1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 
34 void CodeGenFunction::EmitDecl(const Decl &D) {
35   switch (D.getKind()) {
36   case Decl::TranslationUnit:
37   case Decl::Namespace:
38   case Decl::UnresolvedUsingTypename:
39   case Decl::ClassTemplateSpecialization:
40   case Decl::ClassTemplatePartialSpecialization:
41   case Decl::VarTemplateSpecialization:
42   case Decl::VarTemplatePartialSpecialization:
43   case Decl::TemplateTypeParm:
44   case Decl::UnresolvedUsingValue:
45   case Decl::NonTypeTemplateParm:
46   case Decl::CXXMethod:
47   case Decl::CXXConstructor:
48   case Decl::CXXDestructor:
49   case Decl::CXXConversion:
50   case Decl::Field:
51   case Decl::MSProperty:
52   case Decl::IndirectField:
53   case Decl::ObjCIvar:
54   case Decl::ObjCAtDefsField:
55   case Decl::ParmVar:
56   case Decl::ImplicitParam:
57   case Decl::ClassTemplate:
58   case Decl::VarTemplate:
59   case Decl::FunctionTemplate:
60   case Decl::TypeAliasTemplate:
61   case Decl::TemplateTemplateParm:
62   case Decl::ObjCMethod:
63   case Decl::ObjCCategory:
64   case Decl::ObjCProtocol:
65   case Decl::ObjCInterface:
66   case Decl::ObjCCategoryImpl:
67   case Decl::ObjCImplementation:
68   case Decl::ObjCProperty:
69   case Decl::ObjCCompatibleAlias:
70   case Decl::AccessSpec:
71   case Decl::LinkageSpec:
72   case Decl::ObjCPropertyImpl:
73   case Decl::FileScopeAsm:
74   case Decl::Friend:
75   case Decl::FriendTemplate:
76   case Decl::Block:
77   case Decl::Captured:
78   case Decl::ClassScopeFunctionSpecialization:
79   case Decl::UsingShadow:
80     llvm_unreachable("Declaration should not be in declstmts!");
81   case Decl::Function:  // void X();
82   case Decl::Record:    // struct/union/class X;
83   case Decl::Enum:      // enum X;
84   case Decl::EnumConstant: // enum ? { X = ? }
85   case Decl::CXXRecord: // struct/union/class X; [C++]
86   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
87   case Decl::Label:        // __label__ x;
88   case Decl::Import:
89   case Decl::OMPThreadPrivate:
90   case Decl::Empty:
91     // None of these decls require codegen support.
92     return;
93 
94   case Decl::NamespaceAlias:
95     if (CGDebugInfo *DI = getDebugInfo())
96         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
97     return;
98   case Decl::Using:          // using X; [C++]
99     if (CGDebugInfo *DI = getDebugInfo())
100         DI->EmitUsingDecl(cast<UsingDecl>(D));
101     return;
102   case Decl::UsingDirective: // using namespace X; [C++]
103     if (CGDebugInfo *DI = getDebugInfo())
104       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
105     return;
106   case Decl::Var: {
107     const VarDecl &VD = cast<VarDecl>(D);
108     assert(VD.isLocalVarDecl() &&
109            "Should not see file-scope variables inside a function!");
110     return EmitVarDecl(VD);
111   }
112 
113   case Decl::Typedef:      // typedef int X;
114   case Decl::TypeAlias: {  // using X = int; [C++0x]
115     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
116     QualType Ty = TD.getUnderlyingType();
117 
118     if (Ty->isVariablyModifiedType())
119       EmitVariablyModifiedType(Ty);
120   }
121   }
122 }
123 
124 /// EmitVarDecl - This method handles emission of any variable declaration
125 /// inside a function, including static vars etc.
126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
127   if (D.isStaticLocal()) {
128     llvm::GlobalValue::LinkageTypes Linkage =
129         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
130 
131     // FIXME: We need to force the emission/use of a guard variable for
132     // some variables even if we can constant-evaluate them because
133     // we can't guarantee every translation unit will constant-evaluate them.
134 
135     return EmitStaticVarDecl(D, Linkage);
136   }
137 
138   if (D.hasExternalStorage())
139     // Don't emit it now, allow it to be emitted lazily on its first use.
140     return;
141 
142   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
143     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
144 
145   assert(D.hasLocalStorage());
146   return EmitAutoVarDecl(D);
147 }
148 
149 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D) {
150   CodeGenModule &CGM = CGF.CGM;
151 
152   if (CGF.getLangOpts().CPlusPlus)
153     return CGM.getMangledName(&D).str();
154 
155   StringRef ContextName;
156   if (!CGF.CurFuncDecl) {
157     // Better be in a block declared in global scope.
158     const NamedDecl *ND = cast<NamedDecl>(&D);
159     const DeclContext *DC = ND->getDeclContext();
160     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
161       ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
162     else
163       llvm_unreachable("Unknown context for block static var decl");
164   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl))
165     ContextName = CGM.getMangledName(FD);
166   else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
167     ContextName = CGF.CurFn->getName();
168   else
169     llvm_unreachable("Unknown context for static var decl");
170 
171   return ContextName.str() + "." + D.getNameAsString();
172 }
173 
174 llvm::Constant *
175 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
176                                      llvm::GlobalValue::LinkageTypes Linkage) {
177   QualType Ty = D.getType();
178   assert(Ty->isConstantSizeType() && "VLAs can't be static");
179 
180   // Use the label if the variable is renamed with the asm-label extension.
181   std::string Name;
182   if (D.hasAttr<AsmLabelAttr>())
183     Name = CGM.getMangledName(&D);
184   else
185     Name = GetStaticDeclName(*this, D);
186 
187   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
188   unsigned AddrSpace =
189    CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
190   llvm::GlobalVariable *GV =
191     new llvm::GlobalVariable(CGM.getModule(), LTy,
192                              Ty.isConstant(getContext()), Linkage,
193                              CGM.EmitNullConstant(D.getType()), Name, nullptr,
194                              llvm::GlobalVariable::NotThreadLocal,
195                              AddrSpace);
196   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
197   CGM.setGlobalVisibility(GV, &D);
198 
199   if (D.getTLSKind())
200     CGM.setTLSMode(GV, D);
201 
202   if (D.isExternallyVisible()) {
203     if (D.hasAttr<DLLImportAttr>())
204       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
205     else if (D.hasAttr<DLLExportAttr>())
206       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
207   }
208 
209   // Make sure the result is of the correct type.
210   unsigned ExpectedAddrSpace = CGM.getContext().getTargetAddressSpace(Ty);
211   if (AddrSpace != ExpectedAddrSpace) {
212     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
213     return llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
214   }
215 
216   return GV;
217 }
218 
219 /// hasNontrivialDestruction - Determine whether a type's destruction is
220 /// non-trivial. If so, and the variable uses static initialization, we must
221 /// register its destructor to run on exit.
222 static bool hasNontrivialDestruction(QualType T) {
223   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
224   return RD && !RD->hasTrivialDestructor();
225 }
226 
227 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
228 /// global variable that has already been created for it.  If the initializer
229 /// has a different type than GV does, this may free GV and return a different
230 /// one.  Otherwise it just returns GV.
231 llvm::GlobalVariable *
232 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
233                                                llvm::GlobalVariable *GV) {
234   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
235 
236   // If constant emission failed, then this should be a C++ static
237   // initializer.
238   if (!Init) {
239     if (!getLangOpts().CPlusPlus)
240       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
241     else if (Builder.GetInsertBlock()) {
242       // Since we have a static initializer, this global variable can't
243       // be constant.
244       GV->setConstant(false);
245 
246       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
247     }
248     return GV;
249   }
250 
251   // The initializer may differ in type from the global. Rewrite
252   // the global to match the initializer.  (We have to do this
253   // because some types, like unions, can't be completely represented
254   // in the LLVM type system.)
255   if (GV->getType()->getElementType() != Init->getType()) {
256     llvm::GlobalVariable *OldGV = GV;
257 
258     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
259                                   OldGV->isConstant(),
260                                   OldGV->getLinkage(), Init, "",
261                                   /*InsertBefore*/ OldGV,
262                                   OldGV->getThreadLocalMode(),
263                            CGM.getContext().getTargetAddressSpace(D.getType()));
264     GV->setVisibility(OldGV->getVisibility());
265 
266     // Steal the name of the old global
267     GV->takeName(OldGV);
268 
269     // Replace all uses of the old global with the new global
270     llvm::Constant *NewPtrForOldDecl =
271     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
272     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
273 
274     // Erase the old global, since it is no longer used.
275     OldGV->eraseFromParent();
276   }
277 
278   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
279   GV->setInitializer(Init);
280 
281   if (hasNontrivialDestruction(D.getType())) {
282     // We have a constant initializer, but a nontrivial destructor. We still
283     // need to perform a guarded "initialization" in order to register the
284     // destructor.
285     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
286   }
287 
288   return GV;
289 }
290 
291 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
292                                       llvm::GlobalValue::LinkageTypes Linkage) {
293   llvm::Value *&DMEntry = LocalDeclMap[&D];
294   assert(!DMEntry && "Decl already exists in localdeclmap!");
295 
296   // Check to see if we already have a global variable for this
297   // declaration.  This can happen when double-emitting function
298   // bodies, e.g. with complete and base constructors.
299   llvm::Constant *addr =
300     CGM.getStaticLocalDeclAddress(&D);
301 
302   if (!addr)
303     addr = CreateStaticVarDecl(D, Linkage);
304 
305   // Store into LocalDeclMap before generating initializer to handle
306   // circular references.
307   DMEntry = addr;
308   CGM.setStaticLocalDeclAddress(&D, addr);
309 
310   // We can't have a VLA here, but we can have a pointer to a VLA,
311   // even though that doesn't really make any sense.
312   // Make sure to evaluate VLA bounds now so that we have them for later.
313   if (D.getType()->isVariablyModifiedType())
314     EmitVariablyModifiedType(D.getType());
315 
316   // Save the type in case adding the initializer forces a type change.
317   llvm::Type *expectedType = addr->getType();
318 
319   llvm::GlobalVariable *var =
320     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
321   // If this value has an initializer, emit it.
322   if (D.getInit())
323     var = AddInitializerToStaticVarDecl(D, var);
324 
325   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
326 
327   if (D.hasAttr<AnnotateAttr>())
328     CGM.AddGlobalAnnotations(&D, var);
329 
330   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
331     var->setSection(SA->getName());
332 
333   if (D.hasAttr<UsedAttr>())
334     CGM.addUsedGlobal(var);
335 
336   // We may have to cast the constant because of the initializer
337   // mismatch above.
338   //
339   // FIXME: It is really dangerous to store this in the map; if anyone
340   // RAUW's the GV uses of this constant will be invalid.
341   llvm::Constant *castedAddr =
342     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
343   DMEntry = castedAddr;
344   CGM.setStaticLocalDeclAddress(&D, castedAddr);
345 
346   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
347 
348   // Emit global variable debug descriptor for static vars.
349   CGDebugInfo *DI = getDebugInfo();
350   if (DI &&
351       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
352     DI->setLocation(D.getLocation());
353     DI->EmitGlobalVariable(var, &D);
354   }
355 }
356 
357 namespace {
358   struct DestroyObject : EHScopeStack::Cleanup {
359     DestroyObject(llvm::Value *addr, QualType type,
360                   CodeGenFunction::Destroyer *destroyer,
361                   bool useEHCleanupForArray)
362       : addr(addr), type(type), destroyer(destroyer),
363         useEHCleanupForArray(useEHCleanupForArray) {}
364 
365     llvm::Value *addr;
366     QualType type;
367     CodeGenFunction::Destroyer *destroyer;
368     bool useEHCleanupForArray;
369 
370     void Emit(CodeGenFunction &CGF, Flags flags) override {
371       // Don't use an EH cleanup recursively from an EH cleanup.
372       bool useEHCleanupForArray =
373         flags.isForNormalCleanup() && this->useEHCleanupForArray;
374 
375       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
376     }
377   };
378 
379   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
380     DestroyNRVOVariable(llvm::Value *addr,
381                         const CXXDestructorDecl *Dtor,
382                         llvm::Value *NRVOFlag)
383       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
384 
385     const CXXDestructorDecl *Dtor;
386     llvm::Value *NRVOFlag;
387     llvm::Value *Loc;
388 
389     void Emit(CodeGenFunction &CGF, Flags flags) override {
390       // Along the exceptions path we always execute the dtor.
391       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
392 
393       llvm::BasicBlock *SkipDtorBB = nullptr;
394       if (NRVO) {
395         // If we exited via NRVO, we skip the destructor call.
396         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
397         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
398         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
399         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
400         CGF.EmitBlock(RunDtorBB);
401       }
402 
403       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
404                                 /*ForVirtualBase=*/false,
405                                 /*Delegating=*/false,
406                                 Loc);
407 
408       if (NRVO) CGF.EmitBlock(SkipDtorBB);
409     }
410   };
411 
412   struct CallStackRestore : EHScopeStack::Cleanup {
413     llvm::Value *Stack;
414     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
415     void Emit(CodeGenFunction &CGF, Flags flags) override {
416       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
417       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
418       CGF.Builder.CreateCall(F, V);
419     }
420   };
421 
422   struct ExtendGCLifetime : EHScopeStack::Cleanup {
423     const VarDecl &Var;
424     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
425 
426     void Emit(CodeGenFunction &CGF, Flags flags) override {
427       // Compute the address of the local variable, in case it's a
428       // byref or something.
429       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
430                       Var.getType(), VK_LValue, SourceLocation());
431       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
432                                                 SourceLocation());
433       CGF.EmitExtendGCLifetime(value);
434     }
435   };
436 
437   struct CallCleanupFunction : EHScopeStack::Cleanup {
438     llvm::Constant *CleanupFn;
439     const CGFunctionInfo &FnInfo;
440     const VarDecl &Var;
441 
442     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
443                         const VarDecl *Var)
444       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
445 
446     void Emit(CodeGenFunction &CGF, Flags flags) override {
447       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
448                       Var.getType(), VK_LValue, SourceLocation());
449       // Compute the address of the local variable, in case it's a byref
450       // or something.
451       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
452 
453       // In some cases, the type of the function argument will be different from
454       // the type of the pointer. An example of this is
455       // void f(void* arg);
456       // __attribute__((cleanup(f))) void *g;
457       //
458       // To fix this we insert a bitcast here.
459       QualType ArgTy = FnInfo.arg_begin()->type;
460       llvm::Value *Arg =
461         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
462 
463       CallArgList Args;
464       Args.add(RValue::get(Arg),
465                CGF.getContext().getPointerType(Var.getType()));
466       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
467     }
468   };
469 
470   /// A cleanup to call @llvm.lifetime.end.
471   class CallLifetimeEnd : public EHScopeStack::Cleanup {
472     llvm::Value *Addr;
473     llvm::Value *Size;
474   public:
475     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
476       : Addr(addr), Size(size) {}
477 
478     void Emit(CodeGenFunction &CGF, Flags flags) override {
479       llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
480       CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
481                               Size, castAddr)
482         ->setDoesNotThrow();
483     }
484   };
485 }
486 
487 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
488 /// variable with lifetime.
489 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
490                                     llvm::Value *addr,
491                                     Qualifiers::ObjCLifetime lifetime) {
492   switch (lifetime) {
493   case Qualifiers::OCL_None:
494     llvm_unreachable("present but none");
495 
496   case Qualifiers::OCL_ExplicitNone:
497     // nothing to do
498     break;
499 
500   case Qualifiers::OCL_Strong: {
501     CodeGenFunction::Destroyer *destroyer =
502       (var.hasAttr<ObjCPreciseLifetimeAttr>()
503        ? CodeGenFunction::destroyARCStrongPrecise
504        : CodeGenFunction::destroyARCStrongImprecise);
505 
506     CleanupKind cleanupKind = CGF.getARCCleanupKind();
507     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
508                     cleanupKind & EHCleanup);
509     break;
510   }
511   case Qualifiers::OCL_Autoreleasing:
512     // nothing to do
513     break;
514 
515   case Qualifiers::OCL_Weak:
516     // __weak objects always get EH cleanups; otherwise, exceptions
517     // could cause really nasty crashes instead of mere leaks.
518     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
519                     CodeGenFunction::destroyARCWeak,
520                     /*useEHCleanup*/ true);
521     break;
522   }
523 }
524 
525 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
526   if (const Expr *e = dyn_cast<Expr>(s)) {
527     // Skip the most common kinds of expressions that make
528     // hierarchy-walking expensive.
529     s = e = e->IgnoreParenCasts();
530 
531     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
532       return (ref->getDecl() == &var);
533     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
534       const BlockDecl *block = be->getBlockDecl();
535       for (const auto &I : block->captures()) {
536         if (I.getVariable() == &var)
537           return true;
538       }
539     }
540   }
541 
542   for (Stmt::const_child_range children = s->children(); children; ++children)
543     // children might be null; as in missing decl or conditional of an if-stmt.
544     if ((*children) && isAccessedBy(var, *children))
545       return true;
546 
547   return false;
548 }
549 
550 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
551   if (!decl) return false;
552   if (!isa<VarDecl>(decl)) return false;
553   const VarDecl *var = cast<VarDecl>(decl);
554   return isAccessedBy(*var, e);
555 }
556 
557 static void drillIntoBlockVariable(CodeGenFunction &CGF,
558                                    LValue &lvalue,
559                                    const VarDecl *var) {
560   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
561 }
562 
563 void CodeGenFunction::EmitScalarInit(const Expr *init,
564                                      const ValueDecl *D,
565                                      LValue lvalue,
566                                      bool capturedByInit) {
567   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
568   if (!lifetime) {
569     llvm::Value *value = EmitScalarExpr(init);
570     if (capturedByInit)
571       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
572     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
573     return;
574   }
575 
576   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
577     init = DIE->getExpr();
578 
579   // If we're emitting a value with lifetime, we have to do the
580   // initialization *before* we leave the cleanup scopes.
581   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
582     enterFullExpression(ewc);
583     init = ewc->getSubExpr();
584   }
585   CodeGenFunction::RunCleanupsScope Scope(*this);
586 
587   // We have to maintain the illusion that the variable is
588   // zero-initialized.  If the variable might be accessed in its
589   // initializer, zero-initialize before running the initializer, then
590   // actually perform the initialization with an assign.
591   bool accessedByInit = false;
592   if (lifetime != Qualifiers::OCL_ExplicitNone)
593     accessedByInit = (capturedByInit || isAccessedBy(D, init));
594   if (accessedByInit) {
595     LValue tempLV = lvalue;
596     // Drill down to the __block object if necessary.
597     if (capturedByInit) {
598       // We can use a simple GEP for this because it can't have been
599       // moved yet.
600       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
601                                    getByRefValueLLVMField(cast<VarDecl>(D))));
602     }
603 
604     llvm::PointerType *ty
605       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
606     ty = cast<llvm::PointerType>(ty->getElementType());
607 
608     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
609 
610     // If __weak, we want to use a barrier under certain conditions.
611     if (lifetime == Qualifiers::OCL_Weak)
612       EmitARCInitWeak(tempLV.getAddress(), zero);
613 
614     // Otherwise just do a simple store.
615     else
616       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
617   }
618 
619   // Emit the initializer.
620   llvm::Value *value = nullptr;
621 
622   switch (lifetime) {
623   case Qualifiers::OCL_None:
624     llvm_unreachable("present but none");
625 
626   case Qualifiers::OCL_ExplicitNone:
627     // nothing to do
628     value = EmitScalarExpr(init);
629     break;
630 
631   case Qualifiers::OCL_Strong: {
632     value = EmitARCRetainScalarExpr(init);
633     break;
634   }
635 
636   case Qualifiers::OCL_Weak: {
637     // No way to optimize a producing initializer into this.  It's not
638     // worth optimizing for, because the value will immediately
639     // disappear in the common case.
640     value = EmitScalarExpr(init);
641 
642     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
643     if (accessedByInit)
644       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
645     else
646       EmitARCInitWeak(lvalue.getAddress(), value);
647     return;
648   }
649 
650   case Qualifiers::OCL_Autoreleasing:
651     value = EmitARCRetainAutoreleaseScalarExpr(init);
652     break;
653   }
654 
655   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
656 
657   // If the variable might have been accessed by its initializer, we
658   // might have to initialize with a barrier.  We have to do this for
659   // both __weak and __strong, but __weak got filtered out above.
660   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
661     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
662     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
663     EmitARCRelease(oldValue, ARCImpreciseLifetime);
664     return;
665   }
666 
667   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
668 }
669 
670 /// EmitScalarInit - Initialize the given lvalue with the given object.
671 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
672   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
673   if (!lifetime)
674     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
675 
676   switch (lifetime) {
677   case Qualifiers::OCL_None:
678     llvm_unreachable("present but none");
679 
680   case Qualifiers::OCL_ExplicitNone:
681     // nothing to do
682     break;
683 
684   case Qualifiers::OCL_Strong:
685     init = EmitARCRetain(lvalue.getType(), init);
686     break;
687 
688   case Qualifiers::OCL_Weak:
689     // Initialize and then skip the primitive store.
690     EmitARCInitWeak(lvalue.getAddress(), init);
691     return;
692 
693   case Qualifiers::OCL_Autoreleasing:
694     init = EmitARCRetainAutorelease(lvalue.getType(), init);
695     break;
696   }
697 
698   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
699 }
700 
701 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
702 /// non-zero parts of the specified initializer with equal or fewer than
703 /// NumStores scalar stores.
704 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
705                                                 unsigned &NumStores) {
706   // Zero and Undef never requires any extra stores.
707   if (isa<llvm::ConstantAggregateZero>(Init) ||
708       isa<llvm::ConstantPointerNull>(Init) ||
709       isa<llvm::UndefValue>(Init))
710     return true;
711   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
712       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
713       isa<llvm::ConstantExpr>(Init))
714     return Init->isNullValue() || NumStores--;
715 
716   // See if we can emit each element.
717   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
718     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
719       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
720       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
721         return false;
722     }
723     return true;
724   }
725 
726   if (llvm::ConstantDataSequential *CDS =
727         dyn_cast<llvm::ConstantDataSequential>(Init)) {
728     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
729       llvm::Constant *Elt = CDS->getElementAsConstant(i);
730       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
731         return false;
732     }
733     return true;
734   }
735 
736   // Anything else is hard and scary.
737   return false;
738 }
739 
740 /// emitStoresForInitAfterMemset - For inits that
741 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
742 /// stores that would be required.
743 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
744                                          bool isVolatile, CGBuilderTy &Builder) {
745   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
746          "called emitStoresForInitAfterMemset for zero or undef value.");
747 
748   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
749       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
750       isa<llvm::ConstantExpr>(Init)) {
751     Builder.CreateStore(Init, Loc, isVolatile);
752     return;
753   }
754 
755   if (llvm::ConstantDataSequential *CDS =
756         dyn_cast<llvm::ConstantDataSequential>(Init)) {
757     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
758       llvm::Constant *Elt = CDS->getElementAsConstant(i);
759 
760       // If necessary, get a pointer to the element and emit it.
761       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
762         emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
763                                      isVolatile, Builder);
764     }
765     return;
766   }
767 
768   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
769          "Unknown value type!");
770 
771   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
772     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
773 
774     // If necessary, get a pointer to the element and emit it.
775     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
776       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
777                                    isVolatile, Builder);
778   }
779 }
780 
781 
782 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
783 /// plus some stores to initialize a local variable instead of using a memcpy
784 /// from a constant global.  It is beneficial to use memset if the global is all
785 /// zeros, or mostly zeros and large.
786 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
787                                                   uint64_t GlobalSize) {
788   // If a global is all zeros, always use a memset.
789   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
790 
791   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
792   // do it if it will require 6 or fewer scalar stores.
793   // TODO: Should budget depends on the size?  Avoiding a large global warrants
794   // plopping in more stores.
795   unsigned StoreBudget = 6;
796   uint64_t SizeLimit = 32;
797 
798   return GlobalSize > SizeLimit &&
799          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
800 }
801 
802 /// Should we use the LLVM lifetime intrinsics for the given local variable?
803 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
804                                      unsigned Size) {
805   // For now, only in optimized builds.
806   if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
807     return false;
808 
809   // Limit the size of marked objects to 32 bytes. We don't want to increase
810   // compile time by marking tiny objects.
811   unsigned SizeThreshold = 32;
812 
813   return Size > SizeThreshold;
814 }
815 
816 
817 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
818 /// variable declaration with auto, register, or no storage class specifier.
819 /// These turn into simple stack objects, or GlobalValues depending on target.
820 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
821   AutoVarEmission emission = EmitAutoVarAlloca(D);
822   EmitAutoVarInit(emission);
823   EmitAutoVarCleanups(emission);
824 }
825 
826 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
827 /// local variable.  Does not emit initialization or destruction.
828 CodeGenFunction::AutoVarEmission
829 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
830   QualType Ty = D.getType();
831 
832   AutoVarEmission emission(D);
833 
834   bool isByRef = D.hasAttr<BlocksAttr>();
835   emission.IsByRef = isByRef;
836 
837   CharUnits alignment = getContext().getDeclAlign(&D);
838   emission.Alignment = alignment;
839 
840   // If the type is variably-modified, emit all the VLA sizes for it.
841   if (Ty->isVariablyModifiedType())
842     EmitVariablyModifiedType(Ty);
843 
844   llvm::Value *DeclPtr;
845   if (Ty->isConstantSizeType()) {
846     bool NRVO = getLangOpts().ElideConstructors &&
847       D.isNRVOVariable();
848 
849     // If this value is an array or struct with a statically determinable
850     // constant initializer, there are optimizations we can do.
851     //
852     // TODO: We should constant-evaluate the initializer of any variable,
853     // as long as it is initialized by a constant expression. Currently,
854     // isConstantInitializer produces wrong answers for structs with
855     // reference or bitfield members, and a few other cases, and checking
856     // for POD-ness protects us from some of these.
857     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
858         (D.isConstexpr() ||
859          ((Ty.isPODType(getContext()) ||
860            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
861           D.getInit()->isConstantInitializer(getContext(), false)))) {
862 
863       // If the variable's a const type, and it's neither an NRVO
864       // candidate nor a __block variable and has no mutable members,
865       // emit it as a global instead.
866       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
867           CGM.isTypeConstant(Ty, true)) {
868         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
869 
870         emission.Address = nullptr; // signal this condition to later callbacks
871         assert(emission.wasEmittedAsGlobal());
872         return emission;
873       }
874 
875       // Otherwise, tell the initialization code that we're in this case.
876       emission.IsConstantAggregate = true;
877     }
878 
879     // A normal fixed sized variable becomes an alloca in the entry block,
880     // unless it's an NRVO variable.
881     llvm::Type *LTy = ConvertTypeForMem(Ty);
882 
883     if (NRVO) {
884       // The named return value optimization: allocate this variable in the
885       // return slot, so that we can elide the copy when returning this
886       // variable (C++0x [class.copy]p34).
887       DeclPtr = ReturnValue;
888 
889       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
890         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
891           // Create a flag that is used to indicate when the NRVO was applied
892           // to this variable. Set it to zero to indicate that NRVO was not
893           // applied.
894           llvm::Value *Zero = Builder.getFalse();
895           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
896           EnsureInsertPoint();
897           Builder.CreateStore(Zero, NRVOFlag);
898 
899           // Record the NRVO flag for this variable.
900           NRVOFlags[&D] = NRVOFlag;
901           emission.NRVOFlag = NRVOFlag;
902         }
903       }
904     } else {
905       if (isByRef)
906         LTy = BuildByRefType(&D);
907 
908       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
909       Alloc->setName(D.getName());
910 
911       CharUnits allocaAlignment = alignment;
912       if (isByRef)
913         allocaAlignment = std::max(allocaAlignment,
914             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
915       Alloc->setAlignment(allocaAlignment.getQuantity());
916       DeclPtr = Alloc;
917 
918       // Emit a lifetime intrinsic if meaningful.  There's no point
919       // in doing this if we don't have a valid insertion point (?).
920       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
921       if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
922         llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
923 
924         emission.SizeForLifetimeMarkers = sizeV;
925         llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
926         Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
927           ->setDoesNotThrow();
928       } else {
929         assert(!emission.useLifetimeMarkers());
930       }
931     }
932   } else {
933     EnsureInsertPoint();
934 
935     if (!DidCallStackSave) {
936       // Save the stack.
937       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
938 
939       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
940       llvm::Value *V = Builder.CreateCall(F);
941 
942       Builder.CreateStore(V, Stack);
943 
944       DidCallStackSave = true;
945 
946       // Push a cleanup block and restore the stack there.
947       // FIXME: in general circumstances, this should be an EH cleanup.
948       pushStackRestore(NormalCleanup, Stack);
949     }
950 
951     llvm::Value *elementCount;
952     QualType elementType;
953     std::tie(elementCount, elementType) = getVLASize(Ty);
954 
955     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
956 
957     // Allocate memory for the array.
958     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
959     vla->setAlignment(alignment.getQuantity());
960 
961     DeclPtr = vla;
962   }
963 
964   llvm::Value *&DMEntry = LocalDeclMap[&D];
965   assert(!DMEntry && "Decl already exists in localdeclmap!");
966   DMEntry = DeclPtr;
967   emission.Address = DeclPtr;
968 
969   // Emit debug info for local var declaration.
970   if (HaveInsertPoint())
971     if (CGDebugInfo *DI = getDebugInfo()) {
972       if (CGM.getCodeGenOpts().getDebugInfo()
973             >= CodeGenOptions::LimitedDebugInfo) {
974         DI->setLocation(D.getLocation());
975         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
976       }
977     }
978 
979   if (D.hasAttr<AnnotateAttr>())
980       EmitVarAnnotations(&D, emission.Address);
981 
982   return emission;
983 }
984 
985 /// Determines whether the given __block variable is potentially
986 /// captured by the given expression.
987 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
988   // Skip the most common kinds of expressions that make
989   // hierarchy-walking expensive.
990   e = e->IgnoreParenCasts();
991 
992   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
993     const BlockDecl *block = be->getBlockDecl();
994     for (const auto &I : block->captures()) {
995       if (I.getVariable() == &var)
996         return true;
997     }
998 
999     // No need to walk into the subexpressions.
1000     return false;
1001   }
1002 
1003   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1004     const CompoundStmt *CS = SE->getSubStmt();
1005     for (const auto *BI : CS->body())
1006       if (const auto *E = dyn_cast<Expr>(BI)) {
1007         if (isCapturedBy(var, E))
1008             return true;
1009       }
1010       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1011           // special case declarations
1012           for (const auto *I : DS->decls()) {
1013               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1014                 const Expr *Init = VD->getInit();
1015                 if (Init && isCapturedBy(var, Init))
1016                   return true;
1017               }
1018           }
1019       }
1020       else
1021         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1022         // Later, provide code to poke into statements for capture analysis.
1023         return true;
1024     return false;
1025   }
1026 
1027   for (Stmt::const_child_range children = e->children(); children; ++children)
1028     if (isCapturedBy(var, cast<Expr>(*children)))
1029       return true;
1030 
1031   return false;
1032 }
1033 
1034 /// \brief Determine whether the given initializer is trivial in the sense
1035 /// that it requires no code to be generated.
1036 static bool isTrivialInitializer(const Expr *Init) {
1037   if (!Init)
1038     return true;
1039 
1040   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1041     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1042       if (Constructor->isTrivial() &&
1043           Constructor->isDefaultConstructor() &&
1044           !Construct->requiresZeroInitialization())
1045         return true;
1046 
1047   return false;
1048 }
1049 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1050   assert(emission.Variable && "emission was not valid!");
1051 
1052   // If this was emitted as a global constant, we're done.
1053   if (emission.wasEmittedAsGlobal()) return;
1054 
1055   const VarDecl &D = *emission.Variable;
1056   QualType type = D.getType();
1057 
1058   // If this local has an initializer, emit it now.
1059   const Expr *Init = D.getInit();
1060 
1061   // If we are at an unreachable point, we don't need to emit the initializer
1062   // unless it contains a label.
1063   if (!HaveInsertPoint()) {
1064     if (!Init || !ContainsLabel(Init)) return;
1065     EnsureInsertPoint();
1066   }
1067 
1068   // Initialize the structure of a __block variable.
1069   if (emission.IsByRef)
1070     emitByrefStructureInit(emission);
1071 
1072   if (isTrivialInitializer(Init))
1073     return;
1074 
1075   CharUnits alignment = emission.Alignment;
1076 
1077   // Check whether this is a byref variable that's potentially
1078   // captured and moved by its own initializer.  If so, we'll need to
1079   // emit the initializer first, then copy into the variable.
1080   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1081 
1082   llvm::Value *Loc =
1083     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1084 
1085   llvm::Constant *constant = nullptr;
1086   if (emission.IsConstantAggregate || D.isConstexpr()) {
1087     assert(!capturedByInit && "constant init contains a capturing block?");
1088     constant = CGM.EmitConstantInit(D, this);
1089   }
1090 
1091   if (!constant) {
1092     LValue lv = MakeAddrLValue(Loc, type, alignment);
1093     lv.setNonGC(true);
1094     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1095   }
1096 
1097   if (!emission.IsConstantAggregate) {
1098     // For simple scalar/complex initialization, store the value directly.
1099     LValue lv = MakeAddrLValue(Loc, type, alignment);
1100     lv.setNonGC(true);
1101     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1102   }
1103 
1104   // If this is a simple aggregate initialization, we can optimize it
1105   // in various ways.
1106   bool isVolatile = type.isVolatileQualified();
1107 
1108   llvm::Value *SizeVal =
1109     llvm::ConstantInt::get(IntPtrTy,
1110                            getContext().getTypeSizeInChars(type).getQuantity());
1111 
1112   llvm::Type *BP = Int8PtrTy;
1113   if (Loc->getType() != BP)
1114     Loc = Builder.CreateBitCast(Loc, BP);
1115 
1116   // If the initializer is all or mostly zeros, codegen with memset then do
1117   // a few stores afterward.
1118   if (shouldUseMemSetPlusStoresToInitialize(constant,
1119                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1120     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1121                          alignment.getQuantity(), isVolatile);
1122     // Zero and undef don't require a stores.
1123     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1124       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1125       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1126     }
1127   } else {
1128     // Otherwise, create a temporary global with the initializer then
1129     // memcpy from the global to the alloca.
1130     std::string Name = GetStaticDeclName(*this, D);
1131     llvm::GlobalVariable *GV =
1132       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1133                                llvm::GlobalValue::PrivateLinkage,
1134                                constant, Name);
1135     GV->setAlignment(alignment.getQuantity());
1136     GV->setUnnamedAddr(true);
1137 
1138     llvm::Value *SrcPtr = GV;
1139     if (SrcPtr->getType() != BP)
1140       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1141 
1142     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1143                          isVolatile);
1144   }
1145 }
1146 
1147 /// Emit an expression as an initializer for a variable at the given
1148 /// location.  The expression is not necessarily the normal
1149 /// initializer for the variable, and the address is not necessarily
1150 /// its normal location.
1151 ///
1152 /// \param init the initializing expression
1153 /// \param var the variable to act as if we're initializing
1154 /// \param loc the address to initialize; its type is a pointer
1155 ///   to the LLVM mapping of the variable's type
1156 /// \param alignment the alignment of the address
1157 /// \param capturedByInit true if the variable is a __block variable
1158 ///   whose address is potentially changed by the initializer
1159 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1160                                      const ValueDecl *D,
1161                                      LValue lvalue,
1162                                      bool capturedByInit) {
1163   QualType type = D->getType();
1164 
1165   if (type->isReferenceType()) {
1166     RValue rvalue = EmitReferenceBindingToExpr(init);
1167     if (capturedByInit)
1168       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1169     EmitStoreThroughLValue(rvalue, lvalue, true);
1170     return;
1171   }
1172   switch (getEvaluationKind(type)) {
1173   case TEK_Scalar:
1174     EmitScalarInit(init, D, lvalue, capturedByInit);
1175     return;
1176   case TEK_Complex: {
1177     ComplexPairTy complex = EmitComplexExpr(init);
1178     if (capturedByInit)
1179       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1180     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1181     return;
1182   }
1183   case TEK_Aggregate:
1184     if (type->isAtomicType()) {
1185       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1186     } else {
1187       // TODO: how can we delay here if D is captured by its initializer?
1188       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1189                                               AggValueSlot::IsDestructed,
1190                                          AggValueSlot::DoesNotNeedGCBarriers,
1191                                               AggValueSlot::IsNotAliased));
1192     }
1193     return;
1194   }
1195   llvm_unreachable("bad evaluation kind");
1196 }
1197 
1198 /// Enter a destroy cleanup for the given local variable.
1199 void CodeGenFunction::emitAutoVarTypeCleanup(
1200                             const CodeGenFunction::AutoVarEmission &emission,
1201                             QualType::DestructionKind dtorKind) {
1202   assert(dtorKind != QualType::DK_none);
1203 
1204   // Note that for __block variables, we want to destroy the
1205   // original stack object, not the possibly forwarded object.
1206   llvm::Value *addr = emission.getObjectAddress(*this);
1207 
1208   const VarDecl *var = emission.Variable;
1209   QualType type = var->getType();
1210 
1211   CleanupKind cleanupKind = NormalAndEHCleanup;
1212   CodeGenFunction::Destroyer *destroyer = nullptr;
1213 
1214   switch (dtorKind) {
1215   case QualType::DK_none:
1216     llvm_unreachable("no cleanup for trivially-destructible variable");
1217 
1218   case QualType::DK_cxx_destructor:
1219     // If there's an NRVO flag on the emission, we need a different
1220     // cleanup.
1221     if (emission.NRVOFlag) {
1222       assert(!type->isArrayType());
1223       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1224       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1225                                                emission.NRVOFlag);
1226       return;
1227     }
1228     break;
1229 
1230   case QualType::DK_objc_strong_lifetime:
1231     // Suppress cleanups for pseudo-strong variables.
1232     if (var->isARCPseudoStrong()) return;
1233 
1234     // Otherwise, consider whether to use an EH cleanup or not.
1235     cleanupKind = getARCCleanupKind();
1236 
1237     // Use the imprecise destroyer by default.
1238     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1239       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1240     break;
1241 
1242   case QualType::DK_objc_weak_lifetime:
1243     break;
1244   }
1245 
1246   // If we haven't chosen a more specific destroyer, use the default.
1247   if (!destroyer) destroyer = getDestroyer(dtorKind);
1248 
1249   // Use an EH cleanup in array destructors iff the destructor itself
1250   // is being pushed as an EH cleanup.
1251   bool useEHCleanup = (cleanupKind & EHCleanup);
1252   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1253                                      useEHCleanup);
1254 }
1255 
1256 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1257   assert(emission.Variable && "emission was not valid!");
1258 
1259   // If this was emitted as a global constant, we're done.
1260   if (emission.wasEmittedAsGlobal()) return;
1261 
1262   // If we don't have an insertion point, we're done.  Sema prevents
1263   // us from jumping into any of these scopes anyway.
1264   if (!HaveInsertPoint()) return;
1265 
1266   const VarDecl &D = *emission.Variable;
1267 
1268   // Make sure we call @llvm.lifetime.end.  This needs to happen
1269   // *last*, so the cleanup needs to be pushed *first*.
1270   if (emission.useLifetimeMarkers()) {
1271     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1272                                          emission.getAllocatedAddress(),
1273                                          emission.getSizeForLifetimeMarkers());
1274   }
1275 
1276   // Check the type for a cleanup.
1277   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1278     emitAutoVarTypeCleanup(emission, dtorKind);
1279 
1280   // In GC mode, honor objc_precise_lifetime.
1281   if (getLangOpts().getGC() != LangOptions::NonGC &&
1282       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1283     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1284   }
1285 
1286   // Handle the cleanup attribute.
1287   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1288     const FunctionDecl *FD = CA->getFunctionDecl();
1289 
1290     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1291     assert(F && "Could not find function!");
1292 
1293     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1294     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1295   }
1296 
1297   // If this is a block variable, call _Block_object_destroy
1298   // (on the unforwarded address).
1299   if (emission.IsByRef)
1300     enterByrefCleanup(emission);
1301 }
1302 
1303 CodeGenFunction::Destroyer *
1304 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1305   switch (kind) {
1306   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1307   case QualType::DK_cxx_destructor:
1308     return destroyCXXObject;
1309   case QualType::DK_objc_strong_lifetime:
1310     return destroyARCStrongPrecise;
1311   case QualType::DK_objc_weak_lifetime:
1312     return destroyARCWeak;
1313   }
1314   llvm_unreachable("Unknown DestructionKind");
1315 }
1316 
1317 /// pushEHDestroy - Push the standard destructor for the given type as
1318 /// an EH-only cleanup.
1319 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1320                                   llvm::Value *addr, QualType type) {
1321   assert(dtorKind && "cannot push destructor for trivial type");
1322   assert(needsEHCleanup(dtorKind));
1323 
1324   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1325 }
1326 
1327 /// pushDestroy - Push the standard destructor for the given type as
1328 /// at least a normal cleanup.
1329 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1330                                   llvm::Value *addr, QualType type) {
1331   assert(dtorKind && "cannot push destructor for trivial type");
1332 
1333   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1334   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1335               cleanupKind & EHCleanup);
1336 }
1337 
1338 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1339                                   QualType type, Destroyer *destroyer,
1340                                   bool useEHCleanupForArray) {
1341   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1342                                      destroyer, useEHCleanupForArray);
1343 }
1344 
1345 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1346   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1347 }
1348 
1349 void CodeGenFunction::pushLifetimeExtendedDestroy(
1350     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1351     Destroyer *destroyer, bool useEHCleanupForArray) {
1352   assert(!isInConditionalBranch() &&
1353          "performing lifetime extension from within conditional");
1354 
1355   // Push an EH-only cleanup for the object now.
1356   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1357   // around in case a temporary's destructor throws an exception.
1358   if (cleanupKind & EHCleanup)
1359     EHStack.pushCleanup<DestroyObject>(
1360         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1361         destroyer, useEHCleanupForArray);
1362 
1363   // Remember that we need to push a full cleanup for the object at the
1364   // end of the full-expression.
1365   pushCleanupAfterFullExpr<DestroyObject>(
1366       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1367 }
1368 
1369 /// emitDestroy - Immediately perform the destruction of the given
1370 /// object.
1371 ///
1372 /// \param addr - the address of the object; a type*
1373 /// \param type - the type of the object; if an array type, all
1374 ///   objects are destroyed in reverse order
1375 /// \param destroyer - the function to call to destroy individual
1376 ///   elements
1377 /// \param useEHCleanupForArray - whether an EH cleanup should be
1378 ///   used when destroying array elements, in case one of the
1379 ///   destructions throws an exception
1380 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1381                                   Destroyer *destroyer,
1382                                   bool useEHCleanupForArray) {
1383   const ArrayType *arrayType = getContext().getAsArrayType(type);
1384   if (!arrayType)
1385     return destroyer(*this, addr, type);
1386 
1387   llvm::Value *begin = addr;
1388   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1389 
1390   // Normally we have to check whether the array is zero-length.
1391   bool checkZeroLength = true;
1392 
1393   // But if the array length is constant, we can suppress that.
1394   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1395     // ...and if it's constant zero, we can just skip the entire thing.
1396     if (constLength->isZero()) return;
1397     checkZeroLength = false;
1398   }
1399 
1400   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1401   emitArrayDestroy(begin, end, type, destroyer,
1402                    checkZeroLength, useEHCleanupForArray);
1403 }
1404 
1405 /// emitArrayDestroy - Destroys all the elements of the given array,
1406 /// beginning from last to first.  The array cannot be zero-length.
1407 ///
1408 /// \param begin - a type* denoting the first element of the array
1409 /// \param end - a type* denoting one past the end of the array
1410 /// \param type - the element type of the array
1411 /// \param destroyer - the function to call to destroy elements
1412 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1413 ///   the remaining elements in case the destruction of a single
1414 ///   element throws
1415 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1416                                        llvm::Value *end,
1417                                        QualType type,
1418                                        Destroyer *destroyer,
1419                                        bool checkZeroLength,
1420                                        bool useEHCleanup) {
1421   assert(!type->isArrayType());
1422 
1423   // The basic structure here is a do-while loop, because we don't
1424   // need to check for the zero-element case.
1425   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1426   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1427 
1428   if (checkZeroLength) {
1429     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1430                                                 "arraydestroy.isempty");
1431     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1432   }
1433 
1434   // Enter the loop body, making that address the current address.
1435   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1436   EmitBlock(bodyBB);
1437   llvm::PHINode *elementPast =
1438     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1439   elementPast->addIncoming(end, entryBB);
1440 
1441   // Shift the address back by one element.
1442   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1443   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1444                                                    "arraydestroy.element");
1445 
1446   if (useEHCleanup)
1447     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1448 
1449   // Perform the actual destruction there.
1450   destroyer(*this, element, type);
1451 
1452   if (useEHCleanup)
1453     PopCleanupBlock();
1454 
1455   // Check whether we've reached the end.
1456   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1457   Builder.CreateCondBr(done, doneBB, bodyBB);
1458   elementPast->addIncoming(element, Builder.GetInsertBlock());
1459 
1460   // Done.
1461   EmitBlock(doneBB);
1462 }
1463 
1464 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1465 /// emitArrayDestroy, the element type here may still be an array type.
1466 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1467                                     llvm::Value *begin, llvm::Value *end,
1468                                     QualType type,
1469                                     CodeGenFunction::Destroyer *destroyer) {
1470   // If the element type is itself an array, drill down.
1471   unsigned arrayDepth = 0;
1472   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1473     // VLAs don't require a GEP index to walk into.
1474     if (!isa<VariableArrayType>(arrayType))
1475       arrayDepth++;
1476     type = arrayType->getElementType();
1477   }
1478 
1479   if (arrayDepth) {
1480     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1481 
1482     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1483     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1484     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1485   }
1486 
1487   // Destroy the array.  We don't ever need an EH cleanup because we
1488   // assume that we're in an EH cleanup ourselves, so a throwing
1489   // destructor causes an immediate terminate.
1490   CGF.emitArrayDestroy(begin, end, type, destroyer,
1491                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1492 }
1493 
1494 namespace {
1495   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1496   /// array destroy where the end pointer is regularly determined and
1497   /// does not need to be loaded from a local.
1498   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1499     llvm::Value *ArrayBegin;
1500     llvm::Value *ArrayEnd;
1501     QualType ElementType;
1502     CodeGenFunction::Destroyer *Destroyer;
1503   public:
1504     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1505                                QualType elementType,
1506                                CodeGenFunction::Destroyer *destroyer)
1507       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1508         ElementType(elementType), Destroyer(destroyer) {}
1509 
1510     void Emit(CodeGenFunction &CGF, Flags flags) override {
1511       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1512                               ElementType, Destroyer);
1513     }
1514   };
1515 
1516   /// IrregularPartialArrayDestroy - a cleanup which performs a
1517   /// partial array destroy where the end pointer is irregularly
1518   /// determined and must be loaded from a local.
1519   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1520     llvm::Value *ArrayBegin;
1521     llvm::Value *ArrayEndPointer;
1522     QualType ElementType;
1523     CodeGenFunction::Destroyer *Destroyer;
1524   public:
1525     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1526                                  llvm::Value *arrayEndPointer,
1527                                  QualType elementType,
1528                                  CodeGenFunction::Destroyer *destroyer)
1529       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1530         ElementType(elementType), Destroyer(destroyer) {}
1531 
1532     void Emit(CodeGenFunction &CGF, Flags flags) override {
1533       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1534       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1535                               ElementType, Destroyer);
1536     }
1537   };
1538 }
1539 
1540 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1541 /// already-constructed elements of the given array.  The cleanup
1542 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1543 ///
1544 /// \param elementType - the immediate element type of the array;
1545 ///   possibly still an array type
1546 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1547                                                  llvm::Value *arrayEndPointer,
1548                                                        QualType elementType,
1549                                                        Destroyer *destroyer) {
1550   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1551                                                     arrayBegin, arrayEndPointer,
1552                                                     elementType, destroyer);
1553 }
1554 
1555 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1556 /// already-constructed elements of the given array.  The cleanup
1557 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1558 ///
1559 /// \param elementType - the immediate element type of the array;
1560 ///   possibly still an array type
1561 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1562                                                      llvm::Value *arrayEnd,
1563                                                      QualType elementType,
1564                                                      Destroyer *destroyer) {
1565   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1566                                                   arrayBegin, arrayEnd,
1567                                                   elementType, destroyer);
1568 }
1569 
1570 /// Lazily declare the @llvm.lifetime.start intrinsic.
1571 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1572   if (LifetimeStartFn) return LifetimeStartFn;
1573   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1574                                             llvm::Intrinsic::lifetime_start);
1575   return LifetimeStartFn;
1576 }
1577 
1578 /// Lazily declare the @llvm.lifetime.end intrinsic.
1579 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1580   if (LifetimeEndFn) return LifetimeEndFn;
1581   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1582                                               llvm::Intrinsic::lifetime_end);
1583   return LifetimeEndFn;
1584 }
1585 
1586 namespace {
1587   /// A cleanup to perform a release of an object at the end of a
1588   /// function.  This is used to balance out the incoming +1 of a
1589   /// ns_consumed argument when we can't reasonably do that just by
1590   /// not doing the initial retain for a __block argument.
1591   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1592     ConsumeARCParameter(llvm::Value *param,
1593                         ARCPreciseLifetime_t precise)
1594       : Param(param), Precise(precise) {}
1595 
1596     llvm::Value *Param;
1597     ARCPreciseLifetime_t Precise;
1598 
1599     void Emit(CodeGenFunction &CGF, Flags flags) override {
1600       CGF.EmitARCRelease(Param, Precise);
1601     }
1602   };
1603 }
1604 
1605 /// Emit an alloca (or GlobalValue depending on target)
1606 /// for the specified parameter and set up LocalDeclMap.
1607 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1608                                    bool ArgIsPointer, unsigned ArgNo) {
1609   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1610   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1611          "Invalid argument to EmitParmDecl");
1612 
1613   Arg->setName(D.getName());
1614 
1615   QualType Ty = D.getType();
1616 
1617   // Use better IR generation for certain implicit parameters.
1618   if (isa<ImplicitParamDecl>(D)) {
1619     // The only implicit argument a block has is its literal.
1620     if (BlockInfo) {
1621       LocalDeclMap[&D] = Arg;
1622       llvm::Value *LocalAddr = nullptr;
1623       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1624         // Allocate a stack slot to let the debug info survive the RA.
1625         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1626                                                    D.getName() + ".addr");
1627         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1628         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1629         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1630         LocalAddr = Builder.CreateLoad(Alloc);
1631       }
1632 
1633       if (CGDebugInfo *DI = getDebugInfo()) {
1634         if (CGM.getCodeGenOpts().getDebugInfo()
1635               >= CodeGenOptions::LimitedDebugInfo) {
1636           DI->setLocation(D.getLocation());
1637           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo,
1638                                                    LocalAddr, Builder);
1639         }
1640       }
1641 
1642       return;
1643     }
1644   }
1645 
1646   llvm::Value *DeclPtr;
1647   bool DoStore = false;
1648   bool IsScalar = hasScalarEvaluationKind(Ty);
1649   CharUnits Align = getContext().getDeclAlign(&D);
1650   // If we already have a pointer to the argument, reuse the input pointer.
1651   if (ArgIsPointer) {
1652     // If we have a prettier pointer type at this point, bitcast to that.
1653     unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1654     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1655     DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1656                                                                    D.getName());
1657     // Push a destructor cleanup for this parameter if the ABI requires it.
1658     // Don't push a cleanup in a thunk for a method that will also emit a
1659     // cleanup.
1660     if (!IsScalar && !CurFuncIsThunk &&
1661         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1662       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1663       if (RD && RD->hasNonTrivialDestructor())
1664         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1665     }
1666   } else {
1667     // Otherwise, create a temporary to hold the value.
1668     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1669                                                D.getName() + ".addr");
1670     Alloc->setAlignment(Align.getQuantity());
1671     DeclPtr = Alloc;
1672     DoStore = true;
1673   }
1674 
1675   LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1676   if (IsScalar) {
1677     Qualifiers qs = Ty.getQualifiers();
1678     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1679       // We honor __attribute__((ns_consumed)) for types with lifetime.
1680       // For __strong, it's handled by just skipping the initial retain;
1681       // otherwise we have to balance out the initial +1 with an extra
1682       // cleanup to do the release at the end of the function.
1683       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1684 
1685       // 'self' is always formally __strong, but if this is not an
1686       // init method then we don't want to retain it.
1687       if (D.isARCPseudoStrong()) {
1688         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1689         assert(&D == method->getSelfDecl());
1690         assert(lt == Qualifiers::OCL_Strong);
1691         assert(qs.hasConst());
1692         assert(method->getMethodFamily() != OMF_init);
1693         (void) method;
1694         lt = Qualifiers::OCL_ExplicitNone;
1695       }
1696 
1697       if (lt == Qualifiers::OCL_Strong) {
1698         if (!isConsumed) {
1699           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1700             // use objc_storeStrong(&dest, value) for retaining the
1701             // object. But first, store a null into 'dest' because
1702             // objc_storeStrong attempts to release its old value.
1703             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1704             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1705             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1706             DoStore = false;
1707           }
1708           else
1709           // Don't use objc_retainBlock for block pointers, because we
1710           // don't want to Block_copy something just because we got it
1711           // as a parameter.
1712             Arg = EmitARCRetainNonBlock(Arg);
1713         }
1714       } else {
1715         // Push the cleanup for a consumed parameter.
1716         if (isConsumed) {
1717           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1718                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1719           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1720                                                    precise);
1721         }
1722 
1723         if (lt == Qualifiers::OCL_Weak) {
1724           EmitARCInitWeak(DeclPtr, Arg);
1725           DoStore = false; // The weak init is a store, no need to do two.
1726         }
1727       }
1728 
1729       // Enter the cleanup scope.
1730       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1731     }
1732   }
1733 
1734   // Store the initial value into the alloca.
1735   if (DoStore)
1736     EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1737 
1738   llvm::Value *&DMEntry = LocalDeclMap[&D];
1739   assert(!DMEntry && "Decl already exists in localdeclmap!");
1740   DMEntry = DeclPtr;
1741 
1742   // Emit debug info for param declaration.
1743   if (CGDebugInfo *DI = getDebugInfo()) {
1744     if (CGM.getCodeGenOpts().getDebugInfo()
1745           >= CodeGenOptions::LimitedDebugInfo) {
1746       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1747     }
1748   }
1749 
1750   if (D.hasAttr<AnnotateAttr>())
1751       EmitVarAnnotations(&D, DeclPtr);
1752 }
1753