1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Type.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 void CodeGenFunction::EmitDecl(const Decl &D) { 42 switch (D.getKind()) { 43 case Decl::BuiltinTemplate: 44 case Decl::TranslationUnit: 45 case Decl::ExternCContext: 46 case Decl::Namespace: 47 case Decl::UnresolvedUsingTypename: 48 case Decl::ClassTemplateSpecialization: 49 case Decl::ClassTemplatePartialSpecialization: 50 case Decl::VarTemplateSpecialization: 51 case Decl::VarTemplatePartialSpecialization: 52 case Decl::TemplateTypeParm: 53 case Decl::UnresolvedUsingValue: 54 case Decl::NonTypeTemplateParm: 55 case Decl::CXXDeductionGuide: 56 case Decl::CXXMethod: 57 case Decl::CXXConstructor: 58 case Decl::CXXDestructor: 59 case Decl::CXXConversion: 60 case Decl::Field: 61 case Decl::MSProperty: 62 case Decl::IndirectField: 63 case Decl::ObjCIvar: 64 case Decl::ObjCAtDefsField: 65 case Decl::ParmVar: 66 case Decl::ImplicitParam: 67 case Decl::ClassTemplate: 68 case Decl::VarTemplate: 69 case Decl::FunctionTemplate: 70 case Decl::TypeAliasTemplate: 71 case Decl::TemplateTemplateParm: 72 case Decl::ObjCMethod: 73 case Decl::ObjCCategory: 74 case Decl::ObjCProtocol: 75 case Decl::ObjCInterface: 76 case Decl::ObjCCategoryImpl: 77 case Decl::ObjCImplementation: 78 case Decl::ObjCProperty: 79 case Decl::ObjCCompatibleAlias: 80 case Decl::PragmaComment: 81 case Decl::PragmaDetectMismatch: 82 case Decl::AccessSpec: 83 case Decl::LinkageSpec: 84 case Decl::Export: 85 case Decl::ObjCPropertyImpl: 86 case Decl::FileScopeAsm: 87 case Decl::Friend: 88 case Decl::FriendTemplate: 89 case Decl::Block: 90 case Decl::Captured: 91 case Decl::ClassScopeFunctionSpecialization: 92 case Decl::UsingShadow: 93 case Decl::ConstructorUsingShadow: 94 case Decl::ObjCTypeParam: 95 case Decl::Binding: 96 llvm_unreachable("Declaration should not be in declstmts!"); 97 case Decl::Function: // void X(); 98 case Decl::Record: // struct/union/class X; 99 case Decl::Enum: // enum X; 100 case Decl::EnumConstant: // enum ? { X = ? } 101 case Decl::CXXRecord: // struct/union/class X; [C++] 102 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 103 case Decl::Label: // __label__ x; 104 case Decl::Import: 105 case Decl::OMPThreadPrivate: 106 case Decl::OMPCapturedExpr: 107 case Decl::Empty: 108 // None of these decls require codegen support. 109 return; 110 111 case Decl::NamespaceAlias: 112 if (CGDebugInfo *DI = getDebugInfo()) 113 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 114 return; 115 case Decl::Using: // using X; [C++] 116 if (CGDebugInfo *DI = getDebugInfo()) 117 DI->EmitUsingDecl(cast<UsingDecl>(D)); 118 return; 119 case Decl::UsingPack: 120 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 121 EmitDecl(*Using); 122 return; 123 case Decl::UsingDirective: // using namespace X; [C++] 124 if (CGDebugInfo *DI = getDebugInfo()) 125 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 126 return; 127 case Decl::Var: 128 case Decl::Decomposition: { 129 const VarDecl &VD = cast<VarDecl>(D); 130 assert(VD.isLocalVarDecl() && 131 "Should not see file-scope variables inside a function!"); 132 EmitVarDecl(VD); 133 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 134 for (auto *B : DD->bindings()) 135 if (auto *HD = B->getHoldingVar()) 136 EmitVarDecl(*HD); 137 return; 138 } 139 140 case Decl::OMPDeclareReduction: 141 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 142 143 case Decl::Typedef: // typedef int X; 144 case Decl::TypeAlias: { // using X = int; [C++0x] 145 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 146 QualType Ty = TD.getUnderlyingType(); 147 148 if (Ty->isVariablyModifiedType()) 149 EmitVariablyModifiedType(Ty); 150 } 151 } 152 } 153 154 /// EmitVarDecl - This method handles emission of any variable declaration 155 /// inside a function, including static vars etc. 156 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 157 if (D.hasExternalStorage()) 158 // Don't emit it now, allow it to be emitted lazily on its first use. 159 return; 160 161 // Some function-scope variable does not have static storage but still 162 // needs to be emitted like a static variable, e.g. a function-scope 163 // variable in constant address space in OpenCL. 164 if (D.getStorageDuration() != SD_Automatic) { 165 // Static sampler variables translated to function calls. 166 if (D.getType()->isSamplerT()) 167 return; 168 169 llvm::GlobalValue::LinkageTypes Linkage = 170 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 171 172 // FIXME: We need to force the emission/use of a guard variable for 173 // some variables even if we can constant-evaluate them because 174 // we can't guarantee every translation unit will constant-evaluate them. 175 176 return EmitStaticVarDecl(D, Linkage); 177 } 178 179 if (D.getType().getAddressSpace() == LangAS::opencl_local) 180 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 181 182 assert(D.hasLocalStorage()); 183 return EmitAutoVarDecl(D); 184 } 185 186 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 187 if (CGM.getLangOpts().CPlusPlus) 188 return CGM.getMangledName(&D).str(); 189 190 // If this isn't C++, we don't need a mangled name, just a pretty one. 191 assert(!D.isExternallyVisible() && "name shouldn't matter"); 192 std::string ContextName; 193 const DeclContext *DC = D.getDeclContext(); 194 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 195 DC = cast<DeclContext>(CD->getNonClosureContext()); 196 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 197 ContextName = CGM.getMangledName(FD); 198 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 199 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 200 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 201 ContextName = OMD->getSelector().getAsString(); 202 else 203 llvm_unreachable("Unknown context for static var decl"); 204 205 ContextName += "." + D.getNameAsString(); 206 return ContextName; 207 } 208 209 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 210 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 211 // In general, we don't always emit static var decls once before we reference 212 // them. It is possible to reference them before emitting the function that 213 // contains them, and it is possible to emit the containing function multiple 214 // times. 215 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 216 return ExistingGV; 217 218 QualType Ty = D.getType(); 219 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 220 221 // Use the label if the variable is renamed with the asm-label extension. 222 std::string Name; 223 if (D.hasAttr<AsmLabelAttr>()) 224 Name = getMangledName(&D); 225 else 226 Name = getStaticDeclName(*this, D); 227 228 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 229 LangAS AS = GetGlobalVarAddressSpace(&D); 230 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 231 232 // OpenCL variables in local address space and CUDA shared 233 // variables cannot have an initializer. 234 llvm::Constant *Init = nullptr; 235 if (Ty.getAddressSpace() == LangAS::opencl_local || 236 D.hasAttr<CUDASharedAttr>()) 237 Init = llvm::UndefValue::get(LTy); 238 else 239 Init = EmitNullConstant(Ty); 240 241 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 242 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 243 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 244 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 245 246 if (supportsCOMDAT() && GV->isWeakForLinker()) 247 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 248 249 if (D.getTLSKind()) 250 setTLSMode(GV, D); 251 252 setGVProperties(GV, &D); 253 254 // Make sure the result is of the correct type. 255 LangAS ExpectedAS = Ty.getAddressSpace(); 256 llvm::Constant *Addr = GV; 257 if (AS != ExpectedAS) { 258 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 259 *this, GV, AS, ExpectedAS, 260 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 261 } 262 263 setStaticLocalDeclAddress(&D, Addr); 264 265 // Ensure that the static local gets initialized by making sure the parent 266 // function gets emitted eventually. 267 const Decl *DC = cast<Decl>(D.getDeclContext()); 268 269 // We can't name blocks or captured statements directly, so try to emit their 270 // parents. 271 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 272 DC = DC->getNonClosureContext(); 273 // FIXME: Ensure that global blocks get emitted. 274 if (!DC) 275 return Addr; 276 } 277 278 GlobalDecl GD; 279 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 280 GD = GlobalDecl(CD, Ctor_Base); 281 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 282 GD = GlobalDecl(DD, Dtor_Base); 283 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 284 GD = GlobalDecl(FD); 285 else { 286 // Don't do anything for Obj-C method decls or global closures. We should 287 // never defer them. 288 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 289 } 290 if (GD.getDecl()) { 291 // Disable emission of the parent function for the OpenMP device codegen. 292 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 293 (void)GetAddrOfGlobal(GD); 294 } 295 296 return Addr; 297 } 298 299 /// hasNontrivialDestruction - Determine whether a type's destruction is 300 /// non-trivial. If so, and the variable uses static initialization, we must 301 /// register its destructor to run on exit. 302 static bool hasNontrivialDestruction(QualType T) { 303 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 304 return RD && !RD->hasTrivialDestructor(); 305 } 306 307 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 308 /// global variable that has already been created for it. If the initializer 309 /// has a different type than GV does, this may free GV and return a different 310 /// one. Otherwise it just returns GV. 311 llvm::GlobalVariable * 312 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 313 llvm::GlobalVariable *GV) { 314 ConstantEmitter emitter(*this); 315 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 316 317 // If constant emission failed, then this should be a C++ static 318 // initializer. 319 if (!Init) { 320 if (!getLangOpts().CPlusPlus) 321 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 322 else if (HaveInsertPoint()) { 323 // Since we have a static initializer, this global variable can't 324 // be constant. 325 GV->setConstant(false); 326 327 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 328 } 329 return GV; 330 } 331 332 // The initializer may differ in type from the global. Rewrite 333 // the global to match the initializer. (We have to do this 334 // because some types, like unions, can't be completely represented 335 // in the LLVM type system.) 336 if (GV->getType()->getElementType() != Init->getType()) { 337 llvm::GlobalVariable *OldGV = GV; 338 339 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 340 OldGV->isConstant(), 341 OldGV->getLinkage(), Init, "", 342 /*InsertBefore*/ OldGV, 343 OldGV->getThreadLocalMode(), 344 CGM.getContext().getTargetAddressSpace(D.getType())); 345 GV->setVisibility(OldGV->getVisibility()); 346 GV->setDSOLocal(OldGV->isDSOLocal()); 347 GV->setComdat(OldGV->getComdat()); 348 349 // Steal the name of the old global 350 GV->takeName(OldGV); 351 352 // Replace all uses of the old global with the new global 353 llvm::Constant *NewPtrForOldDecl = 354 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 355 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 356 357 // Erase the old global, since it is no longer used. 358 OldGV->eraseFromParent(); 359 } 360 361 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 362 GV->setInitializer(Init); 363 364 emitter.finalize(GV); 365 366 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 367 // We have a constant initializer, but a nontrivial destructor. We still 368 // need to perform a guarded "initialization" in order to register the 369 // destructor. 370 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 371 } 372 373 return GV; 374 } 375 376 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 377 llvm::GlobalValue::LinkageTypes Linkage) { 378 // Check to see if we already have a global variable for this 379 // declaration. This can happen when double-emitting function 380 // bodies, e.g. with complete and base constructors. 381 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 382 CharUnits alignment = getContext().getDeclAlign(&D); 383 384 // Store into LocalDeclMap before generating initializer to handle 385 // circular references. 386 setAddrOfLocalVar(&D, Address(addr, alignment)); 387 388 // We can't have a VLA here, but we can have a pointer to a VLA, 389 // even though that doesn't really make any sense. 390 // Make sure to evaluate VLA bounds now so that we have them for later. 391 if (D.getType()->isVariablyModifiedType()) 392 EmitVariablyModifiedType(D.getType()); 393 394 // Save the type in case adding the initializer forces a type change. 395 llvm::Type *expectedType = addr->getType(); 396 397 llvm::GlobalVariable *var = 398 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 399 400 // CUDA's local and local static __shared__ variables should not 401 // have any non-empty initializers. This is ensured by Sema. 402 // Whatever initializer such variable may have when it gets here is 403 // a no-op and should not be emitted. 404 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 405 D.hasAttr<CUDASharedAttr>(); 406 // If this value has an initializer, emit it. 407 if (D.getInit() && !isCudaSharedVar) 408 var = AddInitializerToStaticVarDecl(D, var); 409 410 var->setAlignment(alignment.getQuantity()); 411 412 if (D.hasAttr<AnnotateAttr>()) 413 CGM.AddGlobalAnnotations(&D, var); 414 415 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 416 var->addAttribute("bss-section", SA->getName()); 417 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 418 var->addAttribute("data-section", SA->getName()); 419 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 420 var->addAttribute("rodata-section", SA->getName()); 421 422 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 423 var->setSection(SA->getName()); 424 425 if (D.hasAttr<UsedAttr>()) 426 CGM.addUsedGlobal(var); 427 428 // We may have to cast the constant because of the initializer 429 // mismatch above. 430 // 431 // FIXME: It is really dangerous to store this in the map; if anyone 432 // RAUW's the GV uses of this constant will be invalid. 433 llvm::Constant *castedAddr = 434 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 435 if (var != castedAddr) 436 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 437 CGM.setStaticLocalDeclAddress(&D, castedAddr); 438 439 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 440 441 // Emit global variable debug descriptor for static vars. 442 CGDebugInfo *DI = getDebugInfo(); 443 if (DI && 444 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 445 DI->setLocation(D.getLocation()); 446 DI->EmitGlobalVariable(var, &D); 447 } 448 } 449 450 namespace { 451 struct DestroyObject final : EHScopeStack::Cleanup { 452 DestroyObject(Address addr, QualType type, 453 CodeGenFunction::Destroyer *destroyer, 454 bool useEHCleanupForArray) 455 : addr(addr), type(type), destroyer(destroyer), 456 useEHCleanupForArray(useEHCleanupForArray) {} 457 458 Address addr; 459 QualType type; 460 CodeGenFunction::Destroyer *destroyer; 461 bool useEHCleanupForArray; 462 463 void Emit(CodeGenFunction &CGF, Flags flags) override { 464 // Don't use an EH cleanup recursively from an EH cleanup. 465 bool useEHCleanupForArray = 466 flags.isForNormalCleanup() && this->useEHCleanupForArray; 467 468 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 469 } 470 }; 471 472 template <class Derived> 473 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 474 DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) 475 : NRVOFlag(NRVOFlag), Loc(addr) {} 476 477 llvm::Value *NRVOFlag; 478 Address Loc; 479 480 void Emit(CodeGenFunction &CGF, Flags flags) override { 481 // Along the exceptions path we always execute the dtor. 482 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 483 484 llvm::BasicBlock *SkipDtorBB = nullptr; 485 if (NRVO) { 486 // If we exited via NRVO, we skip the destructor call. 487 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 488 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 489 llvm::Value *DidNRVO = 490 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 491 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 492 CGF.EmitBlock(RunDtorBB); 493 } 494 495 static_cast<Derived *>(this)->emitDestructorCall(CGF); 496 497 if (NRVO) CGF.EmitBlock(SkipDtorBB); 498 } 499 500 virtual ~DestroyNRVOVariable() = default; 501 }; 502 503 struct DestroyNRVOVariableCXX final 504 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 505 DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, 506 llvm::Value *NRVOFlag) 507 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), 508 Dtor(Dtor) {} 509 510 const CXXDestructorDecl *Dtor; 511 512 void emitDestructorCall(CodeGenFunction &CGF) { 513 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 514 /*ForVirtualBase=*/false, 515 /*Delegating=*/false, Loc); 516 } 517 }; 518 519 struct DestroyNRVOVariableC final 520 : DestroyNRVOVariable<DestroyNRVOVariableC> { 521 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 522 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} 523 524 QualType Ty; 525 526 void emitDestructorCall(CodeGenFunction &CGF) { 527 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 528 } 529 }; 530 531 struct CallStackRestore final : EHScopeStack::Cleanup { 532 Address Stack; 533 CallStackRestore(Address Stack) : Stack(Stack) {} 534 void Emit(CodeGenFunction &CGF, Flags flags) override { 535 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 536 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 537 CGF.Builder.CreateCall(F, V); 538 } 539 }; 540 541 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 542 const VarDecl &Var; 543 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 544 545 void Emit(CodeGenFunction &CGF, Flags flags) override { 546 // Compute the address of the local variable, in case it's a 547 // byref or something. 548 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 549 Var.getType(), VK_LValue, SourceLocation()); 550 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 551 SourceLocation()); 552 CGF.EmitExtendGCLifetime(value); 553 } 554 }; 555 556 struct CallCleanupFunction final : EHScopeStack::Cleanup { 557 llvm::Constant *CleanupFn; 558 const CGFunctionInfo &FnInfo; 559 const VarDecl &Var; 560 561 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 562 const VarDecl *Var) 563 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 564 565 void Emit(CodeGenFunction &CGF, Flags flags) override { 566 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 567 Var.getType(), VK_LValue, SourceLocation()); 568 // Compute the address of the local variable, in case it's a byref 569 // or something. 570 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 571 572 // In some cases, the type of the function argument will be different from 573 // the type of the pointer. An example of this is 574 // void f(void* arg); 575 // __attribute__((cleanup(f))) void *g; 576 // 577 // To fix this we insert a bitcast here. 578 QualType ArgTy = FnInfo.arg_begin()->type; 579 llvm::Value *Arg = 580 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 581 582 CallArgList Args; 583 Args.add(RValue::get(Arg), 584 CGF.getContext().getPointerType(Var.getType())); 585 auto Callee = CGCallee::forDirect(CleanupFn); 586 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 587 } 588 }; 589 } // end anonymous namespace 590 591 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 592 /// variable with lifetime. 593 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 594 Address addr, 595 Qualifiers::ObjCLifetime lifetime) { 596 switch (lifetime) { 597 case Qualifiers::OCL_None: 598 llvm_unreachable("present but none"); 599 600 case Qualifiers::OCL_ExplicitNone: 601 // nothing to do 602 break; 603 604 case Qualifiers::OCL_Strong: { 605 CodeGenFunction::Destroyer *destroyer = 606 (var.hasAttr<ObjCPreciseLifetimeAttr>() 607 ? CodeGenFunction::destroyARCStrongPrecise 608 : CodeGenFunction::destroyARCStrongImprecise); 609 610 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 611 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 612 cleanupKind & EHCleanup); 613 break; 614 } 615 case Qualifiers::OCL_Autoreleasing: 616 // nothing to do 617 break; 618 619 case Qualifiers::OCL_Weak: 620 // __weak objects always get EH cleanups; otherwise, exceptions 621 // could cause really nasty crashes instead of mere leaks. 622 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 623 CodeGenFunction::destroyARCWeak, 624 /*useEHCleanup*/ true); 625 break; 626 } 627 } 628 629 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 630 if (const Expr *e = dyn_cast<Expr>(s)) { 631 // Skip the most common kinds of expressions that make 632 // hierarchy-walking expensive. 633 s = e = e->IgnoreParenCasts(); 634 635 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 636 return (ref->getDecl() == &var); 637 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 638 const BlockDecl *block = be->getBlockDecl(); 639 for (const auto &I : block->captures()) { 640 if (I.getVariable() == &var) 641 return true; 642 } 643 } 644 } 645 646 for (const Stmt *SubStmt : s->children()) 647 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 648 if (SubStmt && isAccessedBy(var, SubStmt)) 649 return true; 650 651 return false; 652 } 653 654 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 655 if (!decl) return false; 656 if (!isa<VarDecl>(decl)) return false; 657 const VarDecl *var = cast<VarDecl>(decl); 658 return isAccessedBy(*var, e); 659 } 660 661 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 662 const LValue &destLV, const Expr *init) { 663 bool needsCast = false; 664 665 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 666 switch (castExpr->getCastKind()) { 667 // Look through casts that don't require representation changes. 668 case CK_NoOp: 669 case CK_BitCast: 670 case CK_BlockPointerToObjCPointerCast: 671 needsCast = true; 672 break; 673 674 // If we find an l-value to r-value cast from a __weak variable, 675 // emit this operation as a copy or move. 676 case CK_LValueToRValue: { 677 const Expr *srcExpr = castExpr->getSubExpr(); 678 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 679 return false; 680 681 // Emit the source l-value. 682 LValue srcLV = CGF.EmitLValue(srcExpr); 683 684 // Handle a formal type change to avoid asserting. 685 auto srcAddr = srcLV.getAddress(); 686 if (needsCast) { 687 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 688 destLV.getAddress().getElementType()); 689 } 690 691 // If it was an l-value, use objc_copyWeak. 692 if (srcExpr->getValueKind() == VK_LValue) { 693 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 694 } else { 695 assert(srcExpr->getValueKind() == VK_XValue); 696 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 697 } 698 return true; 699 } 700 701 // Stop at anything else. 702 default: 703 return false; 704 } 705 706 init = castExpr->getSubExpr(); 707 } 708 return false; 709 } 710 711 static void drillIntoBlockVariable(CodeGenFunction &CGF, 712 LValue &lvalue, 713 const VarDecl *var) { 714 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 715 } 716 717 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 718 SourceLocation Loc) { 719 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 720 return; 721 722 auto Nullability = LHS.getType()->getNullability(getContext()); 723 if (!Nullability || *Nullability != NullabilityKind::NonNull) 724 return; 725 726 // Check if the right hand side of the assignment is nonnull, if the left 727 // hand side must be nonnull. 728 SanitizerScope SanScope(this); 729 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 730 llvm::Constant *StaticData[] = { 731 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 732 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 733 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 734 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 735 SanitizerHandler::TypeMismatch, StaticData, RHS); 736 } 737 738 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 739 LValue lvalue, bool capturedByInit) { 740 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 741 if (!lifetime) { 742 llvm::Value *value = EmitScalarExpr(init); 743 if (capturedByInit) 744 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 745 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 746 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 747 return; 748 } 749 750 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 751 init = DIE->getExpr(); 752 753 // If we're emitting a value with lifetime, we have to do the 754 // initialization *before* we leave the cleanup scopes. 755 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 756 enterFullExpression(ewc); 757 init = ewc->getSubExpr(); 758 } 759 CodeGenFunction::RunCleanupsScope Scope(*this); 760 761 // We have to maintain the illusion that the variable is 762 // zero-initialized. If the variable might be accessed in its 763 // initializer, zero-initialize before running the initializer, then 764 // actually perform the initialization with an assign. 765 bool accessedByInit = false; 766 if (lifetime != Qualifiers::OCL_ExplicitNone) 767 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 768 if (accessedByInit) { 769 LValue tempLV = lvalue; 770 // Drill down to the __block object if necessary. 771 if (capturedByInit) { 772 // We can use a simple GEP for this because it can't have been 773 // moved yet. 774 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 775 cast<VarDecl>(D), 776 /*follow*/ false)); 777 } 778 779 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 780 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 781 782 // If __weak, we want to use a barrier under certain conditions. 783 if (lifetime == Qualifiers::OCL_Weak) 784 EmitARCInitWeak(tempLV.getAddress(), zero); 785 786 // Otherwise just do a simple store. 787 else 788 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 789 } 790 791 // Emit the initializer. 792 llvm::Value *value = nullptr; 793 794 switch (lifetime) { 795 case Qualifiers::OCL_None: 796 llvm_unreachable("present but none"); 797 798 case Qualifiers::OCL_ExplicitNone: 799 value = EmitARCUnsafeUnretainedScalarExpr(init); 800 break; 801 802 case Qualifiers::OCL_Strong: { 803 value = EmitARCRetainScalarExpr(init); 804 break; 805 } 806 807 case Qualifiers::OCL_Weak: { 808 // If it's not accessed by the initializer, try to emit the 809 // initialization with a copy or move. 810 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 811 return; 812 } 813 814 // No way to optimize a producing initializer into this. It's not 815 // worth optimizing for, because the value will immediately 816 // disappear in the common case. 817 value = EmitScalarExpr(init); 818 819 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 820 if (accessedByInit) 821 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 822 else 823 EmitARCInitWeak(lvalue.getAddress(), value); 824 return; 825 } 826 827 case Qualifiers::OCL_Autoreleasing: 828 value = EmitARCRetainAutoreleaseScalarExpr(init); 829 break; 830 } 831 832 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 833 834 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 835 836 // If the variable might have been accessed by its initializer, we 837 // might have to initialize with a barrier. We have to do this for 838 // both __weak and __strong, but __weak got filtered out above. 839 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 840 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 841 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 842 EmitARCRelease(oldValue, ARCImpreciseLifetime); 843 return; 844 } 845 846 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 847 } 848 849 /// Decide whether we can emit the non-zero parts of the specified initializer 850 /// with equal or fewer than NumStores scalar stores. 851 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 852 unsigned &NumStores) { 853 // Zero and Undef never requires any extra stores. 854 if (isa<llvm::ConstantAggregateZero>(Init) || 855 isa<llvm::ConstantPointerNull>(Init) || 856 isa<llvm::UndefValue>(Init)) 857 return true; 858 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 859 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 860 isa<llvm::ConstantExpr>(Init)) 861 return Init->isNullValue() || NumStores--; 862 863 // See if we can emit each element. 864 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 865 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 866 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 867 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 868 return false; 869 } 870 return true; 871 } 872 873 if (llvm::ConstantDataSequential *CDS = 874 dyn_cast<llvm::ConstantDataSequential>(Init)) { 875 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 876 llvm::Constant *Elt = CDS->getElementAsConstant(i); 877 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 878 return false; 879 } 880 return true; 881 } 882 883 // Anything else is hard and scary. 884 return false; 885 } 886 887 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 888 /// the scalar stores that would be required. 889 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 890 llvm::Constant *Init, Address Loc, 891 bool isVolatile, CGBuilderTy &Builder) { 892 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 893 "called emitStoresForInitAfterBZero for zero or undef value."); 894 895 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 896 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 897 isa<llvm::ConstantExpr>(Init)) { 898 Builder.CreateStore(Init, Loc, isVolatile); 899 return; 900 } 901 902 if (llvm::ConstantDataSequential *CDS = 903 dyn_cast<llvm::ConstantDataSequential>(Init)) { 904 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 905 llvm::Constant *Elt = CDS->getElementAsConstant(i); 906 907 // If necessary, get a pointer to the element and emit it. 908 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 909 emitStoresForInitAfterBZero( 910 CGM, Elt, 911 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 912 isVolatile, Builder); 913 } 914 return; 915 } 916 917 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 918 "Unknown value type!"); 919 920 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 921 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 922 923 // If necessary, get a pointer to the element and emit it. 924 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 925 emitStoresForInitAfterBZero( 926 CGM, Elt, 927 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 928 isVolatile, Builder); 929 } 930 } 931 932 /// Decide whether we should use bzero plus some stores to initialize a local 933 /// variable instead of using a memcpy from a constant global. It is beneficial 934 /// to use bzero if the global is all zeros, or mostly zeros and large. 935 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 936 uint64_t GlobalSize) { 937 // If a global is all zeros, always use a bzero. 938 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 939 940 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 941 // do it if it will require 6 or fewer scalar stores. 942 // TODO: Should budget depends on the size? Avoiding a large global warrants 943 // plopping in more stores. 944 unsigned StoreBudget = 6; 945 uint64_t SizeLimit = 32; 946 947 return GlobalSize > SizeLimit && 948 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 949 } 950 951 /// A byte pattern. 952 /// 953 /// Can be "any" pattern if the value was padding or known to be undef. 954 /// Can be "none" pattern if a sequence doesn't exist. 955 class BytePattern { 956 uint8_t Val; 957 enum class ValueType : uint8_t { Specific, Any, None } Type; 958 BytePattern(ValueType Type) : Type(Type) {} 959 960 public: 961 BytePattern(uint8_t Value) : Val(Value), Type(ValueType::Specific) {} 962 static BytePattern Any() { return BytePattern(ValueType::Any); } 963 static BytePattern None() { return BytePattern(ValueType::None); } 964 bool isAny() const { return Type == ValueType::Any; } 965 bool isNone() const { return Type == ValueType::None; } 966 bool isValued() const { return Type == ValueType::Specific; } 967 uint8_t getValue() const { 968 assert(isValued()); 969 return Val; 970 } 971 BytePattern merge(const BytePattern Other) const { 972 if (isNone() || Other.isNone()) 973 return None(); 974 if (isAny()) 975 return Other; 976 if (Other.isAny()) 977 return *this; 978 if (getValue() == Other.getValue()) 979 return *this; 980 return None(); 981 } 982 }; 983 984 /// Figures out whether the constant can be initialized with memset. 985 static BytePattern constantIsRepeatedBytePattern(llvm::Constant *C) { 986 if (isa<llvm::ConstantAggregateZero>(C) || isa<llvm::ConstantPointerNull>(C)) 987 return BytePattern(0x00); 988 if (isa<llvm::UndefValue>(C)) 989 return BytePattern::Any(); 990 991 if (isa<llvm::ConstantInt>(C)) { 992 auto *Int = cast<llvm::ConstantInt>(C); 993 if (Int->getBitWidth() % 8 != 0) 994 return BytePattern::None(); 995 const llvm::APInt &Value = Int->getValue(); 996 if (Value.isSplat(8)) 997 return BytePattern(Value.getLoBits(8).getLimitedValue()); 998 return BytePattern::None(); 999 } 1000 1001 if (isa<llvm::ConstantFP>(C)) { 1002 auto *FP = cast<llvm::ConstantFP>(C); 1003 llvm::APInt Bits = FP->getValueAPF().bitcastToAPInt(); 1004 if (Bits.getBitWidth() % 8 != 0) 1005 return BytePattern::None(); 1006 if (!Bits.isSplat(8)) 1007 return BytePattern::None(); 1008 return BytePattern(Bits.getLimitedValue() & 0xFF); 1009 } 1010 1011 if (isa<llvm::ConstantVector>(C)) { 1012 llvm::Constant *Splat = cast<llvm::ConstantVector>(C)->getSplatValue(); 1013 if (Splat) 1014 return constantIsRepeatedBytePattern(Splat); 1015 return BytePattern::None(); 1016 } 1017 1018 if (isa<llvm::ConstantArray>(C) || isa<llvm::ConstantStruct>(C)) { 1019 BytePattern Pattern(BytePattern::Any()); 1020 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) { 1021 llvm::Constant *Elt = cast<llvm::Constant>(C->getOperand(I)); 1022 Pattern = Pattern.merge(constantIsRepeatedBytePattern(Elt)); 1023 if (Pattern.isNone()) 1024 return Pattern; 1025 } 1026 return Pattern; 1027 } 1028 1029 if (llvm::ConstantDataSequential *CDS = 1030 dyn_cast<llvm::ConstantDataSequential>(C)) { 1031 BytePattern Pattern(BytePattern::Any()); 1032 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) { 1033 llvm::Constant *Elt = CDS->getElementAsConstant(I); 1034 Pattern = Pattern.merge(constantIsRepeatedBytePattern(Elt)); 1035 if (Pattern.isNone()) 1036 return Pattern; 1037 } 1038 return Pattern; 1039 } 1040 1041 // BlockAddress, ConstantExpr, and everything else is scary. 1042 return BytePattern::None(); 1043 } 1044 1045 /// Decide whether we should use memset to initialize a local variable instead 1046 /// of using a memcpy from a constant global. Assumes we've already decided to 1047 /// not user bzero. 1048 /// FIXME We could be more clever, as we are for bzero above, and generate 1049 /// memset followed by stores. It's unclear that's worth the effort. 1050 static BytePattern shouldUseMemSetToInitialize(llvm::Constant *Init, 1051 uint64_t GlobalSize) { 1052 uint64_t SizeLimit = 32; 1053 if (GlobalSize <= SizeLimit) 1054 return BytePattern::None(); 1055 return constantIsRepeatedBytePattern(Init); 1056 } 1057 1058 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1059 Address Loc, bool isVolatile, 1060 CGBuilderTy &Builder, 1061 llvm::Constant *constant) { 1062 auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1063 auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext()); 1064 1065 // If the initializer is all or mostly the same, codegen with bzero / memset 1066 // then do a few stores afterward. 1067 uint64_t ConstantSize = 1068 CGM.getDataLayout().getTypeAllocSize(constant->getType()); 1069 auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize); 1070 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1071 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1072 isVolatile); 1073 1074 bool valueAlreadyCorrect = 1075 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1076 if (!valueAlreadyCorrect) { 1077 Loc = Builder.CreateBitCast( 1078 Loc, constant->getType()->getPointerTo(Loc.getAddressSpace())); 1079 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1080 } 1081 return; 1082 } 1083 1084 BytePattern Pattern = shouldUseMemSetToInitialize(constant, ConstantSize); 1085 if (!Pattern.isNone()) { 1086 uint8_t Value = Pattern.isAny() ? 0x00 : Pattern.getValue(); 1087 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal, 1088 isVolatile); 1089 return; 1090 } 1091 1092 // Otherwise, create a temporary global with the initializer then memcpy from 1093 // the global to the alloca. 1094 std::string Name = getStaticDeclName(CGM, D); 1095 unsigned AS = CGM.getContext().getTargetAddressSpace( 1096 CGM.getStringLiteralAddressSpace()); 1097 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS); 1098 1099 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1100 CGM.getModule(), constant->getType(), true, 1101 llvm::GlobalValue::PrivateLinkage, constant, Name, nullptr, 1102 llvm::GlobalValue::NotThreadLocal, AS); 1103 GV->setAlignment(Loc.getAlignment().getQuantity()); 1104 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1105 1106 Address SrcPtr = Address(GV, Loc.getAlignment()); 1107 if (SrcPtr.getType() != BP) 1108 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1109 1110 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1111 } 1112 1113 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1114 /// variable declaration with auto, register, or no storage class specifier. 1115 /// These turn into simple stack objects, or GlobalValues depending on target. 1116 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1117 AutoVarEmission emission = EmitAutoVarAlloca(D); 1118 EmitAutoVarInit(emission); 1119 EmitAutoVarCleanups(emission); 1120 } 1121 1122 /// Emit a lifetime.begin marker if some criteria are satisfied. 1123 /// \return a pointer to the temporary size Value if a marker was emitted, null 1124 /// otherwise 1125 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1126 llvm::Value *Addr) { 1127 if (!ShouldEmitLifetimeMarkers) 1128 return nullptr; 1129 1130 assert(Addr->getType()->getPointerAddressSpace() == 1131 CGM.getDataLayout().getAllocaAddrSpace() && 1132 "Pointer should be in alloca address space"); 1133 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1134 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1135 llvm::CallInst *C = 1136 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1137 C->setDoesNotThrow(); 1138 return SizeV; 1139 } 1140 1141 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1142 assert(Addr->getType()->getPointerAddressSpace() == 1143 CGM.getDataLayout().getAllocaAddrSpace() && 1144 "Pointer should be in alloca address space"); 1145 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1146 llvm::CallInst *C = 1147 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1148 C->setDoesNotThrow(); 1149 } 1150 1151 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1152 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1153 // For each dimension stores its QualType and corresponding 1154 // size-expression Value. 1155 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1156 1157 // Break down the array into individual dimensions. 1158 QualType Type1D = D.getType(); 1159 while (getContext().getAsVariableArrayType(Type1D)) { 1160 auto VlaSize = getVLAElements1D(Type1D); 1161 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1162 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1163 else { 1164 auto SizeExprAddr = CreateDefaultAlignTempAlloca( 1165 VlaSize.NumElts->getType(), "__vla_expr"); 1166 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1167 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1168 Type1D.getUnqualifiedType()); 1169 } 1170 Type1D = VlaSize.Type; 1171 } 1172 1173 if (!EmitDebugInfo) 1174 return; 1175 1176 // Register each dimension's size-expression with a DILocalVariable, 1177 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1178 // to describe this array. 1179 for (auto &VlaSize : Dimensions) { 1180 llvm::Metadata *MD; 1181 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1182 MD = llvm::ConstantAsMetadata::get(C); 1183 else { 1184 // Create an artificial VarDecl to generate debug info for. 1185 IdentifierInfo &NameIdent = getContext().Idents.getOwn( 1186 cast<llvm::AllocaInst>(VlaSize.NumElts)->getName()); 1187 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1188 auto QT = getContext().getIntTypeForBitwidth( 1189 VlaExprTy->getScalarSizeInBits(), false); 1190 auto *ArtificialDecl = VarDecl::Create( 1191 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1192 D.getLocation(), D.getLocation(), &NameIdent, QT, 1193 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1194 ArtificialDecl->setImplicit(); 1195 1196 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1197 Builder); 1198 } 1199 assert(MD && "No Size expression debug node created"); 1200 DI->registerVLASizeExpression(VlaSize.Type, MD); 1201 } 1202 } 1203 1204 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1205 /// local variable. Does not emit initialization or destruction. 1206 CodeGenFunction::AutoVarEmission 1207 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1208 QualType Ty = D.getType(); 1209 assert( 1210 Ty.getAddressSpace() == LangAS::Default || 1211 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1212 1213 AutoVarEmission emission(D); 1214 1215 bool isByRef = D.hasAttr<BlocksAttr>(); 1216 emission.IsByRef = isByRef; 1217 1218 CharUnits alignment = getContext().getDeclAlign(&D); 1219 1220 // If the type is variably-modified, emit all the VLA sizes for it. 1221 if (Ty->isVariablyModifiedType()) 1222 EmitVariablyModifiedType(Ty); 1223 1224 auto *DI = getDebugInfo(); 1225 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1226 codegenoptions::LimitedDebugInfo; 1227 1228 Address address = Address::invalid(); 1229 Address AllocaAddr = Address::invalid(); 1230 if (Ty->isConstantSizeType()) { 1231 bool NRVO = getLangOpts().ElideConstructors && 1232 D.isNRVOVariable(); 1233 1234 // If this value is an array or struct with a statically determinable 1235 // constant initializer, there are optimizations we can do. 1236 // 1237 // TODO: We should constant-evaluate the initializer of any variable, 1238 // as long as it is initialized by a constant expression. Currently, 1239 // isConstantInitializer produces wrong answers for structs with 1240 // reference or bitfield members, and a few other cases, and checking 1241 // for POD-ness protects us from some of these. 1242 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1243 (D.isConstexpr() || 1244 ((Ty.isPODType(getContext()) || 1245 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1246 D.getInit()->isConstantInitializer(getContext(), false)))) { 1247 1248 // If the variable's a const type, and it's neither an NRVO 1249 // candidate nor a __block variable and has no mutable members, 1250 // emit it as a global instead. 1251 // Exception is if a variable is located in non-constant address space 1252 // in OpenCL. 1253 if ((!getLangOpts().OpenCL || 1254 Ty.getAddressSpace() == LangAS::opencl_constant) && 1255 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 1256 CGM.isTypeConstant(Ty, true))) { 1257 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1258 1259 // Signal this condition to later callbacks. 1260 emission.Addr = Address::invalid(); 1261 assert(emission.wasEmittedAsGlobal()); 1262 return emission; 1263 } 1264 1265 // Otherwise, tell the initialization code that we're in this case. 1266 emission.IsConstantAggregate = true; 1267 } 1268 1269 // A normal fixed sized variable becomes an alloca in the entry block, 1270 // unless: 1271 // - it's an NRVO variable. 1272 // - we are compiling OpenMP and it's an OpenMP local variable. 1273 1274 Address OpenMPLocalAddr = 1275 getLangOpts().OpenMP 1276 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1277 : Address::invalid(); 1278 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1279 address = OpenMPLocalAddr; 1280 } else if (NRVO) { 1281 // The named return value optimization: allocate this variable in the 1282 // return slot, so that we can elide the copy when returning this 1283 // variable (C++0x [class.copy]p34). 1284 address = ReturnValue; 1285 1286 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1287 const auto *RD = RecordTy->getDecl(); 1288 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1289 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1290 RD->isNonTrivialToPrimitiveDestroy()) { 1291 // Create a flag that is used to indicate when the NRVO was applied 1292 // to this variable. Set it to zero to indicate that NRVO was not 1293 // applied. 1294 llvm::Value *Zero = Builder.getFalse(); 1295 Address NRVOFlag = 1296 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1297 EnsureInsertPoint(); 1298 Builder.CreateStore(Zero, NRVOFlag); 1299 1300 // Record the NRVO flag for this variable. 1301 NRVOFlags[&D] = NRVOFlag.getPointer(); 1302 emission.NRVOFlag = NRVOFlag.getPointer(); 1303 } 1304 } 1305 } else { 1306 CharUnits allocaAlignment; 1307 llvm::Type *allocaTy; 1308 if (isByRef) { 1309 auto &byrefInfo = getBlockByrefInfo(&D); 1310 allocaTy = byrefInfo.Type; 1311 allocaAlignment = byrefInfo.ByrefAlignment; 1312 } else { 1313 allocaTy = ConvertTypeForMem(Ty); 1314 allocaAlignment = alignment; 1315 } 1316 1317 // Create the alloca. Note that we set the name separately from 1318 // building the instruction so that it's there even in no-asserts 1319 // builds. 1320 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1321 /*ArraySize=*/nullptr, &AllocaAddr); 1322 1323 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1324 // the catch parameter starts in the catchpad instruction, and we can't 1325 // insert code in those basic blocks. 1326 bool IsMSCatchParam = 1327 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1328 1329 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1330 // if we don't have a valid insertion point (?). 1331 if (HaveInsertPoint() && !IsMSCatchParam) { 1332 // If there's a jump into the lifetime of this variable, its lifetime 1333 // gets broken up into several regions in IR, which requires more work 1334 // to handle correctly. For now, just omit the intrinsics; this is a 1335 // rare case, and it's better to just be conservatively correct. 1336 // PR28267. 1337 // 1338 // We have to do this in all language modes if there's a jump past the 1339 // declaration. We also have to do it in C if there's a jump to an 1340 // earlier point in the current block because non-VLA lifetimes begin as 1341 // soon as the containing block is entered, not when its variables 1342 // actually come into scope; suppressing the lifetime annotations 1343 // completely in this case is unnecessarily pessimistic, but again, this 1344 // is rare. 1345 if (!Bypasses.IsBypassed(&D) && 1346 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1347 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1348 emission.SizeForLifetimeMarkers = 1349 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1350 } 1351 } else { 1352 assert(!emission.useLifetimeMarkers()); 1353 } 1354 } 1355 } else { 1356 EnsureInsertPoint(); 1357 1358 if (!DidCallStackSave) { 1359 // Save the stack. 1360 Address Stack = 1361 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1362 1363 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1364 llvm::Value *V = Builder.CreateCall(F); 1365 Builder.CreateStore(V, Stack); 1366 1367 DidCallStackSave = true; 1368 1369 // Push a cleanup block and restore the stack there. 1370 // FIXME: in general circumstances, this should be an EH cleanup. 1371 pushStackRestore(NormalCleanup, Stack); 1372 } 1373 1374 auto VlaSize = getVLASize(Ty); 1375 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1376 1377 // Allocate memory for the array. 1378 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1379 &AllocaAddr); 1380 1381 // If we have debug info enabled, properly describe the VLA dimensions for 1382 // this type by registering the vla size expression for each of the 1383 // dimensions. 1384 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1385 } 1386 1387 setAddrOfLocalVar(&D, address); 1388 emission.Addr = address; 1389 emission.AllocaAddr = AllocaAddr; 1390 1391 // Emit debug info for local var declaration. 1392 if (EmitDebugInfo && HaveInsertPoint()) { 1393 DI->setLocation(D.getLocation()); 1394 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1395 } 1396 1397 if (D.hasAttr<AnnotateAttr>()) 1398 EmitVarAnnotations(&D, address.getPointer()); 1399 1400 // Make sure we call @llvm.lifetime.end. 1401 if (emission.useLifetimeMarkers()) 1402 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1403 emission.getOriginalAllocatedAddress(), 1404 emission.getSizeForLifetimeMarkers()); 1405 1406 return emission; 1407 } 1408 1409 static bool isCapturedBy(const VarDecl &, const Expr *); 1410 1411 /// Determines whether the given __block variable is potentially 1412 /// captured by the given statement. 1413 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1414 if (const Expr *E = dyn_cast<Expr>(S)) 1415 return isCapturedBy(Var, E); 1416 for (const Stmt *SubStmt : S->children()) 1417 if (isCapturedBy(Var, SubStmt)) 1418 return true; 1419 return false; 1420 } 1421 1422 /// Determines whether the given __block variable is potentially 1423 /// captured by the given expression. 1424 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1425 // Skip the most common kinds of expressions that make 1426 // hierarchy-walking expensive. 1427 E = E->IgnoreParenCasts(); 1428 1429 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1430 const BlockDecl *Block = BE->getBlockDecl(); 1431 for (const auto &I : Block->captures()) { 1432 if (I.getVariable() == &Var) 1433 return true; 1434 } 1435 1436 // No need to walk into the subexpressions. 1437 return false; 1438 } 1439 1440 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1441 const CompoundStmt *CS = SE->getSubStmt(); 1442 for (const auto *BI : CS->body()) 1443 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1444 if (isCapturedBy(Var, BIE)) 1445 return true; 1446 } 1447 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1448 // special case declarations 1449 for (const auto *I : DS->decls()) { 1450 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1451 const Expr *Init = VD->getInit(); 1452 if (Init && isCapturedBy(Var, Init)) 1453 return true; 1454 } 1455 } 1456 } 1457 else 1458 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1459 // Later, provide code to poke into statements for capture analysis. 1460 return true; 1461 return false; 1462 } 1463 1464 for (const Stmt *SubStmt : E->children()) 1465 if (isCapturedBy(Var, SubStmt)) 1466 return true; 1467 1468 return false; 1469 } 1470 1471 /// Determine whether the given initializer is trivial in the sense 1472 /// that it requires no code to be generated. 1473 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1474 if (!Init) 1475 return true; 1476 1477 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1478 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1479 if (Constructor->isTrivial() && 1480 Constructor->isDefaultConstructor() && 1481 !Construct->requiresZeroInitialization()) 1482 return true; 1483 1484 return false; 1485 } 1486 1487 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1488 assert(emission.Variable && "emission was not valid!"); 1489 1490 // If this was emitted as a global constant, we're done. 1491 if (emission.wasEmittedAsGlobal()) return; 1492 1493 const VarDecl &D = *emission.Variable; 1494 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1495 QualType type = D.getType(); 1496 1497 // If this local has an initializer, emit it now. 1498 const Expr *Init = D.getInit(); 1499 1500 // If we are at an unreachable point, we don't need to emit the initializer 1501 // unless it contains a label. 1502 if (!HaveInsertPoint()) { 1503 if (!Init || !ContainsLabel(Init)) return; 1504 EnsureInsertPoint(); 1505 } 1506 1507 // Initialize the structure of a __block variable. 1508 if (emission.IsByRef) 1509 emitByrefStructureInit(emission); 1510 1511 // Initialize the variable here if it doesn't have a initializer and it is a 1512 // C struct that is non-trivial to initialize or an array containing such a 1513 // struct. 1514 if (!Init && 1515 type.isNonTrivialToPrimitiveDefaultInitialize() == 1516 QualType::PDIK_Struct) { 1517 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1518 if (emission.IsByRef) 1519 drillIntoBlockVariable(*this, Dst, &D); 1520 defaultInitNonTrivialCStructVar(Dst); 1521 return; 1522 } 1523 1524 if (isTrivialInitializer(Init)) 1525 return; 1526 1527 // Check whether this is a byref variable that's potentially 1528 // captured and moved by its own initializer. If so, we'll need to 1529 // emit the initializer first, then copy into the variable. 1530 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1531 1532 Address Loc = 1533 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1534 1535 llvm::Constant *constant = nullptr; 1536 if (emission.IsConstantAggregate || D.isConstexpr()) { 1537 assert(!capturedByInit && "constant init contains a capturing block?"); 1538 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1539 } 1540 1541 if (!constant) { 1542 LValue lv = MakeAddrLValue(Loc, type); 1543 lv.setNonGC(true); 1544 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1545 } 1546 1547 if (!emission.IsConstantAggregate) { 1548 // For simple scalar/complex initialization, store the value directly. 1549 LValue lv = MakeAddrLValue(Loc, type); 1550 lv.setNonGC(true); 1551 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1552 } 1553 1554 // If this is a simple aggregate initialization, we can optimize it 1555 // in various ways. 1556 bool isVolatile = type.isVolatileQualified(); 1557 1558 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1559 if (Loc.getType() != BP) 1560 Loc = Builder.CreateBitCast(Loc, BP); 1561 1562 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1563 } 1564 1565 /// Emit an expression as an initializer for an object (variable, field, etc.) 1566 /// at the given location. The expression is not necessarily the normal 1567 /// initializer for the object, and the address is not necessarily 1568 /// its normal location. 1569 /// 1570 /// \param init the initializing expression 1571 /// \param D the object to act as if we're initializing 1572 /// \param loc the address to initialize; its type is a pointer 1573 /// to the LLVM mapping of the object's type 1574 /// \param alignment the alignment of the address 1575 /// \param capturedByInit true if \p D is a __block variable 1576 /// whose address is potentially changed by the initializer 1577 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1578 LValue lvalue, bool capturedByInit) { 1579 QualType type = D->getType(); 1580 1581 if (type->isReferenceType()) { 1582 RValue rvalue = EmitReferenceBindingToExpr(init); 1583 if (capturedByInit) 1584 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1585 EmitStoreThroughLValue(rvalue, lvalue, true); 1586 return; 1587 } 1588 switch (getEvaluationKind(type)) { 1589 case TEK_Scalar: 1590 EmitScalarInit(init, D, lvalue, capturedByInit); 1591 return; 1592 case TEK_Complex: { 1593 ComplexPairTy complex = EmitComplexExpr(init); 1594 if (capturedByInit) 1595 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1596 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1597 return; 1598 } 1599 case TEK_Aggregate: 1600 if (type->isAtomicType()) { 1601 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1602 } else { 1603 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1604 if (isa<VarDecl>(D)) 1605 Overlap = AggValueSlot::DoesNotOverlap; 1606 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1607 Overlap = overlapForFieldInit(FD); 1608 // TODO: how can we delay here if D is captured by its initializer? 1609 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1610 AggValueSlot::IsDestructed, 1611 AggValueSlot::DoesNotNeedGCBarriers, 1612 AggValueSlot::IsNotAliased, 1613 Overlap)); 1614 } 1615 return; 1616 } 1617 llvm_unreachable("bad evaluation kind"); 1618 } 1619 1620 /// Enter a destroy cleanup for the given local variable. 1621 void CodeGenFunction::emitAutoVarTypeCleanup( 1622 const CodeGenFunction::AutoVarEmission &emission, 1623 QualType::DestructionKind dtorKind) { 1624 assert(dtorKind != QualType::DK_none); 1625 1626 // Note that for __block variables, we want to destroy the 1627 // original stack object, not the possibly forwarded object. 1628 Address addr = emission.getObjectAddress(*this); 1629 1630 const VarDecl *var = emission.Variable; 1631 QualType type = var->getType(); 1632 1633 CleanupKind cleanupKind = NormalAndEHCleanup; 1634 CodeGenFunction::Destroyer *destroyer = nullptr; 1635 1636 switch (dtorKind) { 1637 case QualType::DK_none: 1638 llvm_unreachable("no cleanup for trivially-destructible variable"); 1639 1640 case QualType::DK_cxx_destructor: 1641 // If there's an NRVO flag on the emission, we need a different 1642 // cleanup. 1643 if (emission.NRVOFlag) { 1644 assert(!type->isArrayType()); 1645 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1646 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, 1647 emission.NRVOFlag); 1648 return; 1649 } 1650 break; 1651 1652 case QualType::DK_objc_strong_lifetime: 1653 // Suppress cleanups for pseudo-strong variables. 1654 if (var->isARCPseudoStrong()) return; 1655 1656 // Otherwise, consider whether to use an EH cleanup or not. 1657 cleanupKind = getARCCleanupKind(); 1658 1659 // Use the imprecise destroyer by default. 1660 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1661 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1662 break; 1663 1664 case QualType::DK_objc_weak_lifetime: 1665 break; 1666 1667 case QualType::DK_nontrivial_c_struct: 1668 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1669 if (emission.NRVOFlag) { 1670 assert(!type->isArrayType()); 1671 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1672 emission.NRVOFlag, type); 1673 return; 1674 } 1675 break; 1676 } 1677 1678 // If we haven't chosen a more specific destroyer, use the default. 1679 if (!destroyer) destroyer = getDestroyer(dtorKind); 1680 1681 // Use an EH cleanup in array destructors iff the destructor itself 1682 // is being pushed as an EH cleanup. 1683 bool useEHCleanup = (cleanupKind & EHCleanup); 1684 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1685 useEHCleanup); 1686 } 1687 1688 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1689 assert(emission.Variable && "emission was not valid!"); 1690 1691 // If this was emitted as a global constant, we're done. 1692 if (emission.wasEmittedAsGlobal()) return; 1693 1694 // If we don't have an insertion point, we're done. Sema prevents 1695 // us from jumping into any of these scopes anyway. 1696 if (!HaveInsertPoint()) return; 1697 1698 const VarDecl &D = *emission.Variable; 1699 1700 // Check the type for a cleanup. 1701 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1702 emitAutoVarTypeCleanup(emission, dtorKind); 1703 1704 // In GC mode, honor objc_precise_lifetime. 1705 if (getLangOpts().getGC() != LangOptions::NonGC && 1706 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1707 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1708 } 1709 1710 // Handle the cleanup attribute. 1711 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1712 const FunctionDecl *FD = CA->getFunctionDecl(); 1713 1714 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1715 assert(F && "Could not find function!"); 1716 1717 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1718 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1719 } 1720 1721 // If this is a block variable, call _Block_object_destroy 1722 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 1723 // mode. 1724 if (emission.IsByRef && CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 1725 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 1726 if (emission.Variable->getType().isObjCGCWeak()) 1727 Flags |= BLOCK_FIELD_IS_WEAK; 1728 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 1729 /*LoadBlockVarAddr*/ false); 1730 } 1731 } 1732 1733 CodeGenFunction::Destroyer * 1734 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1735 switch (kind) { 1736 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1737 case QualType::DK_cxx_destructor: 1738 return destroyCXXObject; 1739 case QualType::DK_objc_strong_lifetime: 1740 return destroyARCStrongPrecise; 1741 case QualType::DK_objc_weak_lifetime: 1742 return destroyARCWeak; 1743 case QualType::DK_nontrivial_c_struct: 1744 return destroyNonTrivialCStruct; 1745 } 1746 llvm_unreachable("Unknown DestructionKind"); 1747 } 1748 1749 /// pushEHDestroy - Push the standard destructor for the given type as 1750 /// an EH-only cleanup. 1751 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1752 Address addr, QualType type) { 1753 assert(dtorKind && "cannot push destructor for trivial type"); 1754 assert(needsEHCleanup(dtorKind)); 1755 1756 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1757 } 1758 1759 /// pushDestroy - Push the standard destructor for the given type as 1760 /// at least a normal cleanup. 1761 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1762 Address addr, QualType type) { 1763 assert(dtorKind && "cannot push destructor for trivial type"); 1764 1765 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1766 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1767 cleanupKind & EHCleanup); 1768 } 1769 1770 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1771 QualType type, Destroyer *destroyer, 1772 bool useEHCleanupForArray) { 1773 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1774 destroyer, useEHCleanupForArray); 1775 } 1776 1777 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1778 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1779 } 1780 1781 void CodeGenFunction::pushLifetimeExtendedDestroy( 1782 CleanupKind cleanupKind, Address addr, QualType type, 1783 Destroyer *destroyer, bool useEHCleanupForArray) { 1784 // Push an EH-only cleanup for the object now. 1785 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1786 // around in case a temporary's destructor throws an exception. 1787 if (cleanupKind & EHCleanup) 1788 EHStack.pushCleanup<DestroyObject>( 1789 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1790 destroyer, useEHCleanupForArray); 1791 1792 // Remember that we need to push a full cleanup for the object at the 1793 // end of the full-expression. 1794 pushCleanupAfterFullExpr<DestroyObject>( 1795 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1796 } 1797 1798 /// emitDestroy - Immediately perform the destruction of the given 1799 /// object. 1800 /// 1801 /// \param addr - the address of the object; a type* 1802 /// \param type - the type of the object; if an array type, all 1803 /// objects are destroyed in reverse order 1804 /// \param destroyer - the function to call to destroy individual 1805 /// elements 1806 /// \param useEHCleanupForArray - whether an EH cleanup should be 1807 /// used when destroying array elements, in case one of the 1808 /// destructions throws an exception 1809 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1810 Destroyer *destroyer, 1811 bool useEHCleanupForArray) { 1812 const ArrayType *arrayType = getContext().getAsArrayType(type); 1813 if (!arrayType) 1814 return destroyer(*this, addr, type); 1815 1816 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1817 1818 CharUnits elementAlign = 1819 addr.getAlignment() 1820 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1821 1822 // Normally we have to check whether the array is zero-length. 1823 bool checkZeroLength = true; 1824 1825 // But if the array length is constant, we can suppress that. 1826 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1827 // ...and if it's constant zero, we can just skip the entire thing. 1828 if (constLength->isZero()) return; 1829 checkZeroLength = false; 1830 } 1831 1832 llvm::Value *begin = addr.getPointer(); 1833 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1834 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1835 checkZeroLength, useEHCleanupForArray); 1836 } 1837 1838 /// emitArrayDestroy - Destroys all the elements of the given array, 1839 /// beginning from last to first. The array cannot be zero-length. 1840 /// 1841 /// \param begin - a type* denoting the first element of the array 1842 /// \param end - a type* denoting one past the end of the array 1843 /// \param elementType - the element type of the array 1844 /// \param destroyer - the function to call to destroy elements 1845 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1846 /// the remaining elements in case the destruction of a single 1847 /// element throws 1848 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1849 llvm::Value *end, 1850 QualType elementType, 1851 CharUnits elementAlign, 1852 Destroyer *destroyer, 1853 bool checkZeroLength, 1854 bool useEHCleanup) { 1855 assert(!elementType->isArrayType()); 1856 1857 // The basic structure here is a do-while loop, because we don't 1858 // need to check for the zero-element case. 1859 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1860 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1861 1862 if (checkZeroLength) { 1863 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1864 "arraydestroy.isempty"); 1865 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1866 } 1867 1868 // Enter the loop body, making that address the current address. 1869 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1870 EmitBlock(bodyBB); 1871 llvm::PHINode *elementPast = 1872 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1873 elementPast->addIncoming(end, entryBB); 1874 1875 // Shift the address back by one element. 1876 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1877 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1878 "arraydestroy.element"); 1879 1880 if (useEHCleanup) 1881 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1882 destroyer); 1883 1884 // Perform the actual destruction there. 1885 destroyer(*this, Address(element, elementAlign), elementType); 1886 1887 if (useEHCleanup) 1888 PopCleanupBlock(); 1889 1890 // Check whether we've reached the end. 1891 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1892 Builder.CreateCondBr(done, doneBB, bodyBB); 1893 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1894 1895 // Done. 1896 EmitBlock(doneBB); 1897 } 1898 1899 /// Perform partial array destruction as if in an EH cleanup. Unlike 1900 /// emitArrayDestroy, the element type here may still be an array type. 1901 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1902 llvm::Value *begin, llvm::Value *end, 1903 QualType type, CharUnits elementAlign, 1904 CodeGenFunction::Destroyer *destroyer) { 1905 // If the element type is itself an array, drill down. 1906 unsigned arrayDepth = 0; 1907 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1908 // VLAs don't require a GEP index to walk into. 1909 if (!isa<VariableArrayType>(arrayType)) 1910 arrayDepth++; 1911 type = arrayType->getElementType(); 1912 } 1913 1914 if (arrayDepth) { 1915 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1916 1917 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1918 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1919 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1920 } 1921 1922 // Destroy the array. We don't ever need an EH cleanup because we 1923 // assume that we're in an EH cleanup ourselves, so a throwing 1924 // destructor causes an immediate terminate. 1925 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1926 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1927 } 1928 1929 namespace { 1930 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1931 /// array destroy where the end pointer is regularly determined and 1932 /// does not need to be loaded from a local. 1933 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1934 llvm::Value *ArrayBegin; 1935 llvm::Value *ArrayEnd; 1936 QualType ElementType; 1937 CodeGenFunction::Destroyer *Destroyer; 1938 CharUnits ElementAlign; 1939 public: 1940 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1941 QualType elementType, CharUnits elementAlign, 1942 CodeGenFunction::Destroyer *destroyer) 1943 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1944 ElementType(elementType), Destroyer(destroyer), 1945 ElementAlign(elementAlign) {} 1946 1947 void Emit(CodeGenFunction &CGF, Flags flags) override { 1948 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1949 ElementType, ElementAlign, Destroyer); 1950 } 1951 }; 1952 1953 /// IrregularPartialArrayDestroy - a cleanup which performs a 1954 /// partial array destroy where the end pointer is irregularly 1955 /// determined and must be loaded from a local. 1956 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1957 llvm::Value *ArrayBegin; 1958 Address ArrayEndPointer; 1959 QualType ElementType; 1960 CodeGenFunction::Destroyer *Destroyer; 1961 CharUnits ElementAlign; 1962 public: 1963 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1964 Address arrayEndPointer, 1965 QualType elementType, 1966 CharUnits elementAlign, 1967 CodeGenFunction::Destroyer *destroyer) 1968 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1969 ElementType(elementType), Destroyer(destroyer), 1970 ElementAlign(elementAlign) {} 1971 1972 void Emit(CodeGenFunction &CGF, Flags flags) override { 1973 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1974 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1975 ElementType, ElementAlign, Destroyer); 1976 } 1977 }; 1978 } // end anonymous namespace 1979 1980 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1981 /// already-constructed elements of the given array. The cleanup 1982 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1983 /// 1984 /// \param elementType - the immediate element type of the array; 1985 /// possibly still an array type 1986 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1987 Address arrayEndPointer, 1988 QualType elementType, 1989 CharUnits elementAlign, 1990 Destroyer *destroyer) { 1991 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1992 arrayBegin, arrayEndPointer, 1993 elementType, elementAlign, 1994 destroyer); 1995 } 1996 1997 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1998 /// already-constructed elements of the given array. The cleanup 1999 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2000 /// 2001 /// \param elementType - the immediate element type of the array; 2002 /// possibly still an array type 2003 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2004 llvm::Value *arrayEnd, 2005 QualType elementType, 2006 CharUnits elementAlign, 2007 Destroyer *destroyer) { 2008 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2009 arrayBegin, arrayEnd, 2010 elementType, elementAlign, 2011 destroyer); 2012 } 2013 2014 /// Lazily declare the @llvm.lifetime.start intrinsic. 2015 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 2016 if (LifetimeStartFn) 2017 return LifetimeStartFn; 2018 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2019 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2020 return LifetimeStartFn; 2021 } 2022 2023 /// Lazily declare the @llvm.lifetime.end intrinsic. 2024 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 2025 if (LifetimeEndFn) 2026 return LifetimeEndFn; 2027 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2028 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2029 return LifetimeEndFn; 2030 } 2031 2032 namespace { 2033 /// A cleanup to perform a release of an object at the end of a 2034 /// function. This is used to balance out the incoming +1 of a 2035 /// ns_consumed argument when we can't reasonably do that just by 2036 /// not doing the initial retain for a __block argument. 2037 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2038 ConsumeARCParameter(llvm::Value *param, 2039 ARCPreciseLifetime_t precise) 2040 : Param(param), Precise(precise) {} 2041 2042 llvm::Value *Param; 2043 ARCPreciseLifetime_t Precise; 2044 2045 void Emit(CodeGenFunction &CGF, Flags flags) override { 2046 CGF.EmitARCRelease(Param, Precise); 2047 } 2048 }; 2049 } // end anonymous namespace 2050 2051 /// Emit an alloca (or GlobalValue depending on target) 2052 /// for the specified parameter and set up LocalDeclMap. 2053 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2054 unsigned ArgNo) { 2055 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2056 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2057 "Invalid argument to EmitParmDecl"); 2058 2059 Arg.getAnyValue()->setName(D.getName()); 2060 2061 QualType Ty = D.getType(); 2062 2063 // Use better IR generation for certain implicit parameters. 2064 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2065 // The only implicit argument a block has is its literal. 2066 // This may be passed as an inalloca'ed value on Windows x86. 2067 if (BlockInfo) { 2068 llvm::Value *V = Arg.isIndirect() 2069 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2070 : Arg.getDirectValue(); 2071 setBlockContextParameter(IPD, ArgNo, V); 2072 return; 2073 } 2074 } 2075 2076 Address DeclPtr = Address::invalid(); 2077 bool DoStore = false; 2078 bool IsScalar = hasScalarEvaluationKind(Ty); 2079 // If we already have a pointer to the argument, reuse the input pointer. 2080 if (Arg.isIndirect()) { 2081 DeclPtr = Arg.getIndirectAddress(); 2082 // If we have a prettier pointer type at this point, bitcast to that. 2083 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2084 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2085 if (DeclPtr.getType() != IRTy) 2086 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2087 // Indirect argument is in alloca address space, which may be different 2088 // from the default address space. 2089 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2090 auto *V = DeclPtr.getPointer(); 2091 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2092 auto DestLangAS = 2093 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2094 if (SrcLangAS != DestLangAS) { 2095 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2096 CGM.getDataLayout().getAllocaAddrSpace()); 2097 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2098 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2099 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2100 *this, V, SrcLangAS, DestLangAS, T, true), 2101 DeclPtr.getAlignment()); 2102 } 2103 2104 // Push a destructor cleanup for this parameter if the ABI requires it. 2105 // Don't push a cleanup in a thunk for a method that will also emit a 2106 // cleanup. 2107 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2108 Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2109 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 2110 assert((DtorKind == QualType::DK_cxx_destructor || 2111 DtorKind == QualType::DK_nontrivial_c_struct) && 2112 "unexpected destructor type"); 2113 pushDestroy(DtorKind, DeclPtr, Ty); 2114 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2115 EHStack.stable_begin(); 2116 } 2117 } 2118 } else { 2119 // Check if the parameter address is controlled by OpenMP runtime. 2120 Address OpenMPLocalAddr = 2121 getLangOpts().OpenMP 2122 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2123 : Address::invalid(); 2124 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2125 DeclPtr = OpenMPLocalAddr; 2126 } else { 2127 // Otherwise, create a temporary to hold the value. 2128 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2129 D.getName() + ".addr"); 2130 } 2131 DoStore = true; 2132 } 2133 2134 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2135 2136 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2137 if (IsScalar) { 2138 Qualifiers qs = Ty.getQualifiers(); 2139 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2140 // We honor __attribute__((ns_consumed)) for types with lifetime. 2141 // For __strong, it's handled by just skipping the initial retain; 2142 // otherwise we have to balance out the initial +1 with an extra 2143 // cleanup to do the release at the end of the function. 2144 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2145 2146 // 'self' is always formally __strong, but if this is not an 2147 // init method then we don't want to retain it. 2148 if (D.isARCPseudoStrong()) { 2149 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 2150 assert(&D == method->getSelfDecl()); 2151 assert(lt == Qualifiers::OCL_Strong); 2152 assert(qs.hasConst()); 2153 assert(method->getMethodFamily() != OMF_init); 2154 (void) method; 2155 lt = Qualifiers::OCL_ExplicitNone; 2156 } 2157 2158 // Load objects passed indirectly. 2159 if (Arg.isIndirect() && !ArgVal) 2160 ArgVal = Builder.CreateLoad(DeclPtr); 2161 2162 if (lt == Qualifiers::OCL_Strong) { 2163 if (!isConsumed) { 2164 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2165 // use objc_storeStrong(&dest, value) for retaining the 2166 // object. But first, store a null into 'dest' because 2167 // objc_storeStrong attempts to release its old value. 2168 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2169 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2170 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2171 DoStore = false; 2172 } 2173 else 2174 // Don't use objc_retainBlock for block pointers, because we 2175 // don't want to Block_copy something just because we got it 2176 // as a parameter. 2177 ArgVal = EmitARCRetainNonBlock(ArgVal); 2178 } 2179 } else { 2180 // Push the cleanup for a consumed parameter. 2181 if (isConsumed) { 2182 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2183 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2184 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2185 precise); 2186 } 2187 2188 if (lt == Qualifiers::OCL_Weak) { 2189 EmitARCInitWeak(DeclPtr, ArgVal); 2190 DoStore = false; // The weak init is a store, no need to do two. 2191 } 2192 } 2193 2194 // Enter the cleanup scope. 2195 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2196 } 2197 } 2198 2199 // Store the initial value into the alloca. 2200 if (DoStore) 2201 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2202 2203 setAddrOfLocalVar(&D, DeclPtr); 2204 2205 // Emit debug info for param declaration. 2206 if (CGDebugInfo *DI = getDebugInfo()) { 2207 if (CGM.getCodeGenOpts().getDebugInfo() >= 2208 codegenoptions::LimitedDebugInfo) { 2209 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2210 } 2211 } 2212 2213 if (D.hasAttr<AnnotateAttr>()) 2214 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2215 2216 // We can only check return value nullability if all arguments to the 2217 // function satisfy their nullability preconditions. This makes it necessary 2218 // to emit null checks for args in the function body itself. 2219 if (requiresReturnValueNullabilityCheck()) { 2220 auto Nullability = Ty->getNullability(getContext()); 2221 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2222 SanitizerScope SanScope(this); 2223 RetValNullabilityPrecondition = 2224 Builder.CreateAnd(RetValNullabilityPrecondition, 2225 Builder.CreateIsNotNull(Arg.getAnyValue())); 2226 } 2227 } 2228 } 2229 2230 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2231 CodeGenFunction *CGF) { 2232 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2233 return; 2234 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2235 } 2236