hasNontrivialDestruction(QualType T) {
305   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
306   return RD && !RD->hasTrivialDestructor();
307 }
308 
309 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
310 /// global variable that has already been created for it.  If the initializer
311 /// has a different type than GV does, this may free GV and return a different
312 /// one.  Otherwise it just returns GV.
313 llvm::GlobalVariable *
314 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
315                                                llvm::GlobalVariable *GV) {
316   ConstantEmitter emitter(*this);
317   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
318 
319   // If constant emission failed, then this should be a C++ static
320   // initializer.
321   if (!Init) {
322     if (!getLangOpts().CPlusPlus)
323       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
324     else if (HaveInsertPoint()) {
325       // Since we have a static initializer, this global variable can't
326       // be constant.
327       GV->setConstant(false);
328 
329       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
330     }
331     return GV;
332   }
333 
334   // The initializer may differ in type from the global. Rewrite
335   // the global to match the initializer.  (We have to do this
336   // because some types, like unions, can't be completely represented
337   // in the LLVM type system.)
338   if (GV->getType()->getElementType() != Init->getType()) {
339     llvm::GlobalVariable *OldGV = GV;
340 
341     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
342                                   OldGV->isConstant(),
343                                   OldGV->getLinkage(), Init, "",
344                                   /*InsertBefore*/ OldGV,
345                                   OldGV->getThreadLocalMode(),
346                            CGM.getContext().getTargetAddressSpace(D.getType()));
347     GV->setVisibility(OldGV->getVisibility());
348     GV->setDSOLocal(OldGV->isDSOLocal());
349     GV->setComdat(OldGV->getComdat());
350 
351     // Steal the name of the old global
352     GV->takeName(OldGV);
353 
354     // Replace all uses of the old global with the new global
355     llvm::Constant *NewPtrForOldDecl =
356     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
357     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
358 
359     // Erase the old global, since it is no longer used.
360     OldGV->eraseFromParent();
361   }
362 
363   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
364   GV->setInitializer(Init);
365 
366   emitter.finalize(GV);
367 
368   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
369     // We have a constant initializer, but a nontrivial destructor. We still
370     // need to perform a guarded "initialization" in order to register the
371     // destructor.
372     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
373   }
374 
375   return GV;
376 }
377 
378 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
379                                       llvm::GlobalValue::LinkageTypes Linkage) {
380   // Check to see if we already have a global variable for this
381   // declaration.  This can happen when double-emitting function
382   // bodies, e.g. with complete and base constructors.
383   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
384   CharUnits alignment = getContext().getDeclAlign(&D);
385 
386   // Store into LocalDeclMap before generating initializer to handle
387   // circular references.
388   setAddrOfLocalVar(&D, Address(addr, alignment));
389 
390   // We can't have a VLA here, but we can have a pointer to a VLA,
391   // even though that doesn't really make any sense.
392   // Make sure to evaluate VLA bounds now so that we have them for later.
393   if (D.getType()->isVariablyModifiedType())
394     EmitVariablyModifiedType(D.getType());
395 
396   // Save the type in case adding the initializer forces a type change.
397   llvm::Type *expectedType = addr->getType();
398 
399   llvm::GlobalVariable *var =
400     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
401 
402   // CUDA's local and local static __shared__ variables should not
403   // have any non-empty initializers. This is ensured by Sema.
404   // Whatever initializer such variable may have when it gets here is
405   // a no-op and should not be emitted.
406   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
407                          D.hasAttr<CUDASharedAttr>();
408   // If this value has an initializer, emit it.
409   if (D.getInit() && !isCudaSharedVar)
410     var = AddInitializerToStaticVarDecl(D, var);
411 
412   var->setAlignment(alignment.getQuantity());
413 
414   if (D.hasAttr<AnnotateAttr>())
415     CGM.AddGlobalAnnotations(&D, var);
416 
417   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
418     var->addAttribute("bss-section", SA->getName());
419   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
420     var->addAttribute("data-section", SA->getName());
421   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
422     var->addAttribute("rodata-section", SA->getName());
423 
424   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
425     var->setSection(SA->getName());
426 
427   if (D.hasAttr<UsedAttr>())
428     CGM.addUsedGlobal(var);
429 
430   // We may have to cast the constant because of the initializer
431   // mismatch above.
432   //
433   // FIXME: It is really dangerous to store this in the map; if anyone
434   // RAUW's the GV uses of this constant will be invalid.
435   llvm::Constant *castedAddr =
436     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
437   if (var != castedAddr)
438     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
439   CGM.setStaticLocalDeclAddress(&D, castedAddr);
440 
441   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
442 
443   // Emit global variable debug descriptor for static vars.
444   CGDebugInfo *DI = getDebugInfo();
445   if (DI &&
446       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
447     DI->setLocation(D.getLocation());
448     DI->EmitGlobalVariable(var, &D);
449   }
450 }
451 
452 namespace {
453   struct DestroyObject final : EHScopeStack::Cleanup {
454     DestroyObject(Address addr, QualType type,
455                   CodeGenFunction::Destroyer *destroyer,
456                   bool useEHCleanupForArray)
457       : addr(addr), type(type), destroyer(destroyer),
458         useEHCleanupForArray(useEHCleanupForArray) {}
459 
460     Address addr;
461     QualType type;
462     CodeGenFunction::Destroyer *destroyer;
463     bool useEHCleanupForArray;
464 
465     void Emit(CodeGenFunction &CGF, Flags flags) override {
466       // Don't use an EH cleanup recursively from an EH cleanup.
467       bool useEHCleanupForArray =
468         flags.isForNormalCleanup() && this->useEHCleanupForArray;
469 
470       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
471     }
472   };
473 
474   template <class Derived>
475   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
476     DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag)
477         : NRVOFlag(NRVOFlag), Loc(addr) {}
478 
479     llvm::Value *NRVOFlag;
480     Address Loc;
481 
482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       // Along the exceptions path we always execute the dtor.
484       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
485 
486       llvm::BasicBlock *SkipDtorBB = nullptr;
487       if (NRVO) {
488         // If we exited via NRVO, we skip the destructor call.
489         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
490         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
491         llvm::Value *DidNRVO =
492           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
493         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
494         CGF.EmitBlock(RunDtorBB);
495       }
496 
497       static_cast<Derived *>(this)->emitDestructorCall(CGF);
498 
499       if (NRVO) CGF.EmitBlock(SkipDtorBB);
500     }
501 
502     virtual ~DestroyNRVOVariable() = default;
503   };
504 
505   struct DestroyNRVOVariableCXX final
506       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
507     DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor,
508                            llvm::Value *NRVOFlag)
509       : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag),
510         Dtor(Dtor) {}
511 
512     const CXXDestructorDecl *Dtor;
513 
514     void emitDestructorCall(CodeGenFunction &CGF) {
515       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
516                                 /*ForVirtualBase=*/false,
517                                 /*Delegating=*/false, Loc);
518     }
519   };
520 
521   struct DestroyNRVOVariableC final
522       : DestroyNRVOVariable<DestroyNRVOVariableC> {
523     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
524         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {}
525 
526     QualType Ty;
527 
528     void emitDestructorCall(CodeGenFunction &CGF) {
529       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
530     }
531   };
532 
533   struct CallStackRestore final : EHScopeStack::Cleanup {
534     Address Stack;
535     CallStackRestore(Address Stack) : Stack(Stack) {}
536     void Emit(CodeGenFunction &CGF, Flags flags) override {
537       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
538       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
539       CGF.Builder.CreateCall(F, V);
540     }
541   };
542 
543   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
544     const VarDecl &Var;
545     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
546 
547     void Emit(CodeGenFunction &CGF, Flags flags) override {
548       // Compute the address of the local variable, in case it's a
549       // byref or something.
550       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
551                       Var.getType(), VK_LValue, SourceLocation());
552       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
553                                                 SourceLocation());
554       CGF.EmitExtendGCLifetime(value);
555     }
556   };
557 
558   struct CallCleanupFunction final : EHScopeStack::Cleanup {
559     llvm::Constant *CleanupFn;
560     const CGFunctionInfo &FnInfo;
561     const VarDecl &Var;
562 
563     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
564                         const VarDecl *Var)
565       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
566 
567     void Emit(CodeGenFunction &CGF, Flags flags) override {
568       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
569                       Var.getType(), VK_LValue, SourceLocation());
570       // Compute the address of the local variable, in case it's a byref
571       // or something.
572       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
573 
574       // In some cases, the type of the function argument will be different from
575       // the type of the pointer. An example of this is
576       // void f(void* arg);
577       // __attribute__((cleanup(f))) void *g;
578       //
579       // To fix this we insert a bitcast here.
580       QualType ArgTy = FnInfo.arg_begin()->type;
581       llvm::Value *Arg =
582         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
583 
584       CallArgList Args;
585       Args.add(RValue::get(Arg),
586                CGF.getContext().getPointerType(Var.getType()));
587       auto Callee = CGCallee::forDirect(CleanupFn);
588       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
589     }
590   };
591 } // end anonymous namespace
592 
593 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
594 /// variable with lifetime.
595 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
596                                     Address addr,
597                                     Qualifiers::ObjCLifetime lifetime) {
598   switch (lifetime) {
599   case Qualifiers::OCL_None:
600     llvm_unreachable("present but none");
601 
602   case Qualifiers::OCL_ExplicitNone:
603     // nothing to do
604     break;
605 
606   case Qualifiers::OCL_Strong: {
607     CodeGenFunction::Destroyer *destroyer =
608       (var.hasAttr<ObjCPreciseLifetimeAttr>()
609        ? CodeGenFunction::destroyARCStrongPrecise
610        : CodeGenFunction::destroyARCStrongImprecise);
611 
612     CleanupKind cleanupKind = CGF.getARCCleanupKind();
613     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
614                     cleanupKind & EHCleanup);
615     break;
616   }
617   case Qualifiers::OCL_Autoreleasing:
618     // nothing to do
619     break;
620 
621   case Qualifiers::OCL_Weak:
622     // __weak objects always get EH cleanups; otherwise, exceptions
623     // could cause really nasty crashes instead of mere leaks.
624     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
625                     CodeGenFunction::destroyARCWeak,
626                     /*useEHCleanup*/ true);
627     break;
628   }
629 }
630 
631 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
632   if (const Expr *e = dyn_cast<Expr>(s)) {
633     // Skip the most common kinds of expressions that make
634     // hierarchy-walking expensive.
635     s = e = e->IgnoreParenCasts();
636 
637     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
638       return (ref->getDecl() == &var);
639     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
640       const BlockDecl *block = be->getBlockDecl();
641       for (const auto &I : block->captures()) {
642         if (I.getVariable() == &var)
643           return true;
644       }
645     }
646   }
647 
648   for (const Stmt *SubStmt : s->children())
649     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
650     if (SubStmt && isAccessedBy(var, SubStmt))
651       return true;
652 
653   return false;
654 }
655 
656 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
657   if (!decl) return false;
658   if (!isa<VarDecl>(decl)) return false;
659   const VarDecl *var = cast<VarDecl>(decl);
660   return isAccessedBy(*var, e);
661 }
662 
663 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
664                                    const LValue &destLV, const Expr *init) {
665   bool needsCast = false;
666 
667   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
668     switch (castExpr->getCastKind()) {
669     // Look through casts that don't require representation changes.
670     case CK_NoOp:
671     case CK_BitCast:
672     case CK_BlockPointerToObjCPointerCast:
673       needsCast = true;
674       break;
675 
676     // If we find an l-value to r-value cast from a __weak variable,
677     // emit this operation as a copy or move.
678     case CK_LValueToRValue: {
679       const Expr *srcExpr = castExpr->getSubExpr();
680       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
681         return false;
682 
683       // Emit the source l-value.
684       LValue srcLV = CGF.EmitLValue(srcExpr);
685 
686       // Handle a formal type change to avoid asserting.
687       auto srcAddr = srcLV.getAddress();
688       if (needsCast) {
689         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
690                                          destLV.getAddress().getElementType());
691       }
692 
693       // If it was an l-value, use objc_copyWeak.
694       if (srcExpr->getValueKind() == VK_LValue) {
695         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
696       } else {
697         assert(srcExpr->getValueKind() == VK_XValue);
698         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
699       }
700       return true;
701     }
702 
703     // Stop at anything else.
704     default:
705       return false;
706     }
707 
708     init = castExpr->getSubExpr();
709   }
710   return false;
711 }
712 
713 static void drillIntoBlockVariable(CodeGenFunction &CGF,
714                                    LValue &lvalue,
715                                    const VarDecl *var) {
716   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
717 }
718 
719 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
720                                            SourceLocation Loc) {
721   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
722     return;
723 
724   auto Nullability = LHS.getType()->getNullability(getContext());
725   if (!Nullability || *Nullability != NullabilityKind::NonNull)
726     return;
727 
728   // Check if the right hand side of the assignment is nonnull, if the left
729   // hand side must be nonnull.
730   SanitizerScope SanScope(this);
731   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
732   llvm::Constant *StaticData[] = {
733       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
734       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
735       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
736   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
737             SanitizerHandler::TypeMismatch, StaticData, RHS);
738 }
739 
740 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
741                                      LValue lvalue, bool capturedByInit) {
742   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
743   if (!lifetime) {
744     llvm::Value *value = EmitScalarExpr(init);
745     if (capturedByInit)
746       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
747     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
748     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
749     return;
750   }
751 
752   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
753     init = DIE->getExpr();
754 
755   // If we're emitting a value with lifetime, we have to do the
756   // initialization *before* we leave the cleanup scopes.
757   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
758     enterFullExpression(fe);
759     init = fe->getSubExpr();
760   }
761   CodeGenFunction::RunCleanupsScope Scope(*this);
762 
763   // We have to maintain the illusion that the variable is
764   // zero-initialized.  If the variable might be accessed in its
765   // initializer, zero-initialize before running the initializer, then
766   // actually perform the initialization with an assign.
767   bool accessedByInit = false;
768   if (lifetime != Qualifiers::OCL_ExplicitNone)
769     accessedByInit = (capturedByInit || isAccessedBy(D, init));
770   if (accessedByInit) {
771     LValue tempLV = lvalue;
772     // Drill down to the __block object if necessary.
773     if (capturedByInit) {
774       // We can use a simple GEP for this because it can't have been
775       // moved yet.
776       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
777                                               cast<VarDecl>(D),
778                                               /*follow*/ false));
779     }
780 
781     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
782     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
783 
784     // If __weak, we want to use a barrier under certain conditions.
785     if (lifetime == Qualifiers::OCL_Weak)
786       EmitARCInitWeak(tempLV.getAddress(), zero);
787 
788     // Otherwise just do a simple store.
789     else
790       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
791   }
792 
793   // Emit the initializer.
794   llvm::Value *value = nullptr;
795 
796   switch (lifetime) {
797   case Qualifiers::OCL_None:
798     llvm_unreachable("present but none");
799 
800   case Qualifiers::OCL_ExplicitNone:
801     value = EmitARCUnsafeUnretainedScalarExpr(init);
802     break;
803 
804   case Qualifiers::OCL_Strong: {
805     value = EmitARCRetainScalarExpr(init);
806     break;
807   }
808 
809   case Qualifiers::OCL_Weak: {
810     // If it's not accessed by the initializer, try to emit the
811     // initialization with a copy or move.
812     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
813       return;
814     }
815 
816     // No way to optimize a producing initializer into this.  It's not
817     // worth optimizing for, because the value will immediately
818     // disappear in the common case.
819     value = EmitScalarExpr(init);
820 
821     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
822     if (accessedByInit)
823       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
824     else
825       EmitARCInitWeak(lvalue.getAddress(), value);
826     return;
827   }
828 
829   case Qualifiers::OCL_Autoreleasing:
830     value = EmitARCRetainAutoreleaseScalarExpr(init);
831     break;
832   }
833 
834   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
835 
836   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
837 
838   // If the variable might have been accessed by its initializer, we
839   // might have to initialize with a barrier.  We have to do this for
840   // both __weak and __strong, but __weak got filtered out above.
841   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
842     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
843     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
844     EmitARCRelease(oldValue, ARCImpreciseLifetime);
845     return;
846   }
847 
848   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
849 }
850 
851 /// Decide whether we can emit the non-zero parts of the specified initializer
852 /// with equal or fewer than NumStores scalar stores.
853 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
854                                                unsigned &NumStores) {
855   // Zero and Undef never requires any extra stores.
856   if (isa<llvm::ConstantAggregateZero>(Init) ||
857       isa<llvm::ConstantPointerNull>(Init) ||
858       isa<llvm::UndefValue>(Init))
859     return true;
860   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
861       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
862       isa<llvm::ConstantExpr>(Init))
863     return Init->isNullValue() || NumStores--;
864 
865   // See if we can emit each element.
866   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
867     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
868       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
869       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
870         return false;
871     }
872     return true;
873   }
874 
875   if (llvm::ConstantDataSequential *CDS =
876         dyn_cast<llvm::ConstantDataSequential>(Init)) {
877     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
878       llvm::Constant *Elt = CDS->getElementAsConstant(i);
879       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
880         return false;
881     }
882     return true;
883   }
884 
885   // Anything else is hard and scary.
886   return false;
887 }
888 
889 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
890 /// the scalar stores that would be required.
891 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
892                                         llvm::Constant *Init, Address Loc,
893                                         bool isVolatile, CGBuilderTy &Builder) {
894   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
895          "called emitStoresForInitAfterBZero for zero or undef value.");
896 
897   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
898       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
899       isa<llvm::ConstantExpr>(Init)) {
900     Builder.CreateStore(Init, Loc, isVolatile);
901     return;
902   }
903 
904   if (llvm::ConstantDataSequential *CDS =
905           dyn_cast<llvm::ConstantDataSequential>(Init)) {
906     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
907       llvm::Constant *Elt = CDS->getElementAsConstant(i);
908 
909       // If necessary, get a pointer to the element and emit it.
910       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
911         emitStoresForInitAfterBZero(
912             CGM, Elt,
913             Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
914             isVolatile, Builder);
915     }
916     return;
917   }
918 
919   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
920          "Unknown value type!");
921 
922   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
923     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
924 
925     // If necessary, get a pointer to the element and emit it.
926     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
927       emitStoresForInitAfterBZero(
928           CGM, Elt,
929           Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
930           isVolatile, Builder);
931   }
932 }
933 
934 /// Decide whether we should use bzero plus some stores to initialize a local
935 /// variable instead of using a memcpy from a constant global.  It is beneficial
936 /// to use bzero if the global is all zeros, or mostly zeros and large.
937 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
938                                                  uint64_t GlobalSize) {
939   // If a global is all zeros, always use a bzero.
940   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
941 
942   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
943   // do it if it will require 6 or fewer scalar stores.
944   // TODO: Should budget depends on the size?  Avoiding a large global warrants
945   // plopping in more stores.
946   unsigned StoreBudget = 6;
947   uint64_t SizeLimit = 32;
948 
949   return GlobalSize > SizeLimit &&
950          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
951 }
952 
953 /// Decide whether we should use memset to initialize a local variable instead
954 /// of using a memcpy from a constant global. Assumes we've already decided to
955 /// not user bzero.
956 /// FIXME We could be more clever, as we are for bzero above, and generate
957 ///       memset followed by stores. It's unclear that's worth the effort.
958 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
959                                                 uint64_t GlobalSize) {
960   uint64_t SizeLimit = 32;
961   if (GlobalSize <= SizeLimit)
962     return nullptr;
963   return llvm::isBytewiseValue(Init);
964 }
965 
966 static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D,
967                                        CGBuilderTy &Builder,
968                                        llvm::Constant *Constant,
969                                        CharUnits Align) {
970   auto FunctionName = [&](const DeclContext *DC) -> std::string {
971     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
972       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
973         return CC->getNameAsString();
974       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
975         return CD->getNameAsString();
976       return CGM.getMangledName(FD);
977     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
978       return OM->getNameAsString();
979     } else if (isa<BlockDecl>(DC)) {
980       return "<block>";
981     } else if (isa<CapturedDecl>(DC)) {
982       return "<captured>";
983     } else {
984       llvm::llvm_unreachable_internal("expected a function or method");
985     }
986   };
987 
988   auto *Ty = Constant->getType();
989   bool isConstant = true;
990   llvm::GlobalVariable *InsertBefore = nullptr;
991   unsigned AS = CGM.getContext().getTargetAddressSpace(
992       CGM.getStringLiteralAddressSpace());
993   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
994       CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
995       Constant,
996       "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." +
997           D.getName(),
998       InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
999   GV->setAlignment(Align.getQuantity());
1000   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1001 
1002   Address SrcPtr = Address(GV, Align);
1003   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS);
1004   if (SrcPtr.getType() != BP)
1005     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1006   return SrcPtr;
1007 }
1008 
1009 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1010                                   Address Loc, bool isVolatile,
1011                                   CGBuilderTy &Builder,
1012                                   llvm::Constant *constant) {
1013   auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1014   auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext());
1015 
1016   // If the initializer is all or mostly the same, codegen with bzero / memset
1017   // then do a few stores afterward.
1018   uint64_t ConstantSize =
1019       CGM.getDataLayout().getTypeAllocSize(constant->getType());
1020   auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize);
1021   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1022     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1023                          isVolatile);
1024 
1025     bool valueAlreadyCorrect =
1026         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1027     if (!valueAlreadyCorrect) {
1028       Loc = Builder.CreateBitCast(
1029           Loc, constant->getType()->getPointerTo(Loc.getAddressSpace()));
1030       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1031     }
1032     return;
1033   }
1034 
1035   llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize);
1036   if (Pattern) {
1037     uint64_t Value = 0x00;
1038     if (!isa<llvm::UndefValue>(Pattern)) {
1039       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1040       assert(AP.getBitWidth() <= 8);
1041       Value = AP.getLimitedValue();
1042     }
1043     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal,
1044                          isVolatile);
1045     return;
1046   }
1047 
1048   Builder.CreateMemCpy(
1049       Loc,
1050       createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()),
1051       SizeVal, isVolatile);
1052 }
1053 
1054 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1055 /// variable declaration with auto, register, or no storage class specifier.
1056 /// These turn into simple stack objects, or GlobalValues depending on target.
1057 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1058   AutoVarEmission emission = EmitAutoVarAlloca(D);
1059   EmitAutoVarInit(emission);
1060   EmitAutoVarCleanups(emission);
1061 }
1062 
1063 /// Emit a lifetime.begin marker if some criteria are satisfied.
1064 /// \return a pointer to the temporary size Value if a marker was emitted, null
1065 /// otherwise
1066 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1067                                                 llvm::Value *Addr) {
1068   if (!ShouldEmitLifetimeMarkers)
1069     return nullptr;
1070 
1071   assert(Addr->getType()->getPointerAddressSpace() ==
1072              CGM.getDataLayout().getAllocaAddrSpace() &&
1073          "Pointer should be in alloca address space");
1074   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1075   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1076   llvm::CallInst *C =
1077       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1078   C->setDoesNotThrow();
1079   return SizeV;
1080 }
1081 
1082 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1083   assert(Addr->getType()->getPointerAddressSpace() ==
1084              CGM.getDataLayout().getAllocaAddrSpace() &&
1085          "Pointer should be in alloca address space");
1086   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1087   llvm::CallInst *C =
1088       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1089   C->setDoesNotThrow();
1090 }
1091 
1092 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1093     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1094   // For each dimension stores its QualType and corresponding
1095   // size-expression Value.
1096   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1097   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1098 
1099   // Break down the array into individual dimensions.
1100   QualType Type1D = D.getType();
1101   while (getContext().getAsVariableArrayType(Type1D)) {
1102     auto VlaSize = getVLAElements1D(Type1D);
1103     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1104       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1105     else {
1106       // Generate a locally unique name for the size expression.
1107       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1108       SmallString<12> Buffer;
1109       StringRef NameRef = Name.toStringRef(Buffer);
1110       auto &Ident = getContext().Idents.getOwn(NameRef);
1111       VLAExprNames.push_back(&Ident);
1112       auto SizeExprAddr =
1113           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1114       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1115       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1116                               Type1D.getUnqualifiedType());
1117     }
1118     Type1D = VlaSize.Type;
1119   }
1120 
1121   if (!EmitDebugInfo)
1122     return;
1123 
1124   // Register each dimension's size-expression with a DILocalVariable,
1125   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1126   // to describe this array.
1127   unsigned NameIdx = 0;
1128   for (auto &VlaSize : Dimensions) {
1129     llvm::Metadata *MD;
1130     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1131       MD = llvm::ConstantAsMetadata::get(C);
1132     else {
1133       // Create an artificial VarDecl to generate debug info for.
1134       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1135       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1136       auto QT = getContext().getIntTypeForBitwidth(
1137           VlaExprTy->getScalarSizeInBits(), false);
1138       auto *ArtificialDecl = VarDecl::Create(
1139           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1140           D.getLocation(), D.getLocation(), NameIdent, QT,
1141           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1142       ArtificialDecl->setImplicit();
1143 
1144       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1145                                          Builder);
1146     }
1147     assert(MD && "No Size expression debug node created");
1148     DI->registerVLASizeExpression(VlaSize.Type, MD);
1149   }
1150 }
1151 
1152 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1153 /// local variable.  Does not emit initialization or destruction.
1154 CodeGenFunction::AutoVarEmission
1155 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1156   QualType Ty = D.getType();
1157   assert(
1158       Ty.getAddressSpace() == LangAS::Default ||
1159       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1160 
1161   AutoVarEmission emission(D);
1162 
1163   bool isEscapingByRef = D.isEscapingByref();
1164   emission.IsEscapingByRef = isEscapingByRef;
1165 
1166   CharUnits alignment = getContext().getDeclAlign(&D);
1167 
1168   // If the type is variably-modified, emit all the VLA sizes for it.
1169   if (Ty->isVariablyModifiedType())
1170     EmitVariablyModifiedType(Ty);
1171 
1172   auto *DI = getDebugInfo();
1173   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1174                                  codegenoptions::LimitedDebugInfo;
1175 
1176   Address address = Address::invalid();
1177   Address AllocaAddr = Address::invalid();
1178   if (Ty->isConstantSizeType()) {
1179     bool NRVO = getLangOpts().ElideConstructors &&
1180       D.isNRVOVariable();
1181 
1182     // If this value is an array or struct with a statically determinable
1183     // constant initializer, there are optimizations we can do.
1184     //
1185     // TODO: We should constant-evaluate the initializer of any variable,
1186     // as long as it is initialized by a constant expression. Currently,
1187     // isConstantInitializer produces wrong answers for structs with
1188     // reference or bitfield members, and a few other cases, and checking
1189     // for POD-ness protects us from some of these.
1190     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1191         (D.isConstexpr() ||
1192          ((Ty.isPODType(getContext()) ||
1193            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1194           D.getInit()->isConstantInitializer(getContext(), false)))) {
1195 
1196       // If the variable's a const type, and it's neither an NRVO
1197       // candidate nor a __block variable and has no mutable members,
1198       // emit it as a global instead.
1199       // Exception is if a variable is located in non-constant address space
1200       // in OpenCL.
1201       if ((!getLangOpts().OpenCL ||
1202            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1203           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1204            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1205         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1206 
1207         // Signal this condition to later callbacks.
1208         emission.Addr = Address::invalid();
1209         assert(emission.wasEmittedAsGlobal());
1210         return emission;
1211       }
1212 
1213       // Otherwise, tell the initialization code that we're in this case.
1214       emission.IsConstantAggregate = true;
1215     }
1216 
1217     // A normal fixed sized variable becomes an alloca in the entry block,
1218     // unless:
1219     // - it's an NRVO variable.
1220     // - we are compiling OpenMP and it's an OpenMP local variable.
1221 
1222     Address OpenMPLocalAddr =
1223         getLangOpts().OpenMP
1224             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1225             : Address::invalid();
1226     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1227       address = OpenMPLocalAddr;
1228     } else if (NRVO) {
1229       // The named return value optimization: allocate this variable in the
1230       // return slot, so that we can elide the copy when returning this
1231       // variable (C++0x [class.copy]p34).
1232       address = ReturnValue;
1233 
1234       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1235         const auto *RD = RecordTy->getDecl();
1236         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1237         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1238             RD->isNonTrivialToPrimitiveDestroy()) {
1239           // Create a flag that is used to indicate when the NRVO was applied
1240           // to this variable. Set it to zero to indicate that NRVO was not
1241           // applied.
1242           llvm::Value *Zero = Builder.getFalse();
1243           Address NRVOFlag =
1244             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1245           EnsureInsertPoint();
1246           Builder.CreateStore(Zero, NRVOFlag);
1247 
1248           // Record the NRVO flag for this variable.
1249           NRVOFlags[&D] = NRVOFlag.getPointer();
1250           emission.NRVOFlag = NRVOFlag.getPointer();
1251         }
1252       }
1253     } else {
1254       CharUnits allocaAlignment;
1255       llvm::Type *allocaTy;
1256       if (isEscapingByRef) {
1257         auto &byrefInfo = getBlockByrefInfo(&D);
1258         allocaTy = byrefInfo.Type;
1259         allocaAlignment = byrefInfo.ByrefAlignment;
1260       } else {
1261         allocaTy = ConvertTypeForMem(Ty);
1262         allocaAlignment = alignment;
1263       }
1264 
1265       // Create the alloca.  Note that we set the name separately from
1266       // building the instruction so that it's there even in no-asserts
1267       // builds.
1268       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1269                                  /*ArraySize=*/nullptr, &AllocaAddr);
1270 
1271       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1272       // the catch parameter starts in the catchpad instruction, and we can't
1273       // insert code in those basic blocks.
1274       bool IsMSCatchParam =
1275           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1276 
1277       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1278       // if we don't have a valid insertion point (?).
1279       if (HaveInsertPoint() && !IsMSCatchParam) {
1280         // If there's a jump into the lifetime of this variable, its lifetime
1281         // gets broken up into several regions in IR, which requires more work
1282         // to handle correctly. For now, just omit the intrinsics; this is a
1283         // rare case, and it's better to just be conservatively correct.
1284         // PR28267.
1285         //
1286         // We have to do this in all language modes if there's a jump past the
1287         // declaration. We also have to do it in C if there's a jump to an
1288         // earlier point in the current block because non-VLA lifetimes begin as
1289         // soon as the containing block is entered, not when its variables
1290         // actually come into scope; suppressing the lifetime annotations
1291         // completely in this case is unnecessarily pessimistic, but again, this
1292         // is rare.
1293         if (!Bypasses.IsBypassed(&D) &&
1294             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1295           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1296           emission.SizeForLifetimeMarkers =
1297               EmitLifetimeStart(size, AllocaAddr.getPointer());
1298         }
1299       } else {
1300         assert(!emission.useLifetimeMarkers());
1301       }
1302     }
1303   } else {
1304     EnsureInsertPoint();
1305 
1306     if (!DidCallStackSave) {
1307       // Save the stack.
1308       Address Stack =
1309         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1310 
1311       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1312       llvm::Value *V = Builder.CreateCall(F);
1313       Builder.CreateStore(V, Stack);
1314 
1315       DidCallStackSave = true;
1316 
1317       // Push a cleanup block and restore the stack there.
1318       // FIXME: in general circumstances, this should be an EH cleanup.
1319       pushStackRestore(NormalCleanup, Stack);
1320     }
1321 
1322     auto VlaSize = getVLASize(Ty);
1323     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1324 
1325     // Allocate memory for the array.
1326     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1327                                &AllocaAddr);
1328 
1329     // If we have debug info enabled, properly describe the VLA dimensions for
1330     // this type by registering the vla size expression for each of the
1331     // dimensions.
1332     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1333   }
1334 
1335   setAddrOfLocalVar(&D, address);
1336   emission.Addr = address;
1337   emission.AllocaAddr = AllocaAddr;
1338 
1339   // Emit debug info for local var declaration.
1340   if (EmitDebugInfo && HaveInsertPoint()) {
1341     DI->setLocation(D.getLocation());
1342     (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1343   }
1344 
1345   if (D.hasAttr<AnnotateAttr>())
1346     EmitVarAnnotations(&D, address.getPointer());
1347 
1348   // Make sure we call @llvm.lifetime.end.
1349   if (emission.useLifetimeMarkers())
1350     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1351                                          emission.getOriginalAllocatedAddress(),
1352                                          emission.getSizeForLifetimeMarkers());
1353 
1354   return emission;
1355 }
1356 
1357 static bool isCapturedBy(const VarDecl &, const Expr *);
1358 
1359 /// Determines whether the given __block variable is potentially
1360 /// captured by the given statement.
1361 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1362   if (const Expr *E = dyn_cast<Expr>(S))
1363     return isCapturedBy(Var, E);
1364   for (const Stmt *SubStmt : S->children())
1365     if (isCapturedBy(Var, SubStmt))
1366       return true;
1367   return false;
1368 }
1369 
1370 /// Determines whether the given __block variable is potentially
1371 /// captured by the given expression.
1372 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1373   // Skip the most common kinds of expressions that make
1374   // hierarchy-walking expensive.
1375   E = E->IgnoreParenCasts();
1376 
1377   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1378     const BlockDecl *Block = BE->getBlockDecl();
1379     for (const auto &I : Block->captures()) {
1380       if (I.getVariable() == &Var)
1381         return true;
1382     }
1383 
1384     // No need to walk into the subexpressions.
1385     return false;
1386   }
1387 
1388   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1389     const CompoundStmt *CS = SE->getSubStmt();
1390     for (const auto *BI : CS->body())
1391       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1392         if (isCapturedBy(Var, BIE))
1393           return true;
1394       }
1395       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1396           // special case declarations
1397           for (const auto *I : DS->decls()) {
1398               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1399                 const Expr *Init = VD->getInit();
1400                 if (Init && isCapturedBy(Var, Init))
1401                   return true;
1402               }
1403           }
1404       }
1405       else
1406         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1407         // Later, provide code to poke into statements for capture analysis.
1408         return true;
1409     return false;
1410   }
1411 
1412   for (const Stmt *SubStmt : E->children())
1413     if (isCapturedBy(Var, SubStmt))
1414       return true;
1415 
1416   return false;
1417 }
1418 
1419 /// Determine whether the given initializer is trivial in the sense
1420 /// that it requires no code to be generated.
1421 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1422   if (!Init)
1423     return true;
1424 
1425   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1426     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1427       if (Constructor->isTrivial() &&
1428           Constructor->isDefaultConstructor() &&
1429           !Construct->requiresZeroInitialization())
1430         return true;
1431 
1432   return false;
1433 }
1434 
1435 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1436   assert(emission.Variable && "emission was not valid!");
1437 
1438   // If this was emitted as a global constant, we're done.
1439   if (emission.wasEmittedAsGlobal()) return;
1440 
1441   const VarDecl &D = *emission.Variable;
1442   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1443   QualType type = D.getType();
1444 
1445   // If this local has an initializer, emit it now.
1446   const Expr *Init = D.getInit();
1447 
1448   // If we are at an unreachable point, we don't need to emit the initializer
1449   // unless it contains a label.
1450   if (!HaveInsertPoint()) {
1451     if (!Init || !ContainsLabel(Init)) return;
1452     EnsureInsertPoint();
1453   }
1454 
1455   // Initialize the structure of a __block variable.
1456   if (emission.IsEscapingByRef)
1457     emitByrefStructureInit(emission);
1458 
1459   // Initialize the variable here if it doesn't have a initializer and it is a
1460   // C struct that is non-trivial to initialize or an array containing such a
1461   // struct.
1462   if (!Init &&
1463       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1464           QualType::PDIK_Struct) {
1465     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1466     if (emission.IsEscapingByRef)
1467       drillIntoBlockVariable(*this, Dst, &D);
1468     defaultInitNonTrivialCStructVar(Dst);
1469     return;
1470   }
1471 
1472   if (isTrivialInitializer(Init))
1473     return;
1474 
1475   // Check whether this is a byref variable that's potentially
1476   // captured and moved by its own initializer.  If so, we'll need to
1477   // emit the initializer first, then copy into the variable.
1478   bool capturedByInit = emission.IsEscapingByRef && isCapturedBy(D, Init);
1479 
1480   Address Loc =
1481     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1482 
1483   llvm::Constant *constant = nullptr;
1484   if (emission.IsConstantAggregate || D.isConstexpr()) {
1485     assert(!capturedByInit && "constant init contains a capturing block?");
1486     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1487   }
1488 
1489   if (!constant) {
1490     LValue lv = MakeAddrLValue(Loc, type);
1491     lv.setNonGC(true);
1492     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1493   }
1494 
1495   if (!emission.IsConstantAggregate) {
1496     // For simple scalar/complex initialization, store the value directly.
1497     LValue lv = MakeAddrLValue(Loc, type);
1498     lv.setNonGC(true);
1499     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1500   }
1501 
1502   // If this is a simple aggregate initialization, we can optimize it
1503   // in various ways.
1504   bool isVolatile = type.isVolatileQualified();
1505 
1506   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1507   if (Loc.getType() != BP)
1508     Loc = Builder.CreateBitCast(Loc, BP);
1509 
1510   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1511 }
1512 
1513 /// Emit an expression as an initializer for an object (variable, field, etc.)
1514 /// at the given location.  The expression is not necessarily the normal
1515 /// initializer for the object, and the address is not necessarily
1516 /// its normal location.
1517 ///
1518 /// \param init the initializing expression
1519 /// \param D the object to act as if we're initializing
1520 /// \param loc the address to initialize; its type is a pointer
1521 ///   to the LLVM mapping of the object's type
1522 /// \param alignment the alignment of the address
1523 /// \param capturedByInit true if \p D is a __block variable
1524 ///   whose address is potentially changed by the initializer
1525 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1526                                      LValue lvalue, bool capturedByInit) {
1527   QualType type = D->getType();
1528 
1529   if (type->isReferenceType()) {
1530     RValue rvalue = EmitReferenceBindingToExpr(init);
1531     if (capturedByInit)
1532       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1533     EmitStoreThroughLValue(rvalue, lvalue, true);
1534     return;
1535   }
1536   switch (getEvaluationKind(type)) {
1537   case TEK_Scalar:
1538     EmitScalarInit(init, D, lvalue, capturedByInit);
1539     return;
1540   case TEK_Complex: {
1541     ComplexPairTy complex = EmitComplexExpr(init);
1542     if (capturedByInit)
1543       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1544     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1545     return;
1546   }
1547   case TEK_Aggregate:
1548     if (type->isAtomicType()) {
1549       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1550     } else {
1551       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1552       if (isa<VarDecl>(D))
1553         Overlap = AggValueSlot::DoesNotOverlap;
1554       else if (auto *FD = dyn_cast<FieldDecl>(D))
1555         Overlap = overlapForFieldInit(FD);
1556       // TODO: how can we delay here if D is captured by its initializer?
1557       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1558                                               AggValueSlot::IsDestructed,
1559                                          AggValueSlot::DoesNotNeedGCBarriers,
1560                                               AggValueSlot::IsNotAliased,
1561                                               Overlap));
1562     }
1563     return;
1564   }
1565   llvm_unreachable("bad evaluation kind");
1566 }
1567 
1568 /// Enter a destroy cleanup for the given local variable.
1569 void CodeGenFunction::emitAutoVarTypeCleanup(
1570                             const CodeGenFunction::AutoVarEmission &emission,
1571                             QualType::DestructionKind dtorKind) {
1572   assert(dtorKind != QualType::DK_none);
1573 
1574   // Note that for __block variables, we want to destroy the
1575   // original stack object, not the possibly forwarded object.
1576   Address addr = emission.getObjectAddress(*this);
1577 
1578   const VarDecl *var = emission.Variable;
1579   QualType type = var->getType();
1580 
1581   CleanupKind cleanupKind = NormalAndEHCleanup;
1582   CodeGenFunction::Destroyer *destroyer = nullptr;
1583 
1584   switch (dtorKind) {
1585   case QualType::DK_none:
1586     llvm_unreachable("no cleanup for trivially-destructible variable");
1587 
1588   case QualType::DK_cxx_destructor:
1589     // If there's an NRVO flag on the emission, we need a different
1590     // cleanup.
1591     if (emission.NRVOFlag) {
1592       assert(!type->isArrayType());
1593       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1594       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor,
1595                                                   emission.NRVOFlag);
1596       return;
1597     }
1598     break;
1599 
1600   case QualType::DK_objc_strong_lifetime:
1601     // Suppress cleanups for pseudo-strong variables.
1602     if (var->isARCPseudoStrong()) return;
1603 
1604     // Otherwise, consider whether to use an EH cleanup or not.
1605     cleanupKind = getARCCleanupKind();
1606 
1607     // Use the imprecise destroyer by default.
1608     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1609       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1610     break;
1611 
1612   case QualType::DK_objc_weak_lifetime:
1613     break;
1614 
1615   case QualType::DK_nontrivial_c_struct:
1616     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1617     if (emission.NRVOFlag) {
1618       assert(!type->isArrayType());
1619       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1620                                                 emission.NRVOFlag, type);
1621       return;
1622     }
1623     break;
1624   }
1625 
1626   // If we haven't chosen a more specific destroyer, use the default.
1627   if (!destroyer) destroyer = getDestroyer(dtorKind);
1628 
1629   // Use an EH cleanup in array destructors iff the destructor itself
1630   // is being pushed as an EH cleanup.
1631   bool useEHCleanup = (cleanupKind & EHCleanup);
1632   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1633                                      useEHCleanup);
1634 }
1635 
1636 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1637   assert(emission.Variable && "emission was not valid!");
1638 
1639   // If this was emitted as a global constant, we're done.
1640   if (emission.wasEmittedAsGlobal()) return;
1641 
1642   // If we don't have an insertion point, we're done.  Sema prevents
1643   // us from jumping into any of these scopes anyway.
1644   if (!HaveInsertPoint()) return;
1645 
1646   const VarDecl &D = *emission.Variable;
1647 
1648   // Check the type for a cleanup.
1649   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1650     emitAutoVarTypeCleanup(emission, dtorKind);
1651 
1652   // In GC mode, honor objc_precise_lifetime.
1653   if (getLangOpts().getGC() != LangOptions::NonGC &&
1654       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1655     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1656   }
1657 
1658   // Handle the cleanup attribute.
1659   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1660     const FunctionDecl *FD = CA->getFunctionDecl();
1661 
1662     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1663     assert(F && "Could not find function!");
1664 
1665     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1666     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1667   }
1668 
1669   // If this is a block variable, call _Block_object_destroy
1670   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
1671   // mode.
1672   if (emission.IsEscapingByRef &&
1673       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
1674     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
1675     if (emission.Variable->getType().isObjCGCWeak())
1676       Flags |= BLOCK_FIELD_IS_WEAK;
1677     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
1678                       /*LoadBlockVarAddr*/ false,
1679                       cxxDestructorCanThrow(emission.Variable->getType()));
1680   }
1681 }
1682 
1683 CodeGenFunction::Destroyer *
1684 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1685   switch (kind) {
1686   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1687   case QualType::DK_cxx_destructor:
1688     return destroyCXXObject;
1689   case QualType::DK_objc_strong_lifetime:
1690     return destroyARCStrongPrecise;
1691   case QualType::DK_objc_weak_lifetime:
1692     return destroyARCWeak;
1693   case QualType::DK_nontrivial_c_struct:
1694     return destroyNonTrivialCStruct;
1695   }
1696   llvm_unreachable("Unknown DestructionKind");
1697 }
1698 
1699 /// pushEHDestroy - Push the standard destructor for the given type as
1700 /// an EH-only cleanup.
1701 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1702                                     Address addr, QualType type) {
1703   assert(dtorKind && "cannot push destructor for trivial type");
1704   assert(needsEHCleanup(dtorKind));
1705 
1706   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1707 }
1708 
1709 /// pushDestroy - Push the standard destructor for the given type as
1710 /// at least a normal cleanup.
1711 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1712                                   Address addr, QualType type) {
1713   assert(dtorKind && "cannot push destructor for trivial type");
1714 
1715   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1716   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1717               cleanupKind & EHCleanup);
1718 }
1719 
1720 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1721                                   QualType type, Destroyer *destroyer,
1722                                   bool useEHCleanupForArray) {
1723   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1724                                      destroyer, useEHCleanupForArray);
1725 }
1726 
1727 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1728   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1729 }
1730 
1731 void CodeGenFunction::pushLifetimeExtendedDestroy(
1732     CleanupKind cleanupKind, Address addr, QualType type,
1733     Destroyer *destroyer, bool useEHCleanupForArray) {
1734   // Push an EH-only cleanup for the object now.
1735   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1736   // around in case a temporary's destructor throws an exception.
1737   if (cleanupKind & EHCleanup)
1738     EHStack.pushCleanup<DestroyObject>(
1739         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1740         destroyer, useEHCleanupForArray);
1741 
1742   // Remember that we need to push a full cleanup for the object at the
1743   // end of the full-expression.
1744   pushCleanupAfterFullExpr<DestroyObject>(
1745       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1746 }
1747 
1748 /// emitDestroy - Immediately perform the destruction of the given
1749 /// object.
1750 ///
1751 /// \param addr - the address of the object; a type*
1752 /// \param type - the type of the object; if an array type, all
1753 ///   objects are destroyed in reverse order
1754 /// \param destroyer - the function to call to destroy individual
1755 ///   elements
1756 /// \param useEHCleanupForArray - whether an EH cleanup should be
1757 ///   used when destroying array elements, in case one of the
1758 ///   destructions throws an exception
1759 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1760                                   Destroyer *destroyer,
1761                                   bool useEHCleanupForArray) {
1762   const ArrayType *arrayType = getContext().getAsArrayType(type);
1763   if (!arrayType)
1764     return destroyer(*this, addr, type);
1765 
1766   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1767 
1768   CharUnits elementAlign =
1769     addr.getAlignment()
1770         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1771 
1772   // Normally we have to check whether the array is zero-length.
1773   bool checkZeroLength = true;
1774 
1775   // But if the array length is constant, we can suppress that.
1776   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1777     // ...and if it's constant zero, we can just skip the entire thing.
1778     if (constLength->isZero()) return;
1779     checkZeroLength = false;
1780   }
1781 
1782   llvm::Value *begin = addr.getPointer();
1783   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1784   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1785                    checkZeroLength, useEHCleanupForArray);
1786 }
1787 
1788 /// emitArrayDestroy - Destroys all the elements of the given array,
1789 /// beginning from last to first.  The array cannot be zero-length.
1790 ///
1791 /// \param begin - a type* denoting the first element of the array
1792 /// \param end - a type* denoting one past the end of the array
1793 /// \param elementType - the element type of the array
1794 /// \param destroyer - the function to call to destroy elements
1795 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1796 ///   the remaining elements in case the destruction of a single
1797 ///   element throws
1798 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1799                                        llvm::Value *end,
1800                                        QualType elementType,
1801                                        CharUnits elementAlign,
1802                                        Destroyer *destroyer,
1803                                        bool checkZeroLength,
1804                                        bool useEHCleanup) {
1805   assert(!elementType->isArrayType());
1806 
1807   // The basic structure here is a do-while loop, because we don't
1808   // need to check for the zero-element case.
1809   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1810   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1811 
1812   if (checkZeroLength) {
1813     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1814                                                 "arraydestroy.isempty");
1815     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1816   }
1817 
1818   // Enter the loop body, making that address the current address.
1819   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1820   EmitBlock(bodyBB);
1821   llvm::PHINode *elementPast =
1822     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1823   elementPast->addIncoming(end, entryBB);
1824 
1825   // Shift the address back by one element.
1826   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1827   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1828                                                    "arraydestroy.element");
1829 
1830   if (useEHCleanup)
1831     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1832                                    destroyer);
1833 
1834   // Perform the actual destruction there.
1835   destroyer(*this, Address(element, elementAlign), elementType);
1836 
1837   if (useEHCleanup)
1838     PopCleanupBlock();
1839 
1840   // Check whether we've reached the end.
1841   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1842   Builder.CreateCondBr(done, doneBB, bodyBB);
1843   elementPast->addIncoming(element, Builder.GetInsertBlock());
1844 
1845   // Done.
1846   EmitBlock(doneBB);
1847 }
1848 
1849 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1850 /// emitArrayDestroy, the element type here may still be an array type.
1851 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1852                                     llvm::Value *begin, llvm::Value *end,
1853                                     QualType type, CharUnits elementAlign,
1854                                     CodeGenFunction::Destroyer *destroyer) {
1855   // If the element type is itself an array, drill down.
1856   unsigned arrayDepth = 0;
1857   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1858     // VLAs don't require a GEP index to walk into.
1859     if (!isa<VariableArrayType>(arrayType))
1860       arrayDepth++;
1861     type = arrayType->getElementType();
1862   }
1863 
1864   if (arrayDepth) {
1865     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1866 
1867     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1868     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1869     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1870   }
1871 
1872   // Destroy the array.  We don't ever need an EH cleanup because we
1873   // assume that we're in an EH cleanup ourselves, so a throwing
1874   // destructor causes an immediate terminate.
1875   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1876                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1877 }
1878 
1879 namespace {
1880   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1881   /// array destroy where the end pointer is regularly determined and
1882   /// does not need to be loaded from a local.
1883   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1884     llvm::Value *ArrayBegin;
1885     llvm::Value *ArrayEnd;
1886     QualType ElementType;
1887     CodeGenFunction::Destroyer *Destroyer;
1888     CharUnits ElementAlign;
1889   public:
1890     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1891                                QualType elementType, CharUnits elementAlign,
1892                                CodeGenFunction::Destroyer *destroyer)
1893       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1894         ElementType(elementType), Destroyer(destroyer),
1895         ElementAlign(elementAlign) {}
1896 
1897     void Emit(CodeGenFunction &CGF, Flags flags) override {
1898       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1899                               ElementType, ElementAlign, Destroyer);
1900     }
1901   };
1902 
1903   /// IrregularPartialArrayDestroy - a cleanup which performs a
1904   /// partial array destroy where the end pointer is irregularly
1905   /// determined and must be loaded from a local.
1906   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1907     llvm::Value *ArrayBegin;
1908     Address ArrayEndPointer;
1909     QualType ElementType;
1910     CodeGenFunction::Destroyer *Destroyer;
1911     CharUnits ElementAlign;
1912   public:
1913     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1914                                  Address arrayEndPointer,
1915                                  QualType elementType,
1916                                  CharUnits elementAlign,
1917                                  CodeGenFunction::Destroyer *destroyer)
1918       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1919         ElementType(elementType), Destroyer(destroyer),
1920         ElementAlign(elementAlign) {}
1921 
1922     void Emit(CodeGenFunction &CGF, Flags flags) override {
1923       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1924       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1925                               ElementType, ElementAlign, Destroyer);
1926     }
1927   };
1928 } // end anonymous namespace
1929 
1930 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1931 /// already-constructed elements of the given array.  The cleanup
1932 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1933 ///
1934 /// \param elementType - the immediate element type of the array;
1935 ///   possibly still an array type
1936 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1937                                                        Address arrayEndPointer,
1938                                                        QualType elementType,
1939                                                        CharUnits elementAlign,
1940                                                        Destroyer *destroyer) {
1941   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1942                                                     arrayBegin, arrayEndPointer,
1943                                                     elementType, elementAlign,
1944                                                     destroyer);
1945 }
1946 
1947 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1948 /// already-constructed elements of the given array.  The cleanup
1949 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1950 ///
1951 /// \param elementType - the immediate element type of the array;
1952 ///   possibly still an array type
1953 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1954                                                      llvm::Value *arrayEnd,
1955                                                      QualType elementType,
1956                                                      CharUnits elementAlign,
1957                                                      Destroyer *destroyer) {
1958   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1959                                                   arrayBegin, arrayEnd,
1960                                                   elementType, elementAlign,
1961                                                   destroyer);
1962 }
1963 
1964 /// Lazily declare the @llvm.lifetime.start intrinsic.
1965 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1966   if (LifetimeStartFn)
1967     return LifetimeStartFn;
1968   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1969     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
1970   return LifetimeStartFn;
1971 }
1972 
1973 /// Lazily declare the @llvm.lifetime.end intrinsic.
1974 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1975   if (LifetimeEndFn)
1976     return LifetimeEndFn;
1977   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1978     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
1979   return LifetimeEndFn;
1980 }
1981 
1982 namespace {
1983   /// A cleanup to perform a release of an object at the end of a
1984   /// function.  This is used to balance out the incoming +1 of a
1985   /// ns_consumed argument when we can't reasonably do that just by
1986   /// not doing the initial retain for a __block argument.
1987   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1988     ConsumeARCParameter(llvm::Value *param,
1989                         ARCPreciseLifetime_t precise)
1990       : Param(param), Precise(precise) {}
1991 
1992     llvm::Value *Param;
1993     ARCPreciseLifetime_t Precise;
1994 
1995     void Emit(CodeGenFunction &CGF, Flags flags) override {
1996       CGF.EmitARCRelease(Param, Precise);
1997     }
1998   };
1999 } // end anonymous namespace
2000 
2001 /// Emit an alloca (or GlobalValue depending on target)
2002 /// for the specified parameter and set up LocalDeclMap.
2003 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2004                                    unsigned ArgNo) {
2005   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2006   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2007          "Invalid argument to EmitParmDecl");
2008 
2009   Arg.getAnyValue()->setName(D.getName());
2010 
2011   QualType Ty = D.getType();
2012 
2013   // Use better IR generation for certain implicit parameters.
2014   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2015     // The only implicit argument a block has is its literal.
2016     // This may be passed as an inalloca'ed value on Windows x86.
2017     if (BlockInfo) {
2018       llvm::Value *V = Arg.isIndirect()
2019                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2020                            : Arg.getDirectValue();
2021       setBlockContextParameter(IPD, ArgNo, V);
2022       return;
2023     }
2024   }
2025 
2026   Address DeclPtr = Address::invalid();
2027   bool DoStore = false;
2028   bool IsScalar = hasScalarEvaluationKind(Ty);
2029   // If we already have a pointer to the argument, reuse the input pointer.
2030   if (Arg.isIndirect()) {
2031     DeclPtr = Arg.getIndirectAddress();
2032     // If we have a prettier pointer type at this point, bitcast to that.
2033     unsigned AS = DeclPtr.getType()->getAddressSpace();
2034     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2035     if (DeclPtr.getType() != IRTy)
2036       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2037     // Indirect argument is in alloca address space, which may be different
2038     // from the default address space.
2039     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2040     auto *V = DeclPtr.getPointer();
2041     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2042     auto DestLangAS =
2043         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2044     if (SrcLangAS != DestLangAS) {
2045       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2046              CGM.getDataLayout().getAllocaAddrSpace());
2047       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2048       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2049       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2050                             *this, V, SrcLangAS, DestLangAS, T, true),
2051                         DeclPtr.getAlignment());
2052     }
2053 
2054     // Push a destructor cleanup for this parameter if the ABI requires it.
2055     // Don't push a cleanup in a thunk for a method that will also emit a
2056     // cleanup.
2057     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2058         Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2059       if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
2060         assert((DtorKind == QualType::DK_cxx_destructor ||
2061                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2062                "unexpected destructor type");
2063         pushDestroy(DtorKind, DeclPtr, Ty);
2064         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2065             EHStack.stable_begin();
2066       }
2067     }
2068   } else {
2069     // Check if the parameter address is controlled by OpenMP runtime.
2070     Address OpenMPLocalAddr =
2071         getLangOpts().OpenMP
2072             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2073             : Address::invalid();
2074     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2075       DeclPtr = OpenMPLocalAddr;
2076     } else {
2077       // Otherwise, create a temporary to hold the value.
2078       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2079                               D.getName() + ".addr");
2080     }
2081     DoStore = true;
2082   }
2083 
2084   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2085 
2086   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2087   if (IsScalar) {
2088     Qualifiers qs = Ty.getQualifiers();
2089     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2090       // We honor __attribute__((ns_consumed)) for types with lifetime.
2091       // For __strong, it's handled by just skipping the initial retain;
2092       // otherwise we have to balance out the initial +1 with an extra
2093       // cleanup to do the release at the end of the function.
2094       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2095 
2096       // 'self' is always formally __strong, but if this is not an
2097       // init method then we don't want to retain it.
2098       if (D.isARCPseudoStrong()) {
2099         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
2100         assert(&D == method->getSelfDecl());
2101         assert(lt == Qualifiers::OCL_Strong);
2102         assert(qs.hasConst());
2103         assert(method->getMethodFamily() != OMF_init);
2104         (void) method;
2105         lt = Qualifiers::OCL_ExplicitNone;
2106       }
2107 
2108       // Load objects passed indirectly.
2109       if (Arg.isIndirect() && !ArgVal)
2110         ArgVal = Builder.CreateLoad(DeclPtr);
2111 
2112       if (lt == Qualifiers::OCL_Strong) {
2113         if (!isConsumed) {
2114           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2115             // use objc_storeStrong(&dest, value) for retaining the
2116             // object. But first, store a null into 'dest' because
2117             // objc_storeStrong attempts to release its old value.
2118             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2119             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2120             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2121             DoStore = false;
2122           }
2123           else
2124           // Don't use objc_retainBlock for block pointers, because we
2125           // don't want to Block_copy something just because we got it
2126           // as a parameter.
2127             ArgVal = EmitARCRetainNonBlock(ArgVal);
2128         }
2129       } else {
2130         // Push the cleanup for a consumed parameter.
2131         if (isConsumed) {
2132           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2133                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2134           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2135                                                    precise);
2136         }
2137 
2138         if (lt == Qualifiers::OCL_Weak) {
2139           EmitARCInitWeak(DeclPtr, ArgVal);
2140           DoStore = false; // The weak init is a store, no need to do two.
2141         }
2142       }
2143 
2144       // Enter the cleanup scope.
2145       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2146     }
2147   }
2148 
2149   // Store the initial value into the alloca.
2150   if (DoStore)
2151     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2152 
2153   setAddrOfLocalVar(&D, DeclPtr);
2154 
2155   // Emit debug info for param declaration.
2156   if (CGDebugInfo *DI = getDebugInfo()) {
2157     if (CGM.getCodeGenOpts().getDebugInfo() >=
2158         codegenoptions::LimitedDebugInfo) {
2159       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2160     }
2161   }
2162 
2163   if (D.hasAttr<AnnotateAttr>())
2164     EmitVarAnnotations(&D, DeclPtr.getPointer());
2165 
2166   // We can only check return value nullability if all arguments to the
2167   // function satisfy their nullability preconditions. This makes it necessary
2168   // to emit null checks for args in the function body itself.
2169   if (requiresReturnValueNullabilityCheck()) {
2170     auto Nullability = Ty->getNullability(getContext());
2171     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2172       SanitizerScope SanScope(this);
2173       RetValNullabilityPrecondition =
2174           Builder.CreateAnd(RetValNullabilityPrecondition,
2175                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2176     }
2177   }
2178 }
2179 
2180 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2181                                             CodeGenFunction *CGF) {
2182   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2183     return;
2184   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2185 }
2186 
2187 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2188   getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D);
2189 }
2190