1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Type.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 void CodeGenFunction::EmitDecl(const Decl &D) { 42 switch (D.getKind()) { 43 case Decl::BuiltinTemplate: 44 case Decl::TranslationUnit: 45 case Decl::ExternCContext: 46 case Decl::Namespace: 47 case Decl::UnresolvedUsingTypename: 48 case Decl::ClassTemplateSpecialization: 49 case Decl::ClassTemplatePartialSpecialization: 50 case Decl::VarTemplateSpecialization: 51 case Decl::VarTemplatePartialSpecialization: 52 case Decl::TemplateTypeParm: 53 case Decl::UnresolvedUsingValue: 54 case Decl::NonTypeTemplateParm: 55 case Decl::CXXDeductionGuide: 56 case Decl::CXXMethod: 57 case Decl::CXXConstructor: 58 case Decl::CXXDestructor: 59 case Decl::CXXConversion: 60 case Decl::Field: 61 case Decl::MSProperty: 62 case Decl::IndirectField: 63 case Decl::ObjCIvar: 64 case Decl::ObjCAtDefsField: 65 case Decl::ParmVar: 66 case Decl::ImplicitParam: 67 case Decl::ClassTemplate: 68 case Decl::VarTemplate: 69 case Decl::FunctionTemplate: 70 case Decl::TypeAliasTemplate: 71 case Decl::TemplateTemplateParm: 72 case Decl::ObjCMethod: 73 case Decl::ObjCCategory: 74 case Decl::ObjCProtocol: 75 case Decl::ObjCInterface: 76 case Decl::ObjCCategoryImpl: 77 case Decl::ObjCImplementation: 78 case Decl::ObjCProperty: 79 case Decl::ObjCCompatibleAlias: 80 case Decl::PragmaComment: 81 case Decl::PragmaDetectMismatch: 82 case Decl::AccessSpec: 83 case Decl::LinkageSpec: 84 case Decl::Export: 85 case Decl::ObjCPropertyImpl: 86 case Decl::FileScopeAsm: 87 case Decl::Friend: 88 case Decl::FriendTemplate: 89 case Decl::Block: 90 case Decl::Captured: 91 case Decl::ClassScopeFunctionSpecialization: 92 case Decl::UsingShadow: 93 case Decl::ConstructorUsingShadow: 94 case Decl::ObjCTypeParam: 95 case Decl::Binding: 96 llvm_unreachable("Declaration should not be in declstmts!"); 97 case Decl::Function: // void X(); 98 case Decl::Record: // struct/union/class X; 99 case Decl::Enum: // enum X; 100 case Decl::EnumConstant: // enum ? { X = ? } 101 case Decl::CXXRecord: // struct/union/class X; [C++] 102 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 103 case Decl::Label: // __label__ x; 104 case Decl::Import: 105 case Decl::OMPThreadPrivate: 106 case Decl::OMPCapturedExpr: 107 case Decl::Empty: 108 // None of these decls require codegen support. 109 return; 110 111 case Decl::NamespaceAlias: 112 if (CGDebugInfo *DI = getDebugInfo()) 113 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 114 return; 115 case Decl::Using: // using X; [C++] 116 if (CGDebugInfo *DI = getDebugInfo()) 117 DI->EmitUsingDecl(cast<UsingDecl>(D)); 118 return; 119 case Decl::UsingPack: 120 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 121 EmitDecl(*Using); 122 return; 123 case Decl::UsingDirective: // using namespace X; [C++] 124 if (CGDebugInfo *DI = getDebugInfo()) 125 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 126 return; 127 case Decl::Var: 128 case Decl::Decomposition: { 129 const VarDecl &VD = cast<VarDecl>(D); 130 assert(VD.isLocalVarDecl() && 131 "Should not see file-scope variables inside a function!"); 132 EmitVarDecl(VD); 133 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 134 for (auto *B : DD->bindings()) 135 if (auto *HD = B->getHoldingVar()) 136 EmitVarDecl(*HD); 137 return; 138 } 139 140 case Decl::OMPDeclareReduction: 141 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 142 143 case Decl::Typedef: // typedef int X; 144 case Decl::TypeAlias: { // using X = int; [C++0x] 145 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 146 QualType Ty = TD.getUnderlyingType(); 147 148 if (Ty->isVariablyModifiedType()) 149 EmitVariablyModifiedType(Ty); 150 } 151 } 152 } 153 154 /// EmitVarDecl - This method handles emission of any variable declaration 155 /// inside a function, including static vars etc. 156 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 157 if (D.hasExternalStorage()) 158 // Don't emit it now, allow it to be emitted lazily on its first use. 159 return; 160 161 // Some function-scope variable does not have static storage but still 162 // needs to be emitted like a static variable, e.g. a function-scope 163 // variable in constant address space in OpenCL. 164 if (D.getStorageDuration() != SD_Automatic) { 165 // Static sampler variables translated to function calls. 166 if (D.getType()->isSamplerT()) 167 return; 168 169 llvm::GlobalValue::LinkageTypes Linkage = 170 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 171 172 // FIXME: We need to force the emission/use of a guard variable for 173 // some variables even if we can constant-evaluate them because 174 // we can't guarantee every translation unit will constant-evaluate them. 175 176 return EmitStaticVarDecl(D, Linkage); 177 } 178 179 if (D.getType().getAddressSpace() == LangAS::opencl_local) 180 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 181 182 assert(D.hasLocalStorage()); 183 return EmitAutoVarDecl(D); 184 } 185 186 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 187 if (CGM.getLangOpts().CPlusPlus) 188 return CGM.getMangledName(&D).str(); 189 190 // If this isn't C++, we don't need a mangled name, just a pretty one. 191 assert(!D.isExternallyVisible() && "name shouldn't matter"); 192 std::string ContextName; 193 const DeclContext *DC = D.getDeclContext(); 194 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 195 DC = cast<DeclContext>(CD->getNonClosureContext()); 196 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 197 ContextName = CGM.getMangledName(FD); 198 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 199 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 200 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 201 ContextName = OMD->getSelector().getAsString(); 202 else 203 llvm_unreachable("Unknown context for static var decl"); 204 205 ContextName += "." + D.getNameAsString(); 206 return ContextName; 207 } 208 209 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 210 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 211 // In general, we don't always emit static var decls once before we reference 212 // them. It is possible to reference them before emitting the function that 213 // contains them, and it is possible to emit the containing function multiple 214 // times. 215 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 216 return ExistingGV; 217 218 QualType Ty = D.getType(); 219 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 220 221 // Use the label if the variable is renamed with the asm-label extension. 222 std::string Name; 223 if (D.hasAttr<AsmLabelAttr>()) 224 Name = getMangledName(&D); 225 else 226 Name = getStaticDeclName(*this, D); 227 228 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 229 LangAS AS = GetGlobalVarAddressSpace(&D); 230 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 231 232 // OpenCL variables in local address space and CUDA shared 233 // variables cannot have an initializer. 234 llvm::Constant *Init = nullptr; 235 if (Ty.getAddressSpace() == LangAS::opencl_local || 236 D.hasAttr<CUDASharedAttr>()) 237 Init = llvm::UndefValue::get(LTy); 238 else 239 Init = EmitNullConstant(Ty); 240 241 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 242 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 243 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 244 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 245 246 if (supportsCOMDAT() && GV->isWeakForLinker()) 247 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 248 249 if (D.getTLSKind()) 250 setTLSMode(GV, D); 251 252 setGVProperties(GV, &D); 253 254 // Make sure the result is of the correct type. 255 LangAS ExpectedAS = Ty.getAddressSpace(); 256 llvm::Constant *Addr = GV; 257 if (AS != ExpectedAS) { 258 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 259 *this, GV, AS, ExpectedAS, 260 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 261 } 262 263 setStaticLocalDeclAddress(&D, Addr); 264 265 // Ensure that the static local gets initialized by making sure the parent 266 // function gets emitted eventually. 267 const Decl *DC = cast<Decl>(D.getDeclContext()); 268 269 // We can't name blocks or captured statements directly, so try to emit their 270 // parents. 271 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 272 DC = DC->getNonClosureContext(); 273 // FIXME: Ensure that global blocks get emitted. 274 if (!DC) 275 return Addr; 276 } 277 278 GlobalDecl GD; 279 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 280 GD = GlobalDecl(CD, Ctor_Base); 281 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 282 GD = GlobalDecl(DD, Dtor_Base); 283 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 284 GD = GlobalDecl(FD); 285 else { 286 // Don't do anything for Obj-C method decls or global closures. We should 287 // never defer them. 288 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 289 } 290 if (GD.getDecl()) { 291 // Disable emission of the parent function for the OpenMP device codegen. 292 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 293 (void)GetAddrOfGlobal(GD); 294 } 295 296 return Addr; 297 } 298 299 /// hasNontrivialDestruction - Determine whether a type's destruction is 300 /// non-trivial. If so, and the variable uses static initialization, we must 301 /// register its destructor to run on exit. 302 static bool hasNontrivialDestruction(QualType T) { 303 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 304 return RD && !RD->hasTrivialDestructor(); 305 } 306 307 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 308 /// global variable that has already been created for it. If the initializer 309 /// has a different type than GV does, this may free GV and return a different 310 /// one. Otherwise it just returns GV. 311 llvm::GlobalVariable * 312 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 313 llvm::GlobalVariable *GV) { 314 ConstantEmitter emitter(*this); 315 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 316 317 // If constant emission failed, then this should be a C++ static 318 // initializer. 319 if (!Init) { 320 if (!getLangOpts().CPlusPlus) 321 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 322 else if (HaveInsertPoint()) { 323 // Since we have a static initializer, this global variable can't 324 // be constant. 325 GV->setConstant(false); 326 327 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 328 } 329 return GV; 330 } 331 332 // The initializer may differ in type from the global. Rewrite 333 // the global to match the initializer. (We have to do this 334 // because some types, like unions, can't be completely represented 335 // in the LLVM type system.) 336 if (GV->getType()->getElementType() != Init->getType()) { 337 llvm::GlobalVariable *OldGV = GV; 338 339 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 340 OldGV->isConstant(), 341 OldGV->getLinkage(), Init, "", 342 /*InsertBefore*/ OldGV, 343 OldGV->getThreadLocalMode(), 344 CGM.getContext().getTargetAddressSpace(D.getType())); 345 GV->setVisibility(OldGV->getVisibility()); 346 GV->setDSOLocal(OldGV->isDSOLocal()); 347 GV->setComdat(OldGV->getComdat()); 348 349 // Steal the name of the old global 350 GV->takeName(OldGV); 351 352 // Replace all uses of the old global with the new global 353 llvm::Constant *NewPtrForOldDecl = 354 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 355 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 356 357 // Erase the old global, since it is no longer used. 358 OldGV->eraseFromParent(); 359 } 360 361 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 362 GV->setInitializer(Init); 363 364 emitter.finalize(GV); 365 366 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 367 // We have a constant initializer, but a nontrivial destructor. We still 368 // need to perform a guarded "initialization" in order to register the 369 // destructor. 370 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 371 } 372 373 return GV; 374 } 375 376 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 377 llvm::GlobalValue::LinkageTypes Linkage) { 378 // Check to see if we already have a global variable for this 379 // declaration. This can happen when double-emitting function 380 // bodies, e.g. with complete and base constructors. 381 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 382 CharUnits alignment = getContext().getDeclAlign(&D); 383 384 // Store into LocalDeclMap before generating initializer to handle 385 // circular references. 386 setAddrOfLocalVar(&D, Address(addr, alignment)); 387 388 // We can't have a VLA here, but we can have a pointer to a VLA, 389 // even though that doesn't really make any sense. 390 // Make sure to evaluate VLA bounds now so that we have them for later. 391 if (D.getType()->isVariablyModifiedType()) 392 EmitVariablyModifiedType(D.getType()); 393 394 // Save the type in case adding the initializer forces a type change. 395 llvm::Type *expectedType = addr->getType(); 396 397 llvm::GlobalVariable *var = 398 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 399 400 // CUDA's local and local static __shared__ variables should not 401 // have any non-empty initializers. This is ensured by Sema. 402 // Whatever initializer such variable may have when it gets here is 403 // a no-op and should not be emitted. 404 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 405 D.hasAttr<CUDASharedAttr>(); 406 // If this value has an initializer, emit it. 407 if (D.getInit() && !isCudaSharedVar) 408 var = AddInitializerToStaticVarDecl(D, var); 409 410 var->setAlignment(alignment.getQuantity()); 411 412 if (D.hasAttr<AnnotateAttr>()) 413 CGM.AddGlobalAnnotations(&D, var); 414 415 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 416 var->addAttribute("bss-section", SA->getName()); 417 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 418 var->addAttribute("data-section", SA->getName()); 419 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 420 var->addAttribute("rodata-section", SA->getName()); 421 422 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 423 var->setSection(SA->getName()); 424 425 if (D.hasAttr<UsedAttr>()) 426 CGM.addUsedGlobal(var); 427 428 // We may have to cast the constant because of the initializer 429 // mismatch above. 430 // 431 // FIXME: It is really dangerous to store this in the map; if anyone 432 // RAUW's the GV uses of this constant will be invalid. 433 llvm::Constant *castedAddr = 434 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 435 if (var != castedAddr) 436 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 437 CGM.setStaticLocalDeclAddress(&D, castedAddr); 438 439 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 440 441 // Emit global variable debug descriptor for static vars. 442 CGDebugInfo *DI = getDebugInfo(); 443 if (DI && 444 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 445 DI->setLocation(D.getLocation()); 446 DI->EmitGlobalVariable(var, &D); 447 } 448 } 449 450 namespace { 451 struct DestroyObject final : EHScopeStack::Cleanup { 452 DestroyObject(Address addr, QualType type, 453 CodeGenFunction::Destroyer *destroyer, 454 bool useEHCleanupForArray) 455 : addr(addr), type(type), destroyer(destroyer), 456 useEHCleanupForArray(useEHCleanupForArray) {} 457 458 Address addr; 459 QualType type; 460 CodeGenFunction::Destroyer *destroyer; 461 bool useEHCleanupForArray; 462 463 void Emit(CodeGenFunction &CGF, Flags flags) override { 464 // Don't use an EH cleanup recursively from an EH cleanup. 465 bool useEHCleanupForArray = 466 flags.isForNormalCleanup() && this->useEHCleanupForArray; 467 468 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 469 } 470 }; 471 472 template <class Derived> 473 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 474 DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) 475 : NRVOFlag(NRVOFlag), Loc(addr) {} 476 477 llvm::Value *NRVOFlag; 478 Address Loc; 479 480 void Emit(CodeGenFunction &CGF, Flags flags) override { 481 // Along the exceptions path we always execute the dtor. 482 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 483 484 llvm::BasicBlock *SkipDtorBB = nullptr; 485 if (NRVO) { 486 // If we exited via NRVO, we skip the destructor call. 487 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 488 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 489 llvm::Value *DidNRVO = 490 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 491 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 492 CGF.EmitBlock(RunDtorBB); 493 } 494 495 static_cast<Derived *>(this)->emitDestructorCall(CGF); 496 497 if (NRVO) CGF.EmitBlock(SkipDtorBB); 498 } 499 500 virtual ~DestroyNRVOVariable() = default; 501 }; 502 503 struct DestroyNRVOVariableCXX final 504 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 505 DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, 506 llvm::Value *NRVOFlag) 507 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), 508 Dtor(Dtor) {} 509 510 const CXXDestructorDecl *Dtor; 511 512 void emitDestructorCall(CodeGenFunction &CGF) { 513 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 514 /*ForVirtualBase=*/false, 515 /*Delegating=*/false, Loc); 516 } 517 }; 518 519 struct DestroyNRVOVariableC final 520 : DestroyNRVOVariable<DestroyNRVOVariableC> { 521 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 522 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} 523 524 QualType Ty; 525 526 void emitDestructorCall(CodeGenFunction &CGF) { 527 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 528 } 529 }; 530 531 struct CallStackRestore final : EHScopeStack::Cleanup { 532 Address Stack; 533 CallStackRestore(Address Stack) : Stack(Stack) {} 534 void Emit(CodeGenFunction &CGF, Flags flags) override { 535 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 536 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 537 CGF.Builder.CreateCall(F, V); 538 } 539 }; 540 541 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 542 const VarDecl &Var; 543 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 544 545 void Emit(CodeGenFunction &CGF, Flags flags) override { 546 // Compute the address of the local variable, in case it's a 547 // byref or something. 548 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 549 Var.getType(), VK_LValue, SourceLocation()); 550 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 551 SourceLocation()); 552 CGF.EmitExtendGCLifetime(value); 553 } 554 }; 555 556 struct CallCleanupFunction final : EHScopeStack::Cleanup { 557 llvm::Constant *CleanupFn; 558 const CGFunctionInfo &FnInfo; 559 const VarDecl &Var; 560 561 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 562 const VarDecl *Var) 563 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 564 565 void Emit(CodeGenFunction &CGF, Flags flags) override { 566 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 567 Var.getType(), VK_LValue, SourceLocation()); 568 // Compute the address of the local variable, in case it's a byref 569 // or something. 570 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 571 572 // In some cases, the type of the function argument will be different from 573 // the type of the pointer. An example of this is 574 // void f(void* arg); 575 // __attribute__((cleanup(f))) void *g; 576 // 577 // To fix this we insert a bitcast here. 578 QualType ArgTy = FnInfo.arg_begin()->type; 579 llvm::Value *Arg = 580 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 581 582 CallArgList Args; 583 Args.add(RValue::get(Arg), 584 CGF.getContext().getPointerType(Var.getType())); 585 auto Callee = CGCallee::forDirect(CleanupFn); 586 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 587 } 588 }; 589 } // end anonymous namespace 590 591 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 592 /// variable with lifetime. 593 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 594 Address addr, 595 Qualifiers::ObjCLifetime lifetime) { 596 switch (lifetime) { 597 case Qualifiers::OCL_None: 598 llvm_unreachable("present but none"); 599 600 case Qualifiers::OCL_ExplicitNone: 601 // nothing to do 602 break; 603 604 case Qualifiers::OCL_Strong: { 605 CodeGenFunction::Destroyer *destroyer = 606 (var.hasAttr<ObjCPreciseLifetimeAttr>() 607 ? CodeGenFunction::destroyARCStrongPrecise 608 : CodeGenFunction::destroyARCStrongImprecise); 609 610 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 611 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 612 cleanupKind & EHCleanup); 613 break; 614 } 615 case Qualifiers::OCL_Autoreleasing: 616 // nothing to do 617 break; 618 619 case Qualifiers::OCL_Weak: 620 // __weak objects always get EH cleanups; otherwise, exceptions 621 // could cause really nasty crashes instead of mere leaks. 622 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 623 CodeGenFunction::destroyARCWeak, 624 /*useEHCleanup*/ true); 625 break; 626 } 627 } 628 629 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 630 if (const Expr *e = dyn_cast<Expr>(s)) { 631 // Skip the most common kinds of expressions that make 632 // hierarchy-walking expensive. 633 s = e = e->IgnoreParenCasts(); 634 635 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 636 return (ref->getDecl() == &var); 637 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 638 const BlockDecl *block = be->getBlockDecl(); 639 for (const auto &I : block->captures()) { 640 if (I.getVariable() == &var) 641 return true; 642 } 643 } 644 } 645 646 for (const Stmt *SubStmt : s->children()) 647 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 648 if (SubStmt && isAccessedBy(var, SubStmt)) 649 return true; 650 651 return false; 652 } 653 654 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 655 if (!decl) return false; 656 if (!isa<VarDecl>(decl)) return false; 657 const VarDecl *var = cast<VarDecl>(decl); 658 return isAccessedBy(*var, e); 659 } 660 661 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 662 const LValue &destLV, const Expr *init) { 663 bool needsCast = false; 664 665 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 666 switch (castExpr->getCastKind()) { 667 // Look through casts that don't require representation changes. 668 case CK_NoOp: 669 case CK_BitCast: 670 case CK_BlockPointerToObjCPointerCast: 671 needsCast = true; 672 break; 673 674 // If we find an l-value to r-value cast from a __weak variable, 675 // emit this operation as a copy or move. 676 case CK_LValueToRValue: { 677 const Expr *srcExpr = castExpr->getSubExpr(); 678 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 679 return false; 680 681 // Emit the source l-value. 682 LValue srcLV = CGF.EmitLValue(srcExpr); 683 684 // Handle a formal type change to avoid asserting. 685 auto srcAddr = srcLV.getAddress(); 686 if (needsCast) { 687 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 688 destLV.getAddress().getElementType()); 689 } 690 691 // If it was an l-value, use objc_copyWeak. 692 if (srcExpr->getValueKind() == VK_LValue) { 693 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 694 } else { 695 assert(srcExpr->getValueKind() == VK_XValue); 696 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 697 } 698 return true; 699 } 700 701 // Stop at anything else. 702 default: 703 return false; 704 } 705 706 init = castExpr->getSubExpr(); 707 } 708 return false; 709 } 710 711 static void drillIntoBlockVariable(CodeGenFunction &CGF, 712 LValue &lvalue, 713 const VarDecl *var) { 714 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 715 } 716 717 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 718 SourceLocation Loc) { 719 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 720 return; 721 722 auto Nullability = LHS.getType()->getNullability(getContext()); 723 if (!Nullability || *Nullability != NullabilityKind::NonNull) 724 return; 725 726 // Check if the right hand side of the assignment is nonnull, if the left 727 // hand side must be nonnull. 728 SanitizerScope SanScope(this); 729 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 730 llvm::Constant *StaticData[] = { 731 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 732 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 733 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 734 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 735 SanitizerHandler::TypeMismatch, StaticData, RHS); 736 } 737 738 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 739 LValue lvalue, bool capturedByInit) { 740 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 741 if (!lifetime) { 742 llvm::Value *value = EmitScalarExpr(init); 743 if (capturedByInit) 744 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 745 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 746 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 747 return; 748 } 749 750 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 751 init = DIE->getExpr(); 752 753 // If we're emitting a value with lifetime, we have to do the 754 // initialization *before* we leave the cleanup scopes. 755 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 756 enterFullExpression(ewc); 757 init = ewc->getSubExpr(); 758 } 759 CodeGenFunction::RunCleanupsScope Scope(*this); 760 761 // We have to maintain the illusion that the variable is 762 // zero-initialized. If the variable might be accessed in its 763 // initializer, zero-initialize before running the initializer, then 764 // actually perform the initialization with an assign. 765 bool accessedByInit = false; 766 if (lifetime != Qualifiers::OCL_ExplicitNone) 767 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 768 if (accessedByInit) { 769 LValue tempLV = lvalue; 770 // Drill down to the __block object if necessary. 771 if (capturedByInit) { 772 // We can use a simple GEP for this because it can't have been 773 // moved yet. 774 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 775 cast<VarDecl>(D), 776 /*follow*/ false)); 777 } 778 779 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 780 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 781 782 // If __weak, we want to use a barrier under certain conditions. 783 if (lifetime == Qualifiers::OCL_Weak) 784 EmitARCInitWeak(tempLV.getAddress(), zero); 785 786 // Otherwise just do a simple store. 787 else 788 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 789 } 790 791 // Emit the initializer. 792 llvm::Value *value = nullptr; 793 794 switch (lifetime) { 795 case Qualifiers::OCL_None: 796 llvm_unreachable("present but none"); 797 798 case Qualifiers::OCL_ExplicitNone: 799 value = EmitARCUnsafeUnretainedScalarExpr(init); 800 break; 801 802 case Qualifiers::OCL_Strong: { 803 value = EmitARCRetainScalarExpr(init); 804 break; 805 } 806 807 case Qualifiers::OCL_Weak: { 808 // If it's not accessed by the initializer, try to emit the 809 // initialization with a copy or move. 810 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 811 return; 812 } 813 814 // No way to optimize a producing initializer into this. It's not 815 // worth optimizing for, because the value will immediately 816 // disappear in the common case. 817 value = EmitScalarExpr(init); 818 819 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 820 if (accessedByInit) 821 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 822 else 823 EmitARCInitWeak(lvalue.getAddress(), value); 824 return; 825 } 826 827 case Qualifiers::OCL_Autoreleasing: 828 value = EmitARCRetainAutoreleaseScalarExpr(init); 829 break; 830 } 831 832 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 833 834 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 835 836 // If the variable might have been accessed by its initializer, we 837 // might have to initialize with a barrier. We have to do this for 838 // both __weak and __strong, but __weak got filtered out above. 839 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 840 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 841 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 842 EmitARCRelease(oldValue, ARCImpreciseLifetime); 843 return; 844 } 845 846 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 847 } 848 849 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 850 /// non-zero parts of the specified initializer with equal or fewer than 851 /// NumStores scalar stores. 852 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 853 unsigned &NumStores) { 854 // Zero and Undef never requires any extra stores. 855 if (isa<llvm::ConstantAggregateZero>(Init) || 856 isa<llvm::ConstantPointerNull>(Init) || 857 isa<llvm::UndefValue>(Init)) 858 return true; 859 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 860 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 861 isa<llvm::ConstantExpr>(Init)) 862 return Init->isNullValue() || NumStores--; 863 864 // See if we can emit each element. 865 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 866 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 867 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 868 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 869 return false; 870 } 871 return true; 872 } 873 874 if (llvm::ConstantDataSequential *CDS = 875 dyn_cast<llvm::ConstantDataSequential>(Init)) { 876 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 877 llvm::Constant *Elt = CDS->getElementAsConstant(i); 878 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 879 return false; 880 } 881 return true; 882 } 883 884 // Anything else is hard and scary. 885 return false; 886 } 887 888 /// emitStoresForInitAfterMemset - For inits that 889 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 890 /// stores that would be required. 891 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 892 bool isVolatile, CGBuilderTy &Builder) { 893 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 894 "called emitStoresForInitAfterMemset for zero or undef value."); 895 896 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 897 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 898 isa<llvm::ConstantExpr>(Init)) { 899 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 900 return; 901 } 902 903 if (llvm::ConstantDataSequential *CDS = 904 dyn_cast<llvm::ConstantDataSequential>(Init)) { 905 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 906 llvm::Constant *Elt = CDS->getElementAsConstant(i); 907 908 // If necessary, get a pointer to the element and emit it. 909 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 910 emitStoresForInitAfterMemset( 911 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 912 isVolatile, Builder); 913 } 914 return; 915 } 916 917 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 918 "Unknown value type!"); 919 920 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 921 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 922 923 // If necessary, get a pointer to the element and emit it. 924 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 925 emitStoresForInitAfterMemset( 926 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 927 isVolatile, Builder); 928 } 929 } 930 931 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 932 /// plus some stores to initialize a local variable instead of using a memcpy 933 /// from a constant global. It is beneficial to use memset if the global is all 934 /// zeros, or mostly zeros and large. 935 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 936 uint64_t GlobalSize) { 937 // If a global is all zeros, always use a memset. 938 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 939 940 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 941 // do it if it will require 6 or fewer scalar stores. 942 // TODO: Should budget depends on the size? Avoiding a large global warrants 943 // plopping in more stores. 944 unsigned StoreBudget = 6; 945 uint64_t SizeLimit = 32; 946 947 return GlobalSize > SizeLimit && 948 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 949 } 950 951 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 952 /// variable declaration with auto, register, or no storage class specifier. 953 /// These turn into simple stack objects, or GlobalValues depending on target. 954 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 955 AutoVarEmission emission = EmitAutoVarAlloca(D); 956 EmitAutoVarInit(emission); 957 EmitAutoVarCleanups(emission); 958 } 959 960 /// Emit a lifetime.begin marker if some criteria are satisfied. 961 /// \return a pointer to the temporary size Value if a marker was emitted, null 962 /// otherwise 963 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 964 llvm::Value *Addr) { 965 if (!ShouldEmitLifetimeMarkers) 966 return nullptr; 967 968 assert(Addr->getType()->getPointerAddressSpace() == 969 CGM.getDataLayout().getAllocaAddrSpace() && 970 "Pointer should be in alloca address space"); 971 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 972 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 973 llvm::CallInst *C = 974 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 975 C->setDoesNotThrow(); 976 return SizeV; 977 } 978 979 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 980 assert(Addr->getType()->getPointerAddressSpace() == 981 CGM.getDataLayout().getAllocaAddrSpace() && 982 "Pointer should be in alloca address space"); 983 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 984 llvm::CallInst *C = 985 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 986 C->setDoesNotThrow(); 987 } 988 989 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 990 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 991 // For each dimension stores its QualType and corresponding 992 // size-expression Value. 993 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 994 995 // Break down the array into individual dimensions. 996 QualType Type1D = D.getType(); 997 while (getContext().getAsVariableArrayType(Type1D)) { 998 auto VlaSize = getVLAElements1D(Type1D); 999 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1000 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1001 else { 1002 auto SizeExprAddr = CreateDefaultAlignTempAlloca( 1003 VlaSize.NumElts->getType(), "__vla_expr"); 1004 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1005 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1006 Type1D.getUnqualifiedType()); 1007 } 1008 Type1D = VlaSize.Type; 1009 } 1010 1011 if (!EmitDebugInfo) 1012 return; 1013 1014 // Register each dimension's size-expression with a DILocalVariable, 1015 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1016 // to describe this array. 1017 for (auto &VlaSize : Dimensions) { 1018 llvm::Metadata *MD; 1019 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1020 MD = llvm::ConstantAsMetadata::get(C); 1021 else { 1022 // Create an artificial VarDecl to generate debug info for. 1023 IdentifierInfo &NameIdent = getContext().Idents.getOwn( 1024 cast<llvm::AllocaInst>(VlaSize.NumElts)->getName()); 1025 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1026 auto QT = getContext().getIntTypeForBitwidth( 1027 VlaExprTy->getScalarSizeInBits(), false); 1028 auto *ArtificialDecl = VarDecl::Create( 1029 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1030 D.getLocation(), D.getLocation(), &NameIdent, QT, 1031 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1032 ArtificialDecl->setImplicit(); 1033 1034 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1035 Builder); 1036 } 1037 assert(MD && "No Size expression debug node created"); 1038 DI->registerVLASizeExpression(VlaSize.Type, MD); 1039 } 1040 } 1041 1042 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1043 /// local variable. Does not emit initialization or destruction. 1044 CodeGenFunction::AutoVarEmission 1045 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1046 QualType Ty = D.getType(); 1047 assert( 1048 Ty.getAddressSpace() == LangAS::Default || 1049 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1050 1051 AutoVarEmission emission(D); 1052 1053 bool isByRef = D.hasAttr<BlocksAttr>(); 1054 emission.IsByRef = isByRef; 1055 1056 CharUnits alignment = getContext().getDeclAlign(&D); 1057 1058 // If the type is variably-modified, emit all the VLA sizes for it. 1059 if (Ty->isVariablyModifiedType()) 1060 EmitVariablyModifiedType(Ty); 1061 1062 auto *DI = getDebugInfo(); 1063 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1064 codegenoptions::LimitedDebugInfo; 1065 1066 Address address = Address::invalid(); 1067 Address AllocaAddr = Address::invalid(); 1068 if (Ty->isConstantSizeType()) { 1069 bool NRVO = getLangOpts().ElideConstructors && 1070 D.isNRVOVariable(); 1071 1072 // If this value is an array or struct with a statically determinable 1073 // constant initializer, there are optimizations we can do. 1074 // 1075 // TODO: We should constant-evaluate the initializer of any variable, 1076 // as long as it is initialized by a constant expression. Currently, 1077 // isConstantInitializer produces wrong answers for structs with 1078 // reference or bitfield members, and a few other cases, and checking 1079 // for POD-ness protects us from some of these. 1080 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1081 (D.isConstexpr() || 1082 ((Ty.isPODType(getContext()) || 1083 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1084 D.getInit()->isConstantInitializer(getContext(), false)))) { 1085 1086 // If the variable's a const type, and it's neither an NRVO 1087 // candidate nor a __block variable and has no mutable members, 1088 // emit it as a global instead. 1089 // Exception is if a variable is located in non-constant address space 1090 // in OpenCL. 1091 if ((!getLangOpts().OpenCL || 1092 Ty.getAddressSpace() == LangAS::opencl_constant) && 1093 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 1094 CGM.isTypeConstant(Ty, true))) { 1095 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1096 1097 // Signal this condition to later callbacks. 1098 emission.Addr = Address::invalid(); 1099 assert(emission.wasEmittedAsGlobal()); 1100 return emission; 1101 } 1102 1103 // Otherwise, tell the initialization code that we're in this case. 1104 emission.IsConstantAggregate = true; 1105 } 1106 1107 // A normal fixed sized variable becomes an alloca in the entry block, 1108 // unless: 1109 // - it's an NRVO variable. 1110 // - we are compiling OpenMP and it's an OpenMP local variable. 1111 1112 Address OpenMPLocalAddr = 1113 getLangOpts().OpenMP 1114 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1115 : Address::invalid(); 1116 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1117 address = OpenMPLocalAddr; 1118 } else if (NRVO) { 1119 // The named return value optimization: allocate this variable in the 1120 // return slot, so that we can elide the copy when returning this 1121 // variable (C++0x [class.copy]p34). 1122 address = ReturnValue; 1123 1124 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1125 const auto *RD = RecordTy->getDecl(); 1126 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1127 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1128 RD->isNonTrivialToPrimitiveDestroy()) { 1129 // Create a flag that is used to indicate when the NRVO was applied 1130 // to this variable. Set it to zero to indicate that NRVO was not 1131 // applied. 1132 llvm::Value *Zero = Builder.getFalse(); 1133 Address NRVOFlag = 1134 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1135 EnsureInsertPoint(); 1136 Builder.CreateStore(Zero, NRVOFlag); 1137 1138 // Record the NRVO flag for this variable. 1139 NRVOFlags[&D] = NRVOFlag.getPointer(); 1140 emission.NRVOFlag = NRVOFlag.getPointer(); 1141 } 1142 } 1143 } else { 1144 CharUnits allocaAlignment; 1145 llvm::Type *allocaTy; 1146 if (isByRef) { 1147 auto &byrefInfo = getBlockByrefInfo(&D); 1148 allocaTy = byrefInfo.Type; 1149 allocaAlignment = byrefInfo.ByrefAlignment; 1150 } else { 1151 allocaTy = ConvertTypeForMem(Ty); 1152 allocaAlignment = alignment; 1153 } 1154 1155 // Create the alloca. Note that we set the name separately from 1156 // building the instruction so that it's there even in no-asserts 1157 // builds. 1158 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1159 /*ArraySize=*/nullptr, &AllocaAddr); 1160 1161 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1162 // the catch parameter starts in the catchpad instruction, and we can't 1163 // insert code in those basic blocks. 1164 bool IsMSCatchParam = 1165 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1166 1167 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1168 // if we don't have a valid insertion point (?). 1169 if (HaveInsertPoint() && !IsMSCatchParam) { 1170 // If there's a jump into the lifetime of this variable, its lifetime 1171 // gets broken up into several regions in IR, which requires more work 1172 // to handle correctly. For now, just omit the intrinsics; this is a 1173 // rare case, and it's better to just be conservatively correct. 1174 // PR28267. 1175 // 1176 // We have to do this in all language modes if there's a jump past the 1177 // declaration. We also have to do it in C if there's a jump to an 1178 // earlier point in the current block because non-VLA lifetimes begin as 1179 // soon as the containing block is entered, not when its variables 1180 // actually come into scope; suppressing the lifetime annotations 1181 // completely in this case is unnecessarily pessimistic, but again, this 1182 // is rare. 1183 if (!Bypasses.IsBypassed(&D) && 1184 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1185 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1186 emission.SizeForLifetimeMarkers = 1187 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1188 } 1189 } else { 1190 assert(!emission.useLifetimeMarkers()); 1191 } 1192 } 1193 } else { 1194 EnsureInsertPoint(); 1195 1196 if (!DidCallStackSave) { 1197 // Save the stack. 1198 Address Stack = 1199 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1200 1201 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1202 llvm::Value *V = Builder.CreateCall(F); 1203 Builder.CreateStore(V, Stack); 1204 1205 DidCallStackSave = true; 1206 1207 // Push a cleanup block and restore the stack there. 1208 // FIXME: in general circumstances, this should be an EH cleanup. 1209 pushStackRestore(NormalCleanup, Stack); 1210 } 1211 1212 auto VlaSize = getVLASize(Ty); 1213 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1214 1215 // Allocate memory for the array. 1216 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1217 &AllocaAddr); 1218 1219 // If we have debug info enabled, properly describe the VLA dimensions for 1220 // this type by registering the vla size expression for each of the 1221 // dimensions. 1222 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1223 } 1224 1225 setAddrOfLocalVar(&D, address); 1226 emission.Addr = address; 1227 emission.AllocaAddr = AllocaAddr; 1228 1229 // Emit debug info for local var declaration. 1230 if (EmitDebugInfo && HaveInsertPoint()) { 1231 DI->setLocation(D.getLocation()); 1232 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1233 } 1234 1235 if (D.hasAttr<AnnotateAttr>()) 1236 EmitVarAnnotations(&D, address.getPointer()); 1237 1238 // Make sure we call @llvm.lifetime.end. 1239 if (emission.useLifetimeMarkers()) 1240 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1241 emission.getOriginalAllocatedAddress(), 1242 emission.getSizeForLifetimeMarkers()); 1243 1244 return emission; 1245 } 1246 1247 static bool isCapturedBy(const VarDecl &, const Expr *); 1248 1249 /// Determines whether the given __block variable is potentially 1250 /// captured by the given statement. 1251 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1252 if (const Expr *E = dyn_cast<Expr>(S)) 1253 return isCapturedBy(Var, E); 1254 for (const Stmt *SubStmt : S->children()) 1255 if (isCapturedBy(Var, SubStmt)) 1256 return true; 1257 return false; 1258 } 1259 1260 /// Determines whether the given __block variable is potentially 1261 /// captured by the given expression. 1262 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1263 // Skip the most common kinds of expressions that make 1264 // hierarchy-walking expensive. 1265 E = E->IgnoreParenCasts(); 1266 1267 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1268 const BlockDecl *Block = BE->getBlockDecl(); 1269 for (const auto &I : Block->captures()) { 1270 if (I.getVariable() == &Var) 1271 return true; 1272 } 1273 1274 // No need to walk into the subexpressions. 1275 return false; 1276 } 1277 1278 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1279 const CompoundStmt *CS = SE->getSubStmt(); 1280 for (const auto *BI : CS->body()) 1281 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1282 if (isCapturedBy(Var, BIE)) 1283 return true; 1284 } 1285 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1286 // special case declarations 1287 for (const auto *I : DS->decls()) { 1288 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1289 const Expr *Init = VD->getInit(); 1290 if (Init && isCapturedBy(Var, Init)) 1291 return true; 1292 } 1293 } 1294 } 1295 else 1296 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1297 // Later, provide code to poke into statements for capture analysis. 1298 return true; 1299 return false; 1300 } 1301 1302 for (const Stmt *SubStmt : E->children()) 1303 if (isCapturedBy(Var, SubStmt)) 1304 return true; 1305 1306 return false; 1307 } 1308 1309 /// Determine whether the given initializer is trivial in the sense 1310 /// that it requires no code to be generated. 1311 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1312 if (!Init) 1313 return true; 1314 1315 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1316 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1317 if (Constructor->isTrivial() && 1318 Constructor->isDefaultConstructor() && 1319 !Construct->requiresZeroInitialization()) 1320 return true; 1321 1322 return false; 1323 } 1324 1325 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1326 assert(emission.Variable && "emission was not valid!"); 1327 1328 // If this was emitted as a global constant, we're done. 1329 if (emission.wasEmittedAsGlobal()) return; 1330 1331 const VarDecl &D = *emission.Variable; 1332 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1333 QualType type = D.getType(); 1334 1335 // If this local has an initializer, emit it now. 1336 const Expr *Init = D.getInit(); 1337 1338 // If we are at an unreachable point, we don't need to emit the initializer 1339 // unless it contains a label. 1340 if (!HaveInsertPoint()) { 1341 if (!Init || !ContainsLabel(Init)) return; 1342 EnsureInsertPoint(); 1343 } 1344 1345 // Initialize the structure of a __block variable. 1346 if (emission.IsByRef) 1347 emitByrefStructureInit(emission); 1348 1349 // Initialize the variable here if it doesn't have a initializer and it is a 1350 // C struct that is non-trivial to initialize or an array containing such a 1351 // struct. 1352 if (!Init && 1353 type.isNonTrivialToPrimitiveDefaultInitialize() == 1354 QualType::PDIK_Struct) { 1355 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1356 if (emission.IsByRef) 1357 drillIntoBlockVariable(*this, Dst, &D); 1358 defaultInitNonTrivialCStructVar(Dst); 1359 return; 1360 } 1361 1362 if (isTrivialInitializer(Init)) 1363 return; 1364 1365 // Check whether this is a byref variable that's potentially 1366 // captured and moved by its own initializer. If so, we'll need to 1367 // emit the initializer first, then copy into the variable. 1368 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1369 1370 Address Loc = 1371 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1372 1373 llvm::Constant *constant = nullptr; 1374 if (emission.IsConstantAggregate || D.isConstexpr()) { 1375 assert(!capturedByInit && "constant init contains a capturing block?"); 1376 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1377 } 1378 1379 if (!constant) { 1380 LValue lv = MakeAddrLValue(Loc, type); 1381 lv.setNonGC(true); 1382 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1383 } 1384 1385 if (!emission.IsConstantAggregate) { 1386 // For simple scalar/complex initialization, store the value directly. 1387 LValue lv = MakeAddrLValue(Loc, type); 1388 lv.setNonGC(true); 1389 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1390 } 1391 1392 // If this is a simple aggregate initialization, we can optimize it 1393 // in various ways. 1394 bool isVolatile = type.isVolatileQualified(); 1395 1396 llvm::Value *SizeVal = 1397 llvm::ConstantInt::get(IntPtrTy, 1398 getContext().getTypeSizeInChars(type).getQuantity()); 1399 1400 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1401 if (Loc.getType() != BP) 1402 Loc = Builder.CreateBitCast(Loc, BP); 1403 1404 // If the initializer is all or mostly zeros, codegen with memset then do 1405 // a few stores afterward. 1406 if (shouldUseMemSetPlusStoresToInitialize(constant, 1407 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1408 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1409 isVolatile); 1410 // Zero and undef don't require a stores. 1411 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1412 Loc = Builder.CreateBitCast(Loc, 1413 constant->getType()->getPointerTo(Loc.getAddressSpace())); 1414 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1415 isVolatile, Builder); 1416 } 1417 } else { 1418 // Otherwise, create a temporary global with the initializer then 1419 // memcpy from the global to the alloca. 1420 std::string Name = getStaticDeclName(CGM, D); 1421 unsigned AS = CGM.getContext().getTargetAddressSpace( 1422 CGM.getStringLiteralAddressSpace()); 1423 BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS); 1424 1425 llvm::GlobalVariable *GV = 1426 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1427 llvm::GlobalValue::PrivateLinkage, 1428 constant, Name, nullptr, 1429 llvm::GlobalValue::NotThreadLocal, AS); 1430 GV->setAlignment(Loc.getAlignment().getQuantity()); 1431 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1432 1433 Address SrcPtr = Address(GV, Loc.getAlignment()); 1434 if (SrcPtr.getType() != BP) 1435 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1436 1437 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1438 } 1439 } 1440 1441 /// Emit an expression as an initializer for an object (variable, field, etc.) 1442 /// at the given location. The expression is not necessarily the normal 1443 /// initializer for the object, and the address is not necessarily 1444 /// its normal location. 1445 /// 1446 /// \param init the initializing expression 1447 /// \param D the object to act as if we're initializing 1448 /// \param loc the address to initialize; its type is a pointer 1449 /// to the LLVM mapping of the object's type 1450 /// \param alignment the alignment of the address 1451 /// \param capturedByInit true if \p D is a __block variable 1452 /// whose address is potentially changed by the initializer 1453 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1454 LValue lvalue, bool capturedByInit) { 1455 QualType type = D->getType(); 1456 1457 if (type->isReferenceType()) { 1458 RValue rvalue = EmitReferenceBindingToExpr(init); 1459 if (capturedByInit) 1460 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1461 EmitStoreThroughLValue(rvalue, lvalue, true); 1462 return; 1463 } 1464 switch (getEvaluationKind(type)) { 1465 case TEK_Scalar: 1466 EmitScalarInit(init, D, lvalue, capturedByInit); 1467 return; 1468 case TEK_Complex: { 1469 ComplexPairTy complex = EmitComplexExpr(init); 1470 if (capturedByInit) 1471 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1472 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1473 return; 1474 } 1475 case TEK_Aggregate: 1476 if (type->isAtomicType()) { 1477 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1478 } else { 1479 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1480 if (isa<VarDecl>(D)) 1481 Overlap = AggValueSlot::DoesNotOverlap; 1482 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1483 Overlap = overlapForFieldInit(FD); 1484 // TODO: how can we delay here if D is captured by its initializer? 1485 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1486 AggValueSlot::IsDestructed, 1487 AggValueSlot::DoesNotNeedGCBarriers, 1488 AggValueSlot::IsNotAliased, 1489 Overlap)); 1490 } 1491 return; 1492 } 1493 llvm_unreachable("bad evaluation kind"); 1494 } 1495 1496 /// Enter a destroy cleanup for the given local variable. 1497 void CodeGenFunction::emitAutoVarTypeCleanup( 1498 const CodeGenFunction::AutoVarEmission &emission, 1499 QualType::DestructionKind dtorKind) { 1500 assert(dtorKind != QualType::DK_none); 1501 1502 // Note that for __block variables, we want to destroy the 1503 // original stack object, not the possibly forwarded object. 1504 Address addr = emission.getObjectAddress(*this); 1505 1506 const VarDecl *var = emission.Variable; 1507 QualType type = var->getType(); 1508 1509 CleanupKind cleanupKind = NormalAndEHCleanup; 1510 CodeGenFunction::Destroyer *destroyer = nullptr; 1511 1512 switch (dtorKind) { 1513 case QualType::DK_none: 1514 llvm_unreachable("no cleanup for trivially-destructible variable"); 1515 1516 case QualType::DK_cxx_destructor: 1517 // If there's an NRVO flag on the emission, we need a different 1518 // cleanup. 1519 if (emission.NRVOFlag) { 1520 assert(!type->isArrayType()); 1521 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1522 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, 1523 emission.NRVOFlag); 1524 return; 1525 } 1526 break; 1527 1528 case QualType::DK_objc_strong_lifetime: 1529 // Suppress cleanups for pseudo-strong variables. 1530 if (var->isARCPseudoStrong()) return; 1531 1532 // Otherwise, consider whether to use an EH cleanup or not. 1533 cleanupKind = getARCCleanupKind(); 1534 1535 // Use the imprecise destroyer by default. 1536 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1537 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1538 break; 1539 1540 case QualType::DK_objc_weak_lifetime: 1541 break; 1542 1543 case QualType::DK_nontrivial_c_struct: 1544 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1545 if (emission.NRVOFlag) { 1546 assert(!type->isArrayType()); 1547 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1548 emission.NRVOFlag, type); 1549 return; 1550 } 1551 break; 1552 } 1553 1554 // If we haven't chosen a more specific destroyer, use the default. 1555 if (!destroyer) destroyer = getDestroyer(dtorKind); 1556 1557 // Use an EH cleanup in array destructors iff the destructor itself 1558 // is being pushed as an EH cleanup. 1559 bool useEHCleanup = (cleanupKind & EHCleanup); 1560 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1561 useEHCleanup); 1562 } 1563 1564 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1565 assert(emission.Variable && "emission was not valid!"); 1566 1567 // If this was emitted as a global constant, we're done. 1568 if (emission.wasEmittedAsGlobal()) return; 1569 1570 // If we don't have an insertion point, we're done. Sema prevents 1571 // us from jumping into any of these scopes anyway. 1572 if (!HaveInsertPoint()) return; 1573 1574 const VarDecl &D = *emission.Variable; 1575 1576 // Check the type for a cleanup. 1577 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1578 emitAutoVarTypeCleanup(emission, dtorKind); 1579 1580 // In GC mode, honor objc_precise_lifetime. 1581 if (getLangOpts().getGC() != LangOptions::NonGC && 1582 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1583 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1584 } 1585 1586 // Handle the cleanup attribute. 1587 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1588 const FunctionDecl *FD = CA->getFunctionDecl(); 1589 1590 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1591 assert(F && "Could not find function!"); 1592 1593 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1594 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1595 } 1596 1597 // If this is a block variable, call _Block_object_destroy 1598 // (on the unforwarded address). 1599 if (emission.IsByRef) 1600 enterByrefCleanup(emission); 1601 } 1602 1603 CodeGenFunction::Destroyer * 1604 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1605 switch (kind) { 1606 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1607 case QualType::DK_cxx_destructor: 1608 return destroyCXXObject; 1609 case QualType::DK_objc_strong_lifetime: 1610 return destroyARCStrongPrecise; 1611 case QualType::DK_objc_weak_lifetime: 1612 return destroyARCWeak; 1613 case QualType::DK_nontrivial_c_struct: 1614 return destroyNonTrivialCStruct; 1615 } 1616 llvm_unreachable("Unknown DestructionKind"); 1617 } 1618 1619 /// pushEHDestroy - Push the standard destructor for the given type as 1620 /// an EH-only cleanup. 1621 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1622 Address addr, QualType type) { 1623 assert(dtorKind && "cannot push destructor for trivial type"); 1624 assert(needsEHCleanup(dtorKind)); 1625 1626 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1627 } 1628 1629 /// pushDestroy - Push the standard destructor for the given type as 1630 /// at least a normal cleanup. 1631 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1632 Address addr, QualType type) { 1633 assert(dtorKind && "cannot push destructor for trivial type"); 1634 1635 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1636 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1637 cleanupKind & EHCleanup); 1638 } 1639 1640 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1641 QualType type, Destroyer *destroyer, 1642 bool useEHCleanupForArray) { 1643 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1644 destroyer, useEHCleanupForArray); 1645 } 1646 1647 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1648 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1649 } 1650 1651 void CodeGenFunction::pushLifetimeExtendedDestroy( 1652 CleanupKind cleanupKind, Address addr, QualType type, 1653 Destroyer *destroyer, bool useEHCleanupForArray) { 1654 assert(!isInConditionalBranch() && 1655 "performing lifetime extension from within conditional"); 1656 1657 // Push an EH-only cleanup for the object now. 1658 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1659 // around in case a temporary's destructor throws an exception. 1660 if (cleanupKind & EHCleanup) 1661 EHStack.pushCleanup<DestroyObject>( 1662 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1663 destroyer, useEHCleanupForArray); 1664 1665 // Remember that we need to push a full cleanup for the object at the 1666 // end of the full-expression. 1667 pushCleanupAfterFullExpr<DestroyObject>( 1668 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1669 } 1670 1671 /// emitDestroy - Immediately perform the destruction of the given 1672 /// object. 1673 /// 1674 /// \param addr - the address of the object; a type* 1675 /// \param type - the type of the object; if an array type, all 1676 /// objects are destroyed in reverse order 1677 /// \param destroyer - the function to call to destroy individual 1678 /// elements 1679 /// \param useEHCleanupForArray - whether an EH cleanup should be 1680 /// used when destroying array elements, in case one of the 1681 /// destructions throws an exception 1682 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1683 Destroyer *destroyer, 1684 bool useEHCleanupForArray) { 1685 const ArrayType *arrayType = getContext().getAsArrayType(type); 1686 if (!arrayType) 1687 return destroyer(*this, addr, type); 1688 1689 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1690 1691 CharUnits elementAlign = 1692 addr.getAlignment() 1693 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1694 1695 // Normally we have to check whether the array is zero-length. 1696 bool checkZeroLength = true; 1697 1698 // But if the array length is constant, we can suppress that. 1699 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1700 // ...and if it's constant zero, we can just skip the entire thing. 1701 if (constLength->isZero()) return; 1702 checkZeroLength = false; 1703 } 1704 1705 llvm::Value *begin = addr.getPointer(); 1706 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1707 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1708 checkZeroLength, useEHCleanupForArray); 1709 } 1710 1711 /// emitArrayDestroy - Destroys all the elements of the given array, 1712 /// beginning from last to first. The array cannot be zero-length. 1713 /// 1714 /// \param begin - a type* denoting the first element of the array 1715 /// \param end - a type* denoting one past the end of the array 1716 /// \param elementType - the element type of the array 1717 /// \param destroyer - the function to call to destroy elements 1718 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1719 /// the remaining elements in case the destruction of a single 1720 /// element throws 1721 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1722 llvm::Value *end, 1723 QualType elementType, 1724 CharUnits elementAlign, 1725 Destroyer *destroyer, 1726 bool checkZeroLength, 1727 bool useEHCleanup) { 1728 assert(!elementType->isArrayType()); 1729 1730 // The basic structure here is a do-while loop, because we don't 1731 // need to check for the zero-element case. 1732 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1733 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1734 1735 if (checkZeroLength) { 1736 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1737 "arraydestroy.isempty"); 1738 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1739 } 1740 1741 // Enter the loop body, making that address the current address. 1742 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1743 EmitBlock(bodyBB); 1744 llvm::PHINode *elementPast = 1745 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1746 elementPast->addIncoming(end, entryBB); 1747 1748 // Shift the address back by one element. 1749 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1750 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1751 "arraydestroy.element"); 1752 1753 if (useEHCleanup) 1754 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1755 destroyer); 1756 1757 // Perform the actual destruction there. 1758 destroyer(*this, Address(element, elementAlign), elementType); 1759 1760 if (useEHCleanup) 1761 PopCleanupBlock(); 1762 1763 // Check whether we've reached the end. 1764 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1765 Builder.CreateCondBr(done, doneBB, bodyBB); 1766 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1767 1768 // Done. 1769 EmitBlock(doneBB); 1770 } 1771 1772 /// Perform partial array destruction as if in an EH cleanup. Unlike 1773 /// emitArrayDestroy, the element type here may still be an array type. 1774 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1775 llvm::Value *begin, llvm::Value *end, 1776 QualType type, CharUnits elementAlign, 1777 CodeGenFunction::Destroyer *destroyer) { 1778 // If the element type is itself an array, drill down. 1779 unsigned arrayDepth = 0; 1780 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1781 // VLAs don't require a GEP index to walk into. 1782 if (!isa<VariableArrayType>(arrayType)) 1783 arrayDepth++; 1784 type = arrayType->getElementType(); 1785 } 1786 1787 if (arrayDepth) { 1788 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1789 1790 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1791 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1792 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1793 } 1794 1795 // Destroy the array. We don't ever need an EH cleanup because we 1796 // assume that we're in an EH cleanup ourselves, so a throwing 1797 // destructor causes an immediate terminate. 1798 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1799 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1800 } 1801 1802 namespace { 1803 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1804 /// array destroy where the end pointer is regularly determined and 1805 /// does not need to be loaded from a local. 1806 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1807 llvm::Value *ArrayBegin; 1808 llvm::Value *ArrayEnd; 1809 QualType ElementType; 1810 CodeGenFunction::Destroyer *Destroyer; 1811 CharUnits ElementAlign; 1812 public: 1813 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1814 QualType elementType, CharUnits elementAlign, 1815 CodeGenFunction::Destroyer *destroyer) 1816 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1817 ElementType(elementType), Destroyer(destroyer), 1818 ElementAlign(elementAlign) {} 1819 1820 void Emit(CodeGenFunction &CGF, Flags flags) override { 1821 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1822 ElementType, ElementAlign, Destroyer); 1823 } 1824 }; 1825 1826 /// IrregularPartialArrayDestroy - a cleanup which performs a 1827 /// partial array destroy where the end pointer is irregularly 1828 /// determined and must be loaded from a local. 1829 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1830 llvm::Value *ArrayBegin; 1831 Address ArrayEndPointer; 1832 QualType ElementType; 1833 CodeGenFunction::Destroyer *Destroyer; 1834 CharUnits ElementAlign; 1835 public: 1836 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1837 Address arrayEndPointer, 1838 QualType elementType, 1839 CharUnits elementAlign, 1840 CodeGenFunction::Destroyer *destroyer) 1841 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1842 ElementType(elementType), Destroyer(destroyer), 1843 ElementAlign(elementAlign) {} 1844 1845 void Emit(CodeGenFunction &CGF, Flags flags) override { 1846 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1847 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1848 ElementType, ElementAlign, Destroyer); 1849 } 1850 }; 1851 } // end anonymous namespace 1852 1853 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1854 /// already-constructed elements of the given array. The cleanup 1855 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1856 /// 1857 /// \param elementType - the immediate element type of the array; 1858 /// possibly still an array type 1859 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1860 Address arrayEndPointer, 1861 QualType elementType, 1862 CharUnits elementAlign, 1863 Destroyer *destroyer) { 1864 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1865 arrayBegin, arrayEndPointer, 1866 elementType, elementAlign, 1867 destroyer); 1868 } 1869 1870 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1871 /// already-constructed elements of the given array. The cleanup 1872 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1873 /// 1874 /// \param elementType - the immediate element type of the array; 1875 /// possibly still an array type 1876 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1877 llvm::Value *arrayEnd, 1878 QualType elementType, 1879 CharUnits elementAlign, 1880 Destroyer *destroyer) { 1881 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1882 arrayBegin, arrayEnd, 1883 elementType, elementAlign, 1884 destroyer); 1885 } 1886 1887 /// Lazily declare the @llvm.lifetime.start intrinsic. 1888 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1889 if (LifetimeStartFn) 1890 return LifetimeStartFn; 1891 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1892 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 1893 return LifetimeStartFn; 1894 } 1895 1896 /// Lazily declare the @llvm.lifetime.end intrinsic. 1897 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1898 if (LifetimeEndFn) 1899 return LifetimeEndFn; 1900 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1901 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 1902 return LifetimeEndFn; 1903 } 1904 1905 namespace { 1906 /// A cleanup to perform a release of an object at the end of a 1907 /// function. This is used to balance out the incoming +1 of a 1908 /// ns_consumed argument when we can't reasonably do that just by 1909 /// not doing the initial retain for a __block argument. 1910 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1911 ConsumeARCParameter(llvm::Value *param, 1912 ARCPreciseLifetime_t precise) 1913 : Param(param), Precise(precise) {} 1914 1915 llvm::Value *Param; 1916 ARCPreciseLifetime_t Precise; 1917 1918 void Emit(CodeGenFunction &CGF, Flags flags) override { 1919 CGF.EmitARCRelease(Param, Precise); 1920 } 1921 }; 1922 } // end anonymous namespace 1923 1924 /// Emit an alloca (or GlobalValue depending on target) 1925 /// for the specified parameter and set up LocalDeclMap. 1926 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1927 unsigned ArgNo) { 1928 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1929 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1930 "Invalid argument to EmitParmDecl"); 1931 1932 Arg.getAnyValue()->setName(D.getName()); 1933 1934 QualType Ty = D.getType(); 1935 1936 // Use better IR generation for certain implicit parameters. 1937 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1938 // The only implicit argument a block has is its literal. 1939 // This may be passed as an inalloca'ed value on Windows x86. 1940 if (BlockInfo) { 1941 llvm::Value *V = Arg.isIndirect() 1942 ? Builder.CreateLoad(Arg.getIndirectAddress()) 1943 : Arg.getDirectValue(); 1944 setBlockContextParameter(IPD, ArgNo, V); 1945 return; 1946 } 1947 } 1948 1949 Address DeclPtr = Address::invalid(); 1950 bool DoStore = false; 1951 bool IsScalar = hasScalarEvaluationKind(Ty); 1952 // If we already have a pointer to the argument, reuse the input pointer. 1953 if (Arg.isIndirect()) { 1954 DeclPtr = Arg.getIndirectAddress(); 1955 // If we have a prettier pointer type at this point, bitcast to that. 1956 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1957 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1958 if (DeclPtr.getType() != IRTy) 1959 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1960 // Indirect argument is in alloca address space, which may be different 1961 // from the default address space. 1962 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 1963 auto *V = DeclPtr.getPointer(); 1964 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 1965 auto DestLangAS = 1966 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 1967 if (SrcLangAS != DestLangAS) { 1968 assert(getContext().getTargetAddressSpace(SrcLangAS) == 1969 CGM.getDataLayout().getAllocaAddrSpace()); 1970 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 1971 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 1972 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 1973 *this, V, SrcLangAS, DestLangAS, T, true), 1974 DeclPtr.getAlignment()); 1975 } 1976 1977 // Push a destructor cleanup for this parameter if the ABI requires it. 1978 // Don't push a cleanup in a thunk for a method that will also emit a 1979 // cleanup. 1980 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 1981 Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 1982 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 1983 assert((DtorKind == QualType::DK_cxx_destructor || 1984 DtorKind == QualType::DK_nontrivial_c_struct) && 1985 "unexpected destructor type"); 1986 pushDestroy(DtorKind, DeclPtr, Ty); 1987 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 1988 EHStack.stable_begin(); 1989 } 1990 } 1991 } else { 1992 // Check if the parameter address is controlled by OpenMP runtime. 1993 Address OpenMPLocalAddr = 1994 getLangOpts().OpenMP 1995 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1996 : Address::invalid(); 1997 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1998 DeclPtr = OpenMPLocalAddr; 1999 } else { 2000 // Otherwise, create a temporary to hold the value. 2001 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2002 D.getName() + ".addr"); 2003 } 2004 DoStore = true; 2005 } 2006 2007 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2008 2009 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2010 if (IsScalar) { 2011 Qualifiers qs = Ty.getQualifiers(); 2012 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2013 // We honor __attribute__((ns_consumed)) for types with lifetime. 2014 // For __strong, it's handled by just skipping the initial retain; 2015 // otherwise we have to balance out the initial +1 with an extra 2016 // cleanup to do the release at the end of the function. 2017 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2018 2019 // 'self' is always formally __strong, but if this is not an 2020 // init method then we don't want to retain it. 2021 if (D.isARCPseudoStrong()) { 2022 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 2023 assert(&D == method->getSelfDecl()); 2024 assert(lt == Qualifiers::OCL_Strong); 2025 assert(qs.hasConst()); 2026 assert(method->getMethodFamily() != OMF_init); 2027 (void) method; 2028 lt = Qualifiers::OCL_ExplicitNone; 2029 } 2030 2031 // Load objects passed indirectly. 2032 if (Arg.isIndirect() && !ArgVal) 2033 ArgVal = Builder.CreateLoad(DeclPtr); 2034 2035 if (lt == Qualifiers::OCL_Strong) { 2036 if (!isConsumed) { 2037 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2038 // use objc_storeStrong(&dest, value) for retaining the 2039 // object. But first, store a null into 'dest' because 2040 // objc_storeStrong attempts to release its old value. 2041 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2042 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2043 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2044 DoStore = false; 2045 } 2046 else 2047 // Don't use objc_retainBlock for block pointers, because we 2048 // don't want to Block_copy something just because we got it 2049 // as a parameter. 2050 ArgVal = EmitARCRetainNonBlock(ArgVal); 2051 } 2052 } else { 2053 // Push the cleanup for a consumed parameter. 2054 if (isConsumed) { 2055 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2056 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2057 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2058 precise); 2059 } 2060 2061 if (lt == Qualifiers::OCL_Weak) { 2062 EmitARCInitWeak(DeclPtr, ArgVal); 2063 DoStore = false; // The weak init is a store, no need to do two. 2064 } 2065 } 2066 2067 // Enter the cleanup scope. 2068 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2069 } 2070 } 2071 2072 // Store the initial value into the alloca. 2073 if (DoStore) 2074 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2075 2076 setAddrOfLocalVar(&D, DeclPtr); 2077 2078 // Emit debug info for param declaration. 2079 if (CGDebugInfo *DI = getDebugInfo()) { 2080 if (CGM.getCodeGenOpts().getDebugInfo() >= 2081 codegenoptions::LimitedDebugInfo) { 2082 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2083 } 2084 } 2085 2086 if (D.hasAttr<AnnotateAttr>()) 2087 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2088 2089 // We can only check return value nullability if all arguments to the 2090 // function satisfy their nullability preconditions. This makes it necessary 2091 // to emit null checks for args in the function body itself. 2092 if (requiresReturnValueNullabilityCheck()) { 2093 auto Nullability = Ty->getNullability(getContext()); 2094 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2095 SanitizerScope SanScope(this); 2096 RetValNullabilityPrecondition = 2097 Builder.CreateAnd(RetValNullabilityPrecondition, 2098 Builder.CreateIsNotNull(Arg.getAnyValue())); 2099 } 2100 } 2101 } 2102 2103 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2104 CodeGenFunction *CGF) { 2105 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2106 return; 2107 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2108 } 2109