1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Type.h" 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 void CodeGenFunction::EmitDecl(const Decl &D) { 43 switch (D.getKind()) { 44 case Decl::BuiltinTemplate: 45 case Decl::TranslationUnit: 46 case Decl::ExternCContext: 47 case Decl::Namespace: 48 case Decl::UnresolvedUsingTypename: 49 case Decl::ClassTemplateSpecialization: 50 case Decl::ClassTemplatePartialSpecialization: 51 case Decl::VarTemplateSpecialization: 52 case Decl::VarTemplatePartialSpecialization: 53 case Decl::TemplateTypeParm: 54 case Decl::UnresolvedUsingValue: 55 case Decl::NonTypeTemplateParm: 56 case Decl::CXXDeductionGuide: 57 case Decl::CXXMethod: 58 case Decl::CXXConstructor: 59 case Decl::CXXDestructor: 60 case Decl::CXXConversion: 61 case Decl::Field: 62 case Decl::MSProperty: 63 case Decl::IndirectField: 64 case Decl::ObjCIvar: 65 case Decl::ObjCAtDefsField: 66 case Decl::ParmVar: 67 case Decl::ImplicitParam: 68 case Decl::ClassTemplate: 69 case Decl::VarTemplate: 70 case Decl::FunctionTemplate: 71 case Decl::TypeAliasTemplate: 72 case Decl::TemplateTemplateParm: 73 case Decl::ObjCMethod: 74 case Decl::ObjCCategory: 75 case Decl::ObjCProtocol: 76 case Decl::ObjCInterface: 77 case Decl::ObjCCategoryImpl: 78 case Decl::ObjCImplementation: 79 case Decl::ObjCProperty: 80 case Decl::ObjCCompatibleAlias: 81 case Decl::PragmaComment: 82 case Decl::PragmaDetectMismatch: 83 case Decl::AccessSpec: 84 case Decl::LinkageSpec: 85 case Decl::Export: 86 case Decl::ObjCPropertyImpl: 87 case Decl::FileScopeAsm: 88 case Decl::Friend: 89 case Decl::FriendTemplate: 90 case Decl::Block: 91 case Decl::Captured: 92 case Decl::ClassScopeFunctionSpecialization: 93 case Decl::UsingShadow: 94 case Decl::ConstructorUsingShadow: 95 case Decl::ObjCTypeParam: 96 case Decl::Binding: 97 llvm_unreachable("Declaration should not be in declstmts!"); 98 case Decl::Function: // void X(); 99 case Decl::Record: // struct/union/class X; 100 case Decl::Enum: // enum X; 101 case Decl::EnumConstant: // enum ? { X = ? } 102 case Decl::CXXRecord: // struct/union/class X; [C++] 103 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 104 case Decl::Label: // __label__ x; 105 case Decl::Import: 106 case Decl::OMPThreadPrivate: 107 case Decl::OMPCapturedExpr: 108 case Decl::OMPRequires: 109 case Decl::Empty: 110 // None of these decls require codegen support. 111 return; 112 113 case Decl::NamespaceAlias: 114 if (CGDebugInfo *DI = getDebugInfo()) 115 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 116 return; 117 case Decl::Using: // using X; [C++] 118 if (CGDebugInfo *DI = getDebugInfo()) 119 DI->EmitUsingDecl(cast<UsingDecl>(D)); 120 return; 121 case Decl::UsingPack: 122 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 123 EmitDecl(*Using); 124 return; 125 case Decl::UsingDirective: // using namespace X; [C++] 126 if (CGDebugInfo *DI = getDebugInfo()) 127 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 128 return; 129 case Decl::Var: 130 case Decl::Decomposition: { 131 const VarDecl &VD = cast<VarDecl>(D); 132 assert(VD.isLocalVarDecl() && 133 "Should not see file-scope variables inside a function!"); 134 EmitVarDecl(VD); 135 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 136 for (auto *B : DD->bindings()) 137 if (auto *HD = B->getHoldingVar()) 138 EmitVarDecl(*HD); 139 return; 140 } 141 142 case Decl::OMPDeclareReduction: 143 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 144 145 case Decl::Typedef: // typedef int X; 146 case Decl::TypeAlias: { // using X = int; [C++0x] 147 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 148 QualType Ty = TD.getUnderlyingType(); 149 150 if (Ty->isVariablyModifiedType()) 151 EmitVariablyModifiedType(Ty); 152 } 153 } 154 } 155 156 /// EmitVarDecl - This method handles emission of any variable declaration 157 /// inside a function, including static vars etc. 158 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 159 if (D.hasExternalStorage()) 160 // Don't emit it now, allow it to be emitted lazily on its first use. 161 return; 162 163 // Some function-scope variable does not have static storage but still 164 // needs to be emitted like a static variable, e.g. a function-scope 165 // variable in constant address space in OpenCL. 166 if (D.getStorageDuration() != SD_Automatic) { 167 // Static sampler variables translated to function calls. 168 if (D.getType()->isSamplerT()) 169 return; 170 171 llvm::GlobalValue::LinkageTypes Linkage = 172 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 173 174 // FIXME: We need to force the emission/use of a guard variable for 175 // some variables even if we can constant-evaluate them because 176 // we can't guarantee every translation unit will constant-evaluate them. 177 178 return EmitStaticVarDecl(D, Linkage); 179 } 180 181 if (D.getType().getAddressSpace() == LangAS::opencl_local) 182 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 183 184 assert(D.hasLocalStorage()); 185 return EmitAutoVarDecl(D); 186 } 187 188 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 189 if (CGM.getLangOpts().CPlusPlus) 190 return CGM.getMangledName(&D).str(); 191 192 // If this isn't C++, we don't need a mangled name, just a pretty one. 193 assert(!D.isExternallyVisible() && "name shouldn't matter"); 194 std::string ContextName; 195 const DeclContext *DC = D.getDeclContext(); 196 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 197 DC = cast<DeclContext>(CD->getNonClosureContext()); 198 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 199 ContextName = CGM.getMangledName(FD); 200 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 201 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 202 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 203 ContextName = OMD->getSelector().getAsString(); 204 else 205 llvm_unreachable("Unknown context for static var decl"); 206 207 ContextName += "." + D.getNameAsString(); 208 return ContextName; 209 } 210 211 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 212 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 213 // In general, we don't always emit static var decls once before we reference 214 // them. It is possible to reference them before emitting the function that 215 // contains them, and it is possible to emit the containing function multiple 216 // times. 217 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 218 return ExistingGV; 219 220 QualType Ty = D.getType(); 221 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 222 223 // Use the label if the variable is renamed with the asm-label extension. 224 std::string Name; 225 if (D.hasAttr<AsmLabelAttr>()) 226 Name = getMangledName(&D); 227 else 228 Name = getStaticDeclName(*this, D); 229 230 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 231 LangAS AS = GetGlobalVarAddressSpace(&D); 232 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 233 234 // OpenCL variables in local address space and CUDA shared 235 // variables cannot have an initializer. 236 llvm::Constant *Init = nullptr; 237 if (Ty.getAddressSpace() == LangAS::opencl_local || 238 D.hasAttr<CUDASharedAttr>()) 239 Init = llvm::UndefValue::get(LTy); 240 else 241 Init = EmitNullConstant(Ty); 242 243 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 244 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 245 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 246 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 247 248 if (supportsCOMDAT() && GV->isWeakForLinker()) 249 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 250 251 if (D.getTLSKind()) 252 setTLSMode(GV, D); 253 254 setGVProperties(GV, &D); 255 256 // Make sure the result is of the correct type. 257 LangAS ExpectedAS = Ty.getAddressSpace(); 258 llvm::Constant *Addr = GV; 259 if (AS != ExpectedAS) { 260 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 261 *this, GV, AS, ExpectedAS, 262 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 263 } 264 265 setStaticLocalDeclAddress(&D, Addr); 266 267 // Ensure that the static local gets initialized by making sure the parent 268 // function gets emitted eventually. 269 const Decl *DC = cast<Decl>(D.getDeclContext()); 270 271 // We can't name blocks or captured statements directly, so try to emit their 272 // parents. 273 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 274 DC = DC->getNonClosureContext(); 275 // FIXME: Ensure that global blocks get emitted. 276 if (!DC) 277 return Addr; 278 } 279 280 GlobalDecl GD; 281 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 282 GD = GlobalDecl(CD, Ctor_Base); 283 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 284 GD = GlobalDecl(DD, Dtor_Base); 285 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 286 GD = GlobalDecl(FD); 287 else { 288 // Don't do anything for Obj-C method decls or global closures. We should 289 // never defer them. 290 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 291 } 292 if (GD.getDecl()) { 293 // Disable emission of the parent function for the OpenMP device codegen. 294 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 295 (void)GetAddrOfGlobal(GD); 296 } 297 298 return Addr; 299 } 300 301 /// hasNontrivialDestruction - Determine whether a type's destruction is 302 /// non-trivial. If so, and the variable uses static initialization, we must 303 /// register its destructor to run on exit. 304 static bool hasNontrivialDestruction(QualType T) { 305 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 306 return RD && !RD->hasTrivialDestructor(); 307 } 308 309 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 310 /// global variable that has already been created for it. If the initializer 311 /// has a different type than GV does, this may free GV and return a different 312 /// one. Otherwise it just returns GV. 313 llvm::GlobalVariable * 314 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 315 llvm::GlobalVariable *GV) { 316 ConstantEmitter emitter(*this); 317 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 318 319 // If constant emission failed, then this should be a C++ static 320 // initializer. 321 if (!Init) { 322 if (!getLangOpts().CPlusPlus) 323 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 324 else if (HaveInsertPoint()) { 325 // Since we have a static initializer, this global variable can't 326 // be constant. 327 GV->setConstant(false); 328 329 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 330 } 331 return GV; 332 } 333 334 // The initializer may differ in type from the global. Rewrite 335 // the global to match the initializer. (We have to do this 336 // because some types, like unions, can't be completely represented 337 // in the LLVM type system.) 338 if (GV->getType()->getElementType() != Init->getType()) { 339 llvm::GlobalVariable *OldGV = GV; 340 341 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 342 OldGV->isConstant(), 343 OldGV->getLinkage(), Init, "", 344 /*InsertBefore*/ OldGV, 345 OldGV->getThreadLocalMode(), 346 CGM.getContext().getTargetAddressSpace(D.getType())); 347 GV->setVisibility(OldGV->getVisibility()); 348 GV->setDSOLocal(OldGV->isDSOLocal()); 349 GV->setComdat(OldGV->getComdat()); 350 351 // Steal the name of the old global 352 GV->takeName(OldGV); 353 354 // Replace all uses of the old global with the new global 355 llvm::Constant *NewPtrForOldDecl = 356 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 357 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 358 359 // Erase the old global, since it is no longer used. 360 OldGV->eraseFromParent(); 361 } 362 363 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 364 GV->setInitializer(Init); 365 366 emitter.finalize(GV); 367 368 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 369 // We have a constant initializer, but a nontrivial destructor. We still 370 // need to perform a guarded "initialization" in order to register the 371 // destructor. 372 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 373 } 374 375 return GV; 376 } 377 378 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 379 llvm::GlobalValue::LinkageTypes Linkage) { 380 // Check to see if we already have a global variable for this 381 // declaration. This can happen when double-emitting function 382 // bodies, e.g. with complete and base constructors. 383 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 384 CharUnits alignment = getContext().getDeclAlign(&D); 385 386 // Store into LocalDeclMap before generating initializer to handle 387 // circular references. 388 setAddrOfLocalVar(&D, Address(addr, alignment)); 389 390 // We can't have a VLA here, but we can have a pointer to a VLA, 391 // even though that doesn't really make any sense. 392 // Make sure to evaluate VLA bounds now so that we have them for later. 393 if (D.getType()->isVariablyModifiedType()) 394 EmitVariablyModifiedType(D.getType()); 395 396 // Save the type in case adding the initializer forces a type change. 397 llvm::Type *expectedType = addr->getType(); 398 399 llvm::GlobalVariable *var = 400 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 401 402 // CUDA's local and local static __shared__ variables should not 403 // have any non-empty initializers. This is ensured by Sema. 404 // Whatever initializer such variable may have when it gets here is 405 // a no-op and should not be emitted. 406 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 407 D.hasAttr<CUDASharedAttr>(); 408 // If this value has an initializer, emit it. 409 if (D.getInit() && !isCudaSharedVar) 410 var = AddInitializerToStaticVarDecl(D, var); 411 412 var->setAlignment(alignment.getQuantity()); 413 414 if (D.hasAttr<AnnotateAttr>()) 415 CGM.AddGlobalAnnotations(&D, var); 416 417 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 418 var->addAttribute("bss-section", SA->getName()); 419 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 420 var->addAttribute("data-section", SA->getName()); 421 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 422 var->addAttribute("rodata-section", SA->getName()); 423 424 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 425 var->setSection(SA->getName()); 426 427 if (D.hasAttr<UsedAttr>()) 428 CGM.addUsedGlobal(var); 429 430 // We may have to cast the constant because of the initializer 431 // mismatch above. 432 // 433 // FIXME: It is really dangerous to store this in the map; if anyone 434 // RAUW's the GV uses of this constant will be invalid. 435 llvm::Constant *castedAddr = 436 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 437 if (var != castedAddr) 438 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 439 CGM.setStaticLocalDeclAddress(&D, castedAddr); 440 441 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 442 443 // Emit global variable debug descriptor for static vars. 444 CGDebugInfo *DI = getDebugInfo(); 445 if (DI && 446 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 447 DI->setLocation(D.getLocation()); 448 DI->EmitGlobalVariable(var, &D); 449 } 450 } 451 452 namespace { 453 struct DestroyObject final : EHScopeStack::Cleanup { 454 DestroyObject(Address addr, QualType type, 455 CodeGenFunction::Destroyer *destroyer, 456 bool useEHCleanupForArray) 457 : addr(addr), type(type), destroyer(destroyer), 458 useEHCleanupForArray(useEHCleanupForArray) {} 459 460 Address addr; 461 QualType type; 462 CodeGenFunction::Destroyer *destroyer; 463 bool useEHCleanupForArray; 464 465 void Emit(CodeGenFunction &CGF, Flags flags) override { 466 // Don't use an EH cleanup recursively from an EH cleanup. 467 bool useEHCleanupForArray = 468 flags.isForNormalCleanup() && this->useEHCleanupForArray; 469 470 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 471 } 472 }; 473 474 template <class Derived> 475 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 476 DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) 477 : NRVOFlag(NRVOFlag), Loc(addr) {} 478 479 llvm::Value *NRVOFlag; 480 Address Loc; 481 482 void Emit(CodeGenFunction &CGF, Flags flags) override { 483 // Along the exceptions path we always execute the dtor. 484 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 485 486 llvm::BasicBlock *SkipDtorBB = nullptr; 487 if (NRVO) { 488 // If we exited via NRVO, we skip the destructor call. 489 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 490 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 491 llvm::Value *DidNRVO = 492 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 493 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 494 CGF.EmitBlock(RunDtorBB); 495 } 496 497 static_cast<Derived *>(this)->emitDestructorCall(CGF); 498 499 if (NRVO) CGF.EmitBlock(SkipDtorBB); 500 } 501 502 virtual ~DestroyNRVOVariable() = default; 503 }; 504 505 struct DestroyNRVOVariableCXX final 506 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 507 DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, 508 llvm::Value *NRVOFlag) 509 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), 510 Dtor(Dtor) {} 511 512 const CXXDestructorDecl *Dtor; 513 514 void emitDestructorCall(CodeGenFunction &CGF) { 515 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 516 /*ForVirtualBase=*/false, 517 /*Delegating=*/false, Loc); 518 } 519 }; 520 521 struct DestroyNRVOVariableC final 522 : DestroyNRVOVariable<DestroyNRVOVariableC> { 523 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 524 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} 525 526 QualType Ty; 527 528 void emitDestructorCall(CodeGenFunction &CGF) { 529 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 530 } 531 }; 532 533 struct CallStackRestore final : EHScopeStack::Cleanup { 534 Address Stack; 535 CallStackRestore(Address Stack) : Stack(Stack) {} 536 void Emit(CodeGenFunction &CGF, Flags flags) override { 537 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 538 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 539 CGF.Builder.CreateCall(F, V); 540 } 541 }; 542 543 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 544 const VarDecl &Var; 545 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 546 547 void Emit(CodeGenFunction &CGF, Flags flags) override { 548 // Compute the address of the local variable, in case it's a 549 // byref or something. 550 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 551 Var.getType(), VK_LValue, SourceLocation()); 552 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 553 SourceLocation()); 554 CGF.EmitExtendGCLifetime(value); 555 } 556 }; 557 558 struct CallCleanupFunction final : EHScopeStack::Cleanup { 559 llvm::Constant *CleanupFn; 560 const CGFunctionInfo &FnInfo; 561 const VarDecl &Var; 562 563 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 564 const VarDecl *Var) 565 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 566 567 void Emit(CodeGenFunction &CGF, Flags flags) override { 568 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 569 Var.getType(), VK_LValue, SourceLocation()); 570 // Compute the address of the local variable, in case it's a byref 571 // or something. 572 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 573 574 // In some cases, the type of the function argument will be different from 575 // the type of the pointer. An example of this is 576 // void f(void* arg); 577 // __attribute__((cleanup(f))) void *g; 578 // 579 // To fix this we insert a bitcast here. 580 QualType ArgTy = FnInfo.arg_begin()->type; 581 llvm::Value *Arg = 582 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 583 584 CallArgList Args; 585 Args.add(RValue::get(Arg), 586 CGF.getContext().getPointerType(Var.getType())); 587 auto Callee = CGCallee::forDirect(CleanupFn); 588 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 589 } 590 }; 591 } // end anonymous namespace 592 593 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 594 /// variable with lifetime. 595 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 596 Address addr, 597 Qualifiers::ObjCLifetime lifetime) { 598 switch (lifetime) { 599 case Qualifiers::OCL_None: 600 llvm_unreachable("present but none"); 601 602 case Qualifiers::OCL_ExplicitNone: 603 // nothing to do 604 break; 605 606 case Qualifiers::OCL_Strong: { 607 CodeGenFunction::Destroyer *destroyer = 608 (var.hasAttr<ObjCPreciseLifetimeAttr>() 609 ? CodeGenFunction::destroyARCStrongPrecise 610 : CodeGenFunction::destroyARCStrongImprecise); 611 612 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 613 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 614 cleanupKind & EHCleanup); 615 break; 616 } 617 case Qualifiers::OCL_Autoreleasing: 618 // nothing to do 619 break; 620 621 case Qualifiers::OCL_Weak: 622 // __weak objects always get EH cleanups; otherwise, exceptions 623 // could cause really nasty crashes instead of mere leaks. 624 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 625 CodeGenFunction::destroyARCWeak, 626 /*useEHCleanup*/ true); 627 break; 628 } 629 } 630 631 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 632 if (const Expr *e = dyn_cast<Expr>(s)) { 633 // Skip the most common kinds of expressions that make 634 // hierarchy-walking expensive. 635 s = e = e->IgnoreParenCasts(); 636 637 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 638 return (ref->getDecl() == &var); 639 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 640 const BlockDecl *block = be->getBlockDecl(); 641 for (const auto &I : block->captures()) { 642 if (I.getVariable() == &var) 643 return true; 644 } 645 } 646 } 647 648 for (const Stmt *SubStmt : s->children()) 649 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 650 if (SubStmt && isAccessedBy(var, SubStmt)) 651 return true; 652 653 return false; 654 } 655 656 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 657 if (!decl) return false; 658 if (!isa<VarDecl>(decl)) return false; 659 const VarDecl *var = cast<VarDecl>(decl); 660 return isAccessedBy(*var, e); 661 } 662 663 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 664 const LValue &destLV, const Expr *init) { 665 bool needsCast = false; 666 667 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 668 switch (castExpr->getCastKind()) { 669 // Look through casts that don't require representation changes. 670 case CK_NoOp: 671 case CK_BitCast: 672 case CK_BlockPointerToObjCPointerCast: 673 needsCast = true; 674 break; 675 676 // If we find an l-value to r-value cast from a __weak variable, 677 // emit this operation as a copy or move. 678 case CK_LValueToRValue: { 679 const Expr *srcExpr = castExpr->getSubExpr(); 680 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 681 return false; 682 683 // Emit the source l-value. 684 LValue srcLV = CGF.EmitLValue(srcExpr); 685 686 // Handle a formal type change to avoid asserting. 687 auto srcAddr = srcLV.getAddress(); 688 if (needsCast) { 689 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 690 destLV.getAddress().getElementType()); 691 } 692 693 // If it was an l-value, use objc_copyWeak. 694 if (srcExpr->getValueKind() == VK_LValue) { 695 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 696 } else { 697 assert(srcExpr->getValueKind() == VK_XValue); 698 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 699 } 700 return true; 701 } 702 703 // Stop at anything else. 704 default: 705 return false; 706 } 707 708 init = castExpr->getSubExpr(); 709 } 710 return false; 711 } 712 713 static void drillIntoBlockVariable(CodeGenFunction &CGF, 714 LValue &lvalue, 715 const VarDecl *var) { 716 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 717 } 718 719 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 720 SourceLocation Loc) { 721 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 722 return; 723 724 auto Nullability = LHS.getType()->getNullability(getContext()); 725 if (!Nullability || *Nullability != NullabilityKind::NonNull) 726 return; 727 728 // Check if the right hand side of the assignment is nonnull, if the left 729 // hand side must be nonnull. 730 SanitizerScope SanScope(this); 731 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 732 llvm::Constant *StaticData[] = { 733 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 734 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 735 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 736 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 737 SanitizerHandler::TypeMismatch, StaticData, RHS); 738 } 739 740 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 741 LValue lvalue, bool capturedByInit) { 742 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 743 if (!lifetime) { 744 llvm::Value *value = EmitScalarExpr(init); 745 if (capturedByInit) 746 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 747 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 748 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 749 return; 750 } 751 752 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 753 init = DIE->getExpr(); 754 755 // If we're emitting a value with lifetime, we have to do the 756 // initialization *before* we leave the cleanup scopes. 757 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 758 enterFullExpression(fe); 759 init = fe->getSubExpr(); 760 } 761 CodeGenFunction::RunCleanupsScope Scope(*this); 762 763 // We have to maintain the illusion that the variable is 764 // zero-initialized. If the variable might be accessed in its 765 // initializer, zero-initialize before running the initializer, then 766 // actually perform the initialization with an assign. 767 bool accessedByInit = false; 768 if (lifetime != Qualifiers::OCL_ExplicitNone) 769 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 770 if (accessedByInit) { 771 LValue tempLV = lvalue; 772 // Drill down to the __block object if necessary. 773 if (capturedByInit) { 774 // We can use a simple GEP for this because it can't have been 775 // moved yet. 776 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 777 cast<VarDecl>(D), 778 /*follow*/ false)); 779 } 780 781 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 782 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 783 784 // If __weak, we want to use a barrier under certain conditions. 785 if (lifetime == Qualifiers::OCL_Weak) 786 EmitARCInitWeak(tempLV.getAddress(), zero); 787 788 // Otherwise just do a simple store. 789 else 790 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 791 } 792 793 // Emit the initializer. 794 llvm::Value *value = nullptr; 795 796 switch (lifetime) { 797 case Qualifiers::OCL_None: 798 llvm_unreachable("present but none"); 799 800 case Qualifiers::OCL_ExplicitNone: 801 value = EmitARCUnsafeUnretainedScalarExpr(init); 802 break; 803 804 case Qualifiers::OCL_Strong: { 805 value = EmitARCRetainScalarExpr(init); 806 break; 807 } 808 809 case Qualifiers::OCL_Weak: { 810 // If it's not accessed by the initializer, try to emit the 811 // initialization with a copy or move. 812 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 813 return; 814 } 815 816 // No way to optimize a producing initializer into this. It's not 817 // worth optimizing for, because the value will immediately 818 // disappear in the common case. 819 value = EmitScalarExpr(init); 820 821 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 822 if (accessedByInit) 823 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 824 else 825 EmitARCInitWeak(lvalue.getAddress(), value); 826 return; 827 } 828 829 case Qualifiers::OCL_Autoreleasing: 830 value = EmitARCRetainAutoreleaseScalarExpr(init); 831 break; 832 } 833 834 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 835 836 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 837 838 // If the variable might have been accessed by its initializer, we 839 // might have to initialize with a barrier. We have to do this for 840 // both __weak and __strong, but __weak got filtered out above. 841 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 842 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 843 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 844 EmitARCRelease(oldValue, ARCImpreciseLifetime); 845 return; 846 } 847 848 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 849 } 850 851 /// Decide whether we can emit the non-zero parts of the specified initializer 852 /// with equal or fewer than NumStores scalar stores. 853 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 854 unsigned &NumStores) { 855 // Zero and Undef never requires any extra stores. 856 if (isa<llvm::ConstantAggregateZero>(Init) || 857 isa<llvm::ConstantPointerNull>(Init) || 858 isa<llvm::UndefValue>(Init)) 859 return true; 860 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 861 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 862 isa<llvm::ConstantExpr>(Init)) 863 return Init->isNullValue() || NumStores--; 864 865 // See if we can emit each element. 866 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 867 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 868 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 869 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 870 return false; 871 } 872 return true; 873 } 874 875 if (llvm::ConstantDataSequential *CDS = 876 dyn_cast<llvm::ConstantDataSequential>(Init)) { 877 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 878 llvm::Constant *Elt = CDS->getElementAsConstant(i); 879 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 880 return false; 881 } 882 return true; 883 } 884 885 // Anything else is hard and scary. 886 return false; 887 } 888 889 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 890 /// the scalar stores that would be required. 891 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 892 llvm::Constant *Init, Address Loc, 893 bool isVolatile, CGBuilderTy &Builder) { 894 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 895 "called emitStoresForInitAfterBZero for zero or undef value."); 896 897 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 898 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 899 isa<llvm::ConstantExpr>(Init)) { 900 Builder.CreateStore(Init, Loc, isVolatile); 901 return; 902 } 903 904 if (llvm::ConstantDataSequential *CDS = 905 dyn_cast<llvm::ConstantDataSequential>(Init)) { 906 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 907 llvm::Constant *Elt = CDS->getElementAsConstant(i); 908 909 // If necessary, get a pointer to the element and emit it. 910 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 911 emitStoresForInitAfterBZero( 912 CGM, Elt, 913 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 914 isVolatile, Builder); 915 } 916 return; 917 } 918 919 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 920 "Unknown value type!"); 921 922 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 923 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 924 925 // If necessary, get a pointer to the element and emit it. 926 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 927 emitStoresForInitAfterBZero( 928 CGM, Elt, 929 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 930 isVolatile, Builder); 931 } 932 } 933 934 /// Decide whether we should use bzero plus some stores to initialize a local 935 /// variable instead of using a memcpy from a constant global. It is beneficial 936 /// to use bzero if the global is all zeros, or mostly zeros and large. 937 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 938 uint64_t GlobalSize) { 939 // If a global is all zeros, always use a bzero. 940 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 941 942 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 943 // do it if it will require 6 or fewer scalar stores. 944 // TODO: Should budget depends on the size? Avoiding a large global warrants 945 // plopping in more stores. 946 unsigned StoreBudget = 6; 947 uint64_t SizeLimit = 32; 948 949 return GlobalSize > SizeLimit && 950 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 951 } 952 953 /// Decide whether we should use memset to initialize a local variable instead 954 /// of using a memcpy from a constant global. Assumes we've already decided to 955 /// not user bzero. 956 /// FIXME We could be more clever, as we are for bzero above, and generate 957 /// memset followed by stores. It's unclear that's worth the effort. 958 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 959 uint64_t GlobalSize) { 960 uint64_t SizeLimit = 32; 961 if (GlobalSize <= SizeLimit) 962 return nullptr; 963 return llvm::isBytewiseValue(Init); 964 } 965 966 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 967 Address Loc, bool isVolatile, 968 CGBuilderTy &Builder, 969 llvm::Constant *constant) { 970 auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 971 auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext()); 972 973 // If the initializer is all or mostly the same, codegen with bzero / memset 974 // then do a few stores afterward. 975 uint64_t ConstantSize = 976 CGM.getDataLayout().getTypeAllocSize(constant->getType()); 977 auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize); 978 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 979 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 980 isVolatile); 981 982 bool valueAlreadyCorrect = 983 constant->isNullValue() || isa<llvm::UndefValue>(constant); 984 if (!valueAlreadyCorrect) { 985 Loc = Builder.CreateBitCast( 986 Loc, constant->getType()->getPointerTo(Loc.getAddressSpace())); 987 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 988 } 989 return; 990 } 991 992 llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize); 993 if (Pattern) { 994 uint64_t Value = 0x00; 995 if (!isa<llvm::UndefValue>(Pattern)) { 996 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 997 assert(AP.getBitWidth() <= 8); 998 Value = AP.getLimitedValue(); 999 } 1000 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal, 1001 isVolatile); 1002 return; 1003 } 1004 1005 // Otherwise, create a temporary global with the initializer then memcpy from 1006 // the global to the alloca. 1007 std::string Name = getStaticDeclName(CGM, D); 1008 unsigned AS = CGM.getContext().getTargetAddressSpace( 1009 CGM.getStringLiteralAddressSpace()); 1010 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS); 1011 1012 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1013 CGM.getModule(), constant->getType(), true, 1014 llvm::GlobalValue::PrivateLinkage, constant, Name, nullptr, 1015 llvm::GlobalValue::NotThreadLocal, AS); 1016 GV->setAlignment(Loc.getAlignment().getQuantity()); 1017 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1018 1019 Address SrcPtr = Address(GV, Loc.getAlignment()); 1020 if (SrcPtr.getType() != BP) 1021 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1022 1023 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1024 } 1025 1026 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1027 /// variable declaration with auto, register, or no storage class specifier. 1028 /// These turn into simple stack objects, or GlobalValues depending on target. 1029 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1030 AutoVarEmission emission = EmitAutoVarAlloca(D); 1031 EmitAutoVarInit(emission); 1032 EmitAutoVarCleanups(emission); 1033 } 1034 1035 /// Emit a lifetime.begin marker if some criteria are satisfied. 1036 /// \return a pointer to the temporary size Value if a marker was emitted, null 1037 /// otherwise 1038 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1039 llvm::Value *Addr) { 1040 if (!ShouldEmitLifetimeMarkers) 1041 return nullptr; 1042 1043 assert(Addr->getType()->getPointerAddressSpace() == 1044 CGM.getDataLayout().getAllocaAddrSpace() && 1045 "Pointer should be in alloca address space"); 1046 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1047 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1048 llvm::CallInst *C = 1049 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1050 C->setDoesNotThrow(); 1051 return SizeV; 1052 } 1053 1054 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1055 assert(Addr->getType()->getPointerAddressSpace() == 1056 CGM.getDataLayout().getAllocaAddrSpace() && 1057 "Pointer should be in alloca address space"); 1058 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1059 llvm::CallInst *C = 1060 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1061 C->setDoesNotThrow(); 1062 } 1063 1064 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1065 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1066 // For each dimension stores its QualType and corresponding 1067 // size-expression Value. 1068 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1069 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1070 1071 // Break down the array into individual dimensions. 1072 QualType Type1D = D.getType(); 1073 while (getContext().getAsVariableArrayType(Type1D)) { 1074 auto VlaSize = getVLAElements1D(Type1D); 1075 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1076 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1077 else { 1078 // Generate a locally unique name for the size expression. 1079 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1080 SmallString<12> Buffer; 1081 StringRef NameRef = Name.toStringRef(Buffer); 1082 auto &Ident = getContext().Idents.getOwn(NameRef); 1083 VLAExprNames.push_back(&Ident); 1084 auto SizeExprAddr = 1085 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1086 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1087 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1088 Type1D.getUnqualifiedType()); 1089 } 1090 Type1D = VlaSize.Type; 1091 } 1092 1093 if (!EmitDebugInfo) 1094 return; 1095 1096 // Register each dimension's size-expression with a DILocalVariable, 1097 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1098 // to describe this array. 1099 unsigned NameIdx = 0; 1100 for (auto &VlaSize : Dimensions) { 1101 llvm::Metadata *MD; 1102 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1103 MD = llvm::ConstantAsMetadata::get(C); 1104 else { 1105 // Create an artificial VarDecl to generate debug info for. 1106 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1107 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1108 auto QT = getContext().getIntTypeForBitwidth( 1109 VlaExprTy->getScalarSizeInBits(), false); 1110 auto *ArtificialDecl = VarDecl::Create( 1111 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1112 D.getLocation(), D.getLocation(), NameIdent, QT, 1113 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1114 ArtificialDecl->setImplicit(); 1115 1116 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1117 Builder); 1118 } 1119 assert(MD && "No Size expression debug node created"); 1120 DI->registerVLASizeExpression(VlaSize.Type, MD); 1121 } 1122 } 1123 1124 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1125 /// local variable. Does not emit initialization or destruction. 1126 CodeGenFunction::AutoVarEmission 1127 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1128 QualType Ty = D.getType(); 1129 assert( 1130 Ty.getAddressSpace() == LangAS::Default || 1131 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1132 1133 AutoVarEmission emission(D); 1134 1135 bool isEscapingByRef = D.isEscapingByref(); 1136 emission.IsEscapingByRef = isEscapingByRef; 1137 1138 CharUnits alignment = getContext().getDeclAlign(&D); 1139 1140 // If the type is variably-modified, emit all the VLA sizes for it. 1141 if (Ty->isVariablyModifiedType()) 1142 EmitVariablyModifiedType(Ty); 1143 1144 auto *DI = getDebugInfo(); 1145 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1146 codegenoptions::LimitedDebugInfo; 1147 1148 Address address = Address::invalid(); 1149 Address AllocaAddr = Address::invalid(); 1150 if (Ty->isConstantSizeType()) { 1151 bool NRVO = getLangOpts().ElideConstructors && 1152 D.isNRVOVariable(); 1153 1154 // If this value is an array or struct with a statically determinable 1155 // constant initializer, there are optimizations we can do. 1156 // 1157 // TODO: We should constant-evaluate the initializer of any variable, 1158 // as long as it is initialized by a constant expression. Currently, 1159 // isConstantInitializer produces wrong answers for structs with 1160 // reference or bitfield members, and a few other cases, and checking 1161 // for POD-ness protects us from some of these. 1162 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1163 (D.isConstexpr() || 1164 ((Ty.isPODType(getContext()) || 1165 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1166 D.getInit()->isConstantInitializer(getContext(), false)))) { 1167 1168 // If the variable's a const type, and it's neither an NRVO 1169 // candidate nor a __block variable and has no mutable members, 1170 // emit it as a global instead. 1171 // Exception is if a variable is located in non-constant address space 1172 // in OpenCL. 1173 if ((!getLangOpts().OpenCL || 1174 Ty.getAddressSpace() == LangAS::opencl_constant) && 1175 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1176 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1177 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1178 1179 // Signal this condition to later callbacks. 1180 emission.Addr = Address::invalid(); 1181 assert(emission.wasEmittedAsGlobal()); 1182 return emission; 1183 } 1184 1185 // Otherwise, tell the initialization code that we're in this case. 1186 emission.IsConstantAggregate = true; 1187 } 1188 1189 // A normal fixed sized variable becomes an alloca in the entry block, 1190 // unless: 1191 // - it's an NRVO variable. 1192 // - we are compiling OpenMP and it's an OpenMP local variable. 1193 1194 Address OpenMPLocalAddr = 1195 getLangOpts().OpenMP 1196 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1197 : Address::invalid(); 1198 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1199 address = OpenMPLocalAddr; 1200 } else if (NRVO) { 1201 // The named return value optimization: allocate this variable in the 1202 // return slot, so that we can elide the copy when returning this 1203 // variable (C++0x [class.copy]p34). 1204 address = ReturnValue; 1205 1206 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1207 const auto *RD = RecordTy->getDecl(); 1208 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1209 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1210 RD->isNonTrivialToPrimitiveDestroy()) { 1211 // Create a flag that is used to indicate when the NRVO was applied 1212 // to this variable. Set it to zero to indicate that NRVO was not 1213 // applied. 1214 llvm::Value *Zero = Builder.getFalse(); 1215 Address NRVOFlag = 1216 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1217 EnsureInsertPoint(); 1218 Builder.CreateStore(Zero, NRVOFlag); 1219 1220 // Record the NRVO flag for this variable. 1221 NRVOFlags[&D] = NRVOFlag.getPointer(); 1222 emission.NRVOFlag = NRVOFlag.getPointer(); 1223 } 1224 } 1225 } else { 1226 CharUnits allocaAlignment; 1227 llvm::Type *allocaTy; 1228 if (isEscapingByRef) { 1229 auto &byrefInfo = getBlockByrefInfo(&D); 1230 allocaTy = byrefInfo.Type; 1231 allocaAlignment = byrefInfo.ByrefAlignment; 1232 } else { 1233 allocaTy = ConvertTypeForMem(Ty); 1234 allocaAlignment = alignment; 1235 } 1236 1237 // Create the alloca. Note that we set the name separately from 1238 // building the instruction so that it's there even in no-asserts 1239 // builds. 1240 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1241 /*ArraySize=*/nullptr, &AllocaAddr); 1242 1243 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1244 // the catch parameter starts in the catchpad instruction, and we can't 1245 // insert code in those basic blocks. 1246 bool IsMSCatchParam = 1247 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1248 1249 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1250 // if we don't have a valid insertion point (?). 1251 if (HaveInsertPoint() && !IsMSCatchParam) { 1252 // If there's a jump into the lifetime of this variable, its lifetime 1253 // gets broken up into several regions in IR, which requires more work 1254 // to handle correctly. For now, just omit the intrinsics; this is a 1255 // rare case, and it's better to just be conservatively correct. 1256 // PR28267. 1257 // 1258 // We have to do this in all language modes if there's a jump past the 1259 // declaration. We also have to do it in C if there's a jump to an 1260 // earlier point in the current block because non-VLA lifetimes begin as 1261 // soon as the containing block is entered, not when its variables 1262 // actually come into scope; suppressing the lifetime annotations 1263 // completely in this case is unnecessarily pessimistic, but again, this 1264 // is rare. 1265 if (!Bypasses.IsBypassed(&D) && 1266 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1267 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1268 emission.SizeForLifetimeMarkers = 1269 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1270 } 1271 } else { 1272 assert(!emission.useLifetimeMarkers()); 1273 } 1274 } 1275 } else { 1276 EnsureInsertPoint(); 1277 1278 if (!DidCallStackSave) { 1279 // Save the stack. 1280 Address Stack = 1281 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1282 1283 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1284 llvm::Value *V = Builder.CreateCall(F); 1285 Builder.CreateStore(V, Stack); 1286 1287 DidCallStackSave = true; 1288 1289 // Push a cleanup block and restore the stack there. 1290 // FIXME: in general circumstances, this should be an EH cleanup. 1291 pushStackRestore(NormalCleanup, Stack); 1292 } 1293 1294 auto VlaSize = getVLASize(Ty); 1295 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1296 1297 // Allocate memory for the array. 1298 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1299 &AllocaAddr); 1300 1301 // If we have debug info enabled, properly describe the VLA dimensions for 1302 // this type by registering the vla size expression for each of the 1303 // dimensions. 1304 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1305 } 1306 1307 setAddrOfLocalVar(&D, address); 1308 emission.Addr = address; 1309 emission.AllocaAddr = AllocaAddr; 1310 1311 // Emit debug info for local var declaration. 1312 if (EmitDebugInfo && HaveInsertPoint()) { 1313 DI->setLocation(D.getLocation()); 1314 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1315 } 1316 1317 if (D.hasAttr<AnnotateAttr>()) 1318 EmitVarAnnotations(&D, address.getPointer()); 1319 1320 // Make sure we call @llvm.lifetime.end. 1321 if (emission.useLifetimeMarkers()) 1322 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1323 emission.getOriginalAllocatedAddress(), 1324 emission.getSizeForLifetimeMarkers()); 1325 1326 return emission; 1327 } 1328 1329 static bool isCapturedBy(const VarDecl &, const Expr *); 1330 1331 /// Determines whether the given __block variable is potentially 1332 /// captured by the given statement. 1333 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1334 if (const Expr *E = dyn_cast<Expr>(S)) 1335 return isCapturedBy(Var, E); 1336 for (const Stmt *SubStmt : S->children()) 1337 if (isCapturedBy(Var, SubStmt)) 1338 return true; 1339 return false; 1340 } 1341 1342 /// Determines whether the given __block variable is potentially 1343 /// captured by the given expression. 1344 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1345 // Skip the most common kinds of expressions that make 1346 // hierarchy-walking expensive. 1347 E = E->IgnoreParenCasts(); 1348 1349 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1350 const BlockDecl *Block = BE->getBlockDecl(); 1351 for (const auto &I : Block->captures()) { 1352 if (I.getVariable() == &Var) 1353 return true; 1354 } 1355 1356 // No need to walk into the subexpressions. 1357 return false; 1358 } 1359 1360 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1361 const CompoundStmt *CS = SE->getSubStmt(); 1362 for (const auto *BI : CS->body()) 1363 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1364 if (isCapturedBy(Var, BIE)) 1365 return true; 1366 } 1367 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1368 // special case declarations 1369 for (const auto *I : DS->decls()) { 1370 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1371 const Expr *Init = VD->getInit(); 1372 if (Init && isCapturedBy(Var, Init)) 1373 return true; 1374 } 1375 } 1376 } 1377 else 1378 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1379 // Later, provide code to poke into statements for capture analysis. 1380 return true; 1381 return false; 1382 } 1383 1384 for (const Stmt *SubStmt : E->children()) 1385 if (isCapturedBy(Var, SubStmt)) 1386 return true; 1387 1388 return false; 1389 } 1390 1391 /// Determine whether the given initializer is trivial in the sense 1392 /// that it requires no code to be generated. 1393 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1394 if (!Init) 1395 return true; 1396 1397 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1398 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1399 if (Constructor->isTrivial() && 1400 Constructor->isDefaultConstructor() && 1401 !Construct->requiresZeroInitialization()) 1402 return true; 1403 1404 return false; 1405 } 1406 1407 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1408 assert(emission.Variable && "emission was not valid!"); 1409 1410 // If this was emitted as a global constant, we're done. 1411 if (emission.wasEmittedAsGlobal()) return; 1412 1413 const VarDecl &D = *emission.Variable; 1414 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1415 QualType type = D.getType(); 1416 1417 // If this local has an initializer, emit it now. 1418 const Expr *Init = D.getInit(); 1419 1420 // If we are at an unreachable point, we don't need to emit the initializer 1421 // unless it contains a label. 1422 if (!HaveInsertPoint()) { 1423 if (!Init || !ContainsLabel(Init)) return; 1424 EnsureInsertPoint(); 1425 } 1426 1427 // Initialize the structure of a __block variable. 1428 if (emission.IsEscapingByRef) 1429 emitByrefStructureInit(emission); 1430 1431 // Initialize the variable here if it doesn't have a initializer and it is a 1432 // C struct that is non-trivial to initialize or an array containing such a 1433 // struct. 1434 if (!Init && 1435 type.isNonTrivialToPrimitiveDefaultInitialize() == 1436 QualType::PDIK_Struct) { 1437 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1438 if (emission.IsEscapingByRef) 1439 drillIntoBlockVariable(*this, Dst, &D); 1440 defaultInitNonTrivialCStructVar(Dst); 1441 return; 1442 } 1443 1444 if (isTrivialInitializer(Init)) 1445 return; 1446 1447 // Check whether this is a byref variable that's potentially 1448 // captured and moved by its own initializer. If so, we'll need to 1449 // emit the initializer first, then copy into the variable. 1450 bool capturedByInit = emission.IsEscapingByRef && isCapturedBy(D, Init); 1451 1452 Address Loc = 1453 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1454 1455 llvm::Constant *constant = nullptr; 1456 if (emission.IsConstantAggregate || D.isConstexpr()) { 1457 assert(!capturedByInit && "constant init contains a capturing block?"); 1458 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1459 } 1460 1461 if (!constant) { 1462 LValue lv = MakeAddrLValue(Loc, type); 1463 lv.setNonGC(true); 1464 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1465 } 1466 1467 if (!emission.IsConstantAggregate) { 1468 // For simple scalar/complex initialization, store the value directly. 1469 LValue lv = MakeAddrLValue(Loc, type); 1470 lv.setNonGC(true); 1471 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1472 } 1473 1474 // If this is a simple aggregate initialization, we can optimize it 1475 // in various ways. 1476 bool isVolatile = type.isVolatileQualified(); 1477 1478 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1479 if (Loc.getType() != BP) 1480 Loc = Builder.CreateBitCast(Loc, BP); 1481 1482 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1483 } 1484 1485 /// Emit an expression as an initializer for an object (variable, field, etc.) 1486 /// at the given location. The expression is not necessarily the normal 1487 /// initializer for the object, and the address is not necessarily 1488 /// its normal location. 1489 /// 1490 /// \param init the initializing expression 1491 /// \param D the object to act as if we're initializing 1492 /// \param loc the address to initialize; its type is a pointer 1493 /// to the LLVM mapping of the object's type 1494 /// \param alignment the alignment of the address 1495 /// \param capturedByInit true if \p D is a __block variable 1496 /// whose address is potentially changed by the initializer 1497 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1498 LValue lvalue, bool capturedByInit) { 1499 QualType type = D->getType(); 1500 1501 if (type->isReferenceType()) { 1502 RValue rvalue = EmitReferenceBindingToExpr(init); 1503 if (capturedByInit) 1504 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1505 EmitStoreThroughLValue(rvalue, lvalue, true); 1506 return; 1507 } 1508 switch (getEvaluationKind(type)) { 1509 case TEK_Scalar: 1510 EmitScalarInit(init, D, lvalue, capturedByInit); 1511 return; 1512 case TEK_Complex: { 1513 ComplexPairTy complex = EmitComplexExpr(init); 1514 if (capturedByInit) 1515 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1516 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1517 return; 1518 } 1519 case TEK_Aggregate: 1520 if (type->isAtomicType()) { 1521 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1522 } else { 1523 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1524 if (isa<VarDecl>(D)) 1525 Overlap = AggValueSlot::DoesNotOverlap; 1526 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1527 Overlap = overlapForFieldInit(FD); 1528 // TODO: how can we delay here if D is captured by its initializer? 1529 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1530 AggValueSlot::IsDestructed, 1531 AggValueSlot::DoesNotNeedGCBarriers, 1532 AggValueSlot::IsNotAliased, 1533 Overlap)); 1534 } 1535 return; 1536 } 1537 llvm_unreachable("bad evaluation kind"); 1538 } 1539 1540 /// Enter a destroy cleanup for the given local variable. 1541 void CodeGenFunction::emitAutoVarTypeCleanup( 1542 const CodeGenFunction::AutoVarEmission &emission, 1543 QualType::DestructionKind dtorKind) { 1544 assert(dtorKind != QualType::DK_none); 1545 1546 // Note that for __block variables, we want to destroy the 1547 // original stack object, not the possibly forwarded object. 1548 Address addr = emission.getObjectAddress(*this); 1549 1550 const VarDecl *var = emission.Variable; 1551 QualType type = var->getType(); 1552 1553 CleanupKind cleanupKind = NormalAndEHCleanup; 1554 CodeGenFunction::Destroyer *destroyer = nullptr; 1555 1556 switch (dtorKind) { 1557 case QualType::DK_none: 1558 llvm_unreachable("no cleanup for trivially-destructible variable"); 1559 1560 case QualType::DK_cxx_destructor: 1561 // If there's an NRVO flag on the emission, we need a different 1562 // cleanup. 1563 if (emission.NRVOFlag) { 1564 assert(!type->isArrayType()); 1565 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1566 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, 1567 emission.NRVOFlag); 1568 return; 1569 } 1570 break; 1571 1572 case QualType::DK_objc_strong_lifetime: 1573 // Suppress cleanups for pseudo-strong variables. 1574 if (var->isARCPseudoStrong()) return; 1575 1576 // Otherwise, consider whether to use an EH cleanup or not. 1577 cleanupKind = getARCCleanupKind(); 1578 1579 // Use the imprecise destroyer by default. 1580 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1581 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1582 break; 1583 1584 case QualType::DK_objc_weak_lifetime: 1585 break; 1586 1587 case QualType::DK_nontrivial_c_struct: 1588 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1589 if (emission.NRVOFlag) { 1590 assert(!type->isArrayType()); 1591 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1592 emission.NRVOFlag, type); 1593 return; 1594 } 1595 break; 1596 } 1597 1598 // If we haven't chosen a more specific destroyer, use the default. 1599 if (!destroyer) destroyer = getDestroyer(dtorKind); 1600 1601 // Use an EH cleanup in array destructors iff the destructor itself 1602 // is being pushed as an EH cleanup. 1603 bool useEHCleanup = (cleanupKind & EHCleanup); 1604 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1605 useEHCleanup); 1606 } 1607 1608 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1609 assert(emission.Variable && "emission was not valid!"); 1610 1611 // If this was emitted as a global constant, we're done. 1612 if (emission.wasEmittedAsGlobal()) return; 1613 1614 // If we don't have an insertion point, we're done. Sema prevents 1615 // us from jumping into any of these scopes anyway. 1616 if (!HaveInsertPoint()) return; 1617 1618 const VarDecl &D = *emission.Variable; 1619 1620 // Check the type for a cleanup. 1621 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1622 emitAutoVarTypeCleanup(emission, dtorKind); 1623 1624 // In GC mode, honor objc_precise_lifetime. 1625 if (getLangOpts().getGC() != LangOptions::NonGC && 1626 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1627 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1628 } 1629 1630 // Handle the cleanup attribute. 1631 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1632 const FunctionDecl *FD = CA->getFunctionDecl(); 1633 1634 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1635 assert(F && "Could not find function!"); 1636 1637 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1638 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1639 } 1640 1641 // If this is a block variable, call _Block_object_destroy 1642 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 1643 // mode. 1644 if (emission.IsEscapingByRef && 1645 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 1646 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 1647 if (emission.Variable->getType().isObjCGCWeak()) 1648 Flags |= BLOCK_FIELD_IS_WEAK; 1649 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 1650 /*LoadBlockVarAddr*/ false, 1651 cxxDestructorCanThrow(emission.Variable->getType())); 1652 } 1653 } 1654 1655 CodeGenFunction::Destroyer * 1656 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1657 switch (kind) { 1658 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1659 case QualType::DK_cxx_destructor: 1660 return destroyCXXObject; 1661 case QualType::DK_objc_strong_lifetime: 1662 return destroyARCStrongPrecise; 1663 case QualType::DK_objc_weak_lifetime: 1664 return destroyARCWeak; 1665 case QualType::DK_nontrivial_c_struct: 1666 return destroyNonTrivialCStruct; 1667 } 1668 llvm_unreachable("Unknown DestructionKind"); 1669 } 1670 1671 /// pushEHDestroy - Push the standard destructor for the given type as 1672 /// an EH-only cleanup. 1673 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1674 Address addr, QualType type) { 1675 assert(dtorKind && "cannot push destructor for trivial type"); 1676 assert(needsEHCleanup(dtorKind)); 1677 1678 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1679 } 1680 1681 /// pushDestroy - Push the standard destructor for the given type as 1682 /// at least a normal cleanup. 1683 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1684 Address addr, QualType type) { 1685 assert(dtorKind && "cannot push destructor for trivial type"); 1686 1687 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1688 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1689 cleanupKind & EHCleanup); 1690 } 1691 1692 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1693 QualType type, Destroyer *destroyer, 1694 bool useEHCleanupForArray) { 1695 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1696 destroyer, useEHCleanupForArray); 1697 } 1698 1699 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1700 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1701 } 1702 1703 void CodeGenFunction::pushLifetimeExtendedDestroy( 1704 CleanupKind cleanupKind, Address addr, QualType type, 1705 Destroyer *destroyer, bool useEHCleanupForArray) { 1706 // Push an EH-only cleanup for the object now. 1707 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1708 // around in case a temporary's destructor throws an exception. 1709 if (cleanupKind & EHCleanup) 1710 EHStack.pushCleanup<DestroyObject>( 1711 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1712 destroyer, useEHCleanupForArray); 1713 1714 // Remember that we need to push a full cleanup for the object at the 1715 // end of the full-expression. 1716 pushCleanupAfterFullExpr<DestroyObject>( 1717 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1718 } 1719 1720 /// emitDestroy - Immediately perform the destruction of the given 1721 /// object. 1722 /// 1723 /// \param addr - the address of the object; a type* 1724 /// \param type - the type of the object; if an array type, all 1725 /// objects are destroyed in reverse order 1726 /// \param destroyer - the function to call to destroy individual 1727 /// elements 1728 /// \param useEHCleanupForArray - whether an EH cleanup should be 1729 /// used when destroying array elements, in case one of the 1730 /// destructions throws an exception 1731 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1732 Destroyer *destroyer, 1733 bool useEHCleanupForArray) { 1734 const ArrayType *arrayType = getContext().getAsArrayType(type); 1735 if (!arrayType) 1736 return destroyer(*this, addr, type); 1737 1738 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1739 1740 CharUnits elementAlign = 1741 addr.getAlignment() 1742 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1743 1744 // Normally we have to check whether the array is zero-length. 1745 bool checkZeroLength = true; 1746 1747 // But if the array length is constant, we can suppress that. 1748 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1749 // ...and if it's constant zero, we can just skip the entire thing. 1750 if (constLength->isZero()) return; 1751 checkZeroLength = false; 1752 } 1753 1754 llvm::Value *begin = addr.getPointer(); 1755 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1756 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1757 checkZeroLength, useEHCleanupForArray); 1758 } 1759 1760 /// emitArrayDestroy - Destroys all the elements of the given array, 1761 /// beginning from last to first. The array cannot be zero-length. 1762 /// 1763 /// \param begin - a type* denoting the first element of the array 1764 /// \param end - a type* denoting one past the end of the array 1765 /// \param elementType - the element type of the array 1766 /// \param destroyer - the function to call to destroy elements 1767 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1768 /// the remaining elements in case the destruction of a single 1769 /// element throws 1770 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1771 llvm::Value *end, 1772 QualType elementType, 1773 CharUnits elementAlign, 1774 Destroyer *destroyer, 1775 bool checkZeroLength, 1776 bool useEHCleanup) { 1777 assert(!elementType->isArrayType()); 1778 1779 // The basic structure here is a do-while loop, because we don't 1780 // need to check for the zero-element case. 1781 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1782 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1783 1784 if (checkZeroLength) { 1785 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1786 "arraydestroy.isempty"); 1787 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1788 } 1789 1790 // Enter the loop body, making that address the current address. 1791 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1792 EmitBlock(bodyBB); 1793 llvm::PHINode *elementPast = 1794 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1795 elementPast->addIncoming(end, entryBB); 1796 1797 // Shift the address back by one element. 1798 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1799 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1800 "arraydestroy.element"); 1801 1802 if (useEHCleanup) 1803 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1804 destroyer); 1805 1806 // Perform the actual destruction there. 1807 destroyer(*this, Address(element, elementAlign), elementType); 1808 1809 if (useEHCleanup) 1810 PopCleanupBlock(); 1811 1812 // Check whether we've reached the end. 1813 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1814 Builder.CreateCondBr(done, doneBB, bodyBB); 1815 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1816 1817 // Done. 1818 EmitBlock(doneBB); 1819 } 1820 1821 /// Perform partial array destruction as if in an EH cleanup. Unlike 1822 /// emitArrayDestroy, the element type here may still be an array type. 1823 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1824 llvm::Value *begin, llvm::Value *end, 1825 QualType type, CharUnits elementAlign, 1826 CodeGenFunction::Destroyer *destroyer) { 1827 // If the element type is itself an array, drill down. 1828 unsigned arrayDepth = 0; 1829 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1830 // VLAs don't require a GEP index to walk into. 1831 if (!isa<VariableArrayType>(arrayType)) 1832 arrayDepth++; 1833 type = arrayType->getElementType(); 1834 } 1835 1836 if (arrayDepth) { 1837 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1838 1839 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1840 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1841 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1842 } 1843 1844 // Destroy the array. We don't ever need an EH cleanup because we 1845 // assume that we're in an EH cleanup ourselves, so a throwing 1846 // destructor causes an immediate terminate. 1847 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1848 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1849 } 1850 1851 namespace { 1852 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1853 /// array destroy where the end pointer is regularly determined and 1854 /// does not need to be loaded from a local. 1855 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1856 llvm::Value *ArrayBegin; 1857 llvm::Value *ArrayEnd; 1858 QualType ElementType; 1859 CodeGenFunction::Destroyer *Destroyer; 1860 CharUnits ElementAlign; 1861 public: 1862 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1863 QualType elementType, CharUnits elementAlign, 1864 CodeGenFunction::Destroyer *destroyer) 1865 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1866 ElementType(elementType), Destroyer(destroyer), 1867 ElementAlign(elementAlign) {} 1868 1869 void Emit(CodeGenFunction &CGF, Flags flags) override { 1870 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1871 ElementType, ElementAlign, Destroyer); 1872 } 1873 }; 1874 1875 /// IrregularPartialArrayDestroy - a cleanup which performs a 1876 /// partial array destroy where the end pointer is irregularly 1877 /// determined and must be loaded from a local. 1878 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1879 llvm::Value *ArrayBegin; 1880 Address ArrayEndPointer; 1881 QualType ElementType; 1882 CodeGenFunction::Destroyer *Destroyer; 1883 CharUnits ElementAlign; 1884 public: 1885 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1886 Address arrayEndPointer, 1887 QualType elementType, 1888 CharUnits elementAlign, 1889 CodeGenFunction::Destroyer *destroyer) 1890 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1891 ElementType(elementType), Destroyer(destroyer), 1892 ElementAlign(elementAlign) {} 1893 1894 void Emit(CodeGenFunction &CGF, Flags flags) override { 1895 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1896 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1897 ElementType, ElementAlign, Destroyer); 1898 } 1899 }; 1900 } // end anonymous namespace 1901 1902 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1903 /// already-constructed elements of the given array. The cleanup 1904 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1905 /// 1906 /// \param elementType - the immediate element type of the array; 1907 /// possibly still an array type 1908 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1909 Address arrayEndPointer, 1910 QualType elementType, 1911 CharUnits elementAlign, 1912 Destroyer *destroyer) { 1913 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1914 arrayBegin, arrayEndPointer, 1915 elementType, elementAlign, 1916 destroyer); 1917 } 1918 1919 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1920 /// already-constructed elements of the given array. The cleanup 1921 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1922 /// 1923 /// \param elementType - the immediate element type of the array; 1924 /// possibly still an array type 1925 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1926 llvm::Value *arrayEnd, 1927 QualType elementType, 1928 CharUnits elementAlign, 1929 Destroyer *destroyer) { 1930 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1931 arrayBegin, arrayEnd, 1932 elementType, elementAlign, 1933 destroyer); 1934 } 1935 1936 /// Lazily declare the @llvm.lifetime.start intrinsic. 1937 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1938 if (LifetimeStartFn) 1939 return LifetimeStartFn; 1940 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1941 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 1942 return LifetimeStartFn; 1943 } 1944 1945 /// Lazily declare the @llvm.lifetime.end intrinsic. 1946 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1947 if (LifetimeEndFn) 1948 return LifetimeEndFn; 1949 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1950 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 1951 return LifetimeEndFn; 1952 } 1953 1954 namespace { 1955 /// A cleanup to perform a release of an object at the end of a 1956 /// function. This is used to balance out the incoming +1 of a 1957 /// ns_consumed argument when we can't reasonably do that just by 1958 /// not doing the initial retain for a __block argument. 1959 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1960 ConsumeARCParameter(llvm::Value *param, 1961 ARCPreciseLifetime_t precise) 1962 : Param(param), Precise(precise) {} 1963 1964 llvm::Value *Param; 1965 ARCPreciseLifetime_t Precise; 1966 1967 void Emit(CodeGenFunction &CGF, Flags flags) override { 1968 CGF.EmitARCRelease(Param, Precise); 1969 } 1970 }; 1971 } // end anonymous namespace 1972 1973 /// Emit an alloca (or GlobalValue depending on target) 1974 /// for the specified parameter and set up LocalDeclMap. 1975 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1976 unsigned ArgNo) { 1977 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1978 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1979 "Invalid argument to EmitParmDecl"); 1980 1981 Arg.getAnyValue()->setName(D.getName()); 1982 1983 QualType Ty = D.getType(); 1984 1985 // Use better IR generation for certain implicit parameters. 1986 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1987 // The only implicit argument a block has is its literal. 1988 // This may be passed as an inalloca'ed value on Windows x86. 1989 if (BlockInfo) { 1990 llvm::Value *V = Arg.isIndirect() 1991 ? Builder.CreateLoad(Arg.getIndirectAddress()) 1992 : Arg.getDirectValue(); 1993 setBlockContextParameter(IPD, ArgNo, V); 1994 return; 1995 } 1996 } 1997 1998 Address DeclPtr = Address::invalid(); 1999 bool DoStore = false; 2000 bool IsScalar = hasScalarEvaluationKind(Ty); 2001 // If we already have a pointer to the argument, reuse the input pointer. 2002 if (Arg.isIndirect()) { 2003 DeclPtr = Arg.getIndirectAddress(); 2004 // If we have a prettier pointer type at this point, bitcast to that. 2005 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2006 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2007 if (DeclPtr.getType() != IRTy) 2008 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2009 // Indirect argument is in alloca address space, which may be different 2010 // from the default address space. 2011 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2012 auto *V = DeclPtr.getPointer(); 2013 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2014 auto DestLangAS = 2015 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2016 if (SrcLangAS != DestLangAS) { 2017 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2018 CGM.getDataLayout().getAllocaAddrSpace()); 2019 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2020 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2021 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2022 *this, V, SrcLangAS, DestLangAS, T, true), 2023 DeclPtr.getAlignment()); 2024 } 2025 2026 // Push a destructor cleanup for this parameter if the ABI requires it. 2027 // Don't push a cleanup in a thunk for a method that will also emit a 2028 // cleanup. 2029 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2030 Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2031 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 2032 assert((DtorKind == QualType::DK_cxx_destructor || 2033 DtorKind == QualType::DK_nontrivial_c_struct) && 2034 "unexpected destructor type"); 2035 pushDestroy(DtorKind, DeclPtr, Ty); 2036 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2037 EHStack.stable_begin(); 2038 } 2039 } 2040 } else { 2041 // Check if the parameter address is controlled by OpenMP runtime. 2042 Address OpenMPLocalAddr = 2043 getLangOpts().OpenMP 2044 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2045 : Address::invalid(); 2046 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2047 DeclPtr = OpenMPLocalAddr; 2048 } else { 2049 // Otherwise, create a temporary to hold the value. 2050 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2051 D.getName() + ".addr"); 2052 } 2053 DoStore = true; 2054 } 2055 2056 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2057 2058 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2059 if (IsScalar) { 2060 Qualifiers qs = Ty.getQualifiers(); 2061 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2062 // We honor __attribute__((ns_consumed)) for types with lifetime. 2063 // For __strong, it's handled by just skipping the initial retain; 2064 // otherwise we have to balance out the initial +1 with an extra 2065 // cleanup to do the release at the end of the function. 2066 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2067 2068 // 'self' is always formally __strong, but if this is not an 2069 // init method then we don't want to retain it. 2070 if (D.isARCPseudoStrong()) { 2071 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 2072 assert(&D == method->getSelfDecl()); 2073 assert(lt == Qualifiers::OCL_Strong); 2074 assert(qs.hasConst()); 2075 assert(method->getMethodFamily() != OMF_init); 2076 (void) method; 2077 lt = Qualifiers::OCL_ExplicitNone; 2078 } 2079 2080 // Load objects passed indirectly. 2081 if (Arg.isIndirect() && !ArgVal) 2082 ArgVal = Builder.CreateLoad(DeclPtr); 2083 2084 if (lt == Qualifiers::OCL_Strong) { 2085 if (!isConsumed) { 2086 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2087 // use objc_storeStrong(&dest, value) for retaining the 2088 // object. But first, store a null into 'dest' because 2089 // objc_storeStrong attempts to release its old value. 2090 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2091 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2092 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2093 DoStore = false; 2094 } 2095 else 2096 // Don't use objc_retainBlock for block pointers, because we 2097 // don't want to Block_copy something just because we got it 2098 // as a parameter. 2099 ArgVal = EmitARCRetainNonBlock(ArgVal); 2100 } 2101 } else { 2102 // Push the cleanup for a consumed parameter. 2103 if (isConsumed) { 2104 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2105 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2106 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2107 precise); 2108 } 2109 2110 if (lt == Qualifiers::OCL_Weak) { 2111 EmitARCInitWeak(DeclPtr, ArgVal); 2112 DoStore = false; // The weak init is a store, no need to do two. 2113 } 2114 } 2115 2116 // Enter the cleanup scope. 2117 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2118 } 2119 } 2120 2121 // Store the initial value into the alloca. 2122 if (DoStore) 2123 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2124 2125 setAddrOfLocalVar(&D, DeclPtr); 2126 2127 // Emit debug info for param declaration. 2128 if (CGDebugInfo *DI = getDebugInfo()) { 2129 if (CGM.getCodeGenOpts().getDebugInfo() >= 2130 codegenoptions::LimitedDebugInfo) { 2131 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2132 } 2133 } 2134 2135 if (D.hasAttr<AnnotateAttr>()) 2136 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2137 2138 // We can only check return value nullability if all arguments to the 2139 // function satisfy their nullability preconditions. This makes it necessary 2140 // to emit null checks for args in the function body itself. 2141 if (requiresReturnValueNullabilityCheck()) { 2142 auto Nullability = Ty->getNullability(getContext()); 2143 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2144 SanitizerScope SanScope(this); 2145 RetValNullabilityPrecondition = 2146 Builder.CreateAnd(RetValNullabilityPrecondition, 2147 Builder.CreateIsNotNull(Arg.getAnyValue())); 2148 } 2149 } 2150 } 2151 2152 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2153 CodeGenFunction *CGF) { 2154 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2155 return; 2156 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2157 } 2158 2159 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2160 //Do nothing - here to avoid build errors 2161 } 2162