1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CodeGenModule.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Type.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 void CodeGenFunction::EmitDecl(const Decl &D) {
37   switch (D.getKind()) {
38   case Decl::BuiltinTemplate:
39   case Decl::TranslationUnit:
40   case Decl::ExternCContext:
41   case Decl::Namespace:
42   case Decl::UnresolvedUsingTypename:
43   case Decl::ClassTemplateSpecialization:
44   case Decl::ClassTemplatePartialSpecialization:
45   case Decl::VarTemplateSpecialization:
46   case Decl::VarTemplatePartialSpecialization:
47   case Decl::TemplateTypeParm:
48   case Decl::UnresolvedUsingValue:
49   case Decl::NonTypeTemplateParm:
50   case Decl::CXXMethod:
51   case Decl::CXXConstructor:
52   case Decl::CXXDestructor:
53   case Decl::CXXConversion:
54   case Decl::Field:
55   case Decl::MSProperty:
56   case Decl::IndirectField:
57   case Decl::ObjCIvar:
58   case Decl::ObjCAtDefsField:
59   case Decl::ParmVar:
60   case Decl::ImplicitParam:
61   case Decl::ClassTemplate:
62   case Decl::VarTemplate:
63   case Decl::FunctionTemplate:
64   case Decl::TypeAliasTemplate:
65   case Decl::TemplateTemplateParm:
66   case Decl::ObjCMethod:
67   case Decl::ObjCCategory:
68   case Decl::ObjCProtocol:
69   case Decl::ObjCInterface:
70   case Decl::ObjCCategoryImpl:
71   case Decl::ObjCImplementation:
72   case Decl::ObjCProperty:
73   case Decl::ObjCCompatibleAlias:
74   case Decl::AccessSpec:
75   case Decl::LinkageSpec:
76   case Decl::ObjCPropertyImpl:
77   case Decl::FileScopeAsm:
78   case Decl::Friend:
79   case Decl::FriendTemplate:
80   case Decl::Block:
81   case Decl::Captured:
82   case Decl::ClassScopeFunctionSpecialization:
83   case Decl::UsingShadow:
84   case Decl::ObjCTypeParam:
85     llvm_unreachable("Declaration should not be in declstmts!");
86   case Decl::Function:  // void X();
87   case Decl::Record:    // struct/union/class X;
88   case Decl::Enum:      // enum X;
89   case Decl::EnumConstant: // enum ? { X = ? }
90   case Decl::CXXRecord: // struct/union/class X; [C++]
91   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
92   case Decl::Label:        // __label__ x;
93   case Decl::Import:
94   case Decl::OMPThreadPrivate:
95   case Decl::Empty:
96     // None of these decls require codegen support.
97     return;
98 
99   case Decl::NamespaceAlias:
100     if (CGDebugInfo *DI = getDebugInfo())
101         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
102     return;
103   case Decl::Using:          // using X; [C++]
104     if (CGDebugInfo *DI = getDebugInfo())
105         DI->EmitUsingDecl(cast<UsingDecl>(D));
106     return;
107   case Decl::UsingDirective: // using namespace X; [C++]
108     if (CGDebugInfo *DI = getDebugInfo())
109       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
110     return;
111   case Decl::Var: {
112     const VarDecl &VD = cast<VarDecl>(D);
113     assert(VD.isLocalVarDecl() &&
114            "Should not see file-scope variables inside a function!");
115     return EmitVarDecl(VD);
116   }
117 
118   case Decl::Typedef:      // typedef int X;
119   case Decl::TypeAlias: {  // using X = int; [C++0x]
120     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
121     QualType Ty = TD.getUnderlyingType();
122 
123     if (Ty->isVariablyModifiedType())
124       EmitVariablyModifiedType(Ty);
125   }
126   }
127 }
128 
129 /// EmitVarDecl - This method handles emission of any variable declaration
130 /// inside a function, including static vars etc.
131 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
132   if (D.isStaticLocal()) {
133     llvm::GlobalValue::LinkageTypes Linkage =
134         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
135 
136     // FIXME: We need to force the emission/use of a guard variable for
137     // some variables even if we can constant-evaluate them because
138     // we can't guarantee every translation unit will constant-evaluate them.
139 
140     return EmitStaticVarDecl(D, Linkage);
141   }
142 
143   if (D.hasExternalStorage())
144     // Don't emit it now, allow it to be emitted lazily on its first use.
145     return;
146 
147   if (D.getType().getAddressSpace() == LangAS::opencl_local)
148     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
149 
150   assert(D.hasLocalStorage());
151   return EmitAutoVarDecl(D);
152 }
153 
154 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
155   if (CGM.getLangOpts().CPlusPlus)
156     return CGM.getMangledName(&D).str();
157 
158   // If this isn't C++, we don't need a mangled name, just a pretty one.
159   assert(!D.isExternallyVisible() && "name shouldn't matter");
160   std::string ContextName;
161   const DeclContext *DC = D.getDeclContext();
162   if (auto *CD = dyn_cast<CapturedDecl>(DC))
163     DC = cast<DeclContext>(CD->getNonClosureContext());
164   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
165     ContextName = CGM.getMangledName(FD);
166   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
167     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
168   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
169     ContextName = OMD->getSelector().getAsString();
170   else
171     llvm_unreachable("Unknown context for static var decl");
172 
173   ContextName += "." + D.getNameAsString();
174   return ContextName;
175 }
176 
177 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
178     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
179   // In general, we don't always emit static var decls once before we reference
180   // them. It is possible to reference them before emitting the function that
181   // contains them, and it is possible to emit the containing function multiple
182   // times.
183   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
184     return ExistingGV;
185 
186   QualType Ty = D.getType();
187   assert(Ty->isConstantSizeType() && "VLAs can't be static");
188 
189   // Use the label if the variable is renamed with the asm-label extension.
190   std::string Name;
191   if (D.hasAttr<AsmLabelAttr>())
192     Name = getMangledName(&D);
193   else
194     Name = getStaticDeclName(*this, D);
195 
196   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
197   unsigned AddrSpace =
198       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
199 
200   // Local address space cannot have an initializer.
201   llvm::Constant *Init = nullptr;
202   if (Ty.getAddressSpace() != LangAS::opencl_local)
203     Init = EmitNullConstant(Ty);
204   else
205     Init = llvm::UndefValue::get(LTy);
206 
207   llvm::GlobalVariable *GV =
208     new llvm::GlobalVariable(getModule(), LTy,
209                              Ty.isConstant(getContext()), Linkage,
210                              Init, Name, nullptr,
211                              llvm::GlobalVariable::NotThreadLocal,
212                              AddrSpace);
213   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
214   setGlobalVisibility(GV, &D);
215 
216   if (supportsCOMDAT() && GV->isWeakForLinker())
217     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
218 
219   if (D.getTLSKind())
220     setTLSMode(GV, D);
221 
222   if (D.isExternallyVisible()) {
223     if (D.hasAttr<DLLImportAttr>())
224       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
225     else if (D.hasAttr<DLLExportAttr>())
226       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
227   }
228 
229   // Make sure the result is of the correct type.
230   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
231   llvm::Constant *Addr = GV;
232   if (AddrSpace != ExpectedAddrSpace) {
233     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
234     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
235   }
236 
237   setStaticLocalDeclAddress(&D, Addr);
238 
239   // Ensure that the static local gets initialized by making sure the parent
240   // function gets emitted eventually.
241   const Decl *DC = cast<Decl>(D.getDeclContext());
242 
243   // We can't name blocks or captured statements directly, so try to emit their
244   // parents.
245   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
246     DC = DC->getNonClosureContext();
247     // FIXME: Ensure that global blocks get emitted.
248     if (!DC)
249       return Addr;
250   }
251 
252   GlobalDecl GD;
253   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
254     GD = GlobalDecl(CD, Ctor_Base);
255   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
256     GD = GlobalDecl(DD, Dtor_Base);
257   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
258     GD = GlobalDecl(FD);
259   else {
260     // Don't do anything for Obj-C method decls or global closures. We should
261     // never defer them.
262     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
263   }
264   if (GD.getDecl())
265     (void)GetAddrOfGlobal(GD);
266 
267   return Addr;
268 }
269 
270 /// hasNontrivialDestruction - Determine whether a type's destruction is
271 /// non-trivial. If so, and the variable uses static initialization, we must
272 /// register its destructor to run on exit.
273 static bool hasNontrivialDestruction(QualType T) {
274   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
275   return RD && !RD->hasTrivialDestructor();
276 }
277 
278 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
279 /// global variable that has already been created for it.  If the initializer
280 /// has a different type than GV does, this may free GV and return a different
281 /// one.  Otherwise it just returns GV.
282 llvm::GlobalVariable *
283 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
284                                                llvm::GlobalVariable *GV) {
285   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
286 
287   // If constant emission failed, then this should be a C++ static
288   // initializer.
289   if (!Init) {
290     if (!getLangOpts().CPlusPlus)
291       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
292     else if (Builder.GetInsertBlock()) {
293       // Since we have a static initializer, this global variable can't
294       // be constant.
295       GV->setConstant(false);
296 
297       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
298     }
299     return GV;
300   }
301 
302   // The initializer may differ in type from the global. Rewrite
303   // the global to match the initializer.  (We have to do this
304   // because some types, like unions, can't be completely represented
305   // in the LLVM type system.)
306   if (GV->getType()->getElementType() != Init->getType()) {
307     llvm::GlobalVariable *OldGV = GV;
308 
309     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
310                                   OldGV->isConstant(),
311                                   OldGV->getLinkage(), Init, "",
312                                   /*InsertBefore*/ OldGV,
313                                   OldGV->getThreadLocalMode(),
314                            CGM.getContext().getTargetAddressSpace(D.getType()));
315     GV->setVisibility(OldGV->getVisibility());
316     GV->setComdat(OldGV->getComdat());
317 
318     // Steal the name of the old global
319     GV->takeName(OldGV);
320 
321     // Replace all uses of the old global with the new global
322     llvm::Constant *NewPtrForOldDecl =
323     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
324     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
325 
326     // Erase the old global, since it is no longer used.
327     OldGV->eraseFromParent();
328   }
329 
330   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
331   GV->setInitializer(Init);
332 
333   if (hasNontrivialDestruction(D.getType())) {
334     // We have a constant initializer, but a nontrivial destructor. We still
335     // need to perform a guarded "initialization" in order to register the
336     // destructor.
337     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
338   }
339 
340   return GV;
341 }
342 
343 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
344                                       llvm::GlobalValue::LinkageTypes Linkage) {
345   // Check to see if we already have a global variable for this
346   // declaration.  This can happen when double-emitting function
347   // bodies, e.g. with complete and base constructors.
348   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
349   CharUnits alignment = getContext().getDeclAlign(&D);
350 
351   // Store into LocalDeclMap before generating initializer to handle
352   // circular references.
353   setAddrOfLocalVar(&D, Address(addr, alignment));
354 
355   // We can't have a VLA here, but we can have a pointer to a VLA,
356   // even though that doesn't really make any sense.
357   // Make sure to evaluate VLA bounds now so that we have them for later.
358   if (D.getType()->isVariablyModifiedType())
359     EmitVariablyModifiedType(D.getType());
360 
361   // Save the type in case adding the initializer forces a type change.
362   llvm::Type *expectedType = addr->getType();
363 
364   llvm::GlobalVariable *var =
365     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
366   // If this value has an initializer, emit it.
367   if (D.getInit())
368     var = AddInitializerToStaticVarDecl(D, var);
369 
370   var->setAlignment(alignment.getQuantity());
371 
372   if (D.hasAttr<AnnotateAttr>())
373     CGM.AddGlobalAnnotations(&D, var);
374 
375   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
376     var->setSection(SA->getName());
377 
378   if (D.hasAttr<UsedAttr>())
379     CGM.addUsedGlobal(var);
380 
381   // We may have to cast the constant because of the initializer
382   // mismatch above.
383   //
384   // FIXME: It is really dangerous to store this in the map; if anyone
385   // RAUW's the GV uses of this constant will be invalid.
386   llvm::Constant *castedAddr =
387     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
388   if (var != castedAddr)
389     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
390   CGM.setStaticLocalDeclAddress(&D, castedAddr);
391 
392   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
393 
394   // Emit global variable debug descriptor for static vars.
395   CGDebugInfo *DI = getDebugInfo();
396   if (DI &&
397       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
398     DI->setLocation(D.getLocation());
399     DI->EmitGlobalVariable(var, &D);
400   }
401 }
402 
403 namespace {
404   struct DestroyObject final : EHScopeStack::Cleanup {
405     DestroyObject(Address addr, QualType type,
406                   CodeGenFunction::Destroyer *destroyer,
407                   bool useEHCleanupForArray)
408       : addr(addr), type(type), destroyer(destroyer),
409         useEHCleanupForArray(useEHCleanupForArray) {}
410 
411     Address addr;
412     QualType type;
413     CodeGenFunction::Destroyer *destroyer;
414     bool useEHCleanupForArray;
415 
416     void Emit(CodeGenFunction &CGF, Flags flags) override {
417       // Don't use an EH cleanup recursively from an EH cleanup.
418       bool useEHCleanupForArray =
419         flags.isForNormalCleanup() && this->useEHCleanupForArray;
420 
421       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
422     }
423   };
424 
425   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
426     DestroyNRVOVariable(Address addr,
427                         const CXXDestructorDecl *Dtor,
428                         llvm::Value *NRVOFlag)
429       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
430 
431     const CXXDestructorDecl *Dtor;
432     llvm::Value *NRVOFlag;
433     Address Loc;
434 
435     void Emit(CodeGenFunction &CGF, Flags flags) override {
436       // Along the exceptions path we always execute the dtor.
437       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
438 
439       llvm::BasicBlock *SkipDtorBB = nullptr;
440       if (NRVO) {
441         // If we exited via NRVO, we skip the destructor call.
442         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
443         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
444         llvm::Value *DidNRVO =
445           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
446         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
447         CGF.EmitBlock(RunDtorBB);
448       }
449 
450       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
451                                 /*ForVirtualBase=*/false,
452                                 /*Delegating=*/false,
453                                 Loc);
454 
455       if (NRVO) CGF.EmitBlock(SkipDtorBB);
456     }
457   };
458 
459   struct CallStackRestore final : EHScopeStack::Cleanup {
460     Address Stack;
461     CallStackRestore(Address Stack) : Stack(Stack) {}
462     void Emit(CodeGenFunction &CGF, Flags flags) override {
463       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
464       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
465       CGF.Builder.CreateCall(F, V);
466     }
467   };
468 
469   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
470     const VarDecl &Var;
471     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
472 
473     void Emit(CodeGenFunction &CGF, Flags flags) override {
474       // Compute the address of the local variable, in case it's a
475       // byref or something.
476       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
477                       Var.getType(), VK_LValue, SourceLocation());
478       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
479                                                 SourceLocation());
480       CGF.EmitExtendGCLifetime(value);
481     }
482   };
483 
484   struct CallCleanupFunction final : EHScopeStack::Cleanup {
485     llvm::Constant *CleanupFn;
486     const CGFunctionInfo &FnInfo;
487     const VarDecl &Var;
488 
489     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
490                         const VarDecl *Var)
491       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
492 
493     void Emit(CodeGenFunction &CGF, Flags flags) override {
494       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
495                       Var.getType(), VK_LValue, SourceLocation());
496       // Compute the address of the local variable, in case it's a byref
497       // or something.
498       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
499 
500       // In some cases, the type of the function argument will be different from
501       // the type of the pointer. An example of this is
502       // void f(void* arg);
503       // __attribute__((cleanup(f))) void *g;
504       //
505       // To fix this we insert a bitcast here.
506       QualType ArgTy = FnInfo.arg_begin()->type;
507       llvm::Value *Arg =
508         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
509 
510       CallArgList Args;
511       Args.add(RValue::get(Arg),
512                CGF.getContext().getPointerType(Var.getType()));
513       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
514     }
515   };
516 
517   /// A cleanup to call @llvm.lifetime.end.
518   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
519     llvm::Value *Addr;
520     llvm::Value *Size;
521   public:
522     CallLifetimeEnd(Address addr, llvm::Value *size)
523       : Addr(addr.getPointer()), Size(size) {}
524 
525     void Emit(CodeGenFunction &CGF, Flags flags) override {
526       CGF.EmitLifetimeEnd(Size, Addr);
527     }
528   };
529 }
530 
531 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
532 /// variable with lifetime.
533 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
534                                     Address addr,
535                                     Qualifiers::ObjCLifetime lifetime) {
536   switch (lifetime) {
537   case Qualifiers::OCL_None:
538     llvm_unreachable("present but none");
539 
540   case Qualifiers::OCL_ExplicitNone:
541     // nothing to do
542     break;
543 
544   case Qualifiers::OCL_Strong: {
545     CodeGenFunction::Destroyer *destroyer =
546       (var.hasAttr<ObjCPreciseLifetimeAttr>()
547        ? CodeGenFunction::destroyARCStrongPrecise
548        : CodeGenFunction::destroyARCStrongImprecise);
549 
550     CleanupKind cleanupKind = CGF.getARCCleanupKind();
551     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
552                     cleanupKind & EHCleanup);
553     break;
554   }
555   case Qualifiers::OCL_Autoreleasing:
556     // nothing to do
557     break;
558 
559   case Qualifiers::OCL_Weak:
560     // __weak objects always get EH cleanups; otherwise, exceptions
561     // could cause really nasty crashes instead of mere leaks.
562     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
563                     CodeGenFunction::destroyARCWeak,
564                     /*useEHCleanup*/ true);
565     break;
566   }
567 }
568 
569 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
570   if (const Expr *e = dyn_cast<Expr>(s)) {
571     // Skip the most common kinds of expressions that make
572     // hierarchy-walking expensive.
573     s = e = e->IgnoreParenCasts();
574 
575     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
576       return (ref->getDecl() == &var);
577     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
578       const BlockDecl *block = be->getBlockDecl();
579       for (const auto &I : block->captures()) {
580         if (I.getVariable() == &var)
581           return true;
582       }
583     }
584   }
585 
586   for (const Stmt *SubStmt : s->children())
587     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
588     if (SubStmt && isAccessedBy(var, SubStmt))
589       return true;
590 
591   return false;
592 }
593 
594 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
595   if (!decl) return false;
596   if (!isa<VarDecl>(decl)) return false;
597   const VarDecl *var = cast<VarDecl>(decl);
598   return isAccessedBy(*var, e);
599 }
600 
601 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
602                                    const LValue &destLV, const Expr *init) {
603   bool needsCast = false;
604 
605   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
606     switch (castExpr->getCastKind()) {
607     // Look through casts that don't require representation changes.
608     case CK_NoOp:
609     case CK_BitCast:
610     case CK_BlockPointerToObjCPointerCast:
611       needsCast = true;
612       break;
613 
614     // If we find an l-value to r-value cast from a __weak variable,
615     // emit this operation as a copy or move.
616     case CK_LValueToRValue: {
617       const Expr *srcExpr = castExpr->getSubExpr();
618       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
619         return false;
620 
621       // Emit the source l-value.
622       LValue srcLV = CGF.EmitLValue(srcExpr);
623 
624       // Handle a formal type change to avoid asserting.
625       auto srcAddr = srcLV.getAddress();
626       if (needsCast) {
627         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
628                                          destLV.getAddress().getElementType());
629       }
630 
631       // If it was an l-value, use objc_copyWeak.
632       if (srcExpr->getValueKind() == VK_LValue) {
633         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
634       } else {
635         assert(srcExpr->getValueKind() == VK_XValue);
636         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
637       }
638       return true;
639     }
640 
641     // Stop at anything else.
642     default:
643       return false;
644     }
645 
646     init = castExpr->getSubExpr();
647     continue;
648   }
649   return false;
650 }
651 
652 static void drillIntoBlockVariable(CodeGenFunction &CGF,
653                                    LValue &lvalue,
654                                    const VarDecl *var) {
655   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
656 }
657 
658 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
659                                      LValue lvalue, bool capturedByInit) {
660   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
661   if (!lifetime) {
662     llvm::Value *value = EmitScalarExpr(init);
663     if (capturedByInit)
664       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
665     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
666     return;
667   }
668 
669   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
670     init = DIE->getExpr();
671 
672   // If we're emitting a value with lifetime, we have to do the
673   // initialization *before* we leave the cleanup scopes.
674   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
675     enterFullExpression(ewc);
676     init = ewc->getSubExpr();
677   }
678   CodeGenFunction::RunCleanupsScope Scope(*this);
679 
680   // We have to maintain the illusion that the variable is
681   // zero-initialized.  If the variable might be accessed in its
682   // initializer, zero-initialize before running the initializer, then
683   // actually perform the initialization with an assign.
684   bool accessedByInit = false;
685   if (lifetime != Qualifiers::OCL_ExplicitNone)
686     accessedByInit = (capturedByInit || isAccessedBy(D, init));
687   if (accessedByInit) {
688     LValue tempLV = lvalue;
689     // Drill down to the __block object if necessary.
690     if (capturedByInit) {
691       // We can use a simple GEP for this because it can't have been
692       // moved yet.
693       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
694                                               cast<VarDecl>(D),
695                                               /*follow*/ false));
696     }
697 
698     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
699     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
700 
701     // If __weak, we want to use a barrier under certain conditions.
702     if (lifetime == Qualifiers::OCL_Weak)
703       EmitARCInitWeak(tempLV.getAddress(), zero);
704 
705     // Otherwise just do a simple store.
706     else
707       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
708   }
709 
710   // Emit the initializer.
711   llvm::Value *value = nullptr;
712 
713   switch (lifetime) {
714   case Qualifiers::OCL_None:
715     llvm_unreachable("present but none");
716 
717   case Qualifiers::OCL_ExplicitNone:
718     value = EmitARCUnsafeUnretainedScalarExpr(init);
719     break;
720 
721   case Qualifiers::OCL_Strong: {
722     value = EmitARCRetainScalarExpr(init);
723     break;
724   }
725 
726   case Qualifiers::OCL_Weak: {
727     // If it's not accessed by the initializer, try to emit the
728     // initialization with a copy or move.
729     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
730       return;
731     }
732 
733     // No way to optimize a producing initializer into this.  It's not
734     // worth optimizing for, because the value will immediately
735     // disappear in the common case.
736     value = EmitScalarExpr(init);
737 
738     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
739     if (accessedByInit)
740       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
741     else
742       EmitARCInitWeak(lvalue.getAddress(), value);
743     return;
744   }
745 
746   case Qualifiers::OCL_Autoreleasing:
747     value = EmitARCRetainAutoreleaseScalarExpr(init);
748     break;
749   }
750 
751   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
752 
753   // If the variable might have been accessed by its initializer, we
754   // might have to initialize with a barrier.  We have to do this for
755   // both __weak and __strong, but __weak got filtered out above.
756   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
757     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
758     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
759     EmitARCRelease(oldValue, ARCImpreciseLifetime);
760     return;
761   }
762 
763   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
764 }
765 
766 /// EmitScalarInit - Initialize the given lvalue with the given object.
767 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
768   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
769   if (!lifetime)
770     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
771 
772   switch (lifetime) {
773   case Qualifiers::OCL_None:
774     llvm_unreachable("present but none");
775 
776   case Qualifiers::OCL_ExplicitNone:
777     // nothing to do
778     break;
779 
780   case Qualifiers::OCL_Strong:
781     init = EmitARCRetain(lvalue.getType(), init);
782     break;
783 
784   case Qualifiers::OCL_Weak:
785     // Initialize and then skip the primitive store.
786     EmitARCInitWeak(lvalue.getAddress(), init);
787     return;
788 
789   case Qualifiers::OCL_Autoreleasing:
790     init = EmitARCRetainAutorelease(lvalue.getType(), init);
791     break;
792   }
793 
794   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
795 }
796 
797 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
798 /// non-zero parts of the specified initializer with equal or fewer than
799 /// NumStores scalar stores.
800 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
801                                                 unsigned &NumStores) {
802   // Zero and Undef never requires any extra stores.
803   if (isa<llvm::ConstantAggregateZero>(Init) ||
804       isa<llvm::ConstantPointerNull>(Init) ||
805       isa<llvm::UndefValue>(Init))
806     return true;
807   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
808       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
809       isa<llvm::ConstantExpr>(Init))
810     return Init->isNullValue() || NumStores--;
811 
812   // See if we can emit each element.
813   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
814     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
815       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
816       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
817         return false;
818     }
819     return true;
820   }
821 
822   if (llvm::ConstantDataSequential *CDS =
823         dyn_cast<llvm::ConstantDataSequential>(Init)) {
824     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
825       llvm::Constant *Elt = CDS->getElementAsConstant(i);
826       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
827         return false;
828     }
829     return true;
830   }
831 
832   // Anything else is hard and scary.
833   return false;
834 }
835 
836 /// emitStoresForInitAfterMemset - For inits that
837 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
838 /// stores that would be required.
839 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
840                                          bool isVolatile, CGBuilderTy &Builder) {
841   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
842          "called emitStoresForInitAfterMemset for zero or undef value.");
843 
844   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
845       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
846       isa<llvm::ConstantExpr>(Init)) {
847     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
848     return;
849   }
850 
851   if (llvm::ConstantDataSequential *CDS =
852         dyn_cast<llvm::ConstantDataSequential>(Init)) {
853     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
854       llvm::Constant *Elt = CDS->getElementAsConstant(i);
855 
856       // If necessary, get a pointer to the element and emit it.
857       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
858         emitStoresForInitAfterMemset(
859             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
860             isVolatile, Builder);
861     }
862     return;
863   }
864 
865   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
866          "Unknown value type!");
867 
868   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
869     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
870 
871     // If necessary, get a pointer to the element and emit it.
872     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
873       emitStoresForInitAfterMemset(
874           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
875           isVolatile, Builder);
876   }
877 }
878 
879 
880 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
881 /// plus some stores to initialize a local variable instead of using a memcpy
882 /// from a constant global.  It is beneficial to use memset if the global is all
883 /// zeros, or mostly zeros and large.
884 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
885                                                   uint64_t GlobalSize) {
886   // If a global is all zeros, always use a memset.
887   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
888 
889   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
890   // do it if it will require 6 or fewer scalar stores.
891   // TODO: Should budget depends on the size?  Avoiding a large global warrants
892   // plopping in more stores.
893   unsigned StoreBudget = 6;
894   uint64_t SizeLimit = 32;
895 
896   return GlobalSize > SizeLimit &&
897          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
898 }
899 
900 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
901 /// variable declaration with auto, register, or no storage class specifier.
902 /// These turn into simple stack objects, or GlobalValues depending on target.
903 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
904   AutoVarEmission emission = EmitAutoVarAlloca(D);
905   EmitAutoVarInit(emission);
906   EmitAutoVarCleanups(emission);
907 }
908 
909 /// Emit a lifetime.begin marker if some criteria are satisfied.
910 /// \return a pointer to the temporary size Value if a marker was emitted, null
911 /// otherwise
912 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
913                                                 llvm::Value *Addr) {
914   // For now, only in optimized builds.
915   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
916     return nullptr;
917 
918   // Disable lifetime markers in msan builds.
919   // FIXME: Remove this when msan works with lifetime markers.
920   if (getLangOpts().Sanitize.has(SanitizerKind::Memory))
921     return nullptr;
922 
923   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
924   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
925   llvm::CallInst *C =
926       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
927   C->setDoesNotThrow();
928   return SizeV;
929 }
930 
931 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
932   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
933   llvm::CallInst *C =
934       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
935   C->setDoesNotThrow();
936 }
937 
938 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
939 /// local variable.  Does not emit initialization or destruction.
940 CodeGenFunction::AutoVarEmission
941 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
942   QualType Ty = D.getType();
943 
944   AutoVarEmission emission(D);
945 
946   bool isByRef = D.hasAttr<BlocksAttr>();
947   emission.IsByRef = isByRef;
948 
949   CharUnits alignment = getContext().getDeclAlign(&D);
950 
951   // If the type is variably-modified, emit all the VLA sizes for it.
952   if (Ty->isVariablyModifiedType())
953     EmitVariablyModifiedType(Ty);
954 
955   Address address = Address::invalid();
956   if (Ty->isConstantSizeType()) {
957     bool NRVO = getLangOpts().ElideConstructors &&
958       D.isNRVOVariable();
959 
960     // If this value is an array or struct with a statically determinable
961     // constant initializer, there are optimizations we can do.
962     //
963     // TODO: We should constant-evaluate the initializer of any variable,
964     // as long as it is initialized by a constant expression. Currently,
965     // isConstantInitializer produces wrong answers for structs with
966     // reference or bitfield members, and a few other cases, and checking
967     // for POD-ness protects us from some of these.
968     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
969         (D.isConstexpr() ||
970          ((Ty.isPODType(getContext()) ||
971            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
972           D.getInit()->isConstantInitializer(getContext(), false)))) {
973 
974       // If the variable's a const type, and it's neither an NRVO
975       // candidate nor a __block variable and has no mutable members,
976       // emit it as a global instead.
977       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
978           CGM.isTypeConstant(Ty, true)) {
979         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
980 
981         // Signal this condition to later callbacks.
982         emission.Addr = Address::invalid();
983         assert(emission.wasEmittedAsGlobal());
984         return emission;
985       }
986 
987       // Otherwise, tell the initialization code that we're in this case.
988       emission.IsConstantAggregate = true;
989     }
990 
991     // A normal fixed sized variable becomes an alloca in the entry block,
992     // unless it's an NRVO variable.
993 
994     if (NRVO) {
995       // The named return value optimization: allocate this variable in the
996       // return slot, so that we can elide the copy when returning this
997       // variable (C++0x [class.copy]p34).
998       address = ReturnValue;
999 
1000       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1001         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
1002           // Create a flag that is used to indicate when the NRVO was applied
1003           // to this variable. Set it to zero to indicate that NRVO was not
1004           // applied.
1005           llvm::Value *Zero = Builder.getFalse();
1006           Address NRVOFlag =
1007             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1008           EnsureInsertPoint();
1009           Builder.CreateStore(Zero, NRVOFlag);
1010 
1011           // Record the NRVO flag for this variable.
1012           NRVOFlags[&D] = NRVOFlag.getPointer();
1013           emission.NRVOFlag = NRVOFlag.getPointer();
1014         }
1015       }
1016     } else {
1017       CharUnits allocaAlignment;
1018       llvm::Type *allocaTy;
1019       if (isByRef) {
1020         auto &byrefInfo = getBlockByrefInfo(&D);
1021         allocaTy = byrefInfo.Type;
1022         allocaAlignment = byrefInfo.ByrefAlignment;
1023       } else {
1024         allocaTy = ConvertTypeForMem(Ty);
1025         allocaAlignment = alignment;
1026       }
1027 
1028       // Create the alloca.  Note that we set the name separately from
1029       // building the instruction so that it's there even in no-asserts
1030       // builds.
1031       address = CreateTempAlloca(allocaTy, allocaAlignment);
1032       address.getPointer()->setName(D.getName());
1033 
1034       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1035       // the catch parameter starts in the catchpad instruction, and we can't
1036       // insert code in those basic blocks.
1037       bool IsMSCatchParam =
1038           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1039 
1040       // Emit a lifetime intrinsic if meaningful.  There's no point
1041       // in doing this if we don't have a valid insertion point (?).
1042       if (HaveInsertPoint() && !IsMSCatchParam) {
1043         uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1044         emission.SizeForLifetimeMarkers =
1045           EmitLifetimeStart(size, address.getPointer());
1046       } else {
1047         assert(!emission.useLifetimeMarkers());
1048       }
1049     }
1050   } else {
1051     EnsureInsertPoint();
1052 
1053     if (!DidCallStackSave) {
1054       // Save the stack.
1055       Address Stack =
1056         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1057 
1058       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1059       llvm::Value *V = Builder.CreateCall(F);
1060       Builder.CreateStore(V, Stack);
1061 
1062       DidCallStackSave = true;
1063 
1064       // Push a cleanup block and restore the stack there.
1065       // FIXME: in general circumstances, this should be an EH cleanup.
1066       pushStackRestore(NormalCleanup, Stack);
1067     }
1068 
1069     llvm::Value *elementCount;
1070     QualType elementType;
1071     std::tie(elementCount, elementType) = getVLASize(Ty);
1072 
1073     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
1074 
1075     // Allocate memory for the array.
1076     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1077     vla->setAlignment(alignment.getQuantity());
1078 
1079     address = Address(vla, alignment);
1080   }
1081 
1082   setAddrOfLocalVar(&D, address);
1083   emission.Addr = address;
1084 
1085   // Emit debug info for local var declaration.
1086   if (HaveInsertPoint())
1087     if (CGDebugInfo *DI = getDebugInfo()) {
1088       if (CGM.getCodeGenOpts().getDebugInfo() >=
1089           codegenoptions::LimitedDebugInfo) {
1090         DI->setLocation(D.getLocation());
1091         DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1092       }
1093     }
1094 
1095   if (D.hasAttr<AnnotateAttr>())
1096     EmitVarAnnotations(&D, address.getPointer());
1097 
1098   return emission;
1099 }
1100 
1101 /// Determines whether the given __block variable is potentially
1102 /// captured by the given expression.
1103 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1104   // Skip the most common kinds of expressions that make
1105   // hierarchy-walking expensive.
1106   e = e->IgnoreParenCasts();
1107 
1108   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1109     const BlockDecl *block = be->getBlockDecl();
1110     for (const auto &I : block->captures()) {
1111       if (I.getVariable() == &var)
1112         return true;
1113     }
1114 
1115     // No need to walk into the subexpressions.
1116     return false;
1117   }
1118 
1119   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1120     const CompoundStmt *CS = SE->getSubStmt();
1121     for (const auto *BI : CS->body())
1122       if (const auto *E = dyn_cast<Expr>(BI)) {
1123         if (isCapturedBy(var, E))
1124             return true;
1125       }
1126       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1127           // special case declarations
1128           for (const auto *I : DS->decls()) {
1129               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1130                 const Expr *Init = VD->getInit();
1131                 if (Init && isCapturedBy(var, Init))
1132                   return true;
1133               }
1134           }
1135       }
1136       else
1137         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1138         // Later, provide code to poke into statements for capture analysis.
1139         return true;
1140     return false;
1141   }
1142 
1143   for (const Stmt *SubStmt : e->children())
1144     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1145       return true;
1146 
1147   return false;
1148 }
1149 
1150 /// \brief Determine whether the given initializer is trivial in the sense
1151 /// that it requires no code to be generated.
1152 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1153   if (!Init)
1154     return true;
1155 
1156   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1157     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1158       if (Constructor->isTrivial() &&
1159           Constructor->isDefaultConstructor() &&
1160           !Construct->requiresZeroInitialization())
1161         return true;
1162 
1163   return false;
1164 }
1165 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1166   assert(emission.Variable && "emission was not valid!");
1167 
1168   // If this was emitted as a global constant, we're done.
1169   if (emission.wasEmittedAsGlobal()) return;
1170 
1171   const VarDecl &D = *emission.Variable;
1172   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1173   QualType type = D.getType();
1174 
1175   // If this local has an initializer, emit it now.
1176   const Expr *Init = D.getInit();
1177 
1178   // If we are at an unreachable point, we don't need to emit the initializer
1179   // unless it contains a label.
1180   if (!HaveInsertPoint()) {
1181     if (!Init || !ContainsLabel(Init)) return;
1182     EnsureInsertPoint();
1183   }
1184 
1185   // Initialize the structure of a __block variable.
1186   if (emission.IsByRef)
1187     emitByrefStructureInit(emission);
1188 
1189   if (isTrivialInitializer(Init))
1190     return;
1191 
1192   // Check whether this is a byref variable that's potentially
1193   // captured and moved by its own initializer.  If so, we'll need to
1194   // emit the initializer first, then copy into the variable.
1195   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1196 
1197   Address Loc =
1198     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1199 
1200   llvm::Constant *constant = nullptr;
1201   if (emission.IsConstantAggregate || D.isConstexpr()) {
1202     assert(!capturedByInit && "constant init contains a capturing block?");
1203     constant = CGM.EmitConstantInit(D, this);
1204   }
1205 
1206   if (!constant) {
1207     LValue lv = MakeAddrLValue(Loc, type);
1208     lv.setNonGC(true);
1209     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1210   }
1211 
1212   if (!emission.IsConstantAggregate) {
1213     // For simple scalar/complex initialization, store the value directly.
1214     LValue lv = MakeAddrLValue(Loc, type);
1215     lv.setNonGC(true);
1216     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1217   }
1218 
1219   // If this is a simple aggregate initialization, we can optimize it
1220   // in various ways.
1221   bool isVolatile = type.isVolatileQualified();
1222 
1223   llvm::Value *SizeVal =
1224     llvm::ConstantInt::get(IntPtrTy,
1225                            getContext().getTypeSizeInChars(type).getQuantity());
1226 
1227   llvm::Type *BP = Int8PtrTy;
1228   if (Loc.getType() != BP)
1229     Loc = Builder.CreateBitCast(Loc, BP);
1230 
1231   // If the initializer is all or mostly zeros, codegen with memset then do
1232   // a few stores afterward.
1233   if (shouldUseMemSetPlusStoresToInitialize(constant,
1234                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1235     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1236                          isVolatile);
1237     // Zero and undef don't require a stores.
1238     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1239       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1240       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
1241                                    isVolatile, Builder);
1242     }
1243   } else {
1244     // Otherwise, create a temporary global with the initializer then
1245     // memcpy from the global to the alloca.
1246     std::string Name = getStaticDeclName(CGM, D);
1247     llvm::GlobalVariable *GV =
1248       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1249                                llvm::GlobalValue::PrivateLinkage,
1250                                constant, Name);
1251     GV->setAlignment(Loc.getAlignment().getQuantity());
1252     GV->setUnnamedAddr(true);
1253 
1254     Address SrcPtr = Address(GV, Loc.getAlignment());
1255     if (SrcPtr.getType() != BP)
1256       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1257 
1258     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1259   }
1260 }
1261 
1262 /// Emit an expression as an initializer for a variable at the given
1263 /// location.  The expression is not necessarily the normal
1264 /// initializer for the variable, and the address is not necessarily
1265 /// its normal location.
1266 ///
1267 /// \param init the initializing expression
1268 /// \param var the variable to act as if we're initializing
1269 /// \param loc the address to initialize; its type is a pointer
1270 ///   to the LLVM mapping of the variable's type
1271 /// \param alignment the alignment of the address
1272 /// \param capturedByInit true if the variable is a __block variable
1273 ///   whose address is potentially changed by the initializer
1274 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1275                                      LValue lvalue, bool capturedByInit) {
1276   QualType type = D->getType();
1277 
1278   if (type->isReferenceType()) {
1279     RValue rvalue = EmitReferenceBindingToExpr(init);
1280     if (capturedByInit)
1281       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1282     EmitStoreThroughLValue(rvalue, lvalue, true);
1283     return;
1284   }
1285   switch (getEvaluationKind(type)) {
1286   case TEK_Scalar:
1287     EmitScalarInit(init, D, lvalue, capturedByInit);
1288     return;
1289   case TEK_Complex: {
1290     ComplexPairTy complex = EmitComplexExpr(init);
1291     if (capturedByInit)
1292       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1293     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1294     return;
1295   }
1296   case TEK_Aggregate:
1297     if (type->isAtomicType()) {
1298       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1299     } else {
1300       // TODO: how can we delay here if D is captured by its initializer?
1301       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1302                                               AggValueSlot::IsDestructed,
1303                                          AggValueSlot::DoesNotNeedGCBarriers,
1304                                               AggValueSlot::IsNotAliased));
1305     }
1306     return;
1307   }
1308   llvm_unreachable("bad evaluation kind");
1309 }
1310 
1311 /// Enter a destroy cleanup for the given local variable.
1312 void CodeGenFunction::emitAutoVarTypeCleanup(
1313                             const CodeGenFunction::AutoVarEmission &emission,
1314                             QualType::DestructionKind dtorKind) {
1315   assert(dtorKind != QualType::DK_none);
1316 
1317   // Note that for __block variables, we want to destroy the
1318   // original stack object, not the possibly forwarded object.
1319   Address addr = emission.getObjectAddress(*this);
1320 
1321   const VarDecl *var = emission.Variable;
1322   QualType type = var->getType();
1323 
1324   CleanupKind cleanupKind = NormalAndEHCleanup;
1325   CodeGenFunction::Destroyer *destroyer = nullptr;
1326 
1327   switch (dtorKind) {
1328   case QualType::DK_none:
1329     llvm_unreachable("no cleanup for trivially-destructible variable");
1330 
1331   case QualType::DK_cxx_destructor:
1332     // If there's an NRVO flag on the emission, we need a different
1333     // cleanup.
1334     if (emission.NRVOFlag) {
1335       assert(!type->isArrayType());
1336       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1337       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
1338                                                dtor, emission.NRVOFlag);
1339       return;
1340     }
1341     break;
1342 
1343   case QualType::DK_objc_strong_lifetime:
1344     // Suppress cleanups for pseudo-strong variables.
1345     if (var->isARCPseudoStrong()) return;
1346 
1347     // Otherwise, consider whether to use an EH cleanup or not.
1348     cleanupKind = getARCCleanupKind();
1349 
1350     // Use the imprecise destroyer by default.
1351     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1352       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1353     break;
1354 
1355   case QualType::DK_objc_weak_lifetime:
1356     break;
1357   }
1358 
1359   // If we haven't chosen a more specific destroyer, use the default.
1360   if (!destroyer) destroyer = getDestroyer(dtorKind);
1361 
1362   // Use an EH cleanup in array destructors iff the destructor itself
1363   // is being pushed as an EH cleanup.
1364   bool useEHCleanup = (cleanupKind & EHCleanup);
1365   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1366                                      useEHCleanup);
1367 }
1368 
1369 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1370   assert(emission.Variable && "emission was not valid!");
1371 
1372   // If this was emitted as a global constant, we're done.
1373   if (emission.wasEmittedAsGlobal()) return;
1374 
1375   // If we don't have an insertion point, we're done.  Sema prevents
1376   // us from jumping into any of these scopes anyway.
1377   if (!HaveInsertPoint()) return;
1378 
1379   const VarDecl &D = *emission.Variable;
1380 
1381   // Make sure we call @llvm.lifetime.end.  This needs to happen
1382   // *last*, so the cleanup needs to be pushed *first*.
1383   if (emission.useLifetimeMarkers()) {
1384     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1385                                          emission.getAllocatedAddress(),
1386                                          emission.getSizeForLifetimeMarkers());
1387     EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
1388     cleanup.setLifetimeMarker();
1389   }
1390 
1391   // Check the type for a cleanup.
1392   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1393     emitAutoVarTypeCleanup(emission, dtorKind);
1394 
1395   // In GC mode, honor objc_precise_lifetime.
1396   if (getLangOpts().getGC() != LangOptions::NonGC &&
1397       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1398     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1399   }
1400 
1401   // Handle the cleanup attribute.
1402   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1403     const FunctionDecl *FD = CA->getFunctionDecl();
1404 
1405     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1406     assert(F && "Could not find function!");
1407 
1408     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1409     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1410   }
1411 
1412   // If this is a block variable, call _Block_object_destroy
1413   // (on the unforwarded address).
1414   if (emission.IsByRef)
1415     enterByrefCleanup(emission);
1416 }
1417 
1418 CodeGenFunction::Destroyer *
1419 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1420   switch (kind) {
1421   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1422   case QualType::DK_cxx_destructor:
1423     return destroyCXXObject;
1424   case QualType::DK_objc_strong_lifetime:
1425     return destroyARCStrongPrecise;
1426   case QualType::DK_objc_weak_lifetime:
1427     return destroyARCWeak;
1428   }
1429   llvm_unreachable("Unknown DestructionKind");
1430 }
1431 
1432 /// pushEHDestroy - Push the standard destructor for the given type as
1433 /// an EH-only cleanup.
1434 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1435                                     Address addr, QualType type) {
1436   assert(dtorKind && "cannot push destructor for trivial type");
1437   assert(needsEHCleanup(dtorKind));
1438 
1439   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1440 }
1441 
1442 /// pushDestroy - Push the standard destructor for the given type as
1443 /// at least a normal cleanup.
1444 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1445                                   Address addr, QualType type) {
1446   assert(dtorKind && "cannot push destructor for trivial type");
1447 
1448   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1449   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1450               cleanupKind & EHCleanup);
1451 }
1452 
1453 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1454                                   QualType type, Destroyer *destroyer,
1455                                   bool useEHCleanupForArray) {
1456   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1457                                      destroyer, useEHCleanupForArray);
1458 }
1459 
1460 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1461   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1462 }
1463 
1464 void CodeGenFunction::pushLifetimeExtendedDestroy(
1465     CleanupKind cleanupKind, Address addr, QualType type,
1466     Destroyer *destroyer, bool useEHCleanupForArray) {
1467   assert(!isInConditionalBranch() &&
1468          "performing lifetime extension from within conditional");
1469 
1470   // Push an EH-only cleanup for the object now.
1471   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1472   // around in case a temporary's destructor throws an exception.
1473   if (cleanupKind & EHCleanup)
1474     EHStack.pushCleanup<DestroyObject>(
1475         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1476         destroyer, useEHCleanupForArray);
1477 
1478   // Remember that we need to push a full cleanup for the object at the
1479   // end of the full-expression.
1480   pushCleanupAfterFullExpr<DestroyObject>(
1481       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1482 }
1483 
1484 /// emitDestroy - Immediately perform the destruction of the given
1485 /// object.
1486 ///
1487 /// \param addr - the address of the object; a type*
1488 /// \param type - the type of the object; if an array type, all
1489 ///   objects are destroyed in reverse order
1490 /// \param destroyer - the function to call to destroy individual
1491 ///   elements
1492 /// \param useEHCleanupForArray - whether an EH cleanup should be
1493 ///   used when destroying array elements, in case one of the
1494 ///   destructions throws an exception
1495 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1496                                   Destroyer *destroyer,
1497                                   bool useEHCleanupForArray) {
1498   const ArrayType *arrayType = getContext().getAsArrayType(type);
1499   if (!arrayType)
1500     return destroyer(*this, addr, type);
1501 
1502   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1503 
1504   CharUnits elementAlign =
1505     addr.getAlignment()
1506         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1507 
1508   // Normally we have to check whether the array is zero-length.
1509   bool checkZeroLength = true;
1510 
1511   // But if the array length is constant, we can suppress that.
1512   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1513     // ...and if it's constant zero, we can just skip the entire thing.
1514     if (constLength->isZero()) return;
1515     checkZeroLength = false;
1516   }
1517 
1518   llvm::Value *begin = addr.getPointer();
1519   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1520   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1521                    checkZeroLength, useEHCleanupForArray);
1522 }
1523 
1524 /// emitArrayDestroy - Destroys all the elements of the given array,
1525 /// beginning from last to first.  The array cannot be zero-length.
1526 ///
1527 /// \param begin - a type* denoting the first element of the array
1528 /// \param end - a type* denoting one past the end of the array
1529 /// \param elementType - the element type of the array
1530 /// \param destroyer - the function to call to destroy elements
1531 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1532 ///   the remaining elements in case the destruction of a single
1533 ///   element throws
1534 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1535                                        llvm::Value *end,
1536                                        QualType elementType,
1537                                        CharUnits elementAlign,
1538                                        Destroyer *destroyer,
1539                                        bool checkZeroLength,
1540                                        bool useEHCleanup) {
1541   assert(!elementType->isArrayType());
1542 
1543   // The basic structure here is a do-while loop, because we don't
1544   // need to check for the zero-element case.
1545   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1546   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1547 
1548   if (checkZeroLength) {
1549     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1550                                                 "arraydestroy.isempty");
1551     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1552   }
1553 
1554   // Enter the loop body, making that address the current address.
1555   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1556   EmitBlock(bodyBB);
1557   llvm::PHINode *elementPast =
1558     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1559   elementPast->addIncoming(end, entryBB);
1560 
1561   // Shift the address back by one element.
1562   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1563   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1564                                                    "arraydestroy.element");
1565 
1566   if (useEHCleanup)
1567     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1568                                    destroyer);
1569 
1570   // Perform the actual destruction there.
1571   destroyer(*this, Address(element, elementAlign), elementType);
1572 
1573   if (useEHCleanup)
1574     PopCleanupBlock();
1575 
1576   // Check whether we've reached the end.
1577   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1578   Builder.CreateCondBr(done, doneBB, bodyBB);
1579   elementPast->addIncoming(element, Builder.GetInsertBlock());
1580 
1581   // Done.
1582   EmitBlock(doneBB);
1583 }
1584 
1585 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1586 /// emitArrayDestroy, the element type here may still be an array type.
1587 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1588                                     llvm::Value *begin, llvm::Value *end,
1589                                     QualType type, CharUnits elementAlign,
1590                                     CodeGenFunction::Destroyer *destroyer) {
1591   // If the element type is itself an array, drill down.
1592   unsigned arrayDepth = 0;
1593   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1594     // VLAs don't require a GEP index to walk into.
1595     if (!isa<VariableArrayType>(arrayType))
1596       arrayDepth++;
1597     type = arrayType->getElementType();
1598   }
1599 
1600   if (arrayDepth) {
1601     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1602 
1603     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1604     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1605     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1606   }
1607 
1608   // Destroy the array.  We don't ever need an EH cleanup because we
1609   // assume that we're in an EH cleanup ourselves, so a throwing
1610   // destructor causes an immediate terminate.
1611   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1612                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1613 }
1614 
1615 namespace {
1616   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1617   /// array destroy where the end pointer is regularly determined and
1618   /// does not need to be loaded from a local.
1619   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1620     llvm::Value *ArrayBegin;
1621     llvm::Value *ArrayEnd;
1622     QualType ElementType;
1623     CodeGenFunction::Destroyer *Destroyer;
1624     CharUnits ElementAlign;
1625   public:
1626     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1627                                QualType elementType, CharUnits elementAlign,
1628                                CodeGenFunction::Destroyer *destroyer)
1629       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1630         ElementType(elementType), Destroyer(destroyer),
1631         ElementAlign(elementAlign) {}
1632 
1633     void Emit(CodeGenFunction &CGF, Flags flags) override {
1634       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1635                               ElementType, ElementAlign, Destroyer);
1636     }
1637   };
1638 
1639   /// IrregularPartialArrayDestroy - a cleanup which performs a
1640   /// partial array destroy where the end pointer is irregularly
1641   /// determined and must be loaded from a local.
1642   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1643     llvm::Value *ArrayBegin;
1644     Address ArrayEndPointer;
1645     QualType ElementType;
1646     CodeGenFunction::Destroyer *Destroyer;
1647     CharUnits ElementAlign;
1648   public:
1649     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1650                                  Address arrayEndPointer,
1651                                  QualType elementType,
1652                                  CharUnits elementAlign,
1653                                  CodeGenFunction::Destroyer *destroyer)
1654       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1655         ElementType(elementType), Destroyer(destroyer),
1656         ElementAlign(elementAlign) {}
1657 
1658     void Emit(CodeGenFunction &CGF, Flags flags) override {
1659       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1660       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1661                               ElementType, ElementAlign, Destroyer);
1662     }
1663   };
1664 }
1665 
1666 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1667 /// already-constructed elements of the given array.  The cleanup
1668 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1669 ///
1670 /// \param elementType - the immediate element type of the array;
1671 ///   possibly still an array type
1672 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1673                                                        Address arrayEndPointer,
1674                                                        QualType elementType,
1675                                                        CharUnits elementAlign,
1676                                                        Destroyer *destroyer) {
1677   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1678                                                     arrayBegin, arrayEndPointer,
1679                                                     elementType, elementAlign,
1680                                                     destroyer);
1681 }
1682 
1683 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1684 /// already-constructed elements of the given array.  The cleanup
1685 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1686 ///
1687 /// \param elementType - the immediate element type of the array;
1688 ///   possibly still an array type
1689 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1690                                                      llvm::Value *arrayEnd,
1691                                                      QualType elementType,
1692                                                      CharUnits elementAlign,
1693                                                      Destroyer *destroyer) {
1694   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1695                                                   arrayBegin, arrayEnd,
1696                                                   elementType, elementAlign,
1697                                                   destroyer);
1698 }
1699 
1700 /// Lazily declare the @llvm.lifetime.start intrinsic.
1701 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1702   if (LifetimeStartFn) return LifetimeStartFn;
1703   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1704                                             llvm::Intrinsic::lifetime_start);
1705   return LifetimeStartFn;
1706 }
1707 
1708 /// Lazily declare the @llvm.lifetime.end intrinsic.
1709 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1710   if (LifetimeEndFn) return LifetimeEndFn;
1711   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1712                                               llvm::Intrinsic::lifetime_end);
1713   return LifetimeEndFn;
1714 }
1715 
1716 namespace {
1717   /// A cleanup to perform a release of an object at the end of a
1718   /// function.  This is used to balance out the incoming +1 of a
1719   /// ns_consumed argument when we can't reasonably do that just by
1720   /// not doing the initial retain for a __block argument.
1721   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1722     ConsumeARCParameter(llvm::Value *param,
1723                         ARCPreciseLifetime_t precise)
1724       : Param(param), Precise(precise) {}
1725 
1726     llvm::Value *Param;
1727     ARCPreciseLifetime_t Precise;
1728 
1729     void Emit(CodeGenFunction &CGF, Flags flags) override {
1730       CGF.EmitARCRelease(Param, Precise);
1731     }
1732   };
1733 }
1734 
1735 /// Emit an alloca (or GlobalValue depending on target)
1736 /// for the specified parameter and set up LocalDeclMap.
1737 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1738                                    unsigned ArgNo) {
1739   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1740   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1741          "Invalid argument to EmitParmDecl");
1742 
1743   Arg.getAnyValue()->setName(D.getName());
1744 
1745   QualType Ty = D.getType();
1746 
1747   // Use better IR generation for certain implicit parameters.
1748   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1749     // The only implicit argument a block has is its literal.
1750     // We assume this is always passed directly.
1751     if (BlockInfo) {
1752       setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue());
1753       return;
1754     }
1755   }
1756 
1757   Address DeclPtr = Address::invalid();
1758   bool DoStore = false;
1759   bool IsScalar = hasScalarEvaluationKind(Ty);
1760   // If we already have a pointer to the argument, reuse the input pointer.
1761   if (Arg.isIndirect()) {
1762     DeclPtr = Arg.getIndirectAddress();
1763     // If we have a prettier pointer type at this point, bitcast to that.
1764     unsigned AS = DeclPtr.getType()->getAddressSpace();
1765     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1766     if (DeclPtr.getType() != IRTy)
1767       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
1768 
1769     // Push a destructor cleanup for this parameter if the ABI requires it.
1770     // Don't push a cleanup in a thunk for a method that will also emit a
1771     // cleanup.
1772     if (!IsScalar && !CurFuncIsThunk &&
1773         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1774       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1775       if (RD && RD->hasNonTrivialDestructor())
1776         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1777     }
1778   } else {
1779     // Otherwise, create a temporary to hold the value.
1780     DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
1781                             D.getName() + ".addr");
1782     DoStore = true;
1783   }
1784 
1785   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
1786 
1787   LValue lv = MakeAddrLValue(DeclPtr, Ty);
1788   if (IsScalar) {
1789     Qualifiers qs = Ty.getQualifiers();
1790     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1791       // We honor __attribute__((ns_consumed)) for types with lifetime.
1792       // For __strong, it's handled by just skipping the initial retain;
1793       // otherwise we have to balance out the initial +1 with an extra
1794       // cleanup to do the release at the end of the function.
1795       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1796 
1797       // 'self' is always formally __strong, but if this is not an
1798       // init method then we don't want to retain it.
1799       if (D.isARCPseudoStrong()) {
1800         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1801         assert(&D == method->getSelfDecl());
1802         assert(lt == Qualifiers::OCL_Strong);
1803         assert(qs.hasConst());
1804         assert(method->getMethodFamily() != OMF_init);
1805         (void) method;
1806         lt = Qualifiers::OCL_ExplicitNone;
1807       }
1808 
1809       if (lt == Qualifiers::OCL_Strong) {
1810         if (!isConsumed) {
1811           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1812             // use objc_storeStrong(&dest, value) for retaining the
1813             // object. But first, store a null into 'dest' because
1814             // objc_storeStrong attempts to release its old value.
1815             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1816             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1817             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
1818             DoStore = false;
1819           }
1820           else
1821           // Don't use objc_retainBlock for block pointers, because we
1822           // don't want to Block_copy something just because we got it
1823           // as a parameter.
1824             ArgVal = EmitARCRetainNonBlock(ArgVal);
1825         }
1826       } else {
1827         // Push the cleanup for a consumed parameter.
1828         if (isConsumed) {
1829           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1830                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1831           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
1832                                                    precise);
1833         }
1834 
1835         if (lt == Qualifiers::OCL_Weak) {
1836           EmitARCInitWeak(DeclPtr, ArgVal);
1837           DoStore = false; // The weak init is a store, no need to do two.
1838         }
1839       }
1840 
1841       // Enter the cleanup scope.
1842       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1843     }
1844   }
1845 
1846   // Store the initial value into the alloca.
1847   if (DoStore)
1848     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
1849 
1850   setAddrOfLocalVar(&D, DeclPtr);
1851 
1852   // Emit debug info for param declaration.
1853   if (CGDebugInfo *DI = getDebugInfo()) {
1854     if (CGM.getCodeGenOpts().getDebugInfo() >=
1855         codegenoptions::LimitedDebugInfo) {
1856       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
1857     }
1858   }
1859 
1860   if (D.hasAttr<AnnotateAttr>())
1861     EmitVarAnnotations(&D, DeclPtr.getPointer());
1862 }
1863