1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclOpenMP.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Type.h"
34 
35 using namespace clang;
36 using namespace CodeGen;
37 
38 void CodeGenFunction::EmitDecl(const Decl &D) {
39   switch (D.getKind()) {
40   case Decl::BuiltinTemplate:
41   case Decl::TranslationUnit:
42   case Decl::ExternCContext:
43   case Decl::Namespace:
44   case Decl::UnresolvedUsingTypename:
45   case Decl::ClassTemplateSpecialization:
46   case Decl::ClassTemplatePartialSpecialization:
47   case Decl::VarTemplateSpecialization:
48   case Decl::VarTemplatePartialSpecialization:
49   case Decl::TemplateTypeParm:
50   case Decl::UnresolvedUsingValue:
51   case Decl::NonTypeTemplateParm:
52   case Decl::CXXMethod:
53   case Decl::CXXConstructor:
54   case Decl::CXXDestructor:
55   case Decl::CXXConversion:
56   case Decl::Field:
57   case Decl::MSProperty:
58   case Decl::IndirectField:
59   case Decl::ObjCIvar:
60   case Decl::ObjCAtDefsField:
61   case Decl::ParmVar:
62   case Decl::ImplicitParam:
63   case Decl::ClassTemplate:
64   case Decl::VarTemplate:
65   case Decl::FunctionTemplate:
66   case Decl::TypeAliasTemplate:
67   case Decl::TemplateTemplateParm:
68   case Decl::ObjCMethod:
69   case Decl::ObjCCategory:
70   case Decl::ObjCProtocol:
71   case Decl::ObjCInterface:
72   case Decl::ObjCCategoryImpl:
73   case Decl::ObjCImplementation:
74   case Decl::ObjCProperty:
75   case Decl::ObjCCompatibleAlias:
76   case Decl::PragmaComment:
77   case Decl::PragmaDetectMismatch:
78   case Decl::AccessSpec:
79   case Decl::LinkageSpec:
80   case Decl::ObjCPropertyImpl:
81   case Decl::FileScopeAsm:
82   case Decl::Friend:
83   case Decl::FriendTemplate:
84   case Decl::Block:
85   case Decl::Captured:
86   case Decl::ClassScopeFunctionSpecialization:
87   case Decl::UsingShadow:
88   case Decl::ObjCTypeParam:
89     llvm_unreachable("Declaration should not be in declstmts!");
90   case Decl::Function:  // void X();
91   case Decl::Record:    // struct/union/class X;
92   case Decl::Enum:      // enum X;
93   case Decl::EnumConstant: // enum ? { X = ? }
94   case Decl::CXXRecord: // struct/union/class X; [C++]
95   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
96   case Decl::Label:        // __label__ x;
97   case Decl::Import:
98   case Decl::OMPThreadPrivate:
99   case Decl::OMPCapturedExpr:
100   case Decl::Empty:
101     // None of these decls require codegen support.
102     return;
103 
104   case Decl::NamespaceAlias:
105     if (CGDebugInfo *DI = getDebugInfo())
106         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
107     return;
108   case Decl::Using:          // using X; [C++]
109     if (CGDebugInfo *DI = getDebugInfo())
110         DI->EmitUsingDecl(cast<UsingDecl>(D));
111     return;
112   case Decl::UsingDirective: // using namespace X; [C++]
113     if (CGDebugInfo *DI = getDebugInfo())
114       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
115     return;
116   case Decl::Var: {
117     const VarDecl &VD = cast<VarDecl>(D);
118     assert(VD.isLocalVarDecl() &&
119            "Should not see file-scope variables inside a function!");
120     return EmitVarDecl(VD);
121   }
122 
123   case Decl::OMPDeclareReduction:
124     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
125 
126   case Decl::Typedef:      // typedef int X;
127   case Decl::TypeAlias: {  // using X = int; [C++0x]
128     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
129     QualType Ty = TD.getUnderlyingType();
130 
131     if (Ty->isVariablyModifiedType())
132       EmitVariablyModifiedType(Ty);
133   }
134   }
135 }
136 
137 /// EmitVarDecl - This method handles emission of any variable declaration
138 /// inside a function, including static vars etc.
139 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
140   if (D.isStaticLocal()) {
141     llvm::GlobalValue::LinkageTypes Linkage =
142         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
143 
144     // FIXME: We need to force the emission/use of a guard variable for
145     // some variables even if we can constant-evaluate them because
146     // we can't guarantee every translation unit will constant-evaluate them.
147 
148     return EmitStaticVarDecl(D, Linkage);
149   }
150 
151   if (D.hasExternalStorage())
152     // Don't emit it now, allow it to be emitted lazily on its first use.
153     return;
154 
155   if (D.getType().getAddressSpace() == LangAS::opencl_local)
156     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
157 
158   assert(D.hasLocalStorage());
159   return EmitAutoVarDecl(D);
160 }
161 
162 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
163   if (CGM.getLangOpts().CPlusPlus)
164     return CGM.getMangledName(&D).str();
165 
166   // If this isn't C++, we don't need a mangled name, just a pretty one.
167   assert(!D.isExternallyVisible() && "name shouldn't matter");
168   std::string ContextName;
169   const DeclContext *DC = D.getDeclContext();
170   if (auto *CD = dyn_cast<CapturedDecl>(DC))
171     DC = cast<DeclContext>(CD->getNonClosureContext());
172   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
173     ContextName = CGM.getMangledName(FD);
174   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
175     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
176   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
177     ContextName = OMD->getSelector().getAsString();
178   else
179     llvm_unreachable("Unknown context for static var decl");
180 
181   ContextName += "." + D.getNameAsString();
182   return ContextName;
183 }
184 
185 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
186     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
187   // In general, we don't always emit static var decls once before we reference
188   // them. It is possible to reference them before emitting the function that
189   // contains them, and it is possible to emit the containing function multiple
190   // times.
191   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
192     return ExistingGV;
193 
194   QualType Ty = D.getType();
195   assert(Ty->isConstantSizeType() && "VLAs can't be static");
196 
197   // Use the label if the variable is renamed with the asm-label extension.
198   std::string Name;
199   if (D.hasAttr<AsmLabelAttr>())
200     Name = getMangledName(&D);
201   else
202     Name = getStaticDeclName(*this, D);
203 
204   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
205   unsigned AddrSpace =
206       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
207 
208   // Local address space cannot have an initializer.
209   llvm::Constant *Init = nullptr;
210   if (Ty.getAddressSpace() != LangAS::opencl_local)
211     Init = EmitNullConstant(Ty);
212   else
213     Init = llvm::UndefValue::get(LTy);
214 
215   llvm::GlobalVariable *GV =
216     new llvm::GlobalVariable(getModule(), LTy,
217                              Ty.isConstant(getContext()), Linkage,
218                              Init, Name, nullptr,
219                              llvm::GlobalVariable::NotThreadLocal,
220                              AddrSpace);
221   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
222   setGlobalVisibility(GV, &D);
223 
224   if (supportsCOMDAT() && GV->isWeakForLinker())
225     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
226 
227   if (D.getTLSKind())
228     setTLSMode(GV, D);
229 
230   if (D.isExternallyVisible()) {
231     if (D.hasAttr<DLLImportAttr>())
232       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
233     else if (D.hasAttr<DLLExportAttr>())
234       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
235   }
236 
237   // Make sure the result is of the correct type.
238   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
239   llvm::Constant *Addr = GV;
240   if (AddrSpace != ExpectedAddrSpace) {
241     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
242     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
243   }
244 
245   setStaticLocalDeclAddress(&D, Addr);
246 
247   // Ensure that the static local gets initialized by making sure the parent
248   // function gets emitted eventually.
249   const Decl *DC = cast<Decl>(D.getDeclContext());
250 
251   // We can't name blocks or captured statements directly, so try to emit their
252   // parents.
253   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
254     DC = DC->getNonClosureContext();
255     // FIXME: Ensure that global blocks get emitted.
256     if (!DC)
257       return Addr;
258   }
259 
260   GlobalDecl GD;
261   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
262     GD = GlobalDecl(CD, Ctor_Base);
263   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
264     GD = GlobalDecl(DD, Dtor_Base);
265   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
266     GD = GlobalDecl(FD);
267   else {
268     // Don't do anything for Obj-C method decls or global closures. We should
269     // never defer them.
270     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
271   }
272   if (GD.getDecl())
273     (void)GetAddrOfGlobal(GD);
274 
275   return Addr;
276 }
277 
278 /// hasNontrivialDestruction - Determine whether a type's destruction is
279 /// non-trivial. If so, and the variable uses static initialization, we must
280 /// register its destructor to run on exit.
281 static bool hasNontrivialDestruction(QualType T) {
282   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
283   return RD && !RD->hasTrivialDestructor();
284 }
285 
286 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
287 /// global variable that has already been created for it.  If the initializer
288 /// has a different type than GV does, this may free GV and return a different
289 /// one.  Otherwise it just returns GV.
290 llvm::GlobalVariable *
291 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
292                                                llvm::GlobalVariable *GV) {
293   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
294 
295   // If constant emission failed, then this should be a C++ static
296   // initializer.
297   if (!Init) {
298     if (!getLangOpts().CPlusPlus)
299       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
300     else if (Builder.GetInsertBlock()) {
301       // Since we have a static initializer, this global variable can't
302       // be constant.
303       GV->setConstant(false);
304 
305       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
306     }
307     return GV;
308   }
309 
310   // The initializer may differ in type from the global. Rewrite
311   // the global to match the initializer.  (We have to do this
312   // because some types, like unions, can't be completely represented
313   // in the LLVM type system.)
314   if (GV->getType()->getElementType() != Init->getType()) {
315     llvm::GlobalVariable *OldGV = GV;
316 
317     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
318                                   OldGV->isConstant(),
319                                   OldGV->getLinkage(), Init, "",
320                                   /*InsertBefore*/ OldGV,
321                                   OldGV->getThreadLocalMode(),
322                            CGM.getContext().getTargetAddressSpace(D.getType()));
323     GV->setVisibility(OldGV->getVisibility());
324     GV->setComdat(OldGV->getComdat());
325 
326     // Steal the name of the old global
327     GV->takeName(OldGV);
328 
329     // Replace all uses of the old global with the new global
330     llvm::Constant *NewPtrForOldDecl =
331     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
332     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
333 
334     // Erase the old global, since it is no longer used.
335     OldGV->eraseFromParent();
336   }
337 
338   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
339   GV->setInitializer(Init);
340 
341   if (hasNontrivialDestruction(D.getType())) {
342     // We have a constant initializer, but a nontrivial destructor. We still
343     // need to perform a guarded "initialization" in order to register the
344     // destructor.
345     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
346   }
347 
348   return GV;
349 }
350 
351 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
352                                       llvm::GlobalValue::LinkageTypes Linkage) {
353   // Check to see if we already have a global variable for this
354   // declaration.  This can happen when double-emitting function
355   // bodies, e.g. with complete and base constructors.
356   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
357   CharUnits alignment = getContext().getDeclAlign(&D);
358 
359   // Store into LocalDeclMap before generating initializer to handle
360   // circular references.
361   setAddrOfLocalVar(&D, Address(addr, alignment));
362 
363   // We can't have a VLA here, but we can have a pointer to a VLA,
364   // even though that doesn't really make any sense.
365   // Make sure to evaluate VLA bounds now so that we have them for later.
366   if (D.getType()->isVariablyModifiedType())
367     EmitVariablyModifiedType(D.getType());
368 
369   // Save the type in case adding the initializer forces a type change.
370   llvm::Type *expectedType = addr->getType();
371 
372   llvm::GlobalVariable *var =
373     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
374 
375   // CUDA's local and local static __shared__ variables should not
376   // have any non-empty initializers. This is ensured by Sema.
377   // Whatever initializer such variable may have when it gets here is
378   // a no-op and should not be emitted.
379   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
380                          D.hasAttr<CUDASharedAttr>();
381   // If this value has an initializer, emit it.
382   if (D.getInit() && !isCudaSharedVar)
383     var = AddInitializerToStaticVarDecl(D, var);
384 
385   var->setAlignment(alignment.getQuantity());
386 
387   if (D.hasAttr<AnnotateAttr>())
388     CGM.AddGlobalAnnotations(&D, var);
389 
390   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
391     var->setSection(SA->getName());
392 
393   if (D.hasAttr<UsedAttr>())
394     CGM.addUsedGlobal(var);
395 
396   // We may have to cast the constant because of the initializer
397   // mismatch above.
398   //
399   // FIXME: It is really dangerous to store this in the map; if anyone
400   // RAUW's the GV uses of this constant will be invalid.
401   llvm::Constant *castedAddr =
402     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
403   if (var != castedAddr)
404     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
405   CGM.setStaticLocalDeclAddress(&D, castedAddr);
406 
407   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
408 
409   // Emit global variable debug descriptor for static vars.
410   CGDebugInfo *DI = getDebugInfo();
411   if (DI &&
412       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
413     DI->setLocation(D.getLocation());
414     DI->EmitGlobalVariable(var, &D);
415   }
416 }
417 
418 namespace {
419   struct DestroyObject final : EHScopeStack::Cleanup {
420     DestroyObject(Address addr, QualType type,
421                   CodeGenFunction::Destroyer *destroyer,
422                   bool useEHCleanupForArray)
423       : addr(addr), type(type), destroyer(destroyer),
424         useEHCleanupForArray(useEHCleanupForArray) {}
425 
426     Address addr;
427     QualType type;
428     CodeGenFunction::Destroyer *destroyer;
429     bool useEHCleanupForArray;
430 
431     void Emit(CodeGenFunction &CGF, Flags flags) override {
432       // Don't use an EH cleanup recursively from an EH cleanup.
433       bool useEHCleanupForArray =
434         flags.isForNormalCleanup() && this->useEHCleanupForArray;
435 
436       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
437     }
438   };
439 
440   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
441     DestroyNRVOVariable(Address addr,
442                         const CXXDestructorDecl *Dtor,
443                         llvm::Value *NRVOFlag)
444       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
445 
446     const CXXDestructorDecl *Dtor;
447     llvm::Value *NRVOFlag;
448     Address Loc;
449 
450     void Emit(CodeGenFunction &CGF, Flags flags) override {
451       // Along the exceptions path we always execute the dtor.
452       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
453 
454       llvm::BasicBlock *SkipDtorBB = nullptr;
455       if (NRVO) {
456         // If we exited via NRVO, we skip the destructor call.
457         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
458         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
459         llvm::Value *DidNRVO =
460           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
461         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
462         CGF.EmitBlock(RunDtorBB);
463       }
464 
465       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
466                                 /*ForVirtualBase=*/false,
467                                 /*Delegating=*/false,
468                                 Loc);
469 
470       if (NRVO) CGF.EmitBlock(SkipDtorBB);
471     }
472   };
473 
474   struct CallStackRestore final : EHScopeStack::Cleanup {
475     Address Stack;
476     CallStackRestore(Address Stack) : Stack(Stack) {}
477     void Emit(CodeGenFunction &CGF, Flags flags) override {
478       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
479       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
480       CGF.Builder.CreateCall(F, V);
481     }
482   };
483 
484   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
485     const VarDecl &Var;
486     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
487 
488     void Emit(CodeGenFunction &CGF, Flags flags) override {
489       // Compute the address of the local variable, in case it's a
490       // byref or something.
491       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
492                       Var.getType(), VK_LValue, SourceLocation());
493       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
494                                                 SourceLocation());
495       CGF.EmitExtendGCLifetime(value);
496     }
497   };
498 
499   struct CallCleanupFunction final : EHScopeStack::Cleanup {
500     llvm::Constant *CleanupFn;
501     const CGFunctionInfo &FnInfo;
502     const VarDecl &Var;
503 
504     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
505                         const VarDecl *Var)
506       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
507 
508     void Emit(CodeGenFunction &CGF, Flags flags) override {
509       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
510                       Var.getType(), VK_LValue, SourceLocation());
511       // Compute the address of the local variable, in case it's a byref
512       // or something.
513       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
514 
515       // In some cases, the type of the function argument will be different from
516       // the type of the pointer. An example of this is
517       // void f(void* arg);
518       // __attribute__((cleanup(f))) void *g;
519       //
520       // To fix this we insert a bitcast here.
521       QualType ArgTy = FnInfo.arg_begin()->type;
522       llvm::Value *Arg =
523         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
524 
525       CallArgList Args;
526       Args.add(RValue::get(Arg),
527                CGF.getContext().getPointerType(Var.getType()));
528       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
529     }
530   };
531 
532   /// A cleanup to call @llvm.lifetime.end.
533   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
534     llvm::Value *Addr;
535     llvm::Value *Size;
536   public:
537     CallLifetimeEnd(Address addr, llvm::Value *size)
538       : Addr(addr.getPointer()), Size(size) {}
539 
540     void Emit(CodeGenFunction &CGF, Flags flags) override {
541       CGF.EmitLifetimeEnd(Size, Addr);
542     }
543   };
544 } // end anonymous namespace
545 
546 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
547 /// variable with lifetime.
548 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
549                                     Address addr,
550                                     Qualifiers::ObjCLifetime lifetime) {
551   switch (lifetime) {
552   case Qualifiers::OCL_None:
553     llvm_unreachable("present but none");
554 
555   case Qualifiers::OCL_ExplicitNone:
556     // nothing to do
557     break;
558 
559   case Qualifiers::OCL_Strong: {
560     CodeGenFunction::Destroyer *destroyer =
561       (var.hasAttr<ObjCPreciseLifetimeAttr>()
562        ? CodeGenFunction::destroyARCStrongPrecise
563        : CodeGenFunction::destroyARCStrongImprecise);
564 
565     CleanupKind cleanupKind = CGF.getARCCleanupKind();
566     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
567                     cleanupKind & EHCleanup);
568     break;
569   }
570   case Qualifiers::OCL_Autoreleasing:
571     // nothing to do
572     break;
573 
574   case Qualifiers::OCL_Weak:
575     // __weak objects always get EH cleanups; otherwise, exceptions
576     // could cause really nasty crashes instead of mere leaks.
577     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
578                     CodeGenFunction::destroyARCWeak,
579                     /*useEHCleanup*/ true);
580     break;
581   }
582 }
583 
584 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
585   if (const Expr *e = dyn_cast<Expr>(s)) {
586     // Skip the most common kinds of expressions that make
587     // hierarchy-walking expensive.
588     s = e = e->IgnoreParenCasts();
589 
590     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
591       return (ref->getDecl() == &var);
592     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
593       const BlockDecl *block = be->getBlockDecl();
594       for (const auto &I : block->captures()) {
595         if (I.getVariable() == &var)
596           return true;
597       }
598     }
599   }
600 
601   for (const Stmt *SubStmt : s->children())
602     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
603     if (SubStmt && isAccessedBy(var, SubStmt))
604       return true;
605 
606   return false;
607 }
608 
609 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
610   if (!decl) return false;
611   if (!isa<VarDecl>(decl)) return false;
612   const VarDecl *var = cast<VarDecl>(decl);
613   return isAccessedBy(*var, e);
614 }
615 
616 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
617                                    const LValue &destLV, const Expr *init) {
618   bool needsCast = false;
619 
620   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
621     switch (castExpr->getCastKind()) {
622     // Look through casts that don't require representation changes.
623     case CK_NoOp:
624     case CK_BitCast:
625     case CK_BlockPointerToObjCPointerCast:
626       needsCast = true;
627       break;
628 
629     // If we find an l-value to r-value cast from a __weak variable,
630     // emit this operation as a copy or move.
631     case CK_LValueToRValue: {
632       const Expr *srcExpr = castExpr->getSubExpr();
633       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
634         return false;
635 
636       // Emit the source l-value.
637       LValue srcLV = CGF.EmitLValue(srcExpr);
638 
639       // Handle a formal type change to avoid asserting.
640       auto srcAddr = srcLV.getAddress();
641       if (needsCast) {
642         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
643                                          destLV.getAddress().getElementType());
644       }
645 
646       // If it was an l-value, use objc_copyWeak.
647       if (srcExpr->getValueKind() == VK_LValue) {
648         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
649       } else {
650         assert(srcExpr->getValueKind() == VK_XValue);
651         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
652       }
653       return true;
654     }
655 
656     // Stop at anything else.
657     default:
658       return false;
659     }
660 
661     init = castExpr->getSubExpr();
662   }
663   return false;
664 }
665 
666 static void drillIntoBlockVariable(CodeGenFunction &CGF,
667                                    LValue &lvalue,
668                                    const VarDecl *var) {
669   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
670 }
671 
672 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
673                                      LValue lvalue, bool capturedByInit) {
674   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
675   if (!lifetime) {
676     llvm::Value *value = EmitScalarExpr(init);
677     if (capturedByInit)
678       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
679     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
680     return;
681   }
682 
683   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
684     init = DIE->getExpr();
685 
686   // If we're emitting a value with lifetime, we have to do the
687   // initialization *before* we leave the cleanup scopes.
688   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
689     enterFullExpression(ewc);
690     init = ewc->getSubExpr();
691   }
692   CodeGenFunction::RunCleanupsScope Scope(*this);
693 
694   // We have to maintain the illusion that the variable is
695   // zero-initialized.  If the variable might be accessed in its
696   // initializer, zero-initialize before running the initializer, then
697   // actually perform the initialization with an assign.
698   bool accessedByInit = false;
699   if (lifetime != Qualifiers::OCL_ExplicitNone)
700     accessedByInit = (capturedByInit || isAccessedBy(D, init));
701   if (accessedByInit) {
702     LValue tempLV = lvalue;
703     // Drill down to the __block object if necessary.
704     if (capturedByInit) {
705       // We can use a simple GEP for this because it can't have been
706       // moved yet.
707       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
708                                               cast<VarDecl>(D),
709                                               /*follow*/ false));
710     }
711 
712     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
713     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
714 
715     // If __weak, we want to use a barrier under certain conditions.
716     if (lifetime == Qualifiers::OCL_Weak)
717       EmitARCInitWeak(tempLV.getAddress(), zero);
718 
719     // Otherwise just do a simple store.
720     else
721       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
722   }
723 
724   // Emit the initializer.
725   llvm::Value *value = nullptr;
726 
727   switch (lifetime) {
728   case Qualifiers::OCL_None:
729     llvm_unreachable("present but none");
730 
731   case Qualifiers::OCL_ExplicitNone:
732     value = EmitARCUnsafeUnretainedScalarExpr(init);
733     break;
734 
735   case Qualifiers::OCL_Strong: {
736     value = EmitARCRetainScalarExpr(init);
737     break;
738   }
739 
740   case Qualifiers::OCL_Weak: {
741     // If it's not accessed by the initializer, try to emit the
742     // initialization with a copy or move.
743     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
744       return;
745     }
746 
747     // No way to optimize a producing initializer into this.  It's not
748     // worth optimizing for, because the value will immediately
749     // disappear in the common case.
750     value = EmitScalarExpr(init);
751 
752     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
753     if (accessedByInit)
754       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
755     else
756       EmitARCInitWeak(lvalue.getAddress(), value);
757     return;
758   }
759 
760   case Qualifiers::OCL_Autoreleasing:
761     value = EmitARCRetainAutoreleaseScalarExpr(init);
762     break;
763   }
764 
765   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
766 
767   // If the variable might have been accessed by its initializer, we
768   // might have to initialize with a barrier.  We have to do this for
769   // both __weak and __strong, but __weak got filtered out above.
770   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
771     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
772     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
773     EmitARCRelease(oldValue, ARCImpreciseLifetime);
774     return;
775   }
776 
777   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
778 }
779 
780 /// EmitScalarInit - Initialize the given lvalue with the given object.
781 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
782   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
783   if (!lifetime)
784     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
785 
786   switch (lifetime) {
787   case Qualifiers::OCL_None:
788     llvm_unreachable("present but none");
789 
790   case Qualifiers::OCL_ExplicitNone:
791     // nothing to do
792     break;
793 
794   case Qualifiers::OCL_Strong:
795     init = EmitARCRetain(lvalue.getType(), init);
796     break;
797 
798   case Qualifiers::OCL_Weak:
799     // Initialize and then skip the primitive store.
800     EmitARCInitWeak(lvalue.getAddress(), init);
801     return;
802 
803   case Qualifiers::OCL_Autoreleasing:
804     init = EmitARCRetainAutorelease(lvalue.getType(), init);
805     break;
806   }
807 
808   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
809 }
810 
811 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
812 /// non-zero parts of the specified initializer with equal or fewer than
813 /// NumStores scalar stores.
814 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
815                                                 unsigned &NumStores) {
816   // Zero and Undef never requires any extra stores.
817   if (isa<llvm::ConstantAggregateZero>(Init) ||
818       isa<llvm::ConstantPointerNull>(Init) ||
819       isa<llvm::UndefValue>(Init))
820     return true;
821   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
822       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
823       isa<llvm::ConstantExpr>(Init))
824     return Init->isNullValue() || NumStores--;
825 
826   // See if we can emit each element.
827   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
828     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
829       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
830       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
831         return false;
832     }
833     return true;
834   }
835 
836   if (llvm::ConstantDataSequential *CDS =
837         dyn_cast<llvm::ConstantDataSequential>(Init)) {
838     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
839       llvm::Constant *Elt = CDS->getElementAsConstant(i);
840       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
841         return false;
842     }
843     return true;
844   }
845 
846   // Anything else is hard and scary.
847   return false;
848 }
849 
850 /// emitStoresForInitAfterMemset - For inits that
851 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
852 /// stores that would be required.
853 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
854                                          bool isVolatile, CGBuilderTy &Builder) {
855   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
856          "called emitStoresForInitAfterMemset for zero or undef value.");
857 
858   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
859       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
860       isa<llvm::ConstantExpr>(Init)) {
861     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
862     return;
863   }
864 
865   if (llvm::ConstantDataSequential *CDS =
866           dyn_cast<llvm::ConstantDataSequential>(Init)) {
867     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
868       llvm::Constant *Elt = CDS->getElementAsConstant(i);
869 
870       // If necessary, get a pointer to the element and emit it.
871       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
872         emitStoresForInitAfterMemset(
873             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
874             isVolatile, Builder);
875     }
876     return;
877   }
878 
879   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
880          "Unknown value type!");
881 
882   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
883     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
884 
885     // If necessary, get a pointer to the element and emit it.
886     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
887       emitStoresForInitAfterMemset(
888           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
889           isVolatile, Builder);
890   }
891 }
892 
893 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
894 /// plus some stores to initialize a local variable instead of using a memcpy
895 /// from a constant global.  It is beneficial to use memset if the global is all
896 /// zeros, or mostly zeros and large.
897 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
898                                                   uint64_t GlobalSize) {
899   // If a global is all zeros, always use a memset.
900   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
901 
902   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
903   // do it if it will require 6 or fewer scalar stores.
904   // TODO: Should budget depends on the size?  Avoiding a large global warrants
905   // plopping in more stores.
906   unsigned StoreBudget = 6;
907   uint64_t SizeLimit = 32;
908 
909   return GlobalSize > SizeLimit &&
910          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
911 }
912 
913 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
914 /// variable declaration with auto, register, or no storage class specifier.
915 /// These turn into simple stack objects, or GlobalValues depending on target.
916 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
917   AutoVarEmission emission = EmitAutoVarAlloca(D);
918   EmitAutoVarInit(emission);
919   EmitAutoVarCleanups(emission);
920 }
921 
922 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
923 /// markers.
924 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
925                                       const LangOptions &LangOpts) {
926   // Asan uses markers for use-after-scope checks.
927   if (CGOpts.SanitizeAddressUseAfterScope)
928     return true;
929 
930   // Disable lifetime markers in msan builds.
931   // FIXME: Remove this when msan works with lifetime markers.
932   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
933     return false;
934 
935   // For now, only in optimized builds.
936   return CGOpts.OptimizationLevel != 0;
937 }
938 
939 /// Emit a lifetime.begin marker if some criteria are satisfied.
940 /// \return a pointer to the temporary size Value if a marker was emitted, null
941 /// otherwise
942 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
943                                                 llvm::Value *Addr) {
944   if (!shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), getLangOpts()))
945     return nullptr;
946 
947   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
948   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
949   llvm::CallInst *C =
950       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
951   C->setDoesNotThrow();
952   return SizeV;
953 }
954 
955 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
956   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
957   llvm::CallInst *C =
958       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
959   C->setDoesNotThrow();
960 }
961 
962 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
963 /// local variable.  Does not emit initialization or destruction.
964 CodeGenFunction::AutoVarEmission
965 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
966   QualType Ty = D.getType();
967 
968   AutoVarEmission emission(D);
969 
970   bool isByRef = D.hasAttr<BlocksAttr>();
971   emission.IsByRef = isByRef;
972 
973   CharUnits alignment = getContext().getDeclAlign(&D);
974 
975   // If the type is variably-modified, emit all the VLA sizes for it.
976   if (Ty->isVariablyModifiedType())
977     EmitVariablyModifiedType(Ty);
978 
979   Address address = Address::invalid();
980   if (Ty->isConstantSizeType()) {
981     bool NRVO = getLangOpts().ElideConstructors &&
982       D.isNRVOVariable();
983 
984     // If this value is an array or struct with a statically determinable
985     // constant initializer, there are optimizations we can do.
986     //
987     // TODO: We should constant-evaluate the initializer of any variable,
988     // as long as it is initialized by a constant expression. Currently,
989     // isConstantInitializer produces wrong answers for structs with
990     // reference or bitfield members, and a few other cases, and checking
991     // for POD-ness protects us from some of these.
992     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
993         (D.isConstexpr() ||
994          ((Ty.isPODType(getContext()) ||
995            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
996           D.getInit()->isConstantInitializer(getContext(), false)))) {
997 
998       // If the variable's a const type, and it's neither an NRVO
999       // candidate nor a __block variable and has no mutable members,
1000       // emit it as a global instead.
1001       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
1002           CGM.isTypeConstant(Ty, true)) {
1003         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1004 
1005         // Signal this condition to later callbacks.
1006         emission.Addr = Address::invalid();
1007         assert(emission.wasEmittedAsGlobal());
1008         return emission;
1009       }
1010 
1011       // Otherwise, tell the initialization code that we're in this case.
1012       emission.IsConstantAggregate = true;
1013     }
1014 
1015     // A normal fixed sized variable becomes an alloca in the entry block,
1016     // unless it's an NRVO variable.
1017 
1018     if (NRVO) {
1019       // The named return value optimization: allocate this variable in the
1020       // return slot, so that we can elide the copy when returning this
1021       // variable (C++0x [class.copy]p34).
1022       address = ReturnValue;
1023 
1024       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1025         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
1026           // Create a flag that is used to indicate when the NRVO was applied
1027           // to this variable. Set it to zero to indicate that NRVO was not
1028           // applied.
1029           llvm::Value *Zero = Builder.getFalse();
1030           Address NRVOFlag =
1031             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1032           EnsureInsertPoint();
1033           Builder.CreateStore(Zero, NRVOFlag);
1034 
1035           // Record the NRVO flag for this variable.
1036           NRVOFlags[&D] = NRVOFlag.getPointer();
1037           emission.NRVOFlag = NRVOFlag.getPointer();
1038         }
1039       }
1040     } else {
1041       CharUnits allocaAlignment;
1042       llvm::Type *allocaTy;
1043       if (isByRef) {
1044         auto &byrefInfo = getBlockByrefInfo(&D);
1045         allocaTy = byrefInfo.Type;
1046         allocaAlignment = byrefInfo.ByrefAlignment;
1047       } else {
1048         allocaTy = ConvertTypeForMem(Ty);
1049         allocaAlignment = alignment;
1050       }
1051 
1052       // Create the alloca.  Note that we set the name separately from
1053       // building the instruction so that it's there even in no-asserts
1054       // builds.
1055       address = CreateTempAlloca(allocaTy, allocaAlignment);
1056       address.getPointer()->setName(D.getName());
1057 
1058       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1059       // the catch parameter starts in the catchpad instruction, and we can't
1060       // insert code in those basic blocks.
1061       bool IsMSCatchParam =
1062           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1063 
1064       // Emit a lifetime intrinsic if meaningful.  There's no point
1065       // in doing this if we don't have a valid insertion point (?).
1066       if (HaveInsertPoint() && !IsMSCatchParam) {
1067         uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1068         emission.SizeForLifetimeMarkers =
1069           EmitLifetimeStart(size, address.getPointer());
1070       } else {
1071         assert(!emission.useLifetimeMarkers());
1072       }
1073     }
1074   } else {
1075     EnsureInsertPoint();
1076 
1077     if (!DidCallStackSave) {
1078       // Save the stack.
1079       Address Stack =
1080         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1081 
1082       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1083       llvm::Value *V = Builder.CreateCall(F);
1084       Builder.CreateStore(V, Stack);
1085 
1086       DidCallStackSave = true;
1087 
1088       // Push a cleanup block and restore the stack there.
1089       // FIXME: in general circumstances, this should be an EH cleanup.
1090       pushStackRestore(NormalCleanup, Stack);
1091     }
1092 
1093     llvm::Value *elementCount;
1094     QualType elementType;
1095     std::tie(elementCount, elementType) = getVLASize(Ty);
1096 
1097     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
1098 
1099     // Allocate memory for the array.
1100     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1101     vla->setAlignment(alignment.getQuantity());
1102 
1103     address = Address(vla, alignment);
1104   }
1105 
1106   setAddrOfLocalVar(&D, address);
1107   emission.Addr = address;
1108 
1109   // Emit debug info for local var declaration.
1110   if (HaveInsertPoint())
1111     if (CGDebugInfo *DI = getDebugInfo()) {
1112       if (CGM.getCodeGenOpts().getDebugInfo() >=
1113           codegenoptions::LimitedDebugInfo) {
1114         DI->setLocation(D.getLocation());
1115         DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1116       }
1117     }
1118 
1119   if (D.hasAttr<AnnotateAttr>())
1120     EmitVarAnnotations(&D, address.getPointer());
1121 
1122   return emission;
1123 }
1124 
1125 /// Determines whether the given __block variable is potentially
1126 /// captured by the given expression.
1127 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1128   // Skip the most common kinds of expressions that make
1129   // hierarchy-walking expensive.
1130   e = e->IgnoreParenCasts();
1131 
1132   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1133     const BlockDecl *block = be->getBlockDecl();
1134     for (const auto &I : block->captures()) {
1135       if (I.getVariable() == &var)
1136         return true;
1137     }
1138 
1139     // No need to walk into the subexpressions.
1140     return false;
1141   }
1142 
1143   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1144     const CompoundStmt *CS = SE->getSubStmt();
1145     for (const auto *BI : CS->body())
1146       if (const auto *E = dyn_cast<Expr>(BI)) {
1147         if (isCapturedBy(var, E))
1148             return true;
1149       }
1150       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1151           // special case declarations
1152           for (const auto *I : DS->decls()) {
1153               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1154                 const Expr *Init = VD->getInit();
1155                 if (Init && isCapturedBy(var, Init))
1156                   return true;
1157               }
1158           }
1159       }
1160       else
1161         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1162         // Later, provide code to poke into statements for capture analysis.
1163         return true;
1164     return false;
1165   }
1166 
1167   for (const Stmt *SubStmt : e->children())
1168     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1169       return true;
1170 
1171   return false;
1172 }
1173 
1174 /// \brief Determine whether the given initializer is trivial in the sense
1175 /// that it requires no code to be generated.
1176 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1177   if (!Init)
1178     return true;
1179 
1180   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1181     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1182       if (Constructor->isTrivial() &&
1183           Constructor->isDefaultConstructor() &&
1184           !Construct->requiresZeroInitialization())
1185         return true;
1186 
1187   return false;
1188 }
1189 
1190 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1191   assert(emission.Variable && "emission was not valid!");
1192 
1193   // If this was emitted as a global constant, we're done.
1194   if (emission.wasEmittedAsGlobal()) return;
1195 
1196   const VarDecl &D = *emission.Variable;
1197   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1198   QualType type = D.getType();
1199 
1200   // If this local has an initializer, emit it now.
1201   const Expr *Init = D.getInit();
1202 
1203   // If we are at an unreachable point, we don't need to emit the initializer
1204   // unless it contains a label.
1205   if (!HaveInsertPoint()) {
1206     if (!Init || !ContainsLabel(Init)) return;
1207     EnsureInsertPoint();
1208   }
1209 
1210   // Initialize the structure of a __block variable.
1211   if (emission.IsByRef)
1212     emitByrefStructureInit(emission);
1213 
1214   if (isTrivialInitializer(Init))
1215     return;
1216 
1217   // Check whether this is a byref variable that's potentially
1218   // captured and moved by its own initializer.  If so, we'll need to
1219   // emit the initializer first, then copy into the variable.
1220   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1221 
1222   Address Loc =
1223     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1224 
1225   llvm::Constant *constant = nullptr;
1226   if (emission.IsConstantAggregate || D.isConstexpr()) {
1227     assert(!capturedByInit && "constant init contains a capturing block?");
1228     constant = CGM.EmitConstantInit(D, this);
1229   }
1230 
1231   if (!constant) {
1232     LValue lv = MakeAddrLValue(Loc, type);
1233     lv.setNonGC(true);
1234     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1235   }
1236 
1237   if (!emission.IsConstantAggregate) {
1238     // For simple scalar/complex initialization, store the value directly.
1239     LValue lv = MakeAddrLValue(Loc, type);
1240     lv.setNonGC(true);
1241     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1242   }
1243 
1244   // If this is a simple aggregate initialization, we can optimize it
1245   // in various ways.
1246   bool isVolatile = type.isVolatileQualified();
1247 
1248   llvm::Value *SizeVal =
1249     llvm::ConstantInt::get(IntPtrTy,
1250                            getContext().getTypeSizeInChars(type).getQuantity());
1251 
1252   llvm::Type *BP = Int8PtrTy;
1253   if (Loc.getType() != BP)
1254     Loc = Builder.CreateBitCast(Loc, BP);
1255 
1256   // If the initializer is all or mostly zeros, codegen with memset then do
1257   // a few stores afterward.
1258   if (shouldUseMemSetPlusStoresToInitialize(constant,
1259                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1260     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1261                          isVolatile);
1262     // Zero and undef don't require a stores.
1263     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1264       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1265       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
1266                                    isVolatile, Builder);
1267     }
1268   } else {
1269     // Otherwise, create a temporary global with the initializer then
1270     // memcpy from the global to the alloca.
1271     std::string Name = getStaticDeclName(CGM, D);
1272     llvm::GlobalVariable *GV =
1273       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1274                                llvm::GlobalValue::PrivateLinkage,
1275                                constant, Name);
1276     GV->setAlignment(Loc.getAlignment().getQuantity());
1277     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1278 
1279     Address SrcPtr = Address(GV, Loc.getAlignment());
1280     if (SrcPtr.getType() != BP)
1281       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1282 
1283     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1284   }
1285 }
1286 
1287 /// Emit an expression as an initializer for a variable at the given
1288 /// location.  The expression is not necessarily the normal
1289 /// initializer for the variable, and the address is not necessarily
1290 /// its normal location.
1291 ///
1292 /// \param init the initializing expression
1293 /// \param var the variable to act as if we're initializing
1294 /// \param loc the address to initialize; its type is a pointer
1295 ///   to the LLVM mapping of the variable's type
1296 /// \param alignment the alignment of the address
1297 /// \param capturedByInit true if the variable is a __block variable
1298 ///   whose address is potentially changed by the initializer
1299 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1300                                      LValue lvalue, bool capturedByInit) {
1301   QualType type = D->getType();
1302 
1303   if (type->isReferenceType()) {
1304     RValue rvalue = EmitReferenceBindingToExpr(init);
1305     if (capturedByInit)
1306       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1307     EmitStoreThroughLValue(rvalue, lvalue, true);
1308     return;
1309   }
1310   switch (getEvaluationKind(type)) {
1311   case TEK_Scalar:
1312     EmitScalarInit(init, D, lvalue, capturedByInit);
1313     return;
1314   case TEK_Complex: {
1315     ComplexPairTy complex = EmitComplexExpr(init);
1316     if (capturedByInit)
1317       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1318     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1319     return;
1320   }
1321   case TEK_Aggregate:
1322     if (type->isAtomicType()) {
1323       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1324     } else {
1325       // TODO: how can we delay here if D is captured by its initializer?
1326       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1327                                               AggValueSlot::IsDestructed,
1328                                          AggValueSlot::DoesNotNeedGCBarriers,
1329                                               AggValueSlot::IsNotAliased));
1330     }
1331     return;
1332   }
1333   llvm_unreachable("bad evaluation kind");
1334 }
1335 
1336 /// Enter a destroy cleanup for the given local variable.
1337 void CodeGenFunction::emitAutoVarTypeCleanup(
1338                             const CodeGenFunction::AutoVarEmission &emission,
1339                             QualType::DestructionKind dtorKind) {
1340   assert(dtorKind != QualType::DK_none);
1341 
1342   // Note that for __block variables, we want to destroy the
1343   // original stack object, not the possibly forwarded object.
1344   Address addr = emission.getObjectAddress(*this);
1345 
1346   const VarDecl *var = emission.Variable;
1347   QualType type = var->getType();
1348 
1349   CleanupKind cleanupKind = NormalAndEHCleanup;
1350   CodeGenFunction::Destroyer *destroyer = nullptr;
1351 
1352   switch (dtorKind) {
1353   case QualType::DK_none:
1354     llvm_unreachable("no cleanup for trivially-destructible variable");
1355 
1356   case QualType::DK_cxx_destructor:
1357     // If there's an NRVO flag on the emission, we need a different
1358     // cleanup.
1359     if (emission.NRVOFlag) {
1360       assert(!type->isArrayType());
1361       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1362       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
1363                                                dtor, emission.NRVOFlag);
1364       return;
1365     }
1366     break;
1367 
1368   case QualType::DK_objc_strong_lifetime:
1369     // Suppress cleanups for pseudo-strong variables.
1370     if (var->isARCPseudoStrong()) return;
1371 
1372     // Otherwise, consider whether to use an EH cleanup or not.
1373     cleanupKind = getARCCleanupKind();
1374 
1375     // Use the imprecise destroyer by default.
1376     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1377       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1378     break;
1379 
1380   case QualType::DK_objc_weak_lifetime:
1381     break;
1382   }
1383 
1384   // If we haven't chosen a more specific destroyer, use the default.
1385   if (!destroyer) destroyer = getDestroyer(dtorKind);
1386 
1387   // Use an EH cleanup in array destructors iff the destructor itself
1388   // is being pushed as an EH cleanup.
1389   bool useEHCleanup = (cleanupKind & EHCleanup);
1390   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1391                                      useEHCleanup);
1392 }
1393 
1394 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1395   assert(emission.Variable && "emission was not valid!");
1396 
1397   // If this was emitted as a global constant, we're done.
1398   if (emission.wasEmittedAsGlobal()) return;
1399 
1400   // If we don't have an insertion point, we're done.  Sema prevents
1401   // us from jumping into any of these scopes anyway.
1402   if (!HaveInsertPoint()) return;
1403 
1404   const VarDecl &D = *emission.Variable;
1405 
1406   // Make sure we call @llvm.lifetime.end.  This needs to happen
1407   // *last*, so the cleanup needs to be pushed *first*.
1408   if (emission.useLifetimeMarkers()) {
1409     EHStack.pushCleanup<CallLifetimeEnd>(NormalAndEHCleanup,
1410                                          emission.getAllocatedAddress(),
1411                                          emission.getSizeForLifetimeMarkers());
1412     EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
1413     cleanup.setLifetimeMarker();
1414   }
1415 
1416   // Check the type for a cleanup.
1417   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1418     emitAutoVarTypeCleanup(emission, dtorKind);
1419 
1420   // In GC mode, honor objc_precise_lifetime.
1421   if (getLangOpts().getGC() != LangOptions::NonGC &&
1422       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1423     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1424   }
1425 
1426   // Handle the cleanup attribute.
1427   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1428     const FunctionDecl *FD = CA->getFunctionDecl();
1429 
1430     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1431     assert(F && "Could not find function!");
1432 
1433     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1434     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1435   }
1436 
1437   // If this is a block variable, call _Block_object_destroy
1438   // (on the unforwarded address).
1439   if (emission.IsByRef)
1440     enterByrefCleanup(emission);
1441 }
1442 
1443 CodeGenFunction::Destroyer *
1444 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1445   switch (kind) {
1446   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1447   case QualType::DK_cxx_destructor:
1448     return destroyCXXObject;
1449   case QualType::DK_objc_strong_lifetime:
1450     return destroyARCStrongPrecise;
1451   case QualType::DK_objc_weak_lifetime:
1452     return destroyARCWeak;
1453   }
1454   llvm_unreachable("Unknown DestructionKind");
1455 }
1456 
1457 /// pushEHDestroy - Push the standard destructor for the given type as
1458 /// an EH-only cleanup.
1459 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1460                                     Address addr, QualType type) {
1461   assert(dtorKind && "cannot push destructor for trivial type");
1462   assert(needsEHCleanup(dtorKind));
1463 
1464   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1465 }
1466 
1467 /// pushDestroy - Push the standard destructor for the given type as
1468 /// at least a normal cleanup.
1469 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1470                                   Address addr, QualType type) {
1471   assert(dtorKind && "cannot push destructor for trivial type");
1472 
1473   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1474   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1475               cleanupKind & EHCleanup);
1476 }
1477 
1478 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1479                                   QualType type, Destroyer *destroyer,
1480                                   bool useEHCleanupForArray) {
1481   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1482                                      destroyer, useEHCleanupForArray);
1483 }
1484 
1485 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1486   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1487 }
1488 
1489 void CodeGenFunction::pushLifetimeExtendedDestroy(
1490     CleanupKind cleanupKind, Address addr, QualType type,
1491     Destroyer *destroyer, bool useEHCleanupForArray) {
1492   assert(!isInConditionalBranch() &&
1493          "performing lifetime extension from within conditional");
1494 
1495   // Push an EH-only cleanup for the object now.
1496   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1497   // around in case a temporary's destructor throws an exception.
1498   if (cleanupKind & EHCleanup)
1499     EHStack.pushCleanup<DestroyObject>(
1500         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1501         destroyer, useEHCleanupForArray);
1502 
1503   // Remember that we need to push a full cleanup for the object at the
1504   // end of the full-expression.
1505   pushCleanupAfterFullExpr<DestroyObject>(
1506       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1507 }
1508 
1509 /// emitDestroy - Immediately perform the destruction of the given
1510 /// object.
1511 ///
1512 /// \param addr - the address of the object; a type*
1513 /// \param type - the type of the object; if an array type, all
1514 ///   objects are destroyed in reverse order
1515 /// \param destroyer - the function to call to destroy individual
1516 ///   elements
1517 /// \param useEHCleanupForArray - whether an EH cleanup should be
1518 ///   used when destroying array elements, in case one of the
1519 ///   destructions throws an exception
1520 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1521                                   Destroyer *destroyer,
1522                                   bool useEHCleanupForArray) {
1523   const ArrayType *arrayType = getContext().getAsArrayType(type);
1524   if (!arrayType)
1525     return destroyer(*this, addr, type);
1526 
1527   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1528 
1529   CharUnits elementAlign =
1530     addr.getAlignment()
1531         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1532 
1533   // Normally we have to check whether the array is zero-length.
1534   bool checkZeroLength = true;
1535 
1536   // But if the array length is constant, we can suppress that.
1537   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1538     // ...and if it's constant zero, we can just skip the entire thing.
1539     if (constLength->isZero()) return;
1540     checkZeroLength = false;
1541   }
1542 
1543   llvm::Value *begin = addr.getPointer();
1544   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1545   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1546                    checkZeroLength, useEHCleanupForArray);
1547 }
1548 
1549 /// emitArrayDestroy - Destroys all the elements of the given array,
1550 /// beginning from last to first.  The array cannot be zero-length.
1551 ///
1552 /// \param begin - a type* denoting the first element of the array
1553 /// \param end - a type* denoting one past the end of the array
1554 /// \param elementType - the element type of the array
1555 /// \param destroyer - the function to call to destroy elements
1556 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1557 ///   the remaining elements in case the destruction of a single
1558 ///   element throws
1559 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1560                                        llvm::Value *end,
1561                                        QualType elementType,
1562                                        CharUnits elementAlign,
1563                                        Destroyer *destroyer,
1564                                        bool checkZeroLength,
1565                                        bool useEHCleanup) {
1566   assert(!elementType->isArrayType());
1567 
1568   // The basic structure here is a do-while loop, because we don't
1569   // need to check for the zero-element case.
1570   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1571   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1572 
1573   if (checkZeroLength) {
1574     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1575                                                 "arraydestroy.isempty");
1576     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1577   }
1578 
1579   // Enter the loop body, making that address the current address.
1580   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1581   EmitBlock(bodyBB);
1582   llvm::PHINode *elementPast =
1583     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1584   elementPast->addIncoming(end, entryBB);
1585 
1586   // Shift the address back by one element.
1587   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1588   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1589                                                    "arraydestroy.element");
1590 
1591   if (useEHCleanup)
1592     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1593                                    destroyer);
1594 
1595   // Perform the actual destruction there.
1596   destroyer(*this, Address(element, elementAlign), elementType);
1597 
1598   if (useEHCleanup)
1599     PopCleanupBlock();
1600 
1601   // Check whether we've reached the end.
1602   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1603   Builder.CreateCondBr(done, doneBB, bodyBB);
1604   elementPast->addIncoming(element, Builder.GetInsertBlock());
1605 
1606   // Done.
1607   EmitBlock(doneBB);
1608 }
1609 
1610 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1611 /// emitArrayDestroy, the element type here may still be an array type.
1612 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1613                                     llvm::Value *begin, llvm::Value *end,
1614                                     QualType type, CharUnits elementAlign,
1615                                     CodeGenFunction::Destroyer *destroyer) {
1616   // If the element type is itself an array, drill down.
1617   unsigned arrayDepth = 0;
1618   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1619     // VLAs don't require a GEP index to walk into.
1620     if (!isa<VariableArrayType>(arrayType))
1621       arrayDepth++;
1622     type = arrayType->getElementType();
1623   }
1624 
1625   if (arrayDepth) {
1626     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1627 
1628     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1629     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1630     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1631   }
1632 
1633   // Destroy the array.  We don't ever need an EH cleanup because we
1634   // assume that we're in an EH cleanup ourselves, so a throwing
1635   // destructor causes an immediate terminate.
1636   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1637                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1638 }
1639 
1640 namespace {
1641   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1642   /// array destroy where the end pointer is regularly determined and
1643   /// does not need to be loaded from a local.
1644   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1645     llvm::Value *ArrayBegin;
1646     llvm::Value *ArrayEnd;
1647     QualType ElementType;
1648     CodeGenFunction::Destroyer *Destroyer;
1649     CharUnits ElementAlign;
1650   public:
1651     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1652                                QualType elementType, CharUnits elementAlign,
1653                                CodeGenFunction::Destroyer *destroyer)
1654       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1655         ElementType(elementType), Destroyer(destroyer),
1656         ElementAlign(elementAlign) {}
1657 
1658     void Emit(CodeGenFunction &CGF, Flags flags) override {
1659       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1660                               ElementType, ElementAlign, Destroyer);
1661     }
1662   };
1663 
1664   /// IrregularPartialArrayDestroy - a cleanup which performs a
1665   /// partial array destroy where the end pointer is irregularly
1666   /// determined and must be loaded from a local.
1667   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1668     llvm::Value *ArrayBegin;
1669     Address ArrayEndPointer;
1670     QualType ElementType;
1671     CodeGenFunction::Destroyer *Destroyer;
1672     CharUnits ElementAlign;
1673   public:
1674     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1675                                  Address arrayEndPointer,
1676                                  QualType elementType,
1677                                  CharUnits elementAlign,
1678                                  CodeGenFunction::Destroyer *destroyer)
1679       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1680         ElementType(elementType), Destroyer(destroyer),
1681         ElementAlign(elementAlign) {}
1682 
1683     void Emit(CodeGenFunction &CGF, Flags flags) override {
1684       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1685       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1686                               ElementType, ElementAlign, Destroyer);
1687     }
1688   };
1689 } // end anonymous namespace
1690 
1691 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1692 /// already-constructed elements of the given array.  The cleanup
1693 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1694 ///
1695 /// \param elementType - the immediate element type of the array;
1696 ///   possibly still an array type
1697 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1698                                                        Address arrayEndPointer,
1699                                                        QualType elementType,
1700                                                        CharUnits elementAlign,
1701                                                        Destroyer *destroyer) {
1702   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1703                                                     arrayBegin, arrayEndPointer,
1704                                                     elementType, elementAlign,
1705                                                     destroyer);
1706 }
1707 
1708 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1709 /// already-constructed elements of the given array.  The cleanup
1710 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1711 ///
1712 /// \param elementType - the immediate element type of the array;
1713 ///   possibly still an array type
1714 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1715                                                      llvm::Value *arrayEnd,
1716                                                      QualType elementType,
1717                                                      CharUnits elementAlign,
1718                                                      Destroyer *destroyer) {
1719   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1720                                                   arrayBegin, arrayEnd,
1721                                                   elementType, elementAlign,
1722                                                   destroyer);
1723 }
1724 
1725 /// Lazily declare the @llvm.lifetime.start intrinsic.
1726 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1727   if (LifetimeStartFn) return LifetimeStartFn;
1728   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1729                                             llvm::Intrinsic::lifetime_start);
1730   return LifetimeStartFn;
1731 }
1732 
1733 /// Lazily declare the @llvm.lifetime.end intrinsic.
1734 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1735   if (LifetimeEndFn) return LifetimeEndFn;
1736   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1737                                               llvm::Intrinsic::lifetime_end);
1738   return LifetimeEndFn;
1739 }
1740 
1741 namespace {
1742   /// A cleanup to perform a release of an object at the end of a
1743   /// function.  This is used to balance out the incoming +1 of a
1744   /// ns_consumed argument when we can't reasonably do that just by
1745   /// not doing the initial retain for a __block argument.
1746   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1747     ConsumeARCParameter(llvm::Value *param,
1748                         ARCPreciseLifetime_t precise)
1749       : Param(param), Precise(precise) {}
1750 
1751     llvm::Value *Param;
1752     ARCPreciseLifetime_t Precise;
1753 
1754     void Emit(CodeGenFunction &CGF, Flags flags) override {
1755       CGF.EmitARCRelease(Param, Precise);
1756     }
1757   };
1758 } // end anonymous namespace
1759 
1760 /// Emit an alloca (or GlobalValue depending on target)
1761 /// for the specified parameter and set up LocalDeclMap.
1762 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1763                                    unsigned ArgNo) {
1764   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1765   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1766          "Invalid argument to EmitParmDecl");
1767 
1768   Arg.getAnyValue()->setName(D.getName());
1769 
1770   QualType Ty = D.getType();
1771 
1772   // Use better IR generation for certain implicit parameters.
1773   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1774     // The only implicit argument a block has is its literal.
1775     // We assume this is always passed directly.
1776     if (BlockInfo) {
1777       setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue());
1778       return;
1779     }
1780   }
1781 
1782   Address DeclPtr = Address::invalid();
1783   bool DoStore = false;
1784   bool IsScalar = hasScalarEvaluationKind(Ty);
1785   // If we already have a pointer to the argument, reuse the input pointer.
1786   if (Arg.isIndirect()) {
1787     DeclPtr = Arg.getIndirectAddress();
1788     // If we have a prettier pointer type at this point, bitcast to that.
1789     unsigned AS = DeclPtr.getType()->getAddressSpace();
1790     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1791     if (DeclPtr.getType() != IRTy)
1792       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
1793 
1794     // Push a destructor cleanup for this parameter if the ABI requires it.
1795     // Don't push a cleanup in a thunk for a method that will also emit a
1796     // cleanup.
1797     if (!IsScalar && !CurFuncIsThunk &&
1798         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1799       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1800       if (RD && RD->hasNonTrivialDestructor())
1801         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1802     }
1803   } else {
1804     // Otherwise, create a temporary to hold the value.
1805     DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
1806                             D.getName() + ".addr");
1807     DoStore = true;
1808   }
1809 
1810   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
1811 
1812   LValue lv = MakeAddrLValue(DeclPtr, Ty);
1813   if (IsScalar) {
1814     Qualifiers qs = Ty.getQualifiers();
1815     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1816       // We honor __attribute__((ns_consumed)) for types with lifetime.
1817       // For __strong, it's handled by just skipping the initial retain;
1818       // otherwise we have to balance out the initial +1 with an extra
1819       // cleanup to do the release at the end of the function.
1820       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1821 
1822       // 'self' is always formally __strong, but if this is not an
1823       // init method then we don't want to retain it.
1824       if (D.isARCPseudoStrong()) {
1825         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1826         assert(&D == method->getSelfDecl());
1827         assert(lt == Qualifiers::OCL_Strong);
1828         assert(qs.hasConst());
1829         assert(method->getMethodFamily() != OMF_init);
1830         (void) method;
1831         lt = Qualifiers::OCL_ExplicitNone;
1832       }
1833 
1834       if (lt == Qualifiers::OCL_Strong) {
1835         if (!isConsumed) {
1836           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1837             // use objc_storeStrong(&dest, value) for retaining the
1838             // object. But first, store a null into 'dest' because
1839             // objc_storeStrong attempts to release its old value.
1840             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1841             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1842             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
1843             DoStore = false;
1844           }
1845           else
1846           // Don't use objc_retainBlock for block pointers, because we
1847           // don't want to Block_copy something just because we got it
1848           // as a parameter.
1849             ArgVal = EmitARCRetainNonBlock(ArgVal);
1850         }
1851       } else {
1852         // Push the cleanup for a consumed parameter.
1853         if (isConsumed) {
1854           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1855                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1856           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
1857                                                    precise);
1858         }
1859 
1860         if (lt == Qualifiers::OCL_Weak) {
1861           EmitARCInitWeak(DeclPtr, ArgVal);
1862           DoStore = false; // The weak init is a store, no need to do two.
1863         }
1864       }
1865 
1866       // Enter the cleanup scope.
1867       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1868     }
1869   }
1870 
1871   // Store the initial value into the alloca.
1872   if (DoStore)
1873     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
1874 
1875   setAddrOfLocalVar(&D, DeclPtr);
1876 
1877   // Emit debug info for param declaration.
1878   if (CGDebugInfo *DI = getDebugInfo()) {
1879     if (CGM.getCodeGenOpts().getDebugInfo() >=
1880         codegenoptions::LimitedDebugInfo) {
1881       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
1882     }
1883   }
1884 
1885   if (D.hasAttr<AnnotateAttr>())
1886     EmitVarAnnotations(&D, DeclPtr.getPointer());
1887 }
1888 
1889 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
1890                                             CodeGenFunction *CGF) {
1891   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
1892     return;
1893   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
1894 }
1895