1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Type.h"
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 void CodeGenFunction::EmitDecl(const Decl &D) {
43   switch (D.getKind()) {
44   case Decl::BuiltinTemplate:
45   case Decl::TranslationUnit:
46   case Decl::ExternCContext:
47   case Decl::Namespace:
48   case Decl::UnresolvedUsingTypename:
49   case Decl::ClassTemplateSpecialization:
50   case Decl::ClassTemplatePartialSpecialization:
51   case Decl::VarTemplateSpecialization:
52   case Decl::VarTemplatePartialSpecialization:
53   case Decl::TemplateTypeParm:
54   case Decl::UnresolvedUsingValue:
55   case Decl::NonTypeTemplateParm:
56   case Decl::CXXDeductionGuide:
57   case Decl::CXXMethod:
58   case Decl::CXXConstructor:
59   case Decl::CXXDestructor:
60   case Decl::CXXConversion:
61   case Decl::Field:
62   case Decl::MSProperty:
63   case Decl::IndirectField:
64   case Decl::ObjCIvar:
65   case Decl::ObjCAtDefsField:
66   case Decl::ParmVar:
67   case Decl::ImplicitParam:
68   case Decl::ClassTemplate:
69   case Decl::VarTemplate:
70   case Decl::FunctionTemplate:
71   case Decl::TypeAliasTemplate:
72   case Decl::TemplateTemplateParm:
73   case Decl::ObjCMethod:
74   case Decl::ObjCCategory:
75   case Decl::ObjCProtocol:
76   case Decl::ObjCInterface:
77   case Decl::ObjCCategoryImpl:
78   case Decl::ObjCImplementation:
79   case Decl::ObjCProperty:
80   case Decl::ObjCCompatibleAlias:
81   case Decl::PragmaComment:
82   case Decl::PragmaDetectMismatch:
83   case Decl::AccessSpec:
84   case Decl::LinkageSpec:
85   case Decl::Export:
86   case Decl::ObjCPropertyImpl:
87   case Decl::FileScopeAsm:
88   case Decl::Friend:
89   case Decl::FriendTemplate:
90   case Decl::Block:
91   case Decl::Captured:
92   case Decl::ClassScopeFunctionSpecialization:
93   case Decl::UsingShadow:
94   case Decl::ConstructorUsingShadow:
95   case Decl::ObjCTypeParam:
96   case Decl::Binding:
97     llvm_unreachable("Declaration should not be in declstmts!");
98   case Decl::Function:  // void X();
99   case Decl::Record:    // struct/union/class X;
100   case Decl::Enum:      // enum X;
101   case Decl::EnumConstant: // enum ? { X = ? }
102   case Decl::CXXRecord: // struct/union/class X; [C++]
103   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
104   case Decl::Label:        // __label__ x;
105   case Decl::Import:
106   case Decl::OMPThreadPrivate:
107   case Decl::OMPAllocate:
108   case Decl::OMPCapturedExpr:
109   case Decl::OMPRequires:
110   case Decl::Empty:
111     // None of these decls require codegen support.
112     return;
113 
114   case Decl::NamespaceAlias:
115     if (CGDebugInfo *DI = getDebugInfo())
116         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
117     return;
118   case Decl::Using:          // using X; [C++]
119     if (CGDebugInfo *DI = getDebugInfo())
120         DI->EmitUsingDecl(cast<UsingDecl>(D));
121     return;
122   case Decl::UsingPack:
123     for (auto *Using : cast<UsingPackDecl>(D).expansions())
124       EmitDecl(*Using);
125     return;
126   case Decl::UsingDirective: // using namespace X; [C++]
127     if (CGDebugInfo *DI = getDebugInfo())
128       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
129     return;
130   case Decl::Var:
131   case Decl::Decomposition: {
132     const VarDecl &VD = cast<VarDecl>(D);
133     assert(VD.isLocalVarDecl() &&
134            "Should not see file-scope variables inside a function!");
135     EmitVarDecl(VD);
136     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
137       for (auto *B : DD->bindings())
138         if (auto *HD = B->getHoldingVar())
139           EmitVarDecl(*HD);
140     return;
141   }
142 
143   case Decl::OMPDeclareReduction:
144     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
145 
146   case Decl::OMPDeclareMapper:
147     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
148 
149   case Decl::Typedef:      // typedef int X;
150   case Decl::TypeAlias: {  // using X = int; [C++0x]
151     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
152     QualType Ty = TD.getUnderlyingType();
153 
154     if (Ty->isVariablyModifiedType())
155       EmitVariablyModifiedType(Ty);
156   }
157   }
158 }
159 
160 /// EmitVarDecl - This method handles emission of any variable declaration
161 /// inside a function, including static vars etc.
162 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
163   if (D.hasExternalStorage())
164     // Don't emit it now, allow it to be emitted lazily on its first use.
165     return;
166 
167   // Some function-scope variable does not have static storage but still
168   // needs to be emitted like a static variable, e.g. a function-scope
169   // variable in constant address space in OpenCL.
170   if (D.getStorageDuration() != SD_Automatic) {
171     // Static sampler variables translated to function calls.
172     if (D.getType()->isSamplerT())
173       return;
174 
175     llvm::GlobalValue::LinkageTypes Linkage =
176         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
177 
178     // FIXME: We need to force the emission/use of a guard variable for
179     // some variables even if we can constant-evaluate them because
180     // we can't guarantee every translation unit will constant-evaluate them.
181 
182     return EmitStaticVarDecl(D, Linkage);
183   }
184 
185   if (D.getType().getAddressSpace() == LangAS::opencl_local)
186     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
187 
188   assert(D.hasLocalStorage());
189   return EmitAutoVarDecl(D);
190 }
191 
192 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
193   if (CGM.getLangOpts().CPlusPlus)
194     return CGM.getMangledName(&D).str();
195 
196   // If this isn't C++, we don't need a mangled name, just a pretty one.
197   assert(!D.isExternallyVisible() && "name shouldn't matter");
198   std::string ContextName;
199   const DeclContext *DC = D.getDeclContext();
200   if (auto *CD = dyn_cast<CapturedDecl>(DC))
201     DC = cast<DeclContext>(CD->getNonClosureContext());
202   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
203     ContextName = CGM.getMangledName(FD);
204   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
205     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
206   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
207     ContextName = OMD->getSelector().getAsString();
208   else
209     llvm_unreachable("Unknown context for static var decl");
210 
211   ContextName += "." + D.getNameAsString();
212   return ContextName;
213 }
214 
215 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
216     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
217   // In general, we don't always emit static var decls once before we reference
218   // them. It is possible to reference them before emitting the function that
219   // contains them, and it is possible to emit the containing function multiple
220   // times.
221   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
222     return ExistingGV;
223 
224   QualType Ty = D.getType();
225   assert(Ty->isConstantSizeType() && "VLAs can't be static");
226 
227   // Use the label if the variable is renamed with the asm-label extension.
228   std::string Name;
229   if (D.hasAttr<AsmLabelAttr>())
230     Name = getMangledName(&D);
231   else
232     Name = getStaticDeclName(*this, D);
233 
234   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
235   LangAS AS = GetGlobalVarAddressSpace(&D);
236   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
237 
238   // OpenCL variables in local address space and CUDA shared
239   // variables cannot have an initializer.
240   llvm::Constant *Init = nullptr;
241   if (Ty.getAddressSpace() == LangAS::opencl_local ||
242       D.hasAttr<CUDASharedAttr>())
243     Init = llvm::UndefValue::get(LTy);
244   else
245     Init = EmitNullConstant(Ty);
246 
247   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
248       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
249       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
250   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
251 
252   if (supportsCOMDAT() && GV->isWeakForLinker())
253     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
254 
255   if (D.getTLSKind())
256     setTLSMode(GV, D);
257 
258   setGVProperties(GV, &D);
259 
260   // Make sure the result is of the correct type.
261   LangAS ExpectedAS = Ty.getAddressSpace();
262   llvm::Constant *Addr = GV;
263   if (AS != ExpectedAS) {
264     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
265         *this, GV, AS, ExpectedAS,
266         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
267   }
268 
269   setStaticLocalDeclAddress(&D, Addr);
270 
271   // Ensure that the static local gets initialized by making sure the parent
272   // function gets emitted eventually.
273   const Decl *DC = cast<Decl>(D.getDeclContext());
274 
275   // We can't name blocks or captured statements directly, so try to emit their
276   // parents.
277   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
278     DC = DC->getNonClosureContext();
279     // FIXME: Ensure that global blocks get emitted.
280     if (!DC)
281       return Addr;
282   }
283 
284   GlobalDecl GD;
285   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
286     GD = GlobalDecl(CD, Ctor_Base);
287   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
288     GD = GlobalDecl(DD, Dtor_Base);
289   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
290     GD = GlobalDecl(FD);
291   else {
292     // Don't do anything for Obj-C method decls or global closures. We should
293     // never defer them.
294     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
295   }
296   if (GD.getDecl()) {
297     // Disable emission of the parent function for the OpenMP device codegen.
298     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
299     (void)GetAddrOfGlobal(GD);
300   }
301 
302   return Addr;
303 }
304 
305 /// hasNontrivialDestruction - Determine whether a type's destruction is
306 /// non-trivial. If so, and the variable uses static initialization, we must
307 /// register its destructor to run on exit.
308 static bool hasNontrivialDestruction(QualType T) {
309   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
310   return RD && !RD->hasTrivialDestructor();
311 }
312 
313 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
314 /// global variable that has already been created for it.  If the initializer
315 /// has a different type than GV does, this may free GV and return a different
316 /// one.  Otherwise it just returns GV.
317 llvm::GlobalVariable *
318 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
319                                                llvm::GlobalVariable *GV) {
320   ConstantEmitter emitter(*this);
321   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
322 
323   // If constant emission failed, then this should be a C++ static
324   // initializer.
325   if (!Init) {
326     if (!getLangOpts().CPlusPlus)
327       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
328     else if (HaveInsertPoint()) {
329       // Since we have a static initializer, this global variable can't
330       // be constant.
331       GV->setConstant(false);
332 
333       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
334     }
335     return GV;
336   }
337 
338   // The initializer may differ in type from the global. Rewrite
339   // the global to match the initializer.  (We have to do this
340   // because some types, like unions, can't be completely represented
341   // in the LLVM type system.)
342   if (GV->getType()->getElementType() != Init->getType()) {
343     llvm::GlobalVariable *OldGV = GV;
344 
345     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
346                                   OldGV->isConstant(),
347                                   OldGV->getLinkage(), Init, "",
348                                   /*InsertBefore*/ OldGV,
349                                   OldGV->getThreadLocalMode(),
350                            CGM.getContext().getTargetAddressSpace(D.getType()));
351     GV->setVisibility(OldGV->getVisibility());
352     GV->setDSOLocal(OldGV->isDSOLocal());
353     GV->setComdat(OldGV->getComdat());
354 
355     // Steal the name of the old global
356     GV->takeName(OldGV);
357 
358     // Replace all uses of the old global with the new global
359     llvm::Constant *NewPtrForOldDecl =
360     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
361     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
362 
363     // Erase the old global, since it is no longer used.
364     OldGV->eraseFromParent();
365   }
366 
367   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
368   GV->setInitializer(Init);
369 
370   emitter.finalize(GV);
371 
372   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
373     // We have a constant initializer, but a nontrivial destructor. We still
374     // need to perform a guarded "initialization" in order to register the
375     // destructor.
376     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
377   }
378 
379   return GV;
380 }
381 
382 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
383                                       llvm::GlobalValue::LinkageTypes Linkage) {
384   // Check to see if we already have a global variable for this
385   // declaration.  This can happen when double-emitting function
386   // bodies, e.g. with complete and base constructors.
387   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
388   CharUnits alignment = getContext().getDeclAlign(&D);
389 
390   // Store into LocalDeclMap before generating initializer to handle
391   // circular references.
392   setAddrOfLocalVar(&D, Address(addr, alignment));
393 
394   // We can't have a VLA here, but we can have a pointer to a VLA,
395   // even though that doesn't really make any sense.
396   // Make sure to evaluate VLA bounds now so that we have them for later.
397   if (D.getType()->isVariablyModifiedType())
398     EmitVariablyModifiedType(D.getType());
399 
400   // Save the type in case adding the initializer forces a type change.
401   llvm::Type *expectedType = addr->getType();
402 
403   llvm::GlobalVariable *var =
404     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
405 
406   // CUDA's local and local static __shared__ variables should not
407   // have any non-empty initializers. This is ensured by Sema.
408   // Whatever initializer such variable may have when it gets here is
409   // a no-op and should not be emitted.
410   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
411                          D.hasAttr<CUDASharedAttr>();
412   // If this value has an initializer, emit it.
413   if (D.getInit() && !isCudaSharedVar)
414     var = AddInitializerToStaticVarDecl(D, var);
415 
416   var->setAlignment(alignment.getQuantity());
417 
418   if (D.hasAttr<AnnotateAttr>())
419     CGM.AddGlobalAnnotations(&D, var);
420 
421   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
422     var->addAttribute("bss-section", SA->getName());
423   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
424     var->addAttribute("data-section", SA->getName());
425   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
426     var->addAttribute("rodata-section", SA->getName());
427 
428   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
429     var->setSection(SA->getName());
430 
431   if (D.hasAttr<UsedAttr>())
432     CGM.addUsedGlobal(var);
433 
434   // We may have to cast the constant because of the initializer
435   // mismatch above.
436   //
437   // FIXME: It is really dangerous to store this in the map; if anyone
438   // RAUW's the GV uses of this constant will be invalid.
439   llvm::Constant *castedAddr =
440     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
441   if (var != castedAddr)
442     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
443   CGM.setStaticLocalDeclAddress(&D, castedAddr);
444 
445   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
446 
447   // Emit global variable debug descriptor for static vars.
448   CGDebugInfo *DI = getDebugInfo();
449   if (DI &&
450       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
451     DI->setLocation(D.getLocation());
452     DI->EmitGlobalVariable(var, &D);
453   }
454 }
455 
456 namespace {
457   struct DestroyObject final : EHScopeStack::Cleanup {
458     DestroyObject(Address addr, QualType type,
459                   CodeGenFunction::Destroyer *destroyer,
460                   bool useEHCleanupForArray)
461       : addr(addr), type(type), destroyer(destroyer),
462         useEHCleanupForArray(useEHCleanupForArray) {}
463 
464     Address addr;
465     QualType type;
466     CodeGenFunction::Destroyer *destroyer;
467     bool useEHCleanupForArray;
468 
469     void Emit(CodeGenFunction &CGF, Flags flags) override {
470       // Don't use an EH cleanup recursively from an EH cleanup.
471       bool useEHCleanupForArray =
472         flags.isForNormalCleanup() && this->useEHCleanupForArray;
473 
474       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
475     }
476   };
477 
478   template <class Derived>
479   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
480     DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag)
481         : NRVOFlag(NRVOFlag), Loc(addr) {}
482 
483     llvm::Value *NRVOFlag;
484     Address Loc;
485 
486     void Emit(CodeGenFunction &CGF, Flags flags) override {
487       // Along the exceptions path we always execute the dtor.
488       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
489 
490       llvm::BasicBlock *SkipDtorBB = nullptr;
491       if (NRVO) {
492         // If we exited via NRVO, we skip the destructor call.
493         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
494         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
495         llvm::Value *DidNRVO =
496           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
497         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
498         CGF.EmitBlock(RunDtorBB);
499       }
500 
501       static_cast<Derived *>(this)->emitDestructorCall(CGF);
502 
503       if (NRVO) CGF.EmitBlock(SkipDtorBB);
504     }
505 
506     virtual ~DestroyNRVOVariable() = default;
507   };
508 
509   struct DestroyNRVOVariableCXX final
510       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
511     DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor,
512                            llvm::Value *NRVOFlag)
513       : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag),
514         Dtor(Dtor) {}
515 
516     const CXXDestructorDecl *Dtor;
517 
518     void emitDestructorCall(CodeGenFunction &CGF) {
519       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
520                                 /*ForVirtualBase=*/false,
521                                 /*Delegating=*/false, Loc);
522     }
523   };
524 
525   struct DestroyNRVOVariableC final
526       : DestroyNRVOVariable<DestroyNRVOVariableC> {
527     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
528         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {}
529 
530     QualType Ty;
531 
532     void emitDestructorCall(CodeGenFunction &CGF) {
533       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
534     }
535   };
536 
537   struct CallStackRestore final : EHScopeStack::Cleanup {
538     Address Stack;
539     CallStackRestore(Address Stack) : Stack(Stack) {}
540     void Emit(CodeGenFunction &CGF, Flags flags) override {
541       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
542       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
543       CGF.Builder.CreateCall(F, V);
544     }
545   };
546 
547   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
548     const VarDecl &Var;
549     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
550 
551     void Emit(CodeGenFunction &CGF, Flags flags) override {
552       // Compute the address of the local variable, in case it's a
553       // byref or something.
554       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
555                       Var.getType(), VK_LValue, SourceLocation());
556       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
557                                                 SourceLocation());
558       CGF.EmitExtendGCLifetime(value);
559     }
560   };
561 
562   struct CallCleanupFunction final : EHScopeStack::Cleanup {
563     llvm::Constant *CleanupFn;
564     const CGFunctionInfo &FnInfo;
565     const VarDecl &Var;
566 
567     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
568                         const VarDecl *Var)
569       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
570 
571     void Emit(CodeGenFunction &CGF, Flags flags) override {
572       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
573                       Var.getType(), VK_LValue, SourceLocation());
574       // Compute the address of the local variable, in case it's a byref
575       // or something.
576       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
577 
578       // In some cases, the type of the function argument will be different from
579       // the type of the pointer. An example of this is
580       // void f(void* arg);
581       // __attribute__((cleanup(f))) void *g;
582       //
583       // To fix this we insert a bitcast here.
584       QualType ArgTy = FnInfo.arg_begin()->type;
585       llvm::Value *Arg =
586         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
587 
588       CallArgList Args;
589       Args.add(RValue::get(Arg),
590                CGF.getContext().getPointerType(Var.getType()));
591       auto Callee = CGCallee::forDirect(CleanupFn);
592       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
593     }
594   };
595 } // end anonymous namespace
596 
597 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
598 /// variable with lifetime.
599 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
600                                     Address addr,
601                                     Qualifiers::ObjCLifetime lifetime) {
602   switch (lifetime) {
603   case Qualifiers::OCL_None:
604     llvm_unreachable("present but none");
605 
606   case Qualifiers::OCL_ExplicitNone:
607     // nothing to do
608     break;
609 
610   case Qualifiers::OCL_Strong: {
611     CodeGenFunction::Destroyer *destroyer =
612       (var.hasAttr<ObjCPreciseLifetimeAttr>()
613        ? CodeGenFunction::destroyARCStrongPrecise
614        : CodeGenFunction::destroyARCStrongImprecise);
615 
616     CleanupKind cleanupKind = CGF.getARCCleanupKind();
617     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
618                     cleanupKind & EHCleanup);
619     break;
620   }
621   case Qualifiers::OCL_Autoreleasing:
622     // nothing to do
623     break;
624 
625   case Qualifiers::OCL_Weak:
626     // __weak objects always get EH cleanups; otherwise, exceptions
627     // could cause really nasty crashes instead of mere leaks.
628     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
629                     CodeGenFunction::destroyARCWeak,
630                     /*useEHCleanup*/ true);
631     break;
632   }
633 }
634 
635 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
636   if (const Expr *e = dyn_cast<Expr>(s)) {
637     // Skip the most common kinds of expressions that make
638     // hierarchy-walking expensive.
639     s = e = e->IgnoreParenCasts();
640 
641     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
642       return (ref->getDecl() == &var);
643     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
644       const BlockDecl *block = be->getBlockDecl();
645       for (const auto &I : block->captures()) {
646         if (I.getVariable() == &var)
647           return true;
648       }
649     }
650   }
651 
652   for (const Stmt *SubStmt : s->children())
653     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
654     if (SubStmt && isAccessedBy(var, SubStmt))
655       return true;
656 
657   return false;
658 }
659 
660 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
661   if (!decl) return false;
662   if (!isa<VarDecl>(decl)) return false;
663   const VarDecl *var = cast<VarDecl>(decl);
664   return isAccessedBy(*var, e);
665 }
666 
667 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
668                                    const LValue &destLV, const Expr *init) {
669   bool needsCast = false;
670 
671   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
672     switch (castExpr->getCastKind()) {
673     // Look through casts that don't require representation changes.
674     case CK_NoOp:
675     case CK_BitCast:
676     case CK_BlockPointerToObjCPointerCast:
677       needsCast = true;
678       break;
679 
680     // If we find an l-value to r-value cast from a __weak variable,
681     // emit this operation as a copy or move.
682     case CK_LValueToRValue: {
683       const Expr *srcExpr = castExpr->getSubExpr();
684       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
685         return false;
686 
687       // Emit the source l-value.
688       LValue srcLV = CGF.EmitLValue(srcExpr);
689 
690       // Handle a formal type change to avoid asserting.
691       auto srcAddr = srcLV.getAddress();
692       if (needsCast) {
693         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
694                                          destLV.getAddress().getElementType());
695       }
696 
697       // If it was an l-value, use objc_copyWeak.
698       if (srcExpr->getValueKind() == VK_LValue) {
699         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
700       } else {
701         assert(srcExpr->getValueKind() == VK_XValue);
702         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
703       }
704       return true;
705     }
706 
707     // Stop at anything else.
708     default:
709       return false;
710     }
711 
712     init = castExpr->getSubExpr();
713   }
714   return false;
715 }
716 
717 static void drillIntoBlockVariable(CodeGenFunction &CGF,
718                                    LValue &lvalue,
719                                    const VarDecl *var) {
720   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
721 }
722 
723 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
724                                            SourceLocation Loc) {
725   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
726     return;
727 
728   auto Nullability = LHS.getType()->getNullability(getContext());
729   if (!Nullability || *Nullability != NullabilityKind::NonNull)
730     return;
731 
732   // Check if the right hand side of the assignment is nonnull, if the left
733   // hand side must be nonnull.
734   SanitizerScope SanScope(this);
735   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
736   llvm::Constant *StaticData[] = {
737       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
738       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
739       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
740   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
741             SanitizerHandler::TypeMismatch, StaticData, RHS);
742 }
743 
744 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
745                                      LValue lvalue, bool capturedByInit) {
746   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
747   if (!lifetime) {
748     llvm::Value *value = EmitScalarExpr(init);
749     if (capturedByInit)
750       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
751     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
752     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
753     return;
754   }
755 
756   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
757     init = DIE->getExpr();
758 
759   // If we're emitting a value with lifetime, we have to do the
760   // initialization *before* we leave the cleanup scopes.
761   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
762     enterFullExpression(fe);
763     init = fe->getSubExpr();
764   }
765   CodeGenFunction::RunCleanupsScope Scope(*this);
766 
767   // We have to maintain the illusion that the variable is
768   // zero-initialized.  If the variable might be accessed in its
769   // initializer, zero-initialize before running the initializer, then
770   // actually perform the initialization with an assign.
771   bool accessedByInit = false;
772   if (lifetime != Qualifiers::OCL_ExplicitNone)
773     accessedByInit = (capturedByInit || isAccessedBy(D, init));
774   if (accessedByInit) {
775     LValue tempLV = lvalue;
776     // Drill down to the __block object if necessary.
777     if (capturedByInit) {
778       // We can use a simple GEP for this because it can't have been
779       // moved yet.
780       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
781                                               cast<VarDecl>(D),
782                                               /*follow*/ false));
783     }
784 
785     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
786     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
787 
788     // If __weak, we want to use a barrier under certain conditions.
789     if (lifetime == Qualifiers::OCL_Weak)
790       EmitARCInitWeak(tempLV.getAddress(), zero);
791 
792     // Otherwise just do a simple store.
793     else
794       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
795   }
796 
797   // Emit the initializer.
798   llvm::Value *value = nullptr;
799 
800   switch (lifetime) {
801   case Qualifiers::OCL_None:
802     llvm_unreachable("present but none");
803 
804   case Qualifiers::OCL_Strong: {
805     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
806       value = EmitARCRetainScalarExpr(init);
807       break;
808     }
809     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
810     // that we omit the retain, and causes non-autoreleased return values to be
811     // immediately released.
812     LLVM_FALLTHROUGH;
813   }
814 
815   case Qualifiers::OCL_ExplicitNone:
816     value = EmitARCUnsafeUnretainedScalarExpr(init);
817     break;
818 
819   case Qualifiers::OCL_Weak: {
820     // If it's not accessed by the initializer, try to emit the
821     // initialization with a copy or move.
822     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
823       return;
824     }
825 
826     // No way to optimize a producing initializer into this.  It's not
827     // worth optimizing for, because the value will immediately
828     // disappear in the common case.
829     value = EmitScalarExpr(init);
830 
831     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
832     if (accessedByInit)
833       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
834     else
835       EmitARCInitWeak(lvalue.getAddress(), value);
836     return;
837   }
838 
839   case Qualifiers::OCL_Autoreleasing:
840     value = EmitARCRetainAutoreleaseScalarExpr(init);
841     break;
842   }
843 
844   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
845 
846   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
847 
848   // If the variable might have been accessed by its initializer, we
849   // might have to initialize with a barrier.  We have to do this for
850   // both __weak and __strong, but __weak got filtered out above.
851   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
852     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
853     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
854     EmitARCRelease(oldValue, ARCImpreciseLifetime);
855     return;
856   }
857 
858   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
859 }
860 
861 /// Decide whether we can emit the non-zero parts of the specified initializer
862 /// with equal or fewer than NumStores scalar stores.
863 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
864                                                unsigned &NumStores) {
865   // Zero and Undef never requires any extra stores.
866   if (isa<llvm::ConstantAggregateZero>(Init) ||
867       isa<llvm::ConstantPointerNull>(Init) ||
868       isa<llvm::UndefValue>(Init))
869     return true;
870   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
871       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
872       isa<llvm::ConstantExpr>(Init))
873     return Init->isNullValue() || NumStores--;
874 
875   // See if we can emit each element.
876   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
877     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
878       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
879       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
880         return false;
881     }
882     return true;
883   }
884 
885   if (llvm::ConstantDataSequential *CDS =
886         dyn_cast<llvm::ConstantDataSequential>(Init)) {
887     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
888       llvm::Constant *Elt = CDS->getElementAsConstant(i);
889       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
890         return false;
891     }
892     return true;
893   }
894 
895   // Anything else is hard and scary.
896   return false;
897 }
898 
899 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
900 /// the scalar stores that would be required.
901 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
902                                         llvm::Constant *Init, Address Loc,
903                                         bool isVolatile, CGBuilderTy &Builder) {
904   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
905          "called emitStoresForInitAfterBZero for zero or undef value.");
906 
907   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
908       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
909       isa<llvm::ConstantExpr>(Init)) {
910     Builder.CreateStore(Init, Loc, isVolatile);
911     return;
912   }
913 
914   if (llvm::ConstantDataSequential *CDS =
915           dyn_cast<llvm::ConstantDataSequential>(Init)) {
916     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
917       llvm::Constant *Elt = CDS->getElementAsConstant(i);
918 
919       // If necessary, get a pointer to the element and emit it.
920       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
921         emitStoresForInitAfterBZero(
922             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
923             Builder);
924     }
925     return;
926   }
927 
928   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
929          "Unknown value type!");
930 
931   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
932     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
933 
934     // If necessary, get a pointer to the element and emit it.
935     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
936       emitStoresForInitAfterBZero(CGM, Elt,
937                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
938                                   isVolatile, Builder);
939   }
940 }
941 
942 /// Decide whether we should use bzero plus some stores to initialize a local
943 /// variable instead of using a memcpy from a constant global.  It is beneficial
944 /// to use bzero if the global is all zeros, or mostly zeros and large.
945 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
946                                                  uint64_t GlobalSize) {
947   // If a global is all zeros, always use a bzero.
948   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
949 
950   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
951   // do it if it will require 6 or fewer scalar stores.
952   // TODO: Should budget depends on the size?  Avoiding a large global warrants
953   // plopping in more stores.
954   unsigned StoreBudget = 6;
955   uint64_t SizeLimit = 32;
956 
957   return GlobalSize > SizeLimit &&
958          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
959 }
960 
961 /// Decide whether we should use memset to initialize a local variable instead
962 /// of using a memcpy from a constant global. Assumes we've already decided to
963 /// not user bzero.
964 /// FIXME We could be more clever, as we are for bzero above, and generate
965 ///       memset followed by stores. It's unclear that's worth the effort.
966 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
967                                                 uint64_t GlobalSize) {
968   uint64_t SizeLimit = 32;
969   if (GlobalSize <= SizeLimit)
970     return nullptr;
971   return llvm::isBytewiseValue(Init);
972 }
973 
974 /// Decide whether we want to split a constant structure or array store into a
975 /// sequence of its fields' stores. This may cost us code size and compilation
976 /// speed, but plays better with store optimizations.
977 static bool shouldSplitConstantStore(CodeGenModule &CGM,
978                                      uint64_t GlobalByteSize) {
979   // Don't break things that occupy more than one cacheline.
980   uint64_t ByteSizeLimit = 64;
981   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
982     return false;
983   if (GlobalByteSize <= ByteSizeLimit)
984     return true;
985   return false;
986 }
987 
988 enum class IsPattern { No, Yes };
989 
990 /// Generate a constant filled with either a pattern or zeroes.
991 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
992                                         llvm::Type *Ty) {
993   if (isPattern == IsPattern::Yes)
994     return initializationPatternFor(CGM, Ty);
995   else
996     return llvm::Constant::getNullValue(Ty);
997 }
998 
999 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1000                                         llvm::Constant *constant);
1001 
1002 /// Helper function for constWithPadding() to deal with padding in structures.
1003 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1004                                               IsPattern isPattern,
1005                                               llvm::StructType *STy,
1006                                               llvm::Constant *constant) {
1007   const llvm::DataLayout &DL = CGM.getDataLayout();
1008   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1009   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1010   unsigned SizeSoFar = 0;
1011   SmallVector<llvm::Constant *, 8> Values;
1012   bool NestedIntact = true;
1013   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1014     unsigned CurOff = Layout->getElementOffset(i);
1015     if (SizeSoFar < CurOff) {
1016       assert(!STy->isPacked());
1017       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1018       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1019     }
1020     llvm::Constant *CurOp;
1021     if (constant->isZeroValue())
1022       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1023     else
1024       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1025     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1026     if (CurOp != NewOp)
1027       NestedIntact = false;
1028     Values.push_back(NewOp);
1029     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1030   }
1031   unsigned TotalSize = Layout->getSizeInBytes();
1032   if (SizeSoFar < TotalSize) {
1033     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1034     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1035   }
1036   if (NestedIntact && Values.size() == STy->getNumElements())
1037     return constant;
1038   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1039 }
1040 
1041 /// Replace all padding bytes in a given constant with either a pattern byte or
1042 /// 0x00.
1043 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1044                                         llvm::Constant *constant) {
1045   llvm::Type *OrigTy = constant->getType();
1046   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1047     return constStructWithPadding(CGM, isPattern, STy, constant);
1048   if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
1049     llvm::SmallVector<llvm::Constant *, 8> Values;
1050     unsigned Size = STy->getNumElements();
1051     if (!Size)
1052       return constant;
1053     llvm::Type *ElemTy = STy->getElementType();
1054     bool ZeroInitializer = constant->isZeroValue();
1055     llvm::Constant *OpValue, *PaddedOp;
1056     if (ZeroInitializer) {
1057       OpValue = llvm::Constant::getNullValue(ElemTy);
1058       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1059     }
1060     for (unsigned Op = 0; Op != Size; ++Op) {
1061       if (!ZeroInitializer) {
1062         OpValue = constant->getAggregateElement(Op);
1063         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1064       }
1065       Values.push_back(PaddedOp);
1066     }
1067     auto *NewElemTy = Values[0]->getType();
1068     if (NewElemTy == ElemTy)
1069       return constant;
1070     if (OrigTy->isArrayTy()) {
1071       auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1072       return llvm::ConstantArray::get(ArrayTy, Values);
1073     } else {
1074       return llvm::ConstantVector::get(Values);
1075     }
1076   }
1077   return constant;
1078 }
1079 
1080 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1081                                                llvm::Constant *Constant,
1082                                                CharUnits Align) {
1083   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1084     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1085       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1086         return CC->getNameAsString();
1087       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1088         return CD->getNameAsString();
1089       return getMangledName(FD);
1090     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1091       return OM->getNameAsString();
1092     } else if (isa<BlockDecl>(DC)) {
1093       return "<block>";
1094     } else if (isa<CapturedDecl>(DC)) {
1095       return "<captured>";
1096     } else {
1097       llvm_unreachable("expected a function or method");
1098     }
1099   };
1100 
1101   // Form a simple per-variable cache of these values in case we find we
1102   // want to reuse them.
1103   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1104   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1105     auto *Ty = Constant->getType();
1106     bool isConstant = true;
1107     llvm::GlobalVariable *InsertBefore = nullptr;
1108     unsigned AS =
1109         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1110     std::string Name;
1111     if (D.hasGlobalStorage())
1112       Name = getMangledName(&D).str() + ".const";
1113     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1114       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1115     else
1116       llvm_unreachable("local variable has no parent function or method");
1117     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1118         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1119         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1120     GV->setAlignment(Align.getQuantity());
1121     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1122     CacheEntry = GV;
1123   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1124     CacheEntry->setAlignment(Align.getQuantity());
1125   }
1126 
1127   return Address(CacheEntry, Align);
1128 }
1129 
1130 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1131                                                 const VarDecl &D,
1132                                                 CGBuilderTy &Builder,
1133                                                 llvm::Constant *Constant,
1134                                                 CharUnits Align) {
1135   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1136   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1137                                                    SrcPtr.getAddressSpace());
1138   if (SrcPtr.getType() != BP)
1139     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1140   return SrcPtr;
1141 }
1142 
1143 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1144                                   Address Loc, bool isVolatile,
1145                                   CGBuilderTy &Builder,
1146                                   llvm::Constant *constant) {
1147   auto *Ty = constant->getType();
1148   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1149                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1150   if (canDoSingleStore) {
1151     Builder.CreateStore(constant, Loc, isVolatile);
1152     return;
1153   }
1154 
1155   auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1156   auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext());
1157 
1158   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1159   if (!ConstantSize)
1160     return;
1161   auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize);
1162 
1163   // If the initializer is all or mostly the same, codegen with bzero / memset
1164   // then do a few stores afterward.
1165   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1166     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1167                          isVolatile);
1168 
1169     bool valueAlreadyCorrect =
1170         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1171     if (!valueAlreadyCorrect) {
1172       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1173       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1174     }
1175     return;
1176   }
1177 
1178   // If the initializer is a repeated byte pattern, use memset.
1179   llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize);
1180   if (Pattern) {
1181     uint64_t Value = 0x00;
1182     if (!isa<llvm::UndefValue>(Pattern)) {
1183       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1184       assert(AP.getBitWidth() <= 8);
1185       Value = AP.getLimitedValue();
1186     }
1187     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal,
1188                          isVolatile);
1189     return;
1190   }
1191 
1192   // If the initializer is small, use a handful of stores.
1193   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1194     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1195       // FIXME: handle the case when STy != Loc.getElementType().
1196       if (STy == Loc.getElementType()) {
1197         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1198           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1199           emitStoresForConstant(
1200               CGM, D, EltPtr, isVolatile, Builder,
1201               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1202         }
1203         return;
1204       }
1205     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1206       // FIXME: handle the case when ATy != Loc.getElementType().
1207       if (ATy == Loc.getElementType()) {
1208         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1209           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1210           emitStoresForConstant(
1211               CGM, D, EltPtr, isVolatile, Builder,
1212               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1213         }
1214         return;
1215       }
1216     }
1217   }
1218 
1219   // Copy from a global.
1220   Builder.CreateMemCpy(Loc,
1221                        createUnnamedGlobalForMemcpyFrom(
1222                            CGM, D, Builder, constant, Loc.getAlignment()),
1223                        SizeVal, isVolatile);
1224 }
1225 
1226 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1227                                   Address Loc, bool isVolatile,
1228                                   CGBuilderTy &Builder) {
1229   llvm::Type *ElTy = Loc.getElementType();
1230   llvm::Constant *constant =
1231       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1232   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1233 }
1234 
1235 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1236                                      Address Loc, bool isVolatile,
1237                                      CGBuilderTy &Builder) {
1238   llvm::Type *ElTy = Loc.getElementType();
1239   llvm::Constant *constant = constWithPadding(
1240       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1241   assert(!isa<llvm::UndefValue>(constant));
1242   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1243 }
1244 
1245 static bool containsUndef(llvm::Constant *constant) {
1246   auto *Ty = constant->getType();
1247   if (isa<llvm::UndefValue>(constant))
1248     return true;
1249   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1250     for (llvm::Use &Op : constant->operands())
1251       if (containsUndef(cast<llvm::Constant>(Op)))
1252         return true;
1253   return false;
1254 }
1255 
1256 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1257                                     llvm::Constant *constant) {
1258   auto *Ty = constant->getType();
1259   if (isa<llvm::UndefValue>(constant))
1260     return patternOrZeroFor(CGM, isPattern, Ty);
1261   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1262     return constant;
1263   if (!containsUndef(constant))
1264     return constant;
1265   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1266   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1267     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1268     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1269   }
1270   if (Ty->isStructTy())
1271     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1272   if (Ty->isArrayTy())
1273     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1274   assert(Ty->isVectorTy());
1275   return llvm::ConstantVector::get(Values);
1276 }
1277 
1278 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1279 /// variable declaration with auto, register, or no storage class specifier.
1280 /// These turn into simple stack objects, or GlobalValues depending on target.
1281 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1282   AutoVarEmission emission = EmitAutoVarAlloca(D);
1283   EmitAutoVarInit(emission);
1284   EmitAutoVarCleanups(emission);
1285 }
1286 
1287 /// Emit a lifetime.begin marker if some criteria are satisfied.
1288 /// \return a pointer to the temporary size Value if a marker was emitted, null
1289 /// otherwise
1290 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1291                                                 llvm::Value *Addr) {
1292   if (!ShouldEmitLifetimeMarkers)
1293     return nullptr;
1294 
1295   assert(Addr->getType()->getPointerAddressSpace() ==
1296              CGM.getDataLayout().getAllocaAddrSpace() &&
1297          "Pointer should be in alloca address space");
1298   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1299   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1300   llvm::CallInst *C =
1301       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1302   C->setDoesNotThrow();
1303   return SizeV;
1304 }
1305 
1306 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1307   assert(Addr->getType()->getPointerAddressSpace() ==
1308              CGM.getDataLayout().getAllocaAddrSpace() &&
1309          "Pointer should be in alloca address space");
1310   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1311   llvm::CallInst *C =
1312       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1313   C->setDoesNotThrow();
1314 }
1315 
1316 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1317     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1318   // For each dimension stores its QualType and corresponding
1319   // size-expression Value.
1320   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1321   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1322 
1323   // Break down the array into individual dimensions.
1324   QualType Type1D = D.getType();
1325   while (getContext().getAsVariableArrayType(Type1D)) {
1326     auto VlaSize = getVLAElements1D(Type1D);
1327     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1328       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1329     else {
1330       // Generate a locally unique name for the size expression.
1331       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1332       SmallString<12> Buffer;
1333       StringRef NameRef = Name.toStringRef(Buffer);
1334       auto &Ident = getContext().Idents.getOwn(NameRef);
1335       VLAExprNames.push_back(&Ident);
1336       auto SizeExprAddr =
1337           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1338       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1339       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1340                               Type1D.getUnqualifiedType());
1341     }
1342     Type1D = VlaSize.Type;
1343   }
1344 
1345   if (!EmitDebugInfo)
1346     return;
1347 
1348   // Register each dimension's size-expression with a DILocalVariable,
1349   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1350   // to describe this array.
1351   unsigned NameIdx = 0;
1352   for (auto &VlaSize : Dimensions) {
1353     llvm::Metadata *MD;
1354     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1355       MD = llvm::ConstantAsMetadata::get(C);
1356     else {
1357       // Create an artificial VarDecl to generate debug info for.
1358       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1359       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1360       auto QT = getContext().getIntTypeForBitwidth(
1361           VlaExprTy->getScalarSizeInBits(), false);
1362       auto *ArtificialDecl = VarDecl::Create(
1363           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1364           D.getLocation(), D.getLocation(), NameIdent, QT,
1365           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1366       ArtificialDecl->setImplicit();
1367 
1368       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1369                                          Builder);
1370     }
1371     assert(MD && "No Size expression debug node created");
1372     DI->registerVLASizeExpression(VlaSize.Type, MD);
1373   }
1374 }
1375 
1376 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1377 /// local variable.  Does not emit initialization or destruction.
1378 CodeGenFunction::AutoVarEmission
1379 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1380   QualType Ty = D.getType();
1381   assert(
1382       Ty.getAddressSpace() == LangAS::Default ||
1383       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1384 
1385   AutoVarEmission emission(D);
1386 
1387   bool isEscapingByRef = D.isEscapingByref();
1388   emission.IsEscapingByRef = isEscapingByRef;
1389 
1390   CharUnits alignment = getContext().getDeclAlign(&D);
1391 
1392   // If the type is variably-modified, emit all the VLA sizes for it.
1393   if (Ty->isVariablyModifiedType())
1394     EmitVariablyModifiedType(Ty);
1395 
1396   auto *DI = getDebugInfo();
1397   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1398                                  codegenoptions::LimitedDebugInfo;
1399 
1400   Address address = Address::invalid();
1401   Address AllocaAddr = Address::invalid();
1402   Address OpenMPLocalAddr =
1403       getLangOpts().OpenMP
1404           ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1405           : Address::invalid();
1406   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1407 
1408   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1409     address = OpenMPLocalAddr;
1410   } else if (Ty->isConstantSizeType()) {
1411     // If this value is an array or struct with a statically determinable
1412     // constant initializer, there are optimizations we can do.
1413     //
1414     // TODO: We should constant-evaluate the initializer of any variable,
1415     // as long as it is initialized by a constant expression. Currently,
1416     // isConstantInitializer produces wrong answers for structs with
1417     // reference or bitfield members, and a few other cases, and checking
1418     // for POD-ness protects us from some of these.
1419     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1420         (D.isConstexpr() ||
1421          ((Ty.isPODType(getContext()) ||
1422            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1423           D.getInit()->isConstantInitializer(getContext(), false)))) {
1424 
1425       // If the variable's a const type, and it's neither an NRVO
1426       // candidate nor a __block variable and has no mutable members,
1427       // emit it as a global instead.
1428       // Exception is if a variable is located in non-constant address space
1429       // in OpenCL.
1430       if ((!getLangOpts().OpenCL ||
1431            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1432           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1433            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1434         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1435 
1436         // Signal this condition to later callbacks.
1437         emission.Addr = Address::invalid();
1438         assert(emission.wasEmittedAsGlobal());
1439         return emission;
1440       }
1441 
1442       // Otherwise, tell the initialization code that we're in this case.
1443       emission.IsConstantAggregate = true;
1444     }
1445 
1446     // A normal fixed sized variable becomes an alloca in the entry block,
1447     // unless:
1448     // - it's an NRVO variable.
1449     // - we are compiling OpenMP and it's an OpenMP local variable.
1450     if (NRVO) {
1451       // The named return value optimization: allocate this variable in the
1452       // return slot, so that we can elide the copy when returning this
1453       // variable (C++0x [class.copy]p34).
1454       address = ReturnValue;
1455 
1456       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1457         const auto *RD = RecordTy->getDecl();
1458         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1459         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1460             RD->isNonTrivialToPrimitiveDestroy()) {
1461           // Create a flag that is used to indicate when the NRVO was applied
1462           // to this variable. Set it to zero to indicate that NRVO was not
1463           // applied.
1464           llvm::Value *Zero = Builder.getFalse();
1465           Address NRVOFlag =
1466             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1467           EnsureInsertPoint();
1468           Builder.CreateStore(Zero, NRVOFlag);
1469 
1470           // Record the NRVO flag for this variable.
1471           NRVOFlags[&D] = NRVOFlag.getPointer();
1472           emission.NRVOFlag = NRVOFlag.getPointer();
1473         }
1474       }
1475     } else {
1476       CharUnits allocaAlignment;
1477       llvm::Type *allocaTy;
1478       if (isEscapingByRef) {
1479         auto &byrefInfo = getBlockByrefInfo(&D);
1480         allocaTy = byrefInfo.Type;
1481         allocaAlignment = byrefInfo.ByrefAlignment;
1482       } else {
1483         allocaTy = ConvertTypeForMem(Ty);
1484         allocaAlignment = alignment;
1485       }
1486 
1487       // Create the alloca.  Note that we set the name separately from
1488       // building the instruction so that it's there even in no-asserts
1489       // builds.
1490       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1491                                  /*ArraySize=*/nullptr, &AllocaAddr);
1492 
1493       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1494       // the catch parameter starts in the catchpad instruction, and we can't
1495       // insert code in those basic blocks.
1496       bool IsMSCatchParam =
1497           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1498 
1499       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1500       // if we don't have a valid insertion point (?).
1501       if (HaveInsertPoint() && !IsMSCatchParam) {
1502         // If there's a jump into the lifetime of this variable, its lifetime
1503         // gets broken up into several regions in IR, which requires more work
1504         // to handle correctly. For now, just omit the intrinsics; this is a
1505         // rare case, and it's better to just be conservatively correct.
1506         // PR28267.
1507         //
1508         // We have to do this in all language modes if there's a jump past the
1509         // declaration. We also have to do it in C if there's a jump to an
1510         // earlier point in the current block because non-VLA lifetimes begin as
1511         // soon as the containing block is entered, not when its variables
1512         // actually come into scope; suppressing the lifetime annotations
1513         // completely in this case is unnecessarily pessimistic, but again, this
1514         // is rare.
1515         if (!Bypasses.IsBypassed(&D) &&
1516             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1517           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1518           emission.SizeForLifetimeMarkers =
1519               EmitLifetimeStart(size, AllocaAddr.getPointer());
1520         }
1521       } else {
1522         assert(!emission.useLifetimeMarkers());
1523       }
1524     }
1525   } else {
1526     EnsureInsertPoint();
1527 
1528     if (!DidCallStackSave) {
1529       // Save the stack.
1530       Address Stack =
1531         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1532 
1533       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1534       llvm::Value *V = Builder.CreateCall(F);
1535       Builder.CreateStore(V, Stack);
1536 
1537       DidCallStackSave = true;
1538 
1539       // Push a cleanup block and restore the stack there.
1540       // FIXME: in general circumstances, this should be an EH cleanup.
1541       pushStackRestore(NormalCleanup, Stack);
1542     }
1543 
1544     auto VlaSize = getVLASize(Ty);
1545     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1546 
1547     // Allocate memory for the array.
1548     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1549                                &AllocaAddr);
1550 
1551     // If we have debug info enabled, properly describe the VLA dimensions for
1552     // this type by registering the vla size expression for each of the
1553     // dimensions.
1554     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1555   }
1556 
1557   setAddrOfLocalVar(&D, address);
1558   emission.Addr = address;
1559   emission.AllocaAddr = AllocaAddr;
1560 
1561   // Emit debug info for local var declaration.
1562   if (EmitDebugInfo && HaveInsertPoint()) {
1563     Address DebugAddr = address;
1564     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1565     DI->setLocation(D.getLocation());
1566 
1567     // If NRVO, use a pointer to the return address.
1568     if (UsePointerValue)
1569       DebugAddr = ReturnValuePointer;
1570 
1571     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1572                                         UsePointerValue);
1573   }
1574 
1575   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1576     EmitVarAnnotations(&D, address.getPointer());
1577 
1578   // Make sure we call @llvm.lifetime.end.
1579   if (emission.useLifetimeMarkers())
1580     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1581                                          emission.getOriginalAllocatedAddress(),
1582                                          emission.getSizeForLifetimeMarkers());
1583 
1584   return emission;
1585 }
1586 
1587 static bool isCapturedBy(const VarDecl &, const Expr *);
1588 
1589 /// Determines whether the given __block variable is potentially
1590 /// captured by the given statement.
1591 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1592   if (const Expr *E = dyn_cast<Expr>(S))
1593     return isCapturedBy(Var, E);
1594   for (const Stmt *SubStmt : S->children())
1595     if (isCapturedBy(Var, SubStmt))
1596       return true;
1597   return false;
1598 }
1599 
1600 /// Determines whether the given __block variable is potentially
1601 /// captured by the given expression.
1602 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1603   // Skip the most common kinds of expressions that make
1604   // hierarchy-walking expensive.
1605   E = E->IgnoreParenCasts();
1606 
1607   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1608     const BlockDecl *Block = BE->getBlockDecl();
1609     for (const auto &I : Block->captures()) {
1610       if (I.getVariable() == &Var)
1611         return true;
1612     }
1613 
1614     // No need to walk into the subexpressions.
1615     return false;
1616   }
1617 
1618   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1619     const CompoundStmt *CS = SE->getSubStmt();
1620     for (const auto *BI : CS->body())
1621       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1622         if (isCapturedBy(Var, BIE))
1623           return true;
1624       }
1625       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1626           // special case declarations
1627           for (const auto *I : DS->decls()) {
1628               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1629                 const Expr *Init = VD->getInit();
1630                 if (Init && isCapturedBy(Var, Init))
1631                   return true;
1632               }
1633           }
1634       }
1635       else
1636         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1637         // Later, provide code to poke into statements for capture analysis.
1638         return true;
1639     return false;
1640   }
1641 
1642   for (const Stmt *SubStmt : E->children())
1643     if (isCapturedBy(Var, SubStmt))
1644       return true;
1645 
1646   return false;
1647 }
1648 
1649 /// Determine whether the given initializer is trivial in the sense
1650 /// that it requires no code to be generated.
1651 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1652   if (!Init)
1653     return true;
1654 
1655   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1656     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1657       if (Constructor->isTrivial() &&
1658           Constructor->isDefaultConstructor() &&
1659           !Construct->requiresZeroInitialization())
1660         return true;
1661 
1662   return false;
1663 }
1664 
1665 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1666   assert(emission.Variable && "emission was not valid!");
1667 
1668   // If this was emitted as a global constant, we're done.
1669   if (emission.wasEmittedAsGlobal()) return;
1670 
1671   const VarDecl &D = *emission.Variable;
1672   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1673   QualType type = D.getType();
1674 
1675   bool isVolatile = type.isVolatileQualified();
1676 
1677   // If this local has an initializer, emit it now.
1678   const Expr *Init = D.getInit();
1679 
1680   // If we are at an unreachable point, we don't need to emit the initializer
1681   // unless it contains a label.
1682   if (!HaveInsertPoint()) {
1683     if (!Init || !ContainsLabel(Init)) return;
1684     EnsureInsertPoint();
1685   }
1686 
1687   // Initialize the structure of a __block variable.
1688   if (emission.IsEscapingByRef)
1689     emitByrefStructureInit(emission);
1690 
1691   // Initialize the variable here if it doesn't have a initializer and it is a
1692   // C struct that is non-trivial to initialize or an array containing such a
1693   // struct.
1694   if (!Init &&
1695       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1696           QualType::PDIK_Struct) {
1697     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1698     if (emission.IsEscapingByRef)
1699       drillIntoBlockVariable(*this, Dst, &D);
1700     defaultInitNonTrivialCStructVar(Dst);
1701     return;
1702   }
1703 
1704   // Check whether this is a byref variable that's potentially
1705   // captured and moved by its own initializer.  If so, we'll need to
1706   // emit the initializer first, then copy into the variable.
1707   bool capturedByInit =
1708       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1709 
1710   bool locIsByrefHeader = !capturedByInit;
1711   const Address Loc =
1712       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1713 
1714   // Note: constexpr already initializes everything correctly.
1715   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1716       (D.isConstexpr()
1717            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1718            : (D.getAttr<UninitializedAttr>()
1719                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1720                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1721 
1722   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1723     if (trivialAutoVarInit ==
1724         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1725       return;
1726 
1727     // Only initialize a __block's storage: we always initialize the header.
1728     if (emission.IsEscapingByRef && !locIsByrefHeader)
1729       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1730 
1731     CharUnits Size = getContext().getTypeSizeInChars(type);
1732     if (!Size.isZero()) {
1733       switch (trivialAutoVarInit) {
1734       case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1735         llvm_unreachable("Uninitialized handled above");
1736       case LangOptions::TrivialAutoVarInitKind::Zero:
1737         emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1738         break;
1739       case LangOptions::TrivialAutoVarInitKind::Pattern:
1740         emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1741         break;
1742       }
1743       return;
1744     }
1745 
1746     // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1747     // them, so emit a memcpy with the VLA size to initialize each element.
1748     // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1749     // will catch that code, but there exists code which generates zero-sized
1750     // VLAs. Be nice and initialize whatever they requested.
1751     const auto *VlaType = getContext().getAsVariableArrayType(type);
1752     if (!VlaType)
1753       return;
1754     auto VlaSize = getVLASize(VlaType);
1755     auto SizeVal = VlaSize.NumElts;
1756     CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1757     switch (trivialAutoVarInit) {
1758     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1759       llvm_unreachable("Uninitialized handled above");
1760 
1761     case LangOptions::TrivialAutoVarInitKind::Zero:
1762       if (!EltSize.isOne())
1763         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1764       Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1765                            isVolatile);
1766       break;
1767 
1768     case LangOptions::TrivialAutoVarInitKind::Pattern: {
1769       llvm::Type *ElTy = Loc.getElementType();
1770       llvm::Constant *Constant = constWithPadding(
1771           CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1772       CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1773       llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1774       llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1775       llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1776       llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1777           SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1778           "vla.iszerosized");
1779       Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1780       EmitBlock(SetupBB);
1781       if (!EltSize.isOne())
1782         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1783       llvm::Value *BaseSizeInChars =
1784           llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1785       Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1786       llvm::Value *End =
1787           Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1788       llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1789       EmitBlock(LoopBB);
1790       llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1791       Cur->addIncoming(Begin.getPointer(), OriginBB);
1792       CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1793       Builder.CreateMemCpy(Address(Cur, CurAlign),
1794                            createUnnamedGlobalForMemcpyFrom(
1795                                CGM, D, Builder, Constant, ConstantAlign),
1796                            BaseSizeInChars, isVolatile);
1797       llvm::Value *Next =
1798           Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1799       llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1800       Builder.CreateCondBr(Done, ContBB, LoopBB);
1801       Cur->addIncoming(Next, LoopBB);
1802       EmitBlock(ContBB);
1803     } break;
1804     }
1805   };
1806 
1807   if (isTrivialInitializer(Init)) {
1808     initializeWhatIsTechnicallyUninitialized(Loc);
1809     return;
1810   }
1811 
1812   llvm::Constant *constant = nullptr;
1813   if (emission.IsConstantAggregate ||
1814       D.mightBeUsableInConstantExpressions(getContext())) {
1815     assert(!capturedByInit && "constant init contains a capturing block?");
1816     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1817     if (constant && !constant->isZeroValue() &&
1818         (trivialAutoVarInit !=
1819          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1820       IsPattern isPattern =
1821           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1822               ? IsPattern::Yes
1823               : IsPattern::No;
1824       // C guarantees that brace-init with fewer initializers than members in
1825       // the aggregate will initialize the rest of the aggregate as-if it were
1826       // static initialization. In turn static initialization guarantees that
1827       // padding is initialized to zero bits. We could instead pattern-init if D
1828       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1829       // behavior.
1830       constant = constWithPadding(CGM, IsPattern::No,
1831                                   replaceUndef(CGM, isPattern, constant));
1832     }
1833   }
1834 
1835   if (!constant) {
1836     initializeWhatIsTechnicallyUninitialized(Loc);
1837     LValue lv = MakeAddrLValue(Loc, type);
1838     lv.setNonGC(true);
1839     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1840   }
1841 
1842   if (!emission.IsConstantAggregate) {
1843     // For simple scalar/complex initialization, store the value directly.
1844     LValue lv = MakeAddrLValue(Loc, type);
1845     lv.setNonGC(true);
1846     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1847   }
1848 
1849   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1850   emitStoresForConstant(
1851       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1852       isVolatile, Builder, constant);
1853 }
1854 
1855 /// Emit an expression as an initializer for an object (variable, field, etc.)
1856 /// at the given location.  The expression is not necessarily the normal
1857 /// initializer for the object, and the address is not necessarily
1858 /// its normal location.
1859 ///
1860 /// \param init the initializing expression
1861 /// \param D the object to act as if we're initializing
1862 /// \param loc the address to initialize; its type is a pointer
1863 ///   to the LLVM mapping of the object's type
1864 /// \param alignment the alignment of the address
1865 /// \param capturedByInit true if \p D is a __block variable
1866 ///   whose address is potentially changed by the initializer
1867 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1868                                      LValue lvalue, bool capturedByInit) {
1869   QualType type = D->getType();
1870 
1871   if (type->isReferenceType()) {
1872     RValue rvalue = EmitReferenceBindingToExpr(init);
1873     if (capturedByInit)
1874       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1875     EmitStoreThroughLValue(rvalue, lvalue, true);
1876     return;
1877   }
1878   switch (getEvaluationKind(type)) {
1879   case TEK_Scalar:
1880     EmitScalarInit(init, D, lvalue, capturedByInit);
1881     return;
1882   case TEK_Complex: {
1883     ComplexPairTy complex = EmitComplexExpr(init);
1884     if (capturedByInit)
1885       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1886     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1887     return;
1888   }
1889   case TEK_Aggregate:
1890     if (type->isAtomicType()) {
1891       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1892     } else {
1893       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1894       if (isa<VarDecl>(D))
1895         Overlap = AggValueSlot::DoesNotOverlap;
1896       else if (auto *FD = dyn_cast<FieldDecl>(D))
1897         Overlap = getOverlapForFieldInit(FD);
1898       // TODO: how can we delay here if D is captured by its initializer?
1899       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1900                                               AggValueSlot::IsDestructed,
1901                                          AggValueSlot::DoesNotNeedGCBarriers,
1902                                               AggValueSlot::IsNotAliased,
1903                                               Overlap));
1904     }
1905     return;
1906   }
1907   llvm_unreachable("bad evaluation kind");
1908 }
1909 
1910 /// Enter a destroy cleanup for the given local variable.
1911 void CodeGenFunction::emitAutoVarTypeCleanup(
1912                             const CodeGenFunction::AutoVarEmission &emission,
1913                             QualType::DestructionKind dtorKind) {
1914   assert(dtorKind != QualType::DK_none);
1915 
1916   // Note that for __block variables, we want to destroy the
1917   // original stack object, not the possibly forwarded object.
1918   Address addr = emission.getObjectAddress(*this);
1919 
1920   const VarDecl *var = emission.Variable;
1921   QualType type = var->getType();
1922 
1923   CleanupKind cleanupKind = NormalAndEHCleanup;
1924   CodeGenFunction::Destroyer *destroyer = nullptr;
1925 
1926   switch (dtorKind) {
1927   case QualType::DK_none:
1928     llvm_unreachable("no cleanup for trivially-destructible variable");
1929 
1930   case QualType::DK_cxx_destructor:
1931     // If there's an NRVO flag on the emission, we need a different
1932     // cleanup.
1933     if (emission.NRVOFlag) {
1934       assert(!type->isArrayType());
1935       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1936       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor,
1937                                                   emission.NRVOFlag);
1938       return;
1939     }
1940     break;
1941 
1942   case QualType::DK_objc_strong_lifetime:
1943     // Suppress cleanups for pseudo-strong variables.
1944     if (var->isARCPseudoStrong()) return;
1945 
1946     // Otherwise, consider whether to use an EH cleanup or not.
1947     cleanupKind = getARCCleanupKind();
1948 
1949     // Use the imprecise destroyer by default.
1950     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1951       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1952     break;
1953 
1954   case QualType::DK_objc_weak_lifetime:
1955     break;
1956 
1957   case QualType::DK_nontrivial_c_struct:
1958     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1959     if (emission.NRVOFlag) {
1960       assert(!type->isArrayType());
1961       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1962                                                 emission.NRVOFlag, type);
1963       return;
1964     }
1965     break;
1966   }
1967 
1968   // If we haven't chosen a more specific destroyer, use the default.
1969   if (!destroyer) destroyer = getDestroyer(dtorKind);
1970 
1971   // Use an EH cleanup in array destructors iff the destructor itself
1972   // is being pushed as an EH cleanup.
1973   bool useEHCleanup = (cleanupKind & EHCleanup);
1974   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1975                                      useEHCleanup);
1976 }
1977 
1978 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1979   assert(emission.Variable && "emission was not valid!");
1980 
1981   // If this was emitted as a global constant, we're done.
1982   if (emission.wasEmittedAsGlobal()) return;
1983 
1984   // If we don't have an insertion point, we're done.  Sema prevents
1985   // us from jumping into any of these scopes anyway.
1986   if (!HaveInsertPoint()) return;
1987 
1988   const VarDecl &D = *emission.Variable;
1989 
1990   // Check the type for a cleanup.
1991   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1992     emitAutoVarTypeCleanup(emission, dtorKind);
1993 
1994   // In GC mode, honor objc_precise_lifetime.
1995   if (getLangOpts().getGC() != LangOptions::NonGC &&
1996       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1997     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1998   }
1999 
2000   // Handle the cleanup attribute.
2001   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2002     const FunctionDecl *FD = CA->getFunctionDecl();
2003 
2004     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2005     assert(F && "Could not find function!");
2006 
2007     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2008     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2009   }
2010 
2011   // If this is a block variable, call _Block_object_destroy
2012   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2013   // mode.
2014   if (emission.IsEscapingByRef &&
2015       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2016     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2017     if (emission.Variable->getType().isObjCGCWeak())
2018       Flags |= BLOCK_FIELD_IS_WEAK;
2019     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2020                       /*LoadBlockVarAddr*/ false,
2021                       cxxDestructorCanThrow(emission.Variable->getType()));
2022   }
2023 }
2024 
2025 CodeGenFunction::Destroyer *
2026 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2027   switch (kind) {
2028   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2029   case QualType::DK_cxx_destructor:
2030     return destroyCXXObject;
2031   case QualType::DK_objc_strong_lifetime:
2032     return destroyARCStrongPrecise;
2033   case QualType::DK_objc_weak_lifetime:
2034     return destroyARCWeak;
2035   case QualType::DK_nontrivial_c_struct:
2036     return destroyNonTrivialCStruct;
2037   }
2038   llvm_unreachable("Unknown DestructionKind");
2039 }
2040 
2041 /// pushEHDestroy - Push the standard destructor for the given type as
2042 /// an EH-only cleanup.
2043 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2044                                     Address addr, QualType type) {
2045   assert(dtorKind && "cannot push destructor for trivial type");
2046   assert(needsEHCleanup(dtorKind));
2047 
2048   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2049 }
2050 
2051 /// pushDestroy - Push the standard destructor for the given type as
2052 /// at least a normal cleanup.
2053 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2054                                   Address addr, QualType type) {
2055   assert(dtorKind && "cannot push destructor for trivial type");
2056 
2057   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2058   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2059               cleanupKind & EHCleanup);
2060 }
2061 
2062 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2063                                   QualType type, Destroyer *destroyer,
2064                                   bool useEHCleanupForArray) {
2065   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2066                                      destroyer, useEHCleanupForArray);
2067 }
2068 
2069 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2070   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2071 }
2072 
2073 void CodeGenFunction::pushLifetimeExtendedDestroy(
2074     CleanupKind cleanupKind, Address addr, QualType type,
2075     Destroyer *destroyer, bool useEHCleanupForArray) {
2076   // Push an EH-only cleanup for the object now.
2077   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2078   // around in case a temporary's destructor throws an exception.
2079   if (cleanupKind & EHCleanup)
2080     EHStack.pushCleanup<DestroyObject>(
2081         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2082         destroyer, useEHCleanupForArray);
2083 
2084   // Remember that we need to push a full cleanup for the object at the
2085   // end of the full-expression.
2086   pushCleanupAfterFullExpr<DestroyObject>(
2087       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
2088 }
2089 
2090 /// emitDestroy - Immediately perform the destruction of the given
2091 /// object.
2092 ///
2093 /// \param addr - the address of the object; a type*
2094 /// \param type - the type of the object; if an array type, all
2095 ///   objects are destroyed in reverse order
2096 /// \param destroyer - the function to call to destroy individual
2097 ///   elements
2098 /// \param useEHCleanupForArray - whether an EH cleanup should be
2099 ///   used when destroying array elements, in case one of the
2100 ///   destructions throws an exception
2101 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2102                                   Destroyer *destroyer,
2103                                   bool useEHCleanupForArray) {
2104   const ArrayType *arrayType = getContext().getAsArrayType(type);
2105   if (!arrayType)
2106     return destroyer(*this, addr, type);
2107 
2108   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2109 
2110   CharUnits elementAlign =
2111     addr.getAlignment()
2112         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2113 
2114   // Normally we have to check whether the array is zero-length.
2115   bool checkZeroLength = true;
2116 
2117   // But if the array length is constant, we can suppress that.
2118   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2119     // ...and if it's constant zero, we can just skip the entire thing.
2120     if (constLength->isZero()) return;
2121     checkZeroLength = false;
2122   }
2123 
2124   llvm::Value *begin = addr.getPointer();
2125   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2126   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2127                    checkZeroLength, useEHCleanupForArray);
2128 }
2129 
2130 /// emitArrayDestroy - Destroys all the elements of the given array,
2131 /// beginning from last to first.  The array cannot be zero-length.
2132 ///
2133 /// \param begin - a type* denoting the first element of the array
2134 /// \param end - a type* denoting one past the end of the array
2135 /// \param elementType - the element type of the array
2136 /// \param destroyer - the function to call to destroy elements
2137 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2138 ///   the remaining elements in case the destruction of a single
2139 ///   element throws
2140 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2141                                        llvm::Value *end,
2142                                        QualType elementType,
2143                                        CharUnits elementAlign,
2144                                        Destroyer *destroyer,
2145                                        bool checkZeroLength,
2146                                        bool useEHCleanup) {
2147   assert(!elementType->isArrayType());
2148 
2149   // The basic structure here is a do-while loop, because we don't
2150   // need to check for the zero-element case.
2151   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2152   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2153 
2154   if (checkZeroLength) {
2155     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2156                                                 "arraydestroy.isempty");
2157     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2158   }
2159 
2160   // Enter the loop body, making that address the current address.
2161   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2162   EmitBlock(bodyBB);
2163   llvm::PHINode *elementPast =
2164     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2165   elementPast->addIncoming(end, entryBB);
2166 
2167   // Shift the address back by one element.
2168   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2169   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2170                                                    "arraydestroy.element");
2171 
2172   if (useEHCleanup)
2173     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2174                                    destroyer);
2175 
2176   // Perform the actual destruction there.
2177   destroyer(*this, Address(element, elementAlign), elementType);
2178 
2179   if (useEHCleanup)
2180     PopCleanupBlock();
2181 
2182   // Check whether we've reached the end.
2183   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2184   Builder.CreateCondBr(done, doneBB, bodyBB);
2185   elementPast->addIncoming(element, Builder.GetInsertBlock());
2186 
2187   // Done.
2188   EmitBlock(doneBB);
2189 }
2190 
2191 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2192 /// emitArrayDestroy, the element type here may still be an array type.
2193 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2194                                     llvm::Value *begin, llvm::Value *end,
2195                                     QualType type, CharUnits elementAlign,
2196                                     CodeGenFunction::Destroyer *destroyer) {
2197   // If the element type is itself an array, drill down.
2198   unsigned arrayDepth = 0;
2199   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2200     // VLAs don't require a GEP index to walk into.
2201     if (!isa<VariableArrayType>(arrayType))
2202       arrayDepth++;
2203     type = arrayType->getElementType();
2204   }
2205 
2206   if (arrayDepth) {
2207     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2208 
2209     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2210     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2211     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2212   }
2213 
2214   // Destroy the array.  We don't ever need an EH cleanup because we
2215   // assume that we're in an EH cleanup ourselves, so a throwing
2216   // destructor causes an immediate terminate.
2217   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2218                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2219 }
2220 
2221 namespace {
2222   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2223   /// array destroy where the end pointer is regularly determined and
2224   /// does not need to be loaded from a local.
2225   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2226     llvm::Value *ArrayBegin;
2227     llvm::Value *ArrayEnd;
2228     QualType ElementType;
2229     CodeGenFunction::Destroyer *Destroyer;
2230     CharUnits ElementAlign;
2231   public:
2232     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2233                                QualType elementType, CharUnits elementAlign,
2234                                CodeGenFunction::Destroyer *destroyer)
2235       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2236         ElementType(elementType), Destroyer(destroyer),
2237         ElementAlign(elementAlign) {}
2238 
2239     void Emit(CodeGenFunction &CGF, Flags flags) override {
2240       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2241                               ElementType, ElementAlign, Destroyer);
2242     }
2243   };
2244 
2245   /// IrregularPartialArrayDestroy - a cleanup which performs a
2246   /// partial array destroy where the end pointer is irregularly
2247   /// determined and must be loaded from a local.
2248   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2249     llvm::Value *ArrayBegin;
2250     Address ArrayEndPointer;
2251     QualType ElementType;
2252     CodeGenFunction::Destroyer *Destroyer;
2253     CharUnits ElementAlign;
2254   public:
2255     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2256                                  Address arrayEndPointer,
2257                                  QualType elementType,
2258                                  CharUnits elementAlign,
2259                                  CodeGenFunction::Destroyer *destroyer)
2260       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2261         ElementType(elementType), Destroyer(destroyer),
2262         ElementAlign(elementAlign) {}
2263 
2264     void Emit(CodeGenFunction &CGF, Flags flags) override {
2265       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2266       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2267                               ElementType, ElementAlign, Destroyer);
2268     }
2269   };
2270 } // end anonymous namespace
2271 
2272 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2273 /// already-constructed elements of the given array.  The cleanup
2274 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2275 ///
2276 /// \param elementType - the immediate element type of the array;
2277 ///   possibly still an array type
2278 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2279                                                        Address arrayEndPointer,
2280                                                        QualType elementType,
2281                                                        CharUnits elementAlign,
2282                                                        Destroyer *destroyer) {
2283   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2284                                                     arrayBegin, arrayEndPointer,
2285                                                     elementType, elementAlign,
2286                                                     destroyer);
2287 }
2288 
2289 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2290 /// already-constructed elements of the given array.  The cleanup
2291 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2292 ///
2293 /// \param elementType - the immediate element type of the array;
2294 ///   possibly still an array type
2295 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2296                                                      llvm::Value *arrayEnd,
2297                                                      QualType elementType,
2298                                                      CharUnits elementAlign,
2299                                                      Destroyer *destroyer) {
2300   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2301                                                   arrayBegin, arrayEnd,
2302                                                   elementType, elementAlign,
2303                                                   destroyer);
2304 }
2305 
2306 /// Lazily declare the @llvm.lifetime.start intrinsic.
2307 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2308   if (LifetimeStartFn)
2309     return LifetimeStartFn;
2310   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2311     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2312   return LifetimeStartFn;
2313 }
2314 
2315 /// Lazily declare the @llvm.lifetime.end intrinsic.
2316 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2317   if (LifetimeEndFn)
2318     return LifetimeEndFn;
2319   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2320     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2321   return LifetimeEndFn;
2322 }
2323 
2324 namespace {
2325   /// A cleanup to perform a release of an object at the end of a
2326   /// function.  This is used to balance out the incoming +1 of a
2327   /// ns_consumed argument when we can't reasonably do that just by
2328   /// not doing the initial retain for a __block argument.
2329   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2330     ConsumeARCParameter(llvm::Value *param,
2331                         ARCPreciseLifetime_t precise)
2332       : Param(param), Precise(precise) {}
2333 
2334     llvm::Value *Param;
2335     ARCPreciseLifetime_t Precise;
2336 
2337     void Emit(CodeGenFunction &CGF, Flags flags) override {
2338       CGF.EmitARCRelease(Param, Precise);
2339     }
2340   };
2341 } // end anonymous namespace
2342 
2343 /// Emit an alloca (or GlobalValue depending on target)
2344 /// for the specified parameter and set up LocalDeclMap.
2345 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2346                                    unsigned ArgNo) {
2347   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2348   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2349          "Invalid argument to EmitParmDecl");
2350 
2351   Arg.getAnyValue()->setName(D.getName());
2352 
2353   QualType Ty = D.getType();
2354 
2355   // Use better IR generation for certain implicit parameters.
2356   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2357     // The only implicit argument a block has is its literal.
2358     // This may be passed as an inalloca'ed value on Windows x86.
2359     if (BlockInfo) {
2360       llvm::Value *V = Arg.isIndirect()
2361                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2362                            : Arg.getDirectValue();
2363       setBlockContextParameter(IPD, ArgNo, V);
2364       return;
2365     }
2366   }
2367 
2368   Address DeclPtr = Address::invalid();
2369   bool DoStore = false;
2370   bool IsScalar = hasScalarEvaluationKind(Ty);
2371   // If we already have a pointer to the argument, reuse the input pointer.
2372   if (Arg.isIndirect()) {
2373     DeclPtr = Arg.getIndirectAddress();
2374     // If we have a prettier pointer type at this point, bitcast to that.
2375     unsigned AS = DeclPtr.getType()->getAddressSpace();
2376     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2377     if (DeclPtr.getType() != IRTy)
2378       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2379     // Indirect argument is in alloca address space, which may be different
2380     // from the default address space.
2381     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2382     auto *V = DeclPtr.getPointer();
2383     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2384     auto DestLangAS =
2385         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2386     if (SrcLangAS != DestLangAS) {
2387       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2388              CGM.getDataLayout().getAllocaAddrSpace());
2389       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2390       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2391       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2392                             *this, V, SrcLangAS, DestLangAS, T, true),
2393                         DeclPtr.getAlignment());
2394     }
2395 
2396     // Push a destructor cleanup for this parameter if the ABI requires it.
2397     // Don't push a cleanup in a thunk for a method that will also emit a
2398     // cleanup.
2399     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2400         Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2401       if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
2402         assert((DtorKind == QualType::DK_cxx_destructor ||
2403                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2404                "unexpected destructor type");
2405         pushDestroy(DtorKind, DeclPtr, Ty);
2406         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2407             EHStack.stable_begin();
2408       }
2409     }
2410   } else {
2411     // Check if the parameter address is controlled by OpenMP runtime.
2412     Address OpenMPLocalAddr =
2413         getLangOpts().OpenMP
2414             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2415             : Address::invalid();
2416     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2417       DeclPtr = OpenMPLocalAddr;
2418     } else {
2419       // Otherwise, create a temporary to hold the value.
2420       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2421                               D.getName() + ".addr");
2422     }
2423     DoStore = true;
2424   }
2425 
2426   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2427 
2428   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2429   if (IsScalar) {
2430     Qualifiers qs = Ty.getQualifiers();
2431     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2432       // We honor __attribute__((ns_consumed)) for types with lifetime.
2433       // For __strong, it's handled by just skipping the initial retain;
2434       // otherwise we have to balance out the initial +1 with an extra
2435       // cleanup to do the release at the end of the function.
2436       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2437 
2438       // If a parameter is pseudo-strong then we can omit the implicit retain.
2439       if (D.isARCPseudoStrong()) {
2440         assert(lt == Qualifiers::OCL_Strong &&
2441                "pseudo-strong variable isn't strong?");
2442         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2443         lt = Qualifiers::OCL_ExplicitNone;
2444       }
2445 
2446       // Load objects passed indirectly.
2447       if (Arg.isIndirect() && !ArgVal)
2448         ArgVal = Builder.CreateLoad(DeclPtr);
2449 
2450       if (lt == Qualifiers::OCL_Strong) {
2451         if (!isConsumed) {
2452           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2453             // use objc_storeStrong(&dest, value) for retaining the
2454             // object. But first, store a null into 'dest' because
2455             // objc_storeStrong attempts to release its old value.
2456             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2457             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2458             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2459             DoStore = false;
2460           }
2461           else
2462           // Don't use objc_retainBlock for block pointers, because we
2463           // don't want to Block_copy something just because we got it
2464           // as a parameter.
2465             ArgVal = EmitARCRetainNonBlock(ArgVal);
2466         }
2467       } else {
2468         // Push the cleanup for a consumed parameter.
2469         if (isConsumed) {
2470           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2471                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2472           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2473                                                    precise);
2474         }
2475 
2476         if (lt == Qualifiers::OCL_Weak) {
2477           EmitARCInitWeak(DeclPtr, ArgVal);
2478           DoStore = false; // The weak init is a store, no need to do two.
2479         }
2480       }
2481 
2482       // Enter the cleanup scope.
2483       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2484     }
2485   }
2486 
2487   // Store the initial value into the alloca.
2488   if (DoStore)
2489     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2490 
2491   setAddrOfLocalVar(&D, DeclPtr);
2492 
2493   // Emit debug info for param declaration.
2494   if (CGDebugInfo *DI = getDebugInfo()) {
2495     if (CGM.getCodeGenOpts().getDebugInfo() >=
2496         codegenoptions::LimitedDebugInfo) {
2497       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2498     }
2499   }
2500 
2501   if (D.hasAttr<AnnotateAttr>())
2502     EmitVarAnnotations(&D, DeclPtr.getPointer());
2503 
2504   // We can only check return value nullability if all arguments to the
2505   // function satisfy their nullability preconditions. This makes it necessary
2506   // to emit null checks for args in the function body itself.
2507   if (requiresReturnValueNullabilityCheck()) {
2508     auto Nullability = Ty->getNullability(getContext());
2509     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2510       SanitizerScope SanScope(this);
2511       RetValNullabilityPrecondition =
2512           Builder.CreateAnd(RetValNullabilityPrecondition,
2513                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2514     }
2515   }
2516 }
2517 
2518 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2519                                             CodeGenFunction *CGF) {
2520   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2521     return;
2522   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2523 }
2524 
2525 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2526                                             CodeGenFunction *CGF) {
2527   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2528     return;
2529   // FIXME: need to implement mapper code generation
2530 }
2531 
2532 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2533   getOpenMPRuntime().checkArchForUnifiedAddressing(D);
2534 }
2535