1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Type.h"
37 
38 using namespace clang;
39 using namespace CodeGen;
40 
41 void CodeGenFunction::EmitDecl(const Decl &D) {
42   switch (D.getKind()) {
43   case Decl::BuiltinTemplate:
44   case Decl::TranslationUnit:
45   case Decl::ExternCContext:
46   case Decl::Namespace:
47   case Decl::UnresolvedUsingTypename:
48   case Decl::ClassTemplateSpecialization:
49   case Decl::ClassTemplatePartialSpecialization:
50   case Decl::VarTemplateSpecialization:
51   case Decl::VarTemplatePartialSpecialization:
52   case Decl::TemplateTypeParm:
53   case Decl::UnresolvedUsingValue:
54   case Decl::NonTypeTemplateParm:
55   case Decl::CXXDeductionGuide:
56   case Decl::CXXMethod:
57   case Decl::CXXConstructor:
58   case Decl::CXXDestructor:
59   case Decl::CXXConversion:
60   case Decl::Field:
61   case Decl::MSProperty:
62   case Decl::IndirectField:
63   case Decl::ObjCIvar:
64   case Decl::ObjCAtDefsField:
65   case Decl::ParmVar:
66   case Decl::ImplicitParam:
67   case Decl::ClassTemplate:
68   case Decl::VarTemplate:
69   case Decl::FunctionTemplate:
70   case Decl::TypeAliasTemplate:
71   case Decl::TemplateTemplateParm:
72   case Decl::ObjCMethod:
73   case Decl::ObjCCategory:
74   case Decl::ObjCProtocol:
75   case Decl::ObjCInterface:
76   case Decl::ObjCCategoryImpl:
77   case Decl::ObjCImplementation:
78   case Decl::ObjCProperty:
79   case Decl::ObjCCompatibleAlias:
80   case Decl::PragmaComment:
81   case Decl::PragmaDetectMismatch:
82   case Decl::AccessSpec:
83   case Decl::LinkageSpec:
84   case Decl::Export:
85   case Decl::ObjCPropertyImpl:
86   case Decl::FileScopeAsm:
87   case Decl::Friend:
88   case Decl::FriendTemplate:
89   case Decl::Block:
90   case Decl::Captured:
91   case Decl::ClassScopeFunctionSpecialization:
92   case Decl::UsingShadow:
93   case Decl::ConstructorUsingShadow:
94   case Decl::ObjCTypeParam:
95   case Decl::Binding:
96     llvm_unreachable("Declaration should not be in declstmts!");
97   case Decl::Function:  // void X();
98   case Decl::Record:    // struct/union/class X;
99   case Decl::Enum:      // enum X;
100   case Decl::EnumConstant: // enum ? { X = ? }
101   case Decl::CXXRecord: // struct/union/class X; [C++]
102   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
103   case Decl::Label:        // __label__ x;
104   case Decl::Import:
105   case Decl::OMPThreadPrivate:
106   case Decl::OMPCapturedExpr:
107   case Decl::Empty:
108     // None of these decls require codegen support.
109     return;
110 
111   case Decl::NamespaceAlias:
112     if (CGDebugInfo *DI = getDebugInfo())
113         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
114     return;
115   case Decl::Using:          // using X; [C++]
116     if (CGDebugInfo *DI = getDebugInfo())
117         DI->EmitUsingDecl(cast<UsingDecl>(D));
118     return;
119   case Decl::UsingPack:
120     for (auto *Using : cast<UsingPackDecl>(D).expansions())
121       EmitDecl(*Using);
122     return;
123   case Decl::UsingDirective: // using namespace X; [C++]
124     if (CGDebugInfo *DI = getDebugInfo())
125       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
126     return;
127   case Decl::Var:
128   case Decl::Decomposition: {
129     const VarDecl &VD = cast<VarDecl>(D);
130     assert(VD.isLocalVarDecl() &&
131            "Should not see file-scope variables inside a function!");
132     EmitVarDecl(VD);
133     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
134       for (auto *B : DD->bindings())
135         if (auto *HD = B->getHoldingVar())
136           EmitVarDecl(*HD);
137     return;
138   }
139 
140   case Decl::OMPDeclareReduction:
141     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
142 
143   case Decl::Typedef:      // typedef int X;
144   case Decl::TypeAlias: {  // using X = int; [C++0x]
145     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
146     QualType Ty = TD.getUnderlyingType();
147 
148     if (Ty->isVariablyModifiedType())
149       EmitVariablyModifiedType(Ty);
150   }
151   }
152 }
153 
154 /// EmitVarDecl - This method handles emission of any variable declaration
155 /// inside a function, including static vars etc.
156 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
157   if (D.hasExternalStorage())
158     // Don't emit it now, allow it to be emitted lazily on its first use.
159     return;
160 
161   // Some function-scope variable does not have static storage but still
162   // needs to be emitted like a static variable, e.g. a function-scope
163   // variable in constant address space in OpenCL.
164   if (D.getStorageDuration() != SD_Automatic) {
165     // Static sampler variables translated to function calls.
166     if (D.getType()->isSamplerT())
167       return;
168 
169     llvm::GlobalValue::LinkageTypes Linkage =
170         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
171 
172     // FIXME: We need to force the emission/use of a guard variable for
173     // some variables even if we can constant-evaluate them because
174     // we can't guarantee every translation unit will constant-evaluate them.
175 
176     return EmitStaticVarDecl(D, Linkage);
177   }
178 
179   if (D.getType().getAddressSpace() == LangAS::opencl_local)
180     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
181 
182   assert(D.hasLocalStorage());
183   return EmitAutoVarDecl(D);
184 }
185 
186 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
187   if (CGM.getLangOpts().CPlusPlus)
188     return CGM.getMangledName(&D).str();
189 
190   // If this isn't C++, we don't need a mangled name, just a pretty one.
191   assert(!D.isExternallyVisible() && "name shouldn't matter");
192   std::string ContextName;
193   const DeclContext *DC = D.getDeclContext();
194   if (auto *CD = dyn_cast<CapturedDecl>(DC))
195     DC = cast<DeclContext>(CD->getNonClosureContext());
196   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
197     ContextName = CGM.getMangledName(FD);
198   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
199     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
200   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
201     ContextName = OMD->getSelector().getAsString();
202   else
203     llvm_unreachable("Unknown context for static var decl");
204 
205   ContextName += "." + D.getNameAsString();
206   return ContextName;
207 }
208 
209 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
210     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
211   // In general, we don't always emit static var decls once before we reference
212   // them. It is possible to reference them before emitting the function that
213   // contains them, and it is possible to emit the containing function multiple
214   // times.
215   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
216     return ExistingGV;
217 
218   QualType Ty = D.getType();
219   assert(Ty->isConstantSizeType() && "VLAs can't be static");
220 
221   // Use the label if the variable is renamed with the asm-label extension.
222   std::string Name;
223   if (D.hasAttr<AsmLabelAttr>())
224     Name = getMangledName(&D);
225   else
226     Name = getStaticDeclName(*this, D);
227 
228   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
229   LangAS AS = GetGlobalVarAddressSpace(&D);
230   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
231 
232   // OpenCL variables in local address space and CUDA shared
233   // variables cannot have an initializer.
234   llvm::Constant *Init = nullptr;
235   if (Ty.getAddressSpace() == LangAS::opencl_local ||
236       D.hasAttr<CUDASharedAttr>())
237     Init = llvm::UndefValue::get(LTy);
238   else
239     Init = EmitNullConstant(Ty);
240 
241   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
242       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
243       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
244   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
245 
246   if (supportsCOMDAT() && GV->isWeakForLinker())
247     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
248 
249   if (D.getTLSKind())
250     setTLSMode(GV, D);
251 
252   setGVProperties(GV, &D);
253 
254   // Make sure the result is of the correct type.
255   LangAS ExpectedAS = Ty.getAddressSpace();
256   llvm::Constant *Addr = GV;
257   if (AS != ExpectedAS) {
258     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
259         *this, GV, AS, ExpectedAS,
260         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
261   }
262 
263   setStaticLocalDeclAddress(&D, Addr);
264 
265   // Ensure that the static local gets initialized by making sure the parent
266   // function gets emitted eventually.
267   const Decl *DC = cast<Decl>(D.getDeclContext());
268 
269   // We can't name blocks or captured statements directly, so try to emit their
270   // parents.
271   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
272     DC = DC->getNonClosureContext();
273     // FIXME: Ensure that global blocks get emitted.
274     if (!DC)
275       return Addr;
276   }
277 
278   GlobalDecl GD;
279   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
280     GD = GlobalDecl(CD, Ctor_Base);
281   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
282     GD = GlobalDecl(DD, Dtor_Base);
283   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
284     GD = GlobalDecl(FD);
285   else {
286     // Don't do anything for Obj-C method decls or global closures. We should
287     // never defer them.
288     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
289   }
290   if (GD.getDecl()) {
291     // Disable emission of the parent function for the OpenMP device codegen.
292     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
293     (void)GetAddrOfGlobal(GD);
294   }
295 
296   return Addr;
297 }
298 
299 /// hasNontrivialDestruction - Determine whether a type's destruction is
300 /// non-trivial. If so, and the variable uses static initialization, we must
301 /// register its destructor to run on exit.
302 static bool hasNontrivialDestruction(QualType T) {
303   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
304   return RD && !RD->hasTrivialDestructor();
305 }
306 
307 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
308 /// global variable that has already been created for it.  If the initializer
309 /// has a different type than GV does, this may free GV and return a different
310 /// one.  Otherwise it just returns GV.
311 llvm::GlobalVariable *
312 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
313                                                llvm::GlobalVariable *GV) {
314   ConstantEmitter emitter(*this);
315   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
316 
317   // If constant emission failed, then this should be a C++ static
318   // initializer.
319   if (!Init) {
320     if (!getLangOpts().CPlusPlus)
321       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
322     else if (HaveInsertPoint()) {
323       // Since we have a static initializer, this global variable can't
324       // be constant.
325       GV->setConstant(false);
326 
327       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
328     }
329     return GV;
330   }
331 
332   // The initializer may differ in type from the global. Rewrite
333   // the global to match the initializer.  (We have to do this
334   // because some types, like unions, can't be completely represented
335   // in the LLVM type system.)
336   if (GV->getType()->getElementType() != Init->getType()) {
337     llvm::GlobalVariable *OldGV = GV;
338 
339     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
340                                   OldGV->isConstant(),
341                                   OldGV->getLinkage(), Init, "",
342                                   /*InsertBefore*/ OldGV,
343                                   OldGV->getThreadLocalMode(),
344                            CGM.getContext().getTargetAddressSpace(D.getType()));
345     GV->setVisibility(OldGV->getVisibility());
346     GV->setDSOLocal(OldGV->isDSOLocal());
347     GV->setComdat(OldGV->getComdat());
348 
349     // Steal the name of the old global
350     GV->takeName(OldGV);
351 
352     // Replace all uses of the old global with the new global
353     llvm::Constant *NewPtrForOldDecl =
354     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
355     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
356 
357     // Erase the old global, since it is no longer used.
358     OldGV->eraseFromParent();
359   }
360 
361   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
362   GV->setInitializer(Init);
363 
364   emitter.finalize(GV);
365 
366   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
367     // We have a constant initializer, but a nontrivial destructor. We still
368     // need to perform a guarded "initialization" in order to register the
369     // destructor.
370     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
371   }
372 
373   return GV;
374 }
375 
376 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
377                                       llvm::GlobalValue::LinkageTypes Linkage) {
378   // Check to see if we already have a global variable for this
379   // declaration.  This can happen when double-emitting function
380   // bodies, e.g. with complete and base constructors.
381   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
382   CharUnits alignment = getContext().getDeclAlign(&D);
383 
384   // Store into LocalDeclMap before generating initializer to handle
385   // circular references.
386   setAddrOfLocalVar(&D, Address(addr, alignment));
387 
388   // We can't have a VLA here, but we can have a pointer to a VLA,
389   // even though that doesn't really make any sense.
390   // Make sure to evaluate VLA bounds now so that we have them for later.
391   if (D.getType()->isVariablyModifiedType())
392     EmitVariablyModifiedType(D.getType());
393 
394   // Save the type in case adding the initializer forces a type change.
395   llvm::Type *expectedType = addr->getType();
396 
397   llvm::GlobalVariable *var =
398     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
399 
400   // CUDA's local and local static __shared__ variables should not
401   // have any non-empty initializers. This is ensured by Sema.
402   // Whatever initializer such variable may have when it gets here is
403   // a no-op and should not be emitted.
404   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
405                          D.hasAttr<CUDASharedAttr>();
406   // If this value has an initializer, emit it.
407   if (D.getInit() && !isCudaSharedVar)
408     var = AddInitializerToStaticVarDecl(D, var);
409 
410   var->setAlignment(alignment.getQuantity());
411 
412   if (D.hasAttr<AnnotateAttr>())
413     CGM.AddGlobalAnnotations(&D, var);
414 
415   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
416     var->addAttribute("bss-section", SA->getName());
417   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
418     var->addAttribute("data-section", SA->getName());
419   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
420     var->addAttribute("rodata-section", SA->getName());
421 
422   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
423     var->setSection(SA->getName());
424 
425   if (D.hasAttr<UsedAttr>())
426     CGM.addUsedGlobal(var);
427 
428   // We may have to cast the constant because of the initializer
429   // mismatch above.
430   //
431   // FIXME: It is really dangerous to store this in the map; if anyone
432   // RAUW's the GV uses of this constant will be invalid.
433   llvm::Constant *castedAddr =
434     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
435   if (var != castedAddr)
436     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
437   CGM.setStaticLocalDeclAddress(&D, castedAddr);
438 
439   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
440 
441   // Emit global variable debug descriptor for static vars.
442   CGDebugInfo *DI = getDebugInfo();
443   if (DI &&
444       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
445     DI->setLocation(D.getLocation());
446     DI->EmitGlobalVariable(var, &D);
447   }
448 }
449 
450 namespace {
451   struct DestroyObject final : EHScopeStack::Cleanup {
452     DestroyObject(Address addr, QualType type,
453                   CodeGenFunction::Destroyer *destroyer,
454                   bool useEHCleanupForArray)
455       : addr(addr), type(type), destroyer(destroyer),
456         useEHCleanupForArray(useEHCleanupForArray) {}
457 
458     Address addr;
459     QualType type;
460     CodeGenFunction::Destroyer *destroyer;
461     bool useEHCleanupForArray;
462 
463     void Emit(CodeGenFunction &CGF, Flags flags) override {
464       // Don't use an EH cleanup recursively from an EH cleanup.
465       bool useEHCleanupForArray =
466         flags.isForNormalCleanup() && this->useEHCleanupForArray;
467 
468       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
469     }
470   };
471 
472   template <class Derived>
473   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
474     DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag)
475         : NRVOFlag(NRVOFlag), Loc(addr) {}
476 
477     llvm::Value *NRVOFlag;
478     Address Loc;
479 
480     void Emit(CodeGenFunction &CGF, Flags flags) override {
481       // Along the exceptions path we always execute the dtor.
482       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
483 
484       llvm::BasicBlock *SkipDtorBB = nullptr;
485       if (NRVO) {
486         // If we exited via NRVO, we skip the destructor call.
487         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
488         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
489         llvm::Value *DidNRVO =
490           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
491         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
492         CGF.EmitBlock(RunDtorBB);
493       }
494 
495       static_cast<Derived *>(this)->emitDestructorCall(CGF);
496 
497       if (NRVO) CGF.EmitBlock(SkipDtorBB);
498     }
499 
500     virtual ~DestroyNRVOVariable() = default;
501   };
502 
503   struct DestroyNRVOVariableCXX final
504       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
505     DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor,
506                            llvm::Value *NRVOFlag)
507       : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag),
508         Dtor(Dtor) {}
509 
510     const CXXDestructorDecl *Dtor;
511 
512     void emitDestructorCall(CodeGenFunction &CGF) {
513       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
514                                 /*ForVirtualBase=*/false,
515                                 /*Delegating=*/false, Loc);
516     }
517   };
518 
519   struct DestroyNRVOVariableC final
520       : DestroyNRVOVariable<DestroyNRVOVariableC> {
521     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
522         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {}
523 
524     QualType Ty;
525 
526     void emitDestructorCall(CodeGenFunction &CGF) {
527       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
528     }
529   };
530 
531   struct CallStackRestore final : EHScopeStack::Cleanup {
532     Address Stack;
533     CallStackRestore(Address Stack) : Stack(Stack) {}
534     void Emit(CodeGenFunction &CGF, Flags flags) override {
535       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
536       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
537       CGF.Builder.CreateCall(F, V);
538     }
539   };
540 
541   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
542     const VarDecl &Var;
543     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
544 
545     void Emit(CodeGenFunction &CGF, Flags flags) override {
546       // Compute the address of the local variable, in case it's a
547       // byref or something.
548       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
549                       Var.getType(), VK_LValue, SourceLocation());
550       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
551                                                 SourceLocation());
552       CGF.EmitExtendGCLifetime(value);
553     }
554   };
555 
556   struct CallCleanupFunction final : EHScopeStack::Cleanup {
557     llvm::Constant *CleanupFn;
558     const CGFunctionInfo &FnInfo;
559     const VarDecl &Var;
560 
561     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
562                         const VarDecl *Var)
563       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
564 
565     void Emit(CodeGenFunction &CGF, Flags flags) override {
566       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
567                       Var.getType(), VK_LValue, SourceLocation());
568       // Compute the address of the local variable, in case it's a byref
569       // or something.
570       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
571 
572       // In some cases, the type of the function argument will be different from
573       // the type of the pointer. An example of this is
574       // void f(void* arg);
575       // __attribute__((cleanup(f))) void *g;
576       //
577       // To fix this we insert a bitcast here.
578       QualType ArgTy = FnInfo.arg_begin()->type;
579       llvm::Value *Arg =
580         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
581 
582       CallArgList Args;
583       Args.add(RValue::get(Arg),
584                CGF.getContext().getPointerType(Var.getType()));
585       auto Callee = CGCallee::forDirect(CleanupFn);
586       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
587     }
588   };
589 } // end anonymous namespace
590 
591 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
592 /// variable with lifetime.
593 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
594                                     Address addr,
595                                     Qualifiers::ObjCLifetime lifetime) {
596   switch (lifetime) {
597   case Qualifiers::OCL_None:
598     llvm_unreachable("present but none");
599 
600   case Qualifiers::OCL_ExplicitNone:
601     // nothing to do
602     break;
603 
604   case Qualifiers::OCL_Strong: {
605     CodeGenFunction::Destroyer *destroyer =
606       (var.hasAttr<ObjCPreciseLifetimeAttr>()
607        ? CodeGenFunction::destroyARCStrongPrecise
608        : CodeGenFunction::destroyARCStrongImprecise);
609 
610     CleanupKind cleanupKind = CGF.getARCCleanupKind();
611     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
612                     cleanupKind & EHCleanup);
613     break;
614   }
615   case Qualifiers::OCL_Autoreleasing:
616     // nothing to do
617     break;
618 
619   case Qualifiers::OCL_Weak:
620     // __weak objects always get EH cleanups; otherwise, exceptions
621     // could cause really nasty crashes instead of mere leaks.
622     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
623                     CodeGenFunction::destroyARCWeak,
624                     /*useEHCleanup*/ true);
625     break;
626   }
627 }
628 
629 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
630   if (const Expr *e = dyn_cast<Expr>(s)) {
631     // Skip the most common kinds of expressions that make
632     // hierarchy-walking expensive.
633     s = e = e->IgnoreParenCasts();
634 
635     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
636       return (ref->getDecl() == &var);
637     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
638       const BlockDecl *block = be->getBlockDecl();
639       for (const auto &I : block->captures()) {
640         if (I.getVariable() == &var)
641           return true;
642       }
643     }
644   }
645 
646   for (const Stmt *SubStmt : s->children())
647     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
648     if (SubStmt && isAccessedBy(var, SubStmt))
649       return true;
650 
651   return false;
652 }
653 
654 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
655   if (!decl) return false;
656   if (!isa<VarDecl>(decl)) return false;
657   const VarDecl *var = cast<VarDecl>(decl);
658   return isAccessedBy(*var, e);
659 }
660 
661 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
662                                    const LValue &destLV, const Expr *init) {
663   bool needsCast = false;
664 
665   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
666     switch (castExpr->getCastKind()) {
667     // Look through casts that don't require representation changes.
668     case CK_NoOp:
669     case CK_BitCast:
670     case CK_BlockPointerToObjCPointerCast:
671       needsCast = true;
672       break;
673 
674     // If we find an l-value to r-value cast from a __weak variable,
675     // emit this operation as a copy or move.
676     case CK_LValueToRValue: {
677       const Expr *srcExpr = castExpr->getSubExpr();
678       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
679         return false;
680 
681       // Emit the source l-value.
682       LValue srcLV = CGF.EmitLValue(srcExpr);
683 
684       // Handle a formal type change to avoid asserting.
685       auto srcAddr = srcLV.getAddress();
686       if (needsCast) {
687         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
688                                          destLV.getAddress().getElementType());
689       }
690 
691       // If it was an l-value, use objc_copyWeak.
692       if (srcExpr->getValueKind() == VK_LValue) {
693         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
694       } else {
695         assert(srcExpr->getValueKind() == VK_XValue);
696         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
697       }
698       return true;
699     }
700 
701     // Stop at anything else.
702     default:
703       return false;
704     }
705 
706     init = castExpr->getSubExpr();
707   }
708   return false;
709 }
710 
711 static void drillIntoBlockVariable(CodeGenFunction &CGF,
712                                    LValue &lvalue,
713                                    const VarDecl *var) {
714   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
715 }
716 
717 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
718                                            SourceLocation Loc) {
719   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
720     return;
721 
722   auto Nullability = LHS.getType()->getNullability(getContext());
723   if (!Nullability || *Nullability != NullabilityKind::NonNull)
724     return;
725 
726   // Check if the right hand side of the assignment is nonnull, if the left
727   // hand side must be nonnull.
728   SanitizerScope SanScope(this);
729   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
730   llvm::Constant *StaticData[] = {
731       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
732       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
733       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
734   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
735             SanitizerHandler::TypeMismatch, StaticData, RHS);
736 }
737 
738 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
739                                      LValue lvalue, bool capturedByInit) {
740   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
741   if (!lifetime) {
742     llvm::Value *value = EmitScalarExpr(init);
743     if (capturedByInit)
744       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
745     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
746     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
747     return;
748   }
749 
750   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
751     init = DIE->getExpr();
752 
753   // If we're emitting a value with lifetime, we have to do the
754   // initialization *before* we leave the cleanup scopes.
755   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
756     enterFullExpression(ewc);
757     init = ewc->getSubExpr();
758   }
759   CodeGenFunction::RunCleanupsScope Scope(*this);
760 
761   // We have to maintain the illusion that the variable is
762   // zero-initialized.  If the variable might be accessed in its
763   // initializer, zero-initialize before running the initializer, then
764   // actually perform the initialization with an assign.
765   bool accessedByInit = false;
766   if (lifetime != Qualifiers::OCL_ExplicitNone)
767     accessedByInit = (capturedByInit || isAccessedBy(D, init));
768   if (accessedByInit) {
769     LValue tempLV = lvalue;
770     // Drill down to the __block object if necessary.
771     if (capturedByInit) {
772       // We can use a simple GEP for this because it can't have been
773       // moved yet.
774       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
775                                               cast<VarDecl>(D),
776                                               /*follow*/ false));
777     }
778 
779     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
780     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
781 
782     // If __weak, we want to use a barrier under certain conditions.
783     if (lifetime == Qualifiers::OCL_Weak)
784       EmitARCInitWeak(tempLV.getAddress(), zero);
785 
786     // Otherwise just do a simple store.
787     else
788       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
789   }
790 
791   // Emit the initializer.
792   llvm::Value *value = nullptr;
793 
794   switch (lifetime) {
795   case Qualifiers::OCL_None:
796     llvm_unreachable("present but none");
797 
798   case Qualifiers::OCL_ExplicitNone:
799     value = EmitARCUnsafeUnretainedScalarExpr(init);
800     break;
801 
802   case Qualifiers::OCL_Strong: {
803     value = EmitARCRetainScalarExpr(init);
804     break;
805   }
806 
807   case Qualifiers::OCL_Weak: {
808     // If it's not accessed by the initializer, try to emit the
809     // initialization with a copy or move.
810     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
811       return;
812     }
813 
814     // No way to optimize a producing initializer into this.  It's not
815     // worth optimizing for, because the value will immediately
816     // disappear in the common case.
817     value = EmitScalarExpr(init);
818 
819     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
820     if (accessedByInit)
821       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
822     else
823       EmitARCInitWeak(lvalue.getAddress(), value);
824     return;
825   }
826 
827   case Qualifiers::OCL_Autoreleasing:
828     value = EmitARCRetainAutoreleaseScalarExpr(init);
829     break;
830   }
831 
832   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
833 
834   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
835 
836   // If the variable might have been accessed by its initializer, we
837   // might have to initialize with a barrier.  We have to do this for
838   // both __weak and __strong, but __weak got filtered out above.
839   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
840     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
841     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
842     EmitARCRelease(oldValue, ARCImpreciseLifetime);
843     return;
844   }
845 
846   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
847 }
848 
849 /// Decide whether we can emit the non-zero parts of the specified initializer
850 /// with equal or fewer than NumStores scalar stores.
851 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
852                                                unsigned &NumStores) {
853   // Zero and Undef never requires any extra stores.
854   if (isa<llvm::ConstantAggregateZero>(Init) ||
855       isa<llvm::ConstantPointerNull>(Init) ||
856       isa<llvm::UndefValue>(Init))
857     return true;
858   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
859       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
860       isa<llvm::ConstantExpr>(Init))
861     return Init->isNullValue() || NumStores--;
862 
863   // See if we can emit each element.
864   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
865     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
866       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
867       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
868         return false;
869     }
870     return true;
871   }
872 
873   if (llvm::ConstantDataSequential *CDS =
874         dyn_cast<llvm::ConstantDataSequential>(Init)) {
875     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
876       llvm::Constant *Elt = CDS->getElementAsConstant(i);
877       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
878         return false;
879     }
880     return true;
881   }
882 
883   // Anything else is hard and scary.
884   return false;
885 }
886 
887 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
888 /// the scalar stores that would be required.
889 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
890                                         llvm::Constant *Init, Address Loc,
891                                         bool isVolatile, CGBuilderTy &Builder) {
892   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
893          "called emitStoresForInitAfterBZero for zero or undef value.");
894 
895   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
896       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
897       isa<llvm::ConstantExpr>(Init)) {
898     Builder.CreateStore(Init, Loc, isVolatile);
899     return;
900   }
901 
902   if (llvm::ConstantDataSequential *CDS =
903           dyn_cast<llvm::ConstantDataSequential>(Init)) {
904     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
905       llvm::Constant *Elt = CDS->getElementAsConstant(i);
906 
907       // If necessary, get a pointer to the element and emit it.
908       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
909         emitStoresForInitAfterBZero(
910             CGM, Elt,
911             Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
912             isVolatile, Builder);
913     }
914     return;
915   }
916 
917   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
918          "Unknown value type!");
919 
920   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
921     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
922 
923     // If necessary, get a pointer to the element and emit it.
924     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
925       emitStoresForInitAfterBZero(
926           CGM, Elt,
927           Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
928           isVolatile, Builder);
929   }
930 }
931 
932 /// Decide whether we should use bzero plus some stores to initialize a local
933 /// variable instead of using a memcpy from a constant global.  It is beneficial
934 /// to use bzero if the global is all zeros, or mostly zeros and large.
935 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
936                                                  uint64_t GlobalSize) {
937   // If a global is all zeros, always use a bzero.
938   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
939 
940   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
941   // do it if it will require 6 or fewer scalar stores.
942   // TODO: Should budget depends on the size?  Avoiding a large global warrants
943   // plopping in more stores.
944   unsigned StoreBudget = 6;
945   uint64_t SizeLimit = 32;
946 
947   return GlobalSize > SizeLimit &&
948          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
949 }
950 
951 /// A byte pattern.
952 ///
953 /// Can be "any" pattern if the value was padding or known to be undef.
954 /// Can be "none" pattern if a sequence doesn't exist.
955 class BytePattern {
956   uint8_t Val;
957   enum class ValueType : uint8_t { Specific, Any, None } Type;
958   BytePattern(ValueType Type) : Type(Type) {}
959 
960 public:
961   BytePattern(uint8_t Value) : Val(Value), Type(ValueType::Specific) {}
962   static BytePattern Any() { return BytePattern(ValueType::Any); }
963   static BytePattern None() { return BytePattern(ValueType::None); }
964   bool isAny() const { return Type == ValueType::Any; }
965   bool isNone() const { return Type == ValueType::None; }
966   bool isValued() const { return Type == ValueType::Specific; }
967   uint8_t getValue() const {
968     assert(isValued());
969     return Val;
970   }
971   BytePattern merge(const BytePattern Other) const {
972     if (isNone() || Other.isNone())
973       return None();
974     if (isAny())
975       return Other;
976     if (Other.isAny())
977       return *this;
978     if (getValue() == Other.getValue())
979       return *this;
980     return None();
981   }
982 };
983 
984 /// Figures out whether the constant can be initialized with memset.
985 static BytePattern constantIsRepeatedBytePattern(llvm::Constant *C) {
986   if (isa<llvm::ConstantAggregateZero>(C) || isa<llvm::ConstantPointerNull>(C))
987     return BytePattern(0x00);
988   if (isa<llvm::UndefValue>(C))
989     return BytePattern::Any();
990 
991   if (isa<llvm::ConstantInt>(C)) {
992     auto *Int = cast<llvm::ConstantInt>(C);
993     if (Int->getBitWidth() % 8 != 0)
994       return BytePattern::None();
995     const llvm::APInt &Value = Int->getValue();
996     if (Value.isSplat(8))
997       return BytePattern(Value.getLoBits(8).getLimitedValue());
998     return BytePattern::None();
999   }
1000 
1001   if (isa<llvm::ConstantFP>(C)) {
1002     auto *FP = cast<llvm::ConstantFP>(C);
1003     llvm::APInt Bits = FP->getValueAPF().bitcastToAPInt();
1004     if (Bits.getBitWidth() % 8 != 0)
1005       return BytePattern::None();
1006     if (!Bits.isSplat(8))
1007       return BytePattern::None();
1008     return BytePattern(Bits.getLimitedValue() & 0xFF);
1009   }
1010 
1011   if (isa<llvm::ConstantVector>(C)) {
1012     llvm::Constant *Splat = cast<llvm::ConstantVector>(C)->getSplatValue();
1013     if (Splat)
1014       return constantIsRepeatedBytePattern(Splat);
1015     return BytePattern::None();
1016   }
1017 
1018   if (isa<llvm::ConstantArray>(C) || isa<llvm::ConstantStruct>(C)) {
1019     BytePattern Pattern(BytePattern::Any());
1020     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
1021       llvm::Constant *Elt = cast<llvm::Constant>(C->getOperand(I));
1022       Pattern = Pattern.merge(constantIsRepeatedBytePattern(Elt));
1023       if (Pattern.isNone())
1024         return Pattern;
1025     }
1026     return Pattern;
1027   }
1028 
1029   if (llvm::ConstantDataSequential *CDS =
1030           dyn_cast<llvm::ConstantDataSequential>(C)) {
1031     BytePattern Pattern(BytePattern::Any());
1032     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
1033       llvm::Constant *Elt = CDS->getElementAsConstant(I);
1034       Pattern = Pattern.merge(constantIsRepeatedBytePattern(Elt));
1035       if (Pattern.isNone())
1036         return Pattern;
1037     }
1038     return Pattern;
1039   }
1040 
1041   // BlockAddress, ConstantExpr, and everything else is scary.
1042   return BytePattern::None();
1043 }
1044 
1045 /// Decide whether we should use memset to initialize a local variable instead
1046 /// of using a memcpy from a constant global. Assumes we've already decided to
1047 /// not user bzero.
1048 /// FIXME We could be more clever, as we are for bzero above, and generate
1049 ///       memset followed by stores. It's unclear that's worth the effort.
1050 static BytePattern shouldUseMemSetToInitialize(llvm::Constant *Init,
1051                                                uint64_t GlobalSize) {
1052   uint64_t SizeLimit = 32;
1053   if (GlobalSize <= SizeLimit)
1054     return BytePattern::None();
1055   return constantIsRepeatedBytePattern(Init);
1056 }
1057 
1058 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1059                                   Address Loc, bool isVolatile,
1060                                   CGBuilderTy &Builder,
1061                                   llvm::Constant *constant) {
1062   auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1063   auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext());
1064 
1065   // If the initializer is all or mostly the same, codegen with bzero / memset
1066   // then do a few stores afterward.
1067   uint64_t ConstantSize =
1068       CGM.getDataLayout().getTypeAllocSize(constant->getType());
1069   auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize);
1070   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1071     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1072                          isVolatile);
1073 
1074     bool valueAlreadyCorrect =
1075         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1076     if (!valueAlreadyCorrect) {
1077       Loc = Builder.CreateBitCast(
1078           Loc, constant->getType()->getPointerTo(Loc.getAddressSpace()));
1079       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1080     }
1081     return;
1082   }
1083 
1084   BytePattern Pattern = shouldUseMemSetToInitialize(constant, ConstantSize);
1085   if (!Pattern.isNone()) {
1086     uint8_t Value = Pattern.isAny() ? 0x00 : Pattern.getValue();
1087     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal,
1088                          isVolatile);
1089     return;
1090   }
1091 
1092   // Otherwise, create a temporary global with the initializer then memcpy from
1093   // the global to the alloca.
1094   std::string Name = getStaticDeclName(CGM, D);
1095   unsigned AS = CGM.getContext().getTargetAddressSpace(
1096       CGM.getStringLiteralAddressSpace());
1097   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS);
1098 
1099   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1100       CGM.getModule(), constant->getType(), true,
1101       llvm::GlobalValue::PrivateLinkage, constant, Name, nullptr,
1102       llvm::GlobalValue::NotThreadLocal, AS);
1103   GV->setAlignment(Loc.getAlignment().getQuantity());
1104   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1105 
1106   Address SrcPtr = Address(GV, Loc.getAlignment());
1107   if (SrcPtr.getType() != BP)
1108     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1109 
1110   Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1111 }
1112 
1113 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1114 /// variable declaration with auto, register, or no storage class specifier.
1115 /// These turn into simple stack objects, or GlobalValues depending on target.
1116 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1117   AutoVarEmission emission = EmitAutoVarAlloca(D);
1118   EmitAutoVarInit(emission);
1119   EmitAutoVarCleanups(emission);
1120 }
1121 
1122 /// Emit a lifetime.begin marker if some criteria are satisfied.
1123 /// \return a pointer to the temporary size Value if a marker was emitted, null
1124 /// otherwise
1125 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1126                                                 llvm::Value *Addr) {
1127   if (!ShouldEmitLifetimeMarkers)
1128     return nullptr;
1129 
1130   assert(Addr->getType()->getPointerAddressSpace() ==
1131              CGM.getDataLayout().getAllocaAddrSpace() &&
1132          "Pointer should be in alloca address space");
1133   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1134   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1135   llvm::CallInst *C =
1136       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1137   C->setDoesNotThrow();
1138   return SizeV;
1139 }
1140 
1141 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1142   assert(Addr->getType()->getPointerAddressSpace() ==
1143              CGM.getDataLayout().getAllocaAddrSpace() &&
1144          "Pointer should be in alloca address space");
1145   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1146   llvm::CallInst *C =
1147       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1148   C->setDoesNotThrow();
1149 }
1150 
1151 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1152     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1153   // For each dimension stores its QualType and corresponding
1154   // size-expression Value.
1155   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1156 
1157   // Break down the array into individual dimensions.
1158   QualType Type1D = D.getType();
1159   while (getContext().getAsVariableArrayType(Type1D)) {
1160     auto VlaSize = getVLAElements1D(Type1D);
1161     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1162       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1163     else {
1164       auto SizeExprAddr = CreateDefaultAlignTempAlloca(
1165           VlaSize.NumElts->getType(), "__vla_expr");
1166       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1167       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1168                               Type1D.getUnqualifiedType());
1169     }
1170     Type1D = VlaSize.Type;
1171   }
1172 
1173   if (!EmitDebugInfo)
1174     return;
1175 
1176   // Register each dimension's size-expression with a DILocalVariable,
1177   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1178   // to describe this array.
1179   for (auto &VlaSize : Dimensions) {
1180     llvm::Metadata *MD;
1181     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1182       MD = llvm::ConstantAsMetadata::get(C);
1183     else {
1184       // Create an artificial VarDecl to generate debug info for.
1185       IdentifierInfo &NameIdent = getContext().Idents.getOwn(
1186           cast<llvm::AllocaInst>(VlaSize.NumElts)->getName());
1187       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1188       auto QT = getContext().getIntTypeForBitwidth(
1189           VlaExprTy->getScalarSizeInBits(), false);
1190       auto *ArtificialDecl = VarDecl::Create(
1191           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1192           D.getLocation(), D.getLocation(), &NameIdent, QT,
1193           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1194       ArtificialDecl->setImplicit();
1195 
1196       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1197                                          Builder);
1198     }
1199     assert(MD && "No Size expression debug node created");
1200     DI->registerVLASizeExpression(VlaSize.Type, MD);
1201   }
1202 }
1203 
1204 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1205 /// local variable.  Does not emit initialization or destruction.
1206 CodeGenFunction::AutoVarEmission
1207 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1208   QualType Ty = D.getType();
1209   assert(
1210       Ty.getAddressSpace() == LangAS::Default ||
1211       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1212 
1213   AutoVarEmission emission(D);
1214 
1215   bool isByRef = D.hasAttr<BlocksAttr>();
1216   emission.IsByRef = isByRef;
1217 
1218   CharUnits alignment = getContext().getDeclAlign(&D);
1219 
1220   // If the type is variably-modified, emit all the VLA sizes for it.
1221   if (Ty->isVariablyModifiedType())
1222     EmitVariablyModifiedType(Ty);
1223 
1224   auto *DI = getDebugInfo();
1225   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1226                                  codegenoptions::LimitedDebugInfo;
1227 
1228   Address address = Address::invalid();
1229   Address AllocaAddr = Address::invalid();
1230   if (Ty->isConstantSizeType()) {
1231     bool NRVO = getLangOpts().ElideConstructors &&
1232       D.isNRVOVariable();
1233 
1234     // If this value is an array or struct with a statically determinable
1235     // constant initializer, there are optimizations we can do.
1236     //
1237     // TODO: We should constant-evaluate the initializer of any variable,
1238     // as long as it is initialized by a constant expression. Currently,
1239     // isConstantInitializer produces wrong answers for structs with
1240     // reference or bitfield members, and a few other cases, and checking
1241     // for POD-ness protects us from some of these.
1242     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1243         (D.isConstexpr() ||
1244          ((Ty.isPODType(getContext()) ||
1245            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1246           D.getInit()->isConstantInitializer(getContext(), false)))) {
1247 
1248       // If the variable's a const type, and it's neither an NRVO
1249       // candidate nor a __block variable and has no mutable members,
1250       // emit it as a global instead.
1251       // Exception is if a variable is located in non-constant address space
1252       // in OpenCL.
1253       if ((!getLangOpts().OpenCL ||
1254            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1255           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
1256            CGM.isTypeConstant(Ty, true))) {
1257         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1258 
1259         // Signal this condition to later callbacks.
1260         emission.Addr = Address::invalid();
1261         assert(emission.wasEmittedAsGlobal());
1262         return emission;
1263       }
1264 
1265       // Otherwise, tell the initialization code that we're in this case.
1266       emission.IsConstantAggregate = true;
1267     }
1268 
1269     // A normal fixed sized variable becomes an alloca in the entry block,
1270     // unless:
1271     // - it's an NRVO variable.
1272     // - we are compiling OpenMP and it's an OpenMP local variable.
1273 
1274     Address OpenMPLocalAddr =
1275         getLangOpts().OpenMP
1276             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1277             : Address::invalid();
1278     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1279       address = OpenMPLocalAddr;
1280     } else if (NRVO) {
1281       // The named return value optimization: allocate this variable in the
1282       // return slot, so that we can elide the copy when returning this
1283       // variable (C++0x [class.copy]p34).
1284       address = ReturnValue;
1285 
1286       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1287         const auto *RD = RecordTy->getDecl();
1288         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1289         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1290             RD->isNonTrivialToPrimitiveDestroy()) {
1291           // Create a flag that is used to indicate when the NRVO was applied
1292           // to this variable. Set it to zero to indicate that NRVO was not
1293           // applied.
1294           llvm::Value *Zero = Builder.getFalse();
1295           Address NRVOFlag =
1296             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1297           EnsureInsertPoint();
1298           Builder.CreateStore(Zero, NRVOFlag);
1299 
1300           // Record the NRVO flag for this variable.
1301           NRVOFlags[&D] = NRVOFlag.getPointer();
1302           emission.NRVOFlag = NRVOFlag.getPointer();
1303         }
1304       }
1305     } else {
1306       CharUnits allocaAlignment;
1307       llvm::Type *allocaTy;
1308       if (isByRef) {
1309         auto &byrefInfo = getBlockByrefInfo(&D);
1310         allocaTy = byrefInfo.Type;
1311         allocaAlignment = byrefInfo.ByrefAlignment;
1312       } else {
1313         allocaTy = ConvertTypeForMem(Ty);
1314         allocaAlignment = alignment;
1315       }
1316 
1317       // Create the alloca.  Note that we set the name separately from
1318       // building the instruction so that it's there even in no-asserts
1319       // builds.
1320       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1321                                  /*ArraySize=*/nullptr, &AllocaAddr);
1322 
1323       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1324       // the catch parameter starts in the catchpad instruction, and we can't
1325       // insert code in those basic blocks.
1326       bool IsMSCatchParam =
1327           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1328 
1329       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1330       // if we don't have a valid insertion point (?).
1331       if (HaveInsertPoint() && !IsMSCatchParam) {
1332         // If there's a jump into the lifetime of this variable, its lifetime
1333         // gets broken up into several regions in IR, which requires more work
1334         // to handle correctly. For now, just omit the intrinsics; this is a
1335         // rare case, and it's better to just be conservatively correct.
1336         // PR28267.
1337         //
1338         // We have to do this in all language modes if there's a jump past the
1339         // declaration. We also have to do it in C if there's a jump to an
1340         // earlier point in the current block because non-VLA lifetimes begin as
1341         // soon as the containing block is entered, not when its variables
1342         // actually come into scope; suppressing the lifetime annotations
1343         // completely in this case is unnecessarily pessimistic, but again, this
1344         // is rare.
1345         if (!Bypasses.IsBypassed(&D) &&
1346             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1347           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1348           emission.SizeForLifetimeMarkers =
1349               EmitLifetimeStart(size, AllocaAddr.getPointer());
1350         }
1351       } else {
1352         assert(!emission.useLifetimeMarkers());
1353       }
1354     }
1355   } else {
1356     EnsureInsertPoint();
1357 
1358     if (!DidCallStackSave) {
1359       // Save the stack.
1360       Address Stack =
1361         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1362 
1363       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1364       llvm::Value *V = Builder.CreateCall(F);
1365       Builder.CreateStore(V, Stack);
1366 
1367       DidCallStackSave = true;
1368 
1369       // Push a cleanup block and restore the stack there.
1370       // FIXME: in general circumstances, this should be an EH cleanup.
1371       pushStackRestore(NormalCleanup, Stack);
1372     }
1373 
1374     auto VlaSize = getVLASize(Ty);
1375     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1376 
1377     // Allocate memory for the array.
1378     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1379                                &AllocaAddr);
1380 
1381     // If we have debug info enabled, properly describe the VLA dimensions for
1382     // this type by registering the vla size expression for each of the
1383     // dimensions.
1384     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1385   }
1386 
1387   setAddrOfLocalVar(&D, address);
1388   emission.Addr = address;
1389   emission.AllocaAddr = AllocaAddr;
1390 
1391   // Emit debug info for local var declaration.
1392   if (EmitDebugInfo && HaveInsertPoint()) {
1393     DI->setLocation(D.getLocation());
1394     (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1395   }
1396 
1397   if (D.hasAttr<AnnotateAttr>())
1398     EmitVarAnnotations(&D, address.getPointer());
1399 
1400   // Make sure we call @llvm.lifetime.end.
1401   if (emission.useLifetimeMarkers())
1402     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1403                                          emission.getOriginalAllocatedAddress(),
1404                                          emission.getSizeForLifetimeMarkers());
1405 
1406   return emission;
1407 }
1408 
1409 static bool isCapturedBy(const VarDecl &, const Expr *);
1410 
1411 /// Determines whether the given __block variable is potentially
1412 /// captured by the given statement.
1413 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1414   if (const Expr *E = dyn_cast<Expr>(S))
1415     return isCapturedBy(Var, E);
1416   for (const Stmt *SubStmt : S->children())
1417     if (isCapturedBy(Var, SubStmt))
1418       return true;
1419   return false;
1420 }
1421 
1422 /// Determines whether the given __block variable is potentially
1423 /// captured by the given expression.
1424 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1425   // Skip the most common kinds of expressions that make
1426   // hierarchy-walking expensive.
1427   E = E->IgnoreParenCasts();
1428 
1429   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1430     const BlockDecl *Block = BE->getBlockDecl();
1431     for (const auto &I : Block->captures()) {
1432       if (I.getVariable() == &Var)
1433         return true;
1434     }
1435 
1436     // No need to walk into the subexpressions.
1437     return false;
1438   }
1439 
1440   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1441     const CompoundStmt *CS = SE->getSubStmt();
1442     for (const auto *BI : CS->body())
1443       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1444         if (isCapturedBy(Var, BIE))
1445           return true;
1446       }
1447       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1448           // special case declarations
1449           for (const auto *I : DS->decls()) {
1450               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1451                 const Expr *Init = VD->getInit();
1452                 if (Init && isCapturedBy(Var, Init))
1453                   return true;
1454               }
1455           }
1456       }
1457       else
1458         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1459         // Later, provide code to poke into statements for capture analysis.
1460         return true;
1461     return false;
1462   }
1463 
1464   for (const Stmt *SubStmt : E->children())
1465     if (isCapturedBy(Var, SubStmt))
1466       return true;
1467 
1468   return false;
1469 }
1470 
1471 /// Determine whether the given initializer is trivial in the sense
1472 /// that it requires no code to be generated.
1473 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1474   if (!Init)
1475     return true;
1476 
1477   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1478     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1479       if (Constructor->isTrivial() &&
1480           Constructor->isDefaultConstructor() &&
1481           !Construct->requiresZeroInitialization())
1482         return true;
1483 
1484   return false;
1485 }
1486 
1487 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1488   assert(emission.Variable && "emission was not valid!");
1489 
1490   // If this was emitted as a global constant, we're done.
1491   if (emission.wasEmittedAsGlobal()) return;
1492 
1493   const VarDecl &D = *emission.Variable;
1494   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1495   QualType type = D.getType();
1496 
1497   // If this local has an initializer, emit it now.
1498   const Expr *Init = D.getInit();
1499 
1500   // If we are at an unreachable point, we don't need to emit the initializer
1501   // unless it contains a label.
1502   if (!HaveInsertPoint()) {
1503     if (!Init || !ContainsLabel(Init)) return;
1504     EnsureInsertPoint();
1505   }
1506 
1507   // Initialize the structure of a __block variable.
1508   if (emission.IsByRef)
1509     emitByrefStructureInit(emission);
1510 
1511   // Initialize the variable here if it doesn't have a initializer and it is a
1512   // C struct that is non-trivial to initialize or an array containing such a
1513   // struct.
1514   if (!Init &&
1515       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1516           QualType::PDIK_Struct) {
1517     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1518     if (emission.IsByRef)
1519       drillIntoBlockVariable(*this, Dst, &D);
1520     defaultInitNonTrivialCStructVar(Dst);
1521     return;
1522   }
1523 
1524   if (isTrivialInitializer(Init))
1525     return;
1526 
1527   // Check whether this is a byref variable that's potentially
1528   // captured and moved by its own initializer.  If so, we'll need to
1529   // emit the initializer first, then copy into the variable.
1530   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1531 
1532   Address Loc =
1533     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1534 
1535   llvm::Constant *constant = nullptr;
1536   if (emission.IsConstantAggregate || D.isConstexpr()) {
1537     assert(!capturedByInit && "constant init contains a capturing block?");
1538     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1539   }
1540 
1541   if (!constant) {
1542     LValue lv = MakeAddrLValue(Loc, type);
1543     lv.setNonGC(true);
1544     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1545   }
1546 
1547   if (!emission.IsConstantAggregate) {
1548     // For simple scalar/complex initialization, store the value directly.
1549     LValue lv = MakeAddrLValue(Loc, type);
1550     lv.setNonGC(true);
1551     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1552   }
1553 
1554   // If this is a simple aggregate initialization, we can optimize it
1555   // in various ways.
1556   bool isVolatile = type.isVolatileQualified();
1557 
1558   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1559   if (Loc.getType() != BP)
1560     Loc = Builder.CreateBitCast(Loc, BP);
1561 
1562   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1563 }
1564 
1565 /// Emit an expression as an initializer for an object (variable, field, etc.)
1566 /// at the given location.  The expression is not necessarily the normal
1567 /// initializer for the object, and the address is not necessarily
1568 /// its normal location.
1569 ///
1570 /// \param init the initializing expression
1571 /// \param D the object to act as if we're initializing
1572 /// \param loc the address to initialize; its type is a pointer
1573 ///   to the LLVM mapping of the object's type
1574 /// \param alignment the alignment of the address
1575 /// \param capturedByInit true if \p D is a __block variable
1576 ///   whose address is potentially changed by the initializer
1577 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1578                                      LValue lvalue, bool capturedByInit) {
1579   QualType type = D->getType();
1580 
1581   if (type->isReferenceType()) {
1582     RValue rvalue = EmitReferenceBindingToExpr(init);
1583     if (capturedByInit)
1584       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1585     EmitStoreThroughLValue(rvalue, lvalue, true);
1586     return;
1587   }
1588   switch (getEvaluationKind(type)) {
1589   case TEK_Scalar:
1590     EmitScalarInit(init, D, lvalue, capturedByInit);
1591     return;
1592   case TEK_Complex: {
1593     ComplexPairTy complex = EmitComplexExpr(init);
1594     if (capturedByInit)
1595       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1596     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1597     return;
1598   }
1599   case TEK_Aggregate:
1600     if (type->isAtomicType()) {
1601       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1602     } else {
1603       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1604       if (isa<VarDecl>(D))
1605         Overlap = AggValueSlot::DoesNotOverlap;
1606       else if (auto *FD = dyn_cast<FieldDecl>(D))
1607         Overlap = overlapForFieldInit(FD);
1608       // TODO: how can we delay here if D is captured by its initializer?
1609       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1610                                               AggValueSlot::IsDestructed,
1611                                          AggValueSlot::DoesNotNeedGCBarriers,
1612                                               AggValueSlot::IsNotAliased,
1613                                               Overlap));
1614     }
1615     return;
1616   }
1617   llvm_unreachable("bad evaluation kind");
1618 }
1619 
1620 /// Enter a destroy cleanup for the given local variable.
1621 void CodeGenFunction::emitAutoVarTypeCleanup(
1622                             const CodeGenFunction::AutoVarEmission &emission,
1623                             QualType::DestructionKind dtorKind) {
1624   assert(dtorKind != QualType::DK_none);
1625 
1626   // Note that for __block variables, we want to destroy the
1627   // original stack object, not the possibly forwarded object.
1628   Address addr = emission.getObjectAddress(*this);
1629 
1630   const VarDecl *var = emission.Variable;
1631   QualType type = var->getType();
1632 
1633   CleanupKind cleanupKind = NormalAndEHCleanup;
1634   CodeGenFunction::Destroyer *destroyer = nullptr;
1635 
1636   switch (dtorKind) {
1637   case QualType::DK_none:
1638     llvm_unreachable("no cleanup for trivially-destructible variable");
1639 
1640   case QualType::DK_cxx_destructor:
1641     // If there's an NRVO flag on the emission, we need a different
1642     // cleanup.
1643     if (emission.NRVOFlag) {
1644       assert(!type->isArrayType());
1645       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1646       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor,
1647                                                   emission.NRVOFlag);
1648       return;
1649     }
1650     break;
1651 
1652   case QualType::DK_objc_strong_lifetime:
1653     // Suppress cleanups for pseudo-strong variables.
1654     if (var->isARCPseudoStrong()) return;
1655 
1656     // Otherwise, consider whether to use an EH cleanup or not.
1657     cleanupKind = getARCCleanupKind();
1658 
1659     // Use the imprecise destroyer by default.
1660     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1661       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1662     break;
1663 
1664   case QualType::DK_objc_weak_lifetime:
1665     break;
1666 
1667   case QualType::DK_nontrivial_c_struct:
1668     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1669     if (emission.NRVOFlag) {
1670       assert(!type->isArrayType());
1671       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1672                                                 emission.NRVOFlag, type);
1673       return;
1674     }
1675     break;
1676   }
1677 
1678   // If we haven't chosen a more specific destroyer, use the default.
1679   if (!destroyer) destroyer = getDestroyer(dtorKind);
1680 
1681   // Use an EH cleanup in array destructors iff the destructor itself
1682   // is being pushed as an EH cleanup.
1683   bool useEHCleanup = (cleanupKind & EHCleanup);
1684   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1685                                      useEHCleanup);
1686 }
1687 
1688 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1689   assert(emission.Variable && "emission was not valid!");
1690 
1691   // If this was emitted as a global constant, we're done.
1692   if (emission.wasEmittedAsGlobal()) return;
1693 
1694   // If we don't have an insertion point, we're done.  Sema prevents
1695   // us from jumping into any of these scopes anyway.
1696   if (!HaveInsertPoint()) return;
1697 
1698   const VarDecl &D = *emission.Variable;
1699 
1700   // Check the type for a cleanup.
1701   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1702     emitAutoVarTypeCleanup(emission, dtorKind);
1703 
1704   // In GC mode, honor objc_precise_lifetime.
1705   if (getLangOpts().getGC() != LangOptions::NonGC &&
1706       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1707     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1708   }
1709 
1710   // Handle the cleanup attribute.
1711   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1712     const FunctionDecl *FD = CA->getFunctionDecl();
1713 
1714     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1715     assert(F && "Could not find function!");
1716 
1717     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1718     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1719   }
1720 
1721   // If this is a block variable, call _Block_object_destroy
1722   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
1723   // mode.
1724   if (emission.IsByRef && CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
1725     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
1726     if (emission.Variable->getType().isObjCGCWeak())
1727       Flags |= BLOCK_FIELD_IS_WEAK;
1728     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
1729                       /*LoadBlockVarAddr*/ false);
1730   }
1731 }
1732 
1733 CodeGenFunction::Destroyer *
1734 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1735   switch (kind) {
1736   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1737   case QualType::DK_cxx_destructor:
1738     return destroyCXXObject;
1739   case QualType::DK_objc_strong_lifetime:
1740     return destroyARCStrongPrecise;
1741   case QualType::DK_objc_weak_lifetime:
1742     return destroyARCWeak;
1743   case QualType::DK_nontrivial_c_struct:
1744     return destroyNonTrivialCStruct;
1745   }
1746   llvm_unreachable("Unknown DestructionKind");
1747 }
1748 
1749 /// pushEHDestroy - Push the standard destructor for the given type as
1750 /// an EH-only cleanup.
1751 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1752                                     Address addr, QualType type) {
1753   assert(dtorKind && "cannot push destructor for trivial type");
1754   assert(needsEHCleanup(dtorKind));
1755 
1756   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1757 }
1758 
1759 /// pushDestroy - Push the standard destructor for the given type as
1760 /// at least a normal cleanup.
1761 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1762                                   Address addr, QualType type) {
1763   assert(dtorKind && "cannot push destructor for trivial type");
1764 
1765   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1766   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1767               cleanupKind & EHCleanup);
1768 }
1769 
1770 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1771                                   QualType type, Destroyer *destroyer,
1772                                   bool useEHCleanupForArray) {
1773   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1774                                      destroyer, useEHCleanupForArray);
1775 }
1776 
1777 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1778   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1779 }
1780 
1781 void CodeGenFunction::pushLifetimeExtendedDestroy(
1782     CleanupKind cleanupKind, Address addr, QualType type,
1783     Destroyer *destroyer, bool useEHCleanupForArray) {
1784   // Push an EH-only cleanup for the object now.
1785   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1786   // around in case a temporary's destructor throws an exception.
1787   if (cleanupKind & EHCleanup)
1788     EHStack.pushCleanup<DestroyObject>(
1789         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1790         destroyer, useEHCleanupForArray);
1791 
1792   // Remember that we need to push a full cleanup for the object at the
1793   // end of the full-expression.
1794   pushCleanupAfterFullExpr<DestroyObject>(
1795       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1796 }
1797 
1798 /// emitDestroy - Immediately perform the destruction of the given
1799 /// object.
1800 ///
1801 /// \param addr - the address of the object; a type*
1802 /// \param type - the type of the object; if an array type, all
1803 ///   objects are destroyed in reverse order
1804 /// \param destroyer - the function to call to destroy individual
1805 ///   elements
1806 /// \param useEHCleanupForArray - whether an EH cleanup should be
1807 ///   used when destroying array elements, in case one of the
1808 ///   destructions throws an exception
1809 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1810                                   Destroyer *destroyer,
1811                                   bool useEHCleanupForArray) {
1812   const ArrayType *arrayType = getContext().getAsArrayType(type);
1813   if (!arrayType)
1814     return destroyer(*this, addr, type);
1815 
1816   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1817 
1818   CharUnits elementAlign =
1819     addr.getAlignment()
1820         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1821 
1822   // Normally we have to check whether the array is zero-length.
1823   bool checkZeroLength = true;
1824 
1825   // But if the array length is constant, we can suppress that.
1826   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1827     // ...and if it's constant zero, we can just skip the entire thing.
1828     if (constLength->isZero()) return;
1829     checkZeroLength = false;
1830   }
1831 
1832   llvm::Value *begin = addr.getPointer();
1833   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1834   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1835                    checkZeroLength, useEHCleanupForArray);
1836 }
1837 
1838 /// emitArrayDestroy - Destroys all the elements of the given array,
1839 /// beginning from last to first.  The array cannot be zero-length.
1840 ///
1841 /// \param begin - a type* denoting the first element of the array
1842 /// \param end - a type* denoting one past the end of the array
1843 /// \param elementType - the element type of the array
1844 /// \param destroyer - the function to call to destroy elements
1845 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1846 ///   the remaining elements in case the destruction of a single
1847 ///   element throws
1848 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1849                                        llvm::Value *end,
1850                                        QualType elementType,
1851                                        CharUnits elementAlign,
1852                                        Destroyer *destroyer,
1853                                        bool checkZeroLength,
1854                                        bool useEHCleanup) {
1855   assert(!elementType->isArrayType());
1856 
1857   // The basic structure here is a do-while loop, because we don't
1858   // need to check for the zero-element case.
1859   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1860   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1861 
1862   if (checkZeroLength) {
1863     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1864                                                 "arraydestroy.isempty");
1865     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1866   }
1867 
1868   // Enter the loop body, making that address the current address.
1869   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1870   EmitBlock(bodyBB);
1871   llvm::PHINode *elementPast =
1872     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1873   elementPast->addIncoming(end, entryBB);
1874 
1875   // Shift the address back by one element.
1876   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1877   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1878                                                    "arraydestroy.element");
1879 
1880   if (useEHCleanup)
1881     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1882                                    destroyer);
1883 
1884   // Perform the actual destruction there.
1885   destroyer(*this, Address(element, elementAlign), elementType);
1886 
1887   if (useEHCleanup)
1888     PopCleanupBlock();
1889 
1890   // Check whether we've reached the end.
1891   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1892   Builder.CreateCondBr(done, doneBB, bodyBB);
1893   elementPast->addIncoming(element, Builder.GetInsertBlock());
1894 
1895   // Done.
1896   EmitBlock(doneBB);
1897 }
1898 
1899 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1900 /// emitArrayDestroy, the element type here may still be an array type.
1901 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1902                                     llvm::Value *begin, llvm::Value *end,
1903                                     QualType type, CharUnits elementAlign,
1904                                     CodeGenFunction::Destroyer *destroyer) {
1905   // If the element type is itself an array, drill down.
1906   unsigned arrayDepth = 0;
1907   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1908     // VLAs don't require a GEP index to walk into.
1909     if (!isa<VariableArrayType>(arrayType))
1910       arrayDepth++;
1911     type = arrayType->getElementType();
1912   }
1913 
1914   if (arrayDepth) {
1915     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1916 
1917     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1918     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1919     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1920   }
1921 
1922   // Destroy the array.  We don't ever need an EH cleanup because we
1923   // assume that we're in an EH cleanup ourselves, so a throwing
1924   // destructor causes an immediate terminate.
1925   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1926                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1927 }
1928 
1929 namespace {
1930   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1931   /// array destroy where the end pointer is regularly determined and
1932   /// does not need to be loaded from a local.
1933   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1934     llvm::Value *ArrayBegin;
1935     llvm::Value *ArrayEnd;
1936     QualType ElementType;
1937     CodeGenFunction::Destroyer *Destroyer;
1938     CharUnits ElementAlign;
1939   public:
1940     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1941                                QualType elementType, CharUnits elementAlign,
1942                                CodeGenFunction::Destroyer *destroyer)
1943       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1944         ElementType(elementType), Destroyer(destroyer),
1945         ElementAlign(elementAlign) {}
1946 
1947     void Emit(CodeGenFunction &CGF, Flags flags) override {
1948       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1949                               ElementType, ElementAlign, Destroyer);
1950     }
1951   };
1952 
1953   /// IrregularPartialArrayDestroy - a cleanup which performs a
1954   /// partial array destroy where the end pointer is irregularly
1955   /// determined and must be loaded from a local.
1956   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1957     llvm::Value *ArrayBegin;
1958     Address ArrayEndPointer;
1959     QualType ElementType;
1960     CodeGenFunction::Destroyer *Destroyer;
1961     CharUnits ElementAlign;
1962   public:
1963     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1964                                  Address arrayEndPointer,
1965                                  QualType elementType,
1966                                  CharUnits elementAlign,
1967                                  CodeGenFunction::Destroyer *destroyer)
1968       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1969         ElementType(elementType), Destroyer(destroyer),
1970         ElementAlign(elementAlign) {}
1971 
1972     void Emit(CodeGenFunction &CGF, Flags flags) override {
1973       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1974       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1975                               ElementType, ElementAlign, Destroyer);
1976     }
1977   };
1978 } // end anonymous namespace
1979 
1980 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1981 /// already-constructed elements of the given array.  The cleanup
1982 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1983 ///
1984 /// \param elementType - the immediate element type of the array;
1985 ///   possibly still an array type
1986 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1987                                                        Address arrayEndPointer,
1988                                                        QualType elementType,
1989                                                        CharUnits elementAlign,
1990                                                        Destroyer *destroyer) {
1991   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1992                                                     arrayBegin, arrayEndPointer,
1993                                                     elementType, elementAlign,
1994                                                     destroyer);
1995 }
1996 
1997 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1998 /// already-constructed elements of the given array.  The cleanup
1999 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2000 ///
2001 /// \param elementType - the immediate element type of the array;
2002 ///   possibly still an array type
2003 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2004                                                      llvm::Value *arrayEnd,
2005                                                      QualType elementType,
2006                                                      CharUnits elementAlign,
2007                                                      Destroyer *destroyer) {
2008   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2009                                                   arrayBegin, arrayEnd,
2010                                                   elementType, elementAlign,
2011                                                   destroyer);
2012 }
2013 
2014 /// Lazily declare the @llvm.lifetime.start intrinsic.
2015 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
2016   if (LifetimeStartFn)
2017     return LifetimeStartFn;
2018   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2019     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2020   return LifetimeStartFn;
2021 }
2022 
2023 /// Lazily declare the @llvm.lifetime.end intrinsic.
2024 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
2025   if (LifetimeEndFn)
2026     return LifetimeEndFn;
2027   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2028     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2029   return LifetimeEndFn;
2030 }
2031 
2032 namespace {
2033   /// A cleanup to perform a release of an object at the end of a
2034   /// function.  This is used to balance out the incoming +1 of a
2035   /// ns_consumed argument when we can't reasonably do that just by
2036   /// not doing the initial retain for a __block argument.
2037   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2038     ConsumeARCParameter(llvm::Value *param,
2039                         ARCPreciseLifetime_t precise)
2040       : Param(param), Precise(precise) {}
2041 
2042     llvm::Value *Param;
2043     ARCPreciseLifetime_t Precise;
2044 
2045     void Emit(CodeGenFunction &CGF, Flags flags) override {
2046       CGF.EmitARCRelease(Param, Precise);
2047     }
2048   };
2049 } // end anonymous namespace
2050 
2051 /// Emit an alloca (or GlobalValue depending on target)
2052 /// for the specified parameter and set up LocalDeclMap.
2053 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2054                                    unsigned ArgNo) {
2055   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2056   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2057          "Invalid argument to EmitParmDecl");
2058 
2059   Arg.getAnyValue()->setName(D.getName());
2060 
2061   QualType Ty = D.getType();
2062 
2063   // Use better IR generation for certain implicit parameters.
2064   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2065     // The only implicit argument a block has is its literal.
2066     // This may be passed as an inalloca'ed value on Windows x86.
2067     if (BlockInfo) {
2068       llvm::Value *V = Arg.isIndirect()
2069                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2070                            : Arg.getDirectValue();
2071       setBlockContextParameter(IPD, ArgNo, V);
2072       return;
2073     }
2074   }
2075 
2076   Address DeclPtr = Address::invalid();
2077   bool DoStore = false;
2078   bool IsScalar = hasScalarEvaluationKind(Ty);
2079   // If we already have a pointer to the argument, reuse the input pointer.
2080   if (Arg.isIndirect()) {
2081     DeclPtr = Arg.getIndirectAddress();
2082     // If we have a prettier pointer type at this point, bitcast to that.
2083     unsigned AS = DeclPtr.getType()->getAddressSpace();
2084     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2085     if (DeclPtr.getType() != IRTy)
2086       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2087     // Indirect argument is in alloca address space, which may be different
2088     // from the default address space.
2089     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2090     auto *V = DeclPtr.getPointer();
2091     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2092     auto DestLangAS =
2093         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2094     if (SrcLangAS != DestLangAS) {
2095       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2096              CGM.getDataLayout().getAllocaAddrSpace());
2097       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2098       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2099       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2100                             *this, V, SrcLangAS, DestLangAS, T, true),
2101                         DeclPtr.getAlignment());
2102     }
2103 
2104     // Push a destructor cleanup for this parameter if the ABI requires it.
2105     // Don't push a cleanup in a thunk for a method that will also emit a
2106     // cleanup.
2107     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2108         Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2109       if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
2110         assert((DtorKind == QualType::DK_cxx_destructor ||
2111                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2112                "unexpected destructor type");
2113         pushDestroy(DtorKind, DeclPtr, Ty);
2114         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2115             EHStack.stable_begin();
2116       }
2117     }
2118   } else {
2119     // Check if the parameter address is controlled by OpenMP runtime.
2120     Address OpenMPLocalAddr =
2121         getLangOpts().OpenMP
2122             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2123             : Address::invalid();
2124     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2125       DeclPtr = OpenMPLocalAddr;
2126     } else {
2127       // Otherwise, create a temporary to hold the value.
2128       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2129                               D.getName() + ".addr");
2130     }
2131     DoStore = true;
2132   }
2133 
2134   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2135 
2136   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2137   if (IsScalar) {
2138     Qualifiers qs = Ty.getQualifiers();
2139     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2140       // We honor __attribute__((ns_consumed)) for types with lifetime.
2141       // For __strong, it's handled by just skipping the initial retain;
2142       // otherwise we have to balance out the initial +1 with an extra
2143       // cleanup to do the release at the end of the function.
2144       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2145 
2146       // 'self' is always formally __strong, but if this is not an
2147       // init method then we don't want to retain it.
2148       if (D.isARCPseudoStrong()) {
2149         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
2150         assert(&D == method->getSelfDecl());
2151         assert(lt == Qualifiers::OCL_Strong);
2152         assert(qs.hasConst());
2153         assert(method->getMethodFamily() != OMF_init);
2154         (void) method;
2155         lt = Qualifiers::OCL_ExplicitNone;
2156       }
2157 
2158       // Load objects passed indirectly.
2159       if (Arg.isIndirect() && !ArgVal)
2160         ArgVal = Builder.CreateLoad(DeclPtr);
2161 
2162       if (lt == Qualifiers::OCL_Strong) {
2163         if (!isConsumed) {
2164           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2165             // use objc_storeStrong(&dest, value) for retaining the
2166             // object. But first, store a null into 'dest' because
2167             // objc_storeStrong attempts to release its old value.
2168             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2169             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2170             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2171             DoStore = false;
2172           }
2173           else
2174           // Don't use objc_retainBlock for block pointers, because we
2175           // don't want to Block_copy something just because we got it
2176           // as a parameter.
2177             ArgVal = EmitARCRetainNonBlock(ArgVal);
2178         }
2179       } else {
2180         // Push the cleanup for a consumed parameter.
2181         if (isConsumed) {
2182           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2183                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2184           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2185                                                    precise);
2186         }
2187 
2188         if (lt == Qualifiers::OCL_Weak) {
2189           EmitARCInitWeak(DeclPtr, ArgVal);
2190           DoStore = false; // The weak init is a store, no need to do two.
2191         }
2192       }
2193 
2194       // Enter the cleanup scope.
2195       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2196     }
2197   }
2198 
2199   // Store the initial value into the alloca.
2200   if (DoStore)
2201     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2202 
2203   setAddrOfLocalVar(&D, DeclPtr);
2204 
2205   // Emit debug info for param declaration.
2206   if (CGDebugInfo *DI = getDebugInfo()) {
2207     if (CGM.getCodeGenOpts().getDebugInfo() >=
2208         codegenoptions::LimitedDebugInfo) {
2209       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2210     }
2211   }
2212 
2213   if (D.hasAttr<AnnotateAttr>())
2214     EmitVarAnnotations(&D, DeclPtr.getPointer());
2215 
2216   // We can only check return value nullability if all arguments to the
2217   // function satisfy their nullability preconditions. This makes it necessary
2218   // to emit null checks for args in the function body itself.
2219   if (requiresReturnValueNullabilityCheck()) {
2220     auto Nullability = Ty->getNullability(getContext());
2221     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2222       SanitizerScope SanScope(this);
2223       RetValNullabilityPrecondition =
2224           Builder.CreateAnd(RetValNullabilityPrecondition,
2225                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2226     }
2227   }
2228 }
2229 
2230 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2231                                             CodeGenFunction *CGF) {
2232   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2233     return;
2234   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2235 }
2236