1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "CGOpenCLRuntime.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Type.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 33 void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::IndirectField: 49 case Decl::ObjCIvar: 50 case Decl::ObjCAtDefsField: 51 case Decl::ParmVar: 52 case Decl::ImplicitParam: 53 case Decl::ClassTemplate: 54 case Decl::FunctionTemplate: 55 case Decl::TypeAliasTemplate: 56 case Decl::TemplateTemplateParm: 57 case Decl::ObjCMethod: 58 case Decl::ObjCCategory: 59 case Decl::ObjCProtocol: 60 case Decl::ObjCInterface: 61 case Decl::ObjCCategoryImpl: 62 case Decl::ObjCImplementation: 63 case Decl::ObjCProperty: 64 case Decl::ObjCCompatibleAlias: 65 case Decl::AccessSpec: 66 case Decl::LinkageSpec: 67 case Decl::ObjCPropertyImpl: 68 case Decl::ObjCClass: 69 case Decl::ObjCForwardProtocol: 70 case Decl::FileScopeAsm: 71 case Decl::Friend: 72 case Decl::FriendTemplate: 73 case Decl::Block: 74 case Decl::ClassScopeFunctionSpecialization: 75 llvm_unreachable("Declaration should not be in declstmts!"); 76 case Decl::Function: // void X(); 77 case Decl::Record: // struct/union/class X; 78 case Decl::Enum: // enum X; 79 case Decl::EnumConstant: // enum ? { X = ? } 80 case Decl::CXXRecord: // struct/union/class X; [C++] 81 case Decl::Using: // using X; [C++] 82 case Decl::UsingShadow: 83 case Decl::UsingDirective: // using namespace X; [C++] 84 case Decl::NamespaceAlias: 85 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 86 case Decl::Label: // __label__ x; 87 // None of these decls require codegen support. 88 return; 89 90 case Decl::Var: { 91 const VarDecl &VD = cast<VarDecl>(D); 92 assert(VD.isLocalVarDecl() && 93 "Should not see file-scope variables inside a function!"); 94 return EmitVarDecl(VD); 95 } 96 97 case Decl::Typedef: // typedef int X; 98 case Decl::TypeAlias: { // using X = int; [C++0x] 99 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 100 QualType Ty = TD.getUnderlyingType(); 101 102 if (Ty->isVariablyModifiedType()) 103 EmitVariablyModifiedType(Ty); 104 } 105 } 106 } 107 108 /// EmitVarDecl - This method handles emission of any variable declaration 109 /// inside a function, including static vars etc. 110 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 111 switch (D.getStorageClass()) { 112 case SC_None: 113 case SC_Auto: 114 case SC_Register: 115 return EmitAutoVarDecl(D); 116 case SC_Static: { 117 llvm::GlobalValue::LinkageTypes Linkage = 118 llvm::GlobalValue::InternalLinkage; 119 120 // If the function definition has some sort of weak linkage, its 121 // static variables should also be weak so that they get properly 122 // uniqued. We can't do this in C, though, because there's no 123 // standard way to agree on which variables are the same (i.e. 124 // there's no mangling). 125 if (getContext().getLangOptions().CPlusPlus) 126 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 127 Linkage = CurFn->getLinkage(); 128 129 return EmitStaticVarDecl(D, Linkage); 130 } 131 case SC_Extern: 132 case SC_PrivateExtern: 133 // Don't emit it now, allow it to be emitted lazily on its first use. 134 return; 135 case SC_OpenCLWorkGroupLocal: 136 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 137 } 138 139 llvm_unreachable("Unknown storage class"); 140 } 141 142 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 143 const char *Separator) { 144 CodeGenModule &CGM = CGF.CGM; 145 if (CGF.getContext().getLangOptions().CPlusPlus) { 146 StringRef Name = CGM.getMangledName(&D); 147 return Name.str(); 148 } 149 150 std::string ContextName; 151 if (!CGF.CurFuncDecl) { 152 // Better be in a block declared in global scope. 153 const NamedDecl *ND = cast<NamedDecl>(&D); 154 const DeclContext *DC = ND->getDeclContext(); 155 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 156 MangleBuffer Name; 157 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 158 ContextName = Name.getString(); 159 } 160 else 161 llvm_unreachable("Unknown context for block static var decl"); 162 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 163 StringRef Name = CGM.getMangledName(FD); 164 ContextName = Name.str(); 165 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 166 ContextName = CGF.CurFn->getName(); 167 else 168 llvm_unreachable("Unknown context for static var decl"); 169 170 return ContextName + Separator + D.getNameAsString(); 171 } 172 173 llvm::GlobalVariable * 174 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 175 const char *Separator, 176 llvm::GlobalValue::LinkageTypes Linkage) { 177 QualType Ty = D.getType(); 178 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 179 180 std::string Name = GetStaticDeclName(*this, D, Separator); 181 182 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 183 llvm::GlobalVariable *GV = 184 new llvm::GlobalVariable(CGM.getModule(), LTy, 185 Ty.isConstant(getContext()), Linkage, 186 CGM.EmitNullConstant(D.getType()), Name, 0, 187 D.isThreadSpecified(), 188 CGM.getContext().getTargetAddressSpace(Ty)); 189 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 190 if (Linkage != llvm::GlobalValue::InternalLinkage) 191 GV->setVisibility(CurFn->getVisibility()); 192 return GV; 193 } 194 195 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 196 /// global variable that has already been created for it. If the initializer 197 /// has a different type than GV does, this may free GV and return a different 198 /// one. Otherwise it just returns GV. 199 llvm::GlobalVariable * 200 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 201 llvm::GlobalVariable *GV) { 202 llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this); 203 204 // If constant emission failed, then this should be a C++ static 205 // initializer. 206 if (!Init) { 207 if (!getContext().getLangOptions().CPlusPlus) 208 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 209 else if (Builder.GetInsertBlock()) { 210 // Since we have a static initializer, this global variable can't 211 // be constant. 212 GV->setConstant(false); 213 214 EmitCXXGuardedInit(D, GV); 215 } 216 return GV; 217 } 218 219 // The initializer may differ in type from the global. Rewrite 220 // the global to match the initializer. (We have to do this 221 // because some types, like unions, can't be completely represented 222 // in the LLVM type system.) 223 if (GV->getType()->getElementType() != Init->getType()) { 224 llvm::GlobalVariable *OldGV = GV; 225 226 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 227 OldGV->isConstant(), 228 OldGV->getLinkage(), Init, "", 229 /*InsertBefore*/ OldGV, 230 D.isThreadSpecified(), 231 CGM.getContext().getTargetAddressSpace(D.getType())); 232 GV->setVisibility(OldGV->getVisibility()); 233 234 // Steal the name of the old global 235 GV->takeName(OldGV); 236 237 // Replace all uses of the old global with the new global 238 llvm::Constant *NewPtrForOldDecl = 239 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 240 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 241 242 // Erase the old global, since it is no longer used. 243 OldGV->eraseFromParent(); 244 } 245 246 GV->setInitializer(Init); 247 return GV; 248 } 249 250 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 251 llvm::GlobalValue::LinkageTypes Linkage) { 252 llvm::Value *&DMEntry = LocalDeclMap[&D]; 253 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 254 255 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 256 257 // Store into LocalDeclMap before generating initializer to handle 258 // circular references. 259 DMEntry = GV; 260 261 // We can't have a VLA here, but we can have a pointer to a VLA, 262 // even though that doesn't really make any sense. 263 // Make sure to evaluate VLA bounds now so that we have them for later. 264 if (D.getType()->isVariablyModifiedType()) 265 EmitVariablyModifiedType(D.getType()); 266 267 // Local static block variables must be treated as globals as they may be 268 // referenced in their RHS initializer block-literal expresion. 269 CGM.setStaticLocalDeclAddress(&D, GV); 270 271 // If this value has an initializer, emit it. 272 if (D.getInit()) 273 GV = AddInitializerToStaticVarDecl(D, GV); 274 275 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 276 277 if (D.hasAttr<AnnotateAttr>()) 278 CGM.AddGlobalAnnotations(&D, GV); 279 280 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 281 GV->setSection(SA->getName()); 282 283 if (D.hasAttr<UsedAttr>()) 284 CGM.AddUsedGlobal(GV); 285 286 // We may have to cast the constant because of the initializer 287 // mismatch above. 288 // 289 // FIXME: It is really dangerous to store this in the map; if anyone 290 // RAUW's the GV uses of this constant will be invalid. 291 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 292 llvm::Type *LPtrTy = 293 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 294 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 295 296 // Emit global variable debug descriptor for static vars. 297 CGDebugInfo *DI = getDebugInfo(); 298 if (DI) { 299 DI->setLocation(D.getLocation()); 300 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 301 } 302 } 303 304 namespace { 305 struct DestroyObject : EHScopeStack::Cleanup { 306 DestroyObject(llvm::Value *addr, QualType type, 307 CodeGenFunction::Destroyer *destroyer, 308 bool useEHCleanupForArray) 309 : addr(addr), type(type), destroyer(*destroyer), 310 useEHCleanupForArray(useEHCleanupForArray) {} 311 312 llvm::Value *addr; 313 QualType type; 314 CodeGenFunction::Destroyer &destroyer; 315 bool useEHCleanupForArray; 316 317 void Emit(CodeGenFunction &CGF, Flags flags) { 318 // Don't use an EH cleanup recursively from an EH cleanup. 319 bool useEHCleanupForArray = 320 flags.isForNormalCleanup() && this->useEHCleanupForArray; 321 322 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 323 } 324 }; 325 326 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 327 DestroyNRVOVariable(llvm::Value *addr, 328 const CXXDestructorDecl *Dtor, 329 llvm::Value *NRVOFlag) 330 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 331 332 const CXXDestructorDecl *Dtor; 333 llvm::Value *NRVOFlag; 334 llvm::Value *Loc; 335 336 void Emit(CodeGenFunction &CGF, Flags flags) { 337 // Along the exceptions path we always execute the dtor. 338 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 339 340 llvm::BasicBlock *SkipDtorBB = 0; 341 if (NRVO) { 342 // If we exited via NRVO, we skip the destructor call. 343 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 344 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 345 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 346 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 347 CGF.EmitBlock(RunDtorBB); 348 } 349 350 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 351 /*ForVirtualBase=*/false, Loc); 352 353 if (NRVO) CGF.EmitBlock(SkipDtorBB); 354 } 355 }; 356 357 struct CallStackRestore : EHScopeStack::Cleanup { 358 llvm::Value *Stack; 359 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 360 void Emit(CodeGenFunction &CGF, Flags flags) { 361 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 362 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 363 CGF.Builder.CreateCall(F, V); 364 } 365 }; 366 367 struct ExtendGCLifetime : EHScopeStack::Cleanup { 368 const VarDecl &Var; 369 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 370 371 void Emit(CodeGenFunction &CGF, Flags flags) { 372 // Compute the address of the local variable, in case it's a 373 // byref or something. 374 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 375 SourceLocation()); 376 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 377 CGF.EmitExtendGCLifetime(value); 378 } 379 }; 380 381 struct CallCleanupFunction : EHScopeStack::Cleanup { 382 llvm::Constant *CleanupFn; 383 const CGFunctionInfo &FnInfo; 384 const VarDecl &Var; 385 386 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 387 const VarDecl *Var) 388 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 389 390 void Emit(CodeGenFunction &CGF, Flags flags) { 391 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 392 SourceLocation()); 393 // Compute the address of the local variable, in case it's a byref 394 // or something. 395 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 396 397 // In some cases, the type of the function argument will be different from 398 // the type of the pointer. An example of this is 399 // void f(void* arg); 400 // __attribute__((cleanup(f))) void *g; 401 // 402 // To fix this we insert a bitcast here. 403 QualType ArgTy = FnInfo.arg_begin()->type; 404 llvm::Value *Arg = 405 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 406 407 CallArgList Args; 408 Args.add(RValue::get(Arg), 409 CGF.getContext().getPointerType(Var.getType())); 410 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 411 } 412 }; 413 } 414 415 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 416 /// variable with lifetime. 417 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 418 llvm::Value *addr, 419 Qualifiers::ObjCLifetime lifetime) { 420 switch (lifetime) { 421 case Qualifiers::OCL_None: 422 llvm_unreachable("present but none"); 423 424 case Qualifiers::OCL_ExplicitNone: 425 // nothing to do 426 break; 427 428 case Qualifiers::OCL_Strong: { 429 CodeGenFunction::Destroyer &destroyer = 430 (var.hasAttr<ObjCPreciseLifetimeAttr>() 431 ? CodeGenFunction::destroyARCStrongPrecise 432 : CodeGenFunction::destroyARCStrongImprecise); 433 434 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 435 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 436 cleanupKind & EHCleanup); 437 break; 438 } 439 case Qualifiers::OCL_Autoreleasing: 440 // nothing to do 441 break; 442 443 case Qualifiers::OCL_Weak: 444 // __weak objects always get EH cleanups; otherwise, exceptions 445 // could cause really nasty crashes instead of mere leaks. 446 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 447 CodeGenFunction::destroyARCWeak, 448 /*useEHCleanup*/ true); 449 break; 450 } 451 } 452 453 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 454 if (const Expr *e = dyn_cast<Expr>(s)) { 455 // Skip the most common kinds of expressions that make 456 // hierarchy-walking expensive. 457 s = e = e->IgnoreParenCasts(); 458 459 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 460 return (ref->getDecl() == &var); 461 } 462 463 for (Stmt::const_child_range children = s->children(); children; ++children) 464 // children might be null; as in missing decl or conditional of an if-stmt. 465 if ((*children) && isAccessedBy(var, *children)) 466 return true; 467 468 return false; 469 } 470 471 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 472 if (!decl) return false; 473 if (!isa<VarDecl>(decl)) return false; 474 const VarDecl *var = cast<VarDecl>(decl); 475 return isAccessedBy(*var, e); 476 } 477 478 static void drillIntoBlockVariable(CodeGenFunction &CGF, 479 LValue &lvalue, 480 const VarDecl *var) { 481 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 482 } 483 484 void CodeGenFunction::EmitScalarInit(const Expr *init, 485 const ValueDecl *D, 486 LValue lvalue, 487 bool capturedByInit) { 488 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 489 if (!lifetime) { 490 llvm::Value *value = EmitScalarExpr(init); 491 if (capturedByInit) 492 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 493 EmitStoreThroughLValue(RValue::get(value), lvalue); 494 return; 495 } 496 497 // If we're emitting a value with lifetime, we have to do the 498 // initialization *before* we leave the cleanup scopes. 499 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 500 enterFullExpression(ewc); 501 init = ewc->getSubExpr(); 502 } 503 CodeGenFunction::RunCleanupsScope Scope(*this); 504 505 // We have to maintain the illusion that the variable is 506 // zero-initialized. If the variable might be accessed in its 507 // initializer, zero-initialize before running the initializer, then 508 // actually perform the initialization with an assign. 509 bool accessedByInit = false; 510 if (lifetime != Qualifiers::OCL_ExplicitNone) 511 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 512 if (accessedByInit) { 513 LValue tempLV = lvalue; 514 // Drill down to the __block object if necessary. 515 if (capturedByInit) { 516 // We can use a simple GEP for this because it can't have been 517 // moved yet. 518 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 519 getByRefValueLLVMField(cast<VarDecl>(D)))); 520 } 521 522 llvm::PointerType *ty 523 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 524 ty = cast<llvm::PointerType>(ty->getElementType()); 525 526 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 527 528 // If __weak, we want to use a barrier under certain conditions. 529 if (lifetime == Qualifiers::OCL_Weak) 530 EmitARCInitWeak(tempLV.getAddress(), zero); 531 532 // Otherwise just do a simple store. 533 else 534 EmitStoreOfScalar(zero, tempLV); 535 } 536 537 // Emit the initializer. 538 llvm::Value *value = 0; 539 540 switch (lifetime) { 541 case Qualifiers::OCL_None: 542 llvm_unreachable("present but none"); 543 544 case Qualifiers::OCL_ExplicitNone: 545 // nothing to do 546 value = EmitScalarExpr(init); 547 break; 548 549 case Qualifiers::OCL_Strong: { 550 value = EmitARCRetainScalarExpr(init); 551 break; 552 } 553 554 case Qualifiers::OCL_Weak: { 555 // No way to optimize a producing initializer into this. It's not 556 // worth optimizing for, because the value will immediately 557 // disappear in the common case. 558 value = EmitScalarExpr(init); 559 560 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 561 if (accessedByInit) 562 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 563 else 564 EmitARCInitWeak(lvalue.getAddress(), value); 565 return; 566 } 567 568 case Qualifiers::OCL_Autoreleasing: 569 value = EmitARCRetainAutoreleaseScalarExpr(init); 570 break; 571 } 572 573 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 574 575 // If the variable might have been accessed by its initializer, we 576 // might have to initialize with a barrier. We have to do this for 577 // both __weak and __strong, but __weak got filtered out above. 578 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 579 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 580 EmitStoreOfScalar(value, lvalue); 581 EmitARCRelease(oldValue, /*precise*/ false); 582 return; 583 } 584 585 EmitStoreOfScalar(value, lvalue); 586 } 587 588 /// EmitScalarInit - Initialize the given lvalue with the given object. 589 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 590 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 591 if (!lifetime) 592 return EmitStoreThroughLValue(RValue::get(init), lvalue); 593 594 switch (lifetime) { 595 case Qualifiers::OCL_None: 596 llvm_unreachable("present but none"); 597 598 case Qualifiers::OCL_ExplicitNone: 599 // nothing to do 600 break; 601 602 case Qualifiers::OCL_Strong: 603 init = EmitARCRetain(lvalue.getType(), init); 604 break; 605 606 case Qualifiers::OCL_Weak: 607 // Initialize and then skip the primitive store. 608 EmitARCInitWeak(lvalue.getAddress(), init); 609 return; 610 611 case Qualifiers::OCL_Autoreleasing: 612 init = EmitARCRetainAutorelease(lvalue.getType(), init); 613 break; 614 } 615 616 EmitStoreOfScalar(init, lvalue); 617 } 618 619 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 620 /// non-zero parts of the specified initializer with equal or fewer than 621 /// NumStores scalar stores. 622 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 623 unsigned &NumStores) { 624 // Zero and Undef never requires any extra stores. 625 if (isa<llvm::ConstantAggregateZero>(Init) || 626 isa<llvm::ConstantPointerNull>(Init) || 627 isa<llvm::UndefValue>(Init)) 628 return true; 629 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 630 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 631 isa<llvm::ConstantExpr>(Init)) 632 return Init->isNullValue() || NumStores--; 633 634 // See if we can emit each element. 635 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 636 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 637 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 638 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 639 return false; 640 } 641 return true; 642 } 643 644 // Anything else is hard and scary. 645 return false; 646 } 647 648 /// emitStoresForInitAfterMemset - For inits that 649 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 650 /// stores that would be required. 651 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 652 bool isVolatile, CGBuilderTy &Builder) { 653 // Zero doesn't require any stores. 654 if (isa<llvm::ConstantAggregateZero>(Init) || 655 isa<llvm::ConstantPointerNull>(Init) || 656 isa<llvm::UndefValue>(Init)) 657 return; 658 659 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 660 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 661 isa<llvm::ConstantExpr>(Init)) { 662 if (!Init->isNullValue()) 663 Builder.CreateStore(Init, Loc, isVolatile); 664 return; 665 } 666 667 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 668 "Unknown value type!"); 669 670 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 671 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 672 if (Elt->isNullValue()) continue; 673 674 // Otherwise, get a pointer to the element and emit it. 675 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 676 isVolatile, Builder); 677 } 678 } 679 680 681 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 682 /// plus some stores to initialize a local variable instead of using a memcpy 683 /// from a constant global. It is beneficial to use memset if the global is all 684 /// zeros, or mostly zeros and large. 685 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 686 uint64_t GlobalSize) { 687 // If a global is all zeros, always use a memset. 688 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 689 690 691 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 692 // do it if it will require 6 or fewer scalar stores. 693 // TODO: Should budget depends on the size? Avoiding a large global warrants 694 // plopping in more stores. 695 unsigned StoreBudget = 6; 696 uint64_t SizeLimit = 32; 697 698 return GlobalSize > SizeLimit && 699 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 700 } 701 702 703 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 704 /// variable declaration with auto, register, or no storage class specifier. 705 /// These turn into simple stack objects, or GlobalValues depending on target. 706 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 707 AutoVarEmission emission = EmitAutoVarAlloca(D); 708 EmitAutoVarInit(emission); 709 EmitAutoVarCleanups(emission); 710 } 711 712 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 713 /// local variable. Does not emit initalization or destruction. 714 CodeGenFunction::AutoVarEmission 715 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 716 QualType Ty = D.getType(); 717 718 AutoVarEmission emission(D); 719 720 bool isByRef = D.hasAttr<BlocksAttr>(); 721 emission.IsByRef = isByRef; 722 723 CharUnits alignment = getContext().getDeclAlign(&D); 724 emission.Alignment = alignment; 725 726 // If the type is variably-modified, emit all the VLA sizes for it. 727 if (Ty->isVariablyModifiedType()) 728 EmitVariablyModifiedType(Ty); 729 730 llvm::Value *DeclPtr; 731 if (Ty->isConstantSizeType()) { 732 if (!Target.useGlobalsForAutomaticVariables()) { 733 bool NRVO = getContext().getLangOptions().ElideConstructors && 734 D.isNRVOVariable(); 735 736 // If this value is a POD array or struct with a statically 737 // determinable constant initializer, there are optimizations we 738 // can do. 739 // TODO: we can potentially constant-evaluate non-POD structs and 740 // arrays as long as the initialization is trivial (e.g. if they 741 // have a non-trivial destructor, but not a non-trivial constructor). 742 if (D.getInit() && 743 (Ty->isArrayType() || Ty->isRecordType()) && 744 (Ty.isPODType(getContext()) || 745 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 746 D.getInit()->isConstantInitializer(getContext(), false)) { 747 748 // If the variable's a const type, and it's neither an NRVO 749 // candidate nor a __block variable, emit it as a global instead. 750 if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() && 751 !NRVO && !isByRef) { 752 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 753 754 emission.Address = 0; // signal this condition to later callbacks 755 assert(emission.wasEmittedAsGlobal()); 756 return emission; 757 } 758 759 // Otherwise, tell the initialization code that we're in this case. 760 emission.IsConstantAggregate = true; 761 } 762 763 // A normal fixed sized variable becomes an alloca in the entry block, 764 // unless it's an NRVO variable. 765 llvm::Type *LTy = ConvertTypeForMem(Ty); 766 767 if (NRVO) { 768 // The named return value optimization: allocate this variable in the 769 // return slot, so that we can elide the copy when returning this 770 // variable (C++0x [class.copy]p34). 771 DeclPtr = ReturnValue; 772 773 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 774 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 775 // Create a flag that is used to indicate when the NRVO was applied 776 // to this variable. Set it to zero to indicate that NRVO was not 777 // applied. 778 llvm::Value *Zero = Builder.getFalse(); 779 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 780 EnsureInsertPoint(); 781 Builder.CreateStore(Zero, NRVOFlag); 782 783 // Record the NRVO flag for this variable. 784 NRVOFlags[&D] = NRVOFlag; 785 emission.NRVOFlag = NRVOFlag; 786 } 787 } 788 } else { 789 if (isByRef) 790 LTy = BuildByRefType(&D); 791 792 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 793 Alloc->setName(D.getNameAsString()); 794 795 CharUnits allocaAlignment = alignment; 796 if (isByRef) 797 allocaAlignment = std::max(allocaAlignment, 798 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 799 Alloc->setAlignment(allocaAlignment.getQuantity()); 800 DeclPtr = Alloc; 801 } 802 } else { 803 // Targets that don't support recursion emit locals as globals. 804 const char *Class = 805 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 806 DeclPtr = CreateStaticVarDecl(D, Class, 807 llvm::GlobalValue::InternalLinkage); 808 } 809 } else { 810 EnsureInsertPoint(); 811 812 if (!DidCallStackSave) { 813 // Save the stack. 814 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 815 816 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 817 llvm::Value *V = Builder.CreateCall(F); 818 819 Builder.CreateStore(V, Stack); 820 821 DidCallStackSave = true; 822 823 // Push a cleanup block and restore the stack there. 824 // FIXME: in general circumstances, this should be an EH cleanup. 825 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 826 } 827 828 llvm::Value *elementCount; 829 QualType elementType; 830 llvm::tie(elementCount, elementType) = getVLASize(Ty); 831 832 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 833 834 // Allocate memory for the array. 835 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 836 vla->setAlignment(alignment.getQuantity()); 837 838 DeclPtr = vla; 839 } 840 841 llvm::Value *&DMEntry = LocalDeclMap[&D]; 842 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 843 DMEntry = DeclPtr; 844 emission.Address = DeclPtr; 845 846 // Emit debug info for local var declaration. 847 if (HaveInsertPoint()) 848 if (CGDebugInfo *DI = getDebugInfo()) { 849 DI->setLocation(D.getLocation()); 850 if (Target.useGlobalsForAutomaticVariables()) { 851 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 852 } else 853 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 854 } 855 856 if (D.hasAttr<AnnotateAttr>()) 857 EmitVarAnnotations(&D, emission.Address); 858 859 return emission; 860 } 861 862 /// Determines whether the given __block variable is potentially 863 /// captured by the given expression. 864 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 865 // Skip the most common kinds of expressions that make 866 // hierarchy-walking expensive. 867 e = e->IgnoreParenCasts(); 868 869 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 870 const BlockDecl *block = be->getBlockDecl(); 871 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 872 e = block->capture_end(); i != e; ++i) { 873 if (i->getVariable() == &var) 874 return true; 875 } 876 877 // No need to walk into the subexpressions. 878 return false; 879 } 880 881 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 882 const CompoundStmt *CS = SE->getSubStmt(); 883 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 884 BE = CS->body_end(); BI != BE; ++BI) 885 if (Expr *E = dyn_cast<Expr>((*BI))) { 886 if (isCapturedBy(var, E)) 887 return true; 888 } 889 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 890 // special case declarations 891 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 892 I != E; ++I) { 893 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 894 Expr *Init = VD->getInit(); 895 if (Init && isCapturedBy(var, Init)) 896 return true; 897 } 898 } 899 } 900 else 901 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 902 // Later, provide code to poke into statements for capture analysis. 903 return true; 904 return false; 905 } 906 907 for (Stmt::const_child_range children = e->children(); children; ++children) 908 if (isCapturedBy(var, cast<Expr>(*children))) 909 return true; 910 911 return false; 912 } 913 914 /// \brief Determine whether the given initializer is trivial in the sense 915 /// that it requires no code to be generated. 916 static bool isTrivialInitializer(const Expr *Init) { 917 if (!Init) 918 return true; 919 920 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 921 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 922 if (Constructor->isTrivial() && 923 Constructor->isDefaultConstructor() && 924 !Construct->requiresZeroInitialization()) 925 return true; 926 927 return false; 928 } 929 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 930 assert(emission.Variable && "emission was not valid!"); 931 932 // If this was emitted as a global constant, we're done. 933 if (emission.wasEmittedAsGlobal()) return; 934 935 const VarDecl &D = *emission.Variable; 936 QualType type = D.getType(); 937 938 // If this local has an initializer, emit it now. 939 const Expr *Init = D.getInit(); 940 941 // If we are at an unreachable point, we don't need to emit the initializer 942 // unless it contains a label. 943 if (!HaveInsertPoint()) { 944 if (!Init || !ContainsLabel(Init)) return; 945 EnsureInsertPoint(); 946 } 947 948 // Initialize the structure of a __block variable. 949 if (emission.IsByRef) 950 emitByrefStructureInit(emission); 951 952 if (isTrivialInitializer(Init)) 953 return; 954 955 CharUnits alignment = emission.Alignment; 956 957 // Check whether this is a byref variable that's potentially 958 // captured and moved by its own initializer. If so, we'll need to 959 // emit the initializer first, then copy into the variable. 960 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 961 962 llvm::Value *Loc = 963 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 964 965 if (!emission.IsConstantAggregate) { 966 LValue lv = MakeAddrLValue(Loc, type, alignment.getQuantity()); 967 lv.setNonGC(true); 968 return EmitExprAsInit(Init, &D, lv, capturedByInit); 969 } 970 971 // If this is a simple aggregate initialization, we can optimize it 972 // in various ways. 973 assert(!capturedByInit && "constant init contains a capturing block?"); 974 975 bool isVolatile = type.isVolatileQualified(); 976 977 llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this); 978 assert(constant != 0 && "Wasn't a simple constant init?"); 979 980 llvm::Value *SizeVal = 981 llvm::ConstantInt::get(IntPtrTy, 982 getContext().getTypeSizeInChars(type).getQuantity()); 983 984 llvm::Type *BP = Int8PtrTy; 985 if (Loc->getType() != BP) 986 Loc = Builder.CreateBitCast(Loc, BP); 987 988 // If the initializer is all or mostly zeros, codegen with memset then do 989 // a few stores afterward. 990 if (shouldUseMemSetPlusStoresToInitialize(constant, 991 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 992 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 993 alignment.getQuantity(), isVolatile); 994 if (!constant->isNullValue()) { 995 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 996 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 997 } 998 } else { 999 // Otherwise, create a temporary global with the initializer then 1000 // memcpy from the global to the alloca. 1001 std::string Name = GetStaticDeclName(*this, D, "."); 1002 llvm::GlobalVariable *GV = 1003 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1004 llvm::GlobalValue::PrivateLinkage, 1005 constant, Name, 0, false, 0); 1006 GV->setAlignment(alignment.getQuantity()); 1007 GV->setUnnamedAddr(true); 1008 1009 llvm::Value *SrcPtr = GV; 1010 if (SrcPtr->getType() != BP) 1011 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1012 1013 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1014 isVolatile); 1015 } 1016 } 1017 1018 /// Emit an expression as an initializer for a variable at the given 1019 /// location. The expression is not necessarily the normal 1020 /// initializer for the variable, and the address is not necessarily 1021 /// its normal location. 1022 /// 1023 /// \param init the initializing expression 1024 /// \param var the variable to act as if we're initializing 1025 /// \param loc the address to initialize; its type is a pointer 1026 /// to the LLVM mapping of the variable's type 1027 /// \param alignment the alignment of the address 1028 /// \param capturedByInit true if the variable is a __block variable 1029 /// whose address is potentially changed by the initializer 1030 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1031 const ValueDecl *D, 1032 LValue lvalue, 1033 bool capturedByInit) { 1034 QualType type = D->getType(); 1035 1036 if (type->isReferenceType()) { 1037 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1038 if (capturedByInit) 1039 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1040 EmitStoreThroughLValue(rvalue, lvalue); 1041 } else if (!hasAggregateLLVMType(type)) { 1042 EmitScalarInit(init, D, lvalue, capturedByInit); 1043 } else if (type->isAnyComplexType()) { 1044 ComplexPairTy complex = EmitComplexExpr(init); 1045 if (capturedByInit) 1046 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1047 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile()); 1048 } else { 1049 // TODO: how can we delay here if D is captured by its initializer? 1050 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1051 AggValueSlot::IsDestructed, 1052 AggValueSlot::DoesNotNeedGCBarriers, 1053 AggValueSlot::IsNotAliased)); 1054 } 1055 } 1056 1057 /// Enter a destroy cleanup for the given local variable. 1058 void CodeGenFunction::emitAutoVarTypeCleanup( 1059 const CodeGenFunction::AutoVarEmission &emission, 1060 QualType::DestructionKind dtorKind) { 1061 assert(dtorKind != QualType::DK_none); 1062 1063 // Note that for __block variables, we want to destroy the 1064 // original stack object, not the possibly forwarded object. 1065 llvm::Value *addr = emission.getObjectAddress(*this); 1066 1067 const VarDecl *var = emission.Variable; 1068 QualType type = var->getType(); 1069 1070 CleanupKind cleanupKind = NormalAndEHCleanup; 1071 CodeGenFunction::Destroyer *destroyer = 0; 1072 1073 switch (dtorKind) { 1074 case QualType::DK_none: 1075 llvm_unreachable("no cleanup for trivially-destructible variable"); 1076 1077 case QualType::DK_cxx_destructor: 1078 // If there's an NRVO flag on the emission, we need a different 1079 // cleanup. 1080 if (emission.NRVOFlag) { 1081 assert(!type->isArrayType()); 1082 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1083 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1084 emission.NRVOFlag); 1085 return; 1086 } 1087 break; 1088 1089 case QualType::DK_objc_strong_lifetime: 1090 // Suppress cleanups for pseudo-strong variables. 1091 if (var->isARCPseudoStrong()) return; 1092 1093 // Otherwise, consider whether to use an EH cleanup or not. 1094 cleanupKind = getARCCleanupKind(); 1095 1096 // Use the imprecise destroyer by default. 1097 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1098 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1099 break; 1100 1101 case QualType::DK_objc_weak_lifetime: 1102 break; 1103 } 1104 1105 // If we haven't chosen a more specific destroyer, use the default. 1106 if (!destroyer) destroyer = &getDestroyer(dtorKind); 1107 1108 // Use an EH cleanup in array destructors iff the destructor itself 1109 // is being pushed as an EH cleanup. 1110 bool useEHCleanup = (cleanupKind & EHCleanup); 1111 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1112 useEHCleanup); 1113 } 1114 1115 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1116 assert(emission.Variable && "emission was not valid!"); 1117 1118 // If this was emitted as a global constant, we're done. 1119 if (emission.wasEmittedAsGlobal()) return; 1120 1121 const VarDecl &D = *emission.Variable; 1122 1123 // Check the type for a cleanup. 1124 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1125 emitAutoVarTypeCleanup(emission, dtorKind); 1126 1127 // In GC mode, honor objc_precise_lifetime. 1128 if (getLangOptions().getGC() != LangOptions::NonGC && 1129 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1130 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1131 } 1132 1133 // Handle the cleanup attribute. 1134 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1135 const FunctionDecl *FD = CA->getFunctionDecl(); 1136 1137 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1138 assert(F && "Could not find function!"); 1139 1140 const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD); 1141 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1142 } 1143 1144 // If this is a block variable, call _Block_object_destroy 1145 // (on the unforwarded address). 1146 if (emission.IsByRef) 1147 enterByrefCleanup(emission); 1148 } 1149 1150 CodeGenFunction::Destroyer & 1151 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1152 // This is surprisingly compiler-dependent. GCC 4.2 can't bind 1153 // references to functions directly in returns, and using '*&foo' 1154 // confuses MSVC. Luckily, the following code pattern works in both. 1155 Destroyer *destroyer = 0; 1156 switch (kind) { 1157 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1158 case QualType::DK_cxx_destructor: 1159 destroyer = &destroyCXXObject; 1160 break; 1161 case QualType::DK_objc_strong_lifetime: 1162 destroyer = &destroyARCStrongPrecise; 1163 break; 1164 case QualType::DK_objc_weak_lifetime: 1165 destroyer = &destroyARCWeak; 1166 break; 1167 } 1168 return *destroyer; 1169 } 1170 1171 /// pushDestroy - Push the standard destructor for the given type. 1172 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1173 llvm::Value *addr, QualType type) { 1174 assert(dtorKind && "cannot push destructor for trivial type"); 1175 1176 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1177 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1178 cleanupKind & EHCleanup); 1179 } 1180 1181 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1182 QualType type, Destroyer &destroyer, 1183 bool useEHCleanupForArray) { 1184 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1185 destroyer, useEHCleanupForArray); 1186 } 1187 1188 /// emitDestroy - Immediately perform the destruction of the given 1189 /// object. 1190 /// 1191 /// \param addr - the address of the object; a type* 1192 /// \param type - the type of the object; if an array type, all 1193 /// objects are destroyed in reverse order 1194 /// \param destroyer - the function to call to destroy individual 1195 /// elements 1196 /// \param useEHCleanupForArray - whether an EH cleanup should be 1197 /// used when destroying array elements, in case one of the 1198 /// destructions throws an exception 1199 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1200 Destroyer &destroyer, 1201 bool useEHCleanupForArray) { 1202 const ArrayType *arrayType = getContext().getAsArrayType(type); 1203 if (!arrayType) 1204 return destroyer(*this, addr, type); 1205 1206 llvm::Value *begin = addr; 1207 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1208 1209 // Normally we have to check whether the array is zero-length. 1210 bool checkZeroLength = true; 1211 1212 // But if the array length is constant, we can suppress that. 1213 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1214 // ...and if it's constant zero, we can just skip the entire thing. 1215 if (constLength->isZero()) return; 1216 checkZeroLength = false; 1217 } 1218 1219 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1220 emitArrayDestroy(begin, end, type, destroyer, 1221 checkZeroLength, useEHCleanupForArray); 1222 } 1223 1224 /// emitArrayDestroy - Destroys all the elements of the given array, 1225 /// beginning from last to first. The array cannot be zero-length. 1226 /// 1227 /// \param begin - a type* denoting the first element of the array 1228 /// \param end - a type* denoting one past the end of the array 1229 /// \param type - the element type of the array 1230 /// \param destroyer - the function to call to destroy elements 1231 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1232 /// the remaining elements in case the destruction of a single 1233 /// element throws 1234 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1235 llvm::Value *end, 1236 QualType type, 1237 Destroyer &destroyer, 1238 bool checkZeroLength, 1239 bool useEHCleanup) { 1240 assert(!type->isArrayType()); 1241 1242 // The basic structure here is a do-while loop, because we don't 1243 // need to check for the zero-element case. 1244 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1245 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1246 1247 if (checkZeroLength) { 1248 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1249 "arraydestroy.isempty"); 1250 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1251 } 1252 1253 // Enter the loop body, making that address the current address. 1254 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1255 EmitBlock(bodyBB); 1256 llvm::PHINode *elementPast = 1257 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1258 elementPast->addIncoming(end, entryBB); 1259 1260 // Shift the address back by one element. 1261 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1262 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1263 "arraydestroy.element"); 1264 1265 if (useEHCleanup) 1266 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1267 1268 // Perform the actual destruction there. 1269 destroyer(*this, element, type); 1270 1271 if (useEHCleanup) 1272 PopCleanupBlock(); 1273 1274 // Check whether we've reached the end. 1275 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1276 Builder.CreateCondBr(done, doneBB, bodyBB); 1277 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1278 1279 // Done. 1280 EmitBlock(doneBB); 1281 } 1282 1283 /// Perform partial array destruction as if in an EH cleanup. Unlike 1284 /// emitArrayDestroy, the element type here may still be an array type. 1285 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1286 llvm::Value *begin, llvm::Value *end, 1287 QualType type, 1288 CodeGenFunction::Destroyer &destroyer) { 1289 // If the element type is itself an array, drill down. 1290 unsigned arrayDepth = 0; 1291 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1292 // VLAs don't require a GEP index to walk into. 1293 if (!isa<VariableArrayType>(arrayType)) 1294 arrayDepth++; 1295 type = arrayType->getElementType(); 1296 } 1297 1298 if (arrayDepth) { 1299 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1300 1301 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1302 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1303 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1304 } 1305 1306 // Destroy the array. We don't ever need an EH cleanup because we 1307 // assume that we're in an EH cleanup ourselves, so a throwing 1308 // destructor causes an immediate terminate. 1309 CGF.emitArrayDestroy(begin, end, type, destroyer, 1310 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1311 } 1312 1313 namespace { 1314 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1315 /// array destroy where the end pointer is regularly determined and 1316 /// does not need to be loaded from a local. 1317 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1318 llvm::Value *ArrayBegin; 1319 llvm::Value *ArrayEnd; 1320 QualType ElementType; 1321 CodeGenFunction::Destroyer &Destroyer; 1322 public: 1323 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1324 QualType elementType, 1325 CodeGenFunction::Destroyer *destroyer) 1326 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1327 ElementType(elementType), Destroyer(*destroyer) {} 1328 1329 void Emit(CodeGenFunction &CGF, Flags flags) { 1330 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1331 ElementType, Destroyer); 1332 } 1333 }; 1334 1335 /// IrregularPartialArrayDestroy - a cleanup which performs a 1336 /// partial array destroy where the end pointer is irregularly 1337 /// determined and must be loaded from a local. 1338 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1339 llvm::Value *ArrayBegin; 1340 llvm::Value *ArrayEndPointer; 1341 QualType ElementType; 1342 CodeGenFunction::Destroyer &Destroyer; 1343 public: 1344 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1345 llvm::Value *arrayEndPointer, 1346 QualType elementType, 1347 CodeGenFunction::Destroyer *destroyer) 1348 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1349 ElementType(elementType), Destroyer(*destroyer) {} 1350 1351 void Emit(CodeGenFunction &CGF, Flags flags) { 1352 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1353 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1354 ElementType, Destroyer); 1355 } 1356 }; 1357 } 1358 1359 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1360 /// already-constructed elements of the given array. The cleanup 1361 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1362 /// 1363 /// \param elementType - the immediate element type of the array; 1364 /// possibly still an array type 1365 /// \param array - a value of type elementType* 1366 /// \param destructionKind - the kind of destruction required 1367 /// \param initializedElementCount - a value of type size_t* holding 1368 /// the number of successfully-constructed elements 1369 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1370 llvm::Value *arrayEndPointer, 1371 QualType elementType, 1372 Destroyer &destroyer) { 1373 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1374 arrayBegin, arrayEndPointer, 1375 elementType, &destroyer); 1376 } 1377 1378 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1379 /// already-constructed elements of the given array. The cleanup 1380 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1381 /// 1382 /// \param elementType - the immediate element type of the array; 1383 /// possibly still an array type 1384 /// \param array - a value of type elementType* 1385 /// \param destructionKind - the kind of destruction required 1386 /// \param initializedElementCount - a value of type size_t* holding 1387 /// the number of successfully-constructed elements 1388 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1389 llvm::Value *arrayEnd, 1390 QualType elementType, 1391 Destroyer &destroyer) { 1392 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1393 arrayBegin, arrayEnd, 1394 elementType, &destroyer); 1395 } 1396 1397 namespace { 1398 /// A cleanup to perform a release of an object at the end of a 1399 /// function. This is used to balance out the incoming +1 of a 1400 /// ns_consumed argument when we can't reasonably do that just by 1401 /// not doing the initial retain for a __block argument. 1402 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1403 ConsumeARCParameter(llvm::Value *param) : Param(param) {} 1404 1405 llvm::Value *Param; 1406 1407 void Emit(CodeGenFunction &CGF, Flags flags) { 1408 CGF.EmitARCRelease(Param, /*precise*/ false); 1409 } 1410 }; 1411 } 1412 1413 /// Emit an alloca (or GlobalValue depending on target) 1414 /// for the specified parameter and set up LocalDeclMap. 1415 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1416 unsigned ArgNo) { 1417 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1418 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1419 "Invalid argument to EmitParmDecl"); 1420 1421 Arg->setName(D.getName()); 1422 1423 // Use better IR generation for certain implicit parameters. 1424 if (isa<ImplicitParamDecl>(D)) { 1425 // The only implicit argument a block has is its literal. 1426 if (BlockInfo) { 1427 LocalDeclMap[&D] = Arg; 1428 1429 if (CGDebugInfo *DI = getDebugInfo()) { 1430 DI->setLocation(D.getLocation()); 1431 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 1432 } 1433 1434 return; 1435 } 1436 } 1437 1438 QualType Ty = D.getType(); 1439 1440 llvm::Value *DeclPtr; 1441 // If this is an aggregate or variable sized value, reuse the input pointer. 1442 if (!Ty->isConstantSizeType() || 1443 CodeGenFunction::hasAggregateLLVMType(Ty)) { 1444 DeclPtr = Arg; 1445 } else { 1446 // Otherwise, create a temporary to hold the value. 1447 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1448 D.getName() + ".addr"); 1449 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1450 DeclPtr = Alloc; 1451 1452 bool doStore = true; 1453 1454 Qualifiers qs = Ty.getQualifiers(); 1455 1456 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1457 // We honor __attribute__((ns_consumed)) for types with lifetime. 1458 // For __strong, it's handled by just skipping the initial retain; 1459 // otherwise we have to balance out the initial +1 with an extra 1460 // cleanup to do the release at the end of the function. 1461 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1462 1463 // 'self' is always formally __strong, but if this is not an 1464 // init method then we don't want to retain it. 1465 if (D.isARCPseudoStrong()) { 1466 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1467 assert(&D == method->getSelfDecl()); 1468 assert(lt == Qualifiers::OCL_Strong); 1469 assert(qs.hasConst()); 1470 assert(method->getMethodFamily() != OMF_init); 1471 (void) method; 1472 lt = Qualifiers::OCL_ExplicitNone; 1473 } 1474 1475 if (lt == Qualifiers::OCL_Strong) { 1476 if (!isConsumed) 1477 // Don't use objc_retainBlock for block pointers, because we 1478 // don't want to Block_copy something just because we got it 1479 // as a parameter. 1480 Arg = EmitARCRetainNonBlock(Arg); 1481 } else { 1482 // Push the cleanup for a consumed parameter. 1483 if (isConsumed) 1484 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg); 1485 1486 if (lt == Qualifiers::OCL_Weak) { 1487 EmitARCInitWeak(DeclPtr, Arg); 1488 doStore = false; // The weak init is a store, no need to do two 1489 } 1490 } 1491 1492 // Enter the cleanup scope. 1493 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1494 } 1495 1496 // Store the initial value into the alloca. 1497 if (doStore) { 1498 LValue lv = MakeAddrLValue(DeclPtr, Ty, 1499 getContext().getDeclAlign(&D).getQuantity()); 1500 EmitStoreOfScalar(Arg, lv); 1501 } 1502 } 1503 1504 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1505 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1506 DMEntry = DeclPtr; 1507 1508 // Emit debug info for param declaration. 1509 if (CGDebugInfo *DI = getDebugInfo()) 1510 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1511 1512 if (D.hasAttr<AnnotateAttr>()) 1513 EmitVarAnnotations(&D, DeclPtr); 1514 } 1515