1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Type.h"
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 void CodeGenFunction::EmitDecl(const Decl &D) {
43   switch (D.getKind()) {
44   case Decl::BuiltinTemplate:
45   case Decl::TranslationUnit:
46   case Decl::ExternCContext:
47   case Decl::Namespace:
48   case Decl::UnresolvedUsingTypename:
49   case Decl::ClassTemplateSpecialization:
50   case Decl::ClassTemplatePartialSpecialization:
51   case Decl::VarTemplateSpecialization:
52   case Decl::VarTemplatePartialSpecialization:
53   case Decl::TemplateTypeParm:
54   case Decl::UnresolvedUsingValue:
55   case Decl::NonTypeTemplateParm:
56   case Decl::CXXDeductionGuide:
57   case Decl::CXXMethod:
58   case Decl::CXXConstructor:
59   case Decl::CXXDestructor:
60   case Decl::CXXConversion:
61   case Decl::Field:
62   case Decl::MSProperty:
63   case Decl::IndirectField:
64   case Decl::ObjCIvar:
65   case Decl::ObjCAtDefsField:
66   case Decl::ParmVar:
67   case Decl::ImplicitParam:
68   case Decl::ClassTemplate:
69   case Decl::VarTemplate:
70   case Decl::FunctionTemplate:
71   case Decl::TypeAliasTemplate:
72   case Decl::TemplateTemplateParm:
73   case Decl::ObjCMethod:
74   case Decl::ObjCCategory:
75   case Decl::ObjCProtocol:
76   case Decl::ObjCInterface:
77   case Decl::ObjCCategoryImpl:
78   case Decl::ObjCImplementation:
79   case Decl::ObjCProperty:
80   case Decl::ObjCCompatibleAlias:
81   case Decl::PragmaComment:
82   case Decl::PragmaDetectMismatch:
83   case Decl::AccessSpec:
84   case Decl::LinkageSpec:
85   case Decl::Export:
86   case Decl::ObjCPropertyImpl:
87   case Decl::FileScopeAsm:
88   case Decl::Friend:
89   case Decl::FriendTemplate:
90   case Decl::Block:
91   case Decl::Captured:
92   case Decl::ClassScopeFunctionSpecialization:
93   case Decl::UsingShadow:
94   case Decl::ConstructorUsingShadow:
95   case Decl::ObjCTypeParam:
96   case Decl::Binding:
97     llvm_unreachable("Declaration should not be in declstmts!");
98   case Decl::Function:  // void X();
99   case Decl::Record:    // struct/union/class X;
100   case Decl::Enum:      // enum X;
101   case Decl::EnumConstant: // enum ? { X = ? }
102   case Decl::CXXRecord: // struct/union/class X; [C++]
103   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
104   case Decl::Label:        // __label__ x;
105   case Decl::Import:
106   case Decl::OMPThreadPrivate:
107   case Decl::OMPCapturedExpr:
108   case Decl::OMPRequires:
109   case Decl::Empty:
110     // None of these decls require codegen support.
111     return;
112 
113   case Decl::NamespaceAlias:
114     if (CGDebugInfo *DI = getDebugInfo())
115         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
116     return;
117   case Decl::Using:          // using X; [C++]
118     if (CGDebugInfo *DI = getDebugInfo())
119         DI->EmitUsingDecl(cast<UsingDecl>(D));
120     return;
121   case Decl::UsingPack:
122     for (auto *Using : cast<UsingPackDecl>(D).expansions())
123       EmitDecl(*Using);
124     return;
125   case Decl::UsingDirective: // using namespace X; [C++]
126     if (CGDebugInfo *DI = getDebugInfo())
127       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
128     return;
129   case Decl::Var:
130   case Decl::Decomposition: {
131     const VarDecl &VD = cast<VarDecl>(D);
132     assert(VD.isLocalVarDecl() &&
133            "Should not see file-scope variables inside a function!");
134     EmitVarDecl(VD);
135     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
136       for (auto *B : DD->bindings())
137         if (auto *HD = B->getHoldingVar())
138           EmitVarDecl(*HD);
139     return;
140   }
141 
142   case Decl::OMPDeclareReduction:
143     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
144 
145   case Decl::Typedef:      // typedef int X;
146   case Decl::TypeAlias: {  // using X = int; [C++0x]
147     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
148     QualType Ty = TD.getUnderlyingType();
149 
150     if (Ty->isVariablyModifiedType())
151       EmitVariablyModifiedType(Ty);
152   }
153   }
154 }
155 
156 /// EmitVarDecl - This method handles emission of any variable declaration
157 /// inside a function, including static vars etc.
158 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
159   if (D.hasExternalStorage())
160     // Don't emit it now, allow it to be emitted lazily on its first use.
161     return;
162 
163   // Some function-scope variable does not have static storage but still
164   // needs to be emitted like a static variable, e.g. a function-scope
165   // variable in constant address space in OpenCL.
166   if (D.getStorageDuration() != SD_Automatic) {
167     // Static sampler variables translated to function calls.
168     if (D.getType()->isSamplerT())
169       return;
170 
171     llvm::GlobalValue::LinkageTypes Linkage =
172         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
173 
174     // FIXME: We need to force the emission/use of a guard variable for
175     // some variables even if we can constant-evaluate them because
176     // we can't guarantee every translation unit will constant-evaluate them.
177 
178     return EmitStaticVarDecl(D, Linkage);
179   }
180 
181   if (D.getType().getAddressSpace() == LangAS::opencl_local)
182     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
183 
184   assert(D.hasLocalStorage());
185   return EmitAutoVarDecl(D);
186 }
187 
188 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
189   if (CGM.getLangOpts().CPlusPlus)
190     return CGM.getMangledName(&D).str();
191 
192   // If this isn't C++, we don't need a mangled name, just a pretty one.
193   assert(!D.isExternallyVisible() && "name shouldn't matter");
194   std::string ContextName;
195   const DeclContext *DC = D.getDeclContext();
196   if (auto *CD = dyn_cast<CapturedDecl>(DC))
197     DC = cast<DeclContext>(CD->getNonClosureContext());
198   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
199     ContextName = CGM.getMangledName(FD);
200   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
201     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
202   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
203     ContextName = OMD->getSelector().getAsString();
204   else
205     llvm_unreachable("Unknown context for static var decl");
206 
207   ContextName += "." + D.getNameAsString();
208   return ContextName;
209 }
210 
211 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
212     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
213   // In general, we don't always emit static var decls once before we reference
214   // them. It is possible to reference them before emitting the function that
215   // contains them, and it is possible to emit the containing function multiple
216   // times.
217   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
218     return ExistingGV;
219 
220   QualType Ty = D.getType();
221   assert(Ty->isConstantSizeType() && "VLAs can't be static");
222 
223   // Use the label if the variable is renamed with the asm-label extension.
224   std::string Name;
225   if (D.hasAttr<AsmLabelAttr>())
226     Name = getMangledName(&D);
227   else
228     Name = getStaticDeclName(*this, D);
229 
230   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
231   LangAS AS = GetGlobalVarAddressSpace(&D);
232   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
233 
234   // OpenCL variables in local address space and CUDA shared
235   // variables cannot have an initializer.
236   llvm::Constant *Init = nullptr;
237   if (Ty.getAddressSpace() == LangAS::opencl_local ||
238       D.hasAttr<CUDASharedAttr>())
239     Init = llvm::UndefValue::get(LTy);
240   else
241     Init = EmitNullConstant(Ty);
242 
243   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
244       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
245       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
246   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
247 
248   if (supportsCOMDAT() && GV->isWeakForLinker())
249     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
250 
251   if (D.getTLSKind())
252     setTLSMode(GV, D);
253 
254   setGVProperties(GV, &D);
255 
256   // Make sure the result is of the correct type.
257   LangAS ExpectedAS = Ty.getAddressSpace();
258   llvm::Constant *Addr = GV;
259   if (AS != ExpectedAS) {
260     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
261         *this, GV, AS, ExpectedAS,
262         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
263   }
264 
265   setStaticLocalDeclAddress(&D, Addr);
266 
267   // Ensure that the static local gets initialized by making sure the parent
268   // function gets emitted eventually.
269   const Decl *DC = cast<Decl>(D.getDeclContext());
270 
271   // We can't name blocks or captured statements directly, so try to emit their
272   // parents.
273   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
274     DC = DC->getNonClosureContext();
275     // FIXME: Ensure that global blocks get emitted.
276     if (!DC)
277       return Addr;
278   }
279 
280   GlobalDecl GD;
281   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
282     GD = GlobalDecl(CD, Ctor_Base);
283   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
284     GD = GlobalDecl(DD, Dtor_Base);
285   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
286     GD = GlobalDecl(FD);
287   else {
288     // Don't do anything for Obj-C method decls or global closures. We should
289     // never defer them.
290     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
291   }
292   if (GD.getDecl()) {
293     // Disable emission of the parent function for the OpenMP device codegen.
294     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
295     (void)GetAddrOfGlobal(GD);
296   }
297 
298   return Addr;
299 }
300 
301 /// hasNontrivialDestruction - Determine whether a type's destruction is
302 /// non-trivial. If so, and the variable uses static initialization, we must
303 /// register its destructor to run on exit.
304 static bool hasNontrivialDestruction(QualType T) {
305   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
306   return RD && !RD->hasTrivialDestructor();
307 }
308 
309 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
310 /// global variable that has already been created for it.  If the initializer
311 /// has a different type than GV does, this may free GV and return a different
312 /// one.  Otherwise it just returns GV.
313 llvm::GlobalVariable *
314 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
315                                                llvm::GlobalVariable *GV) {
316   ConstantEmitter emitter(*this);
317   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
318 
319   // If constant emission failed, then this should be a C++ static
320   // initializer.
321   if (!Init) {
322     if (!getLangOpts().CPlusPlus)
323       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
324     else if (HaveInsertPoint()) {
325       // Since we have a static initializer, this global variable can't
326       // be constant.
327       GV->setConstant(false);
328 
329       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
330     }
331     return GV;
332   }
333 
334   // The initializer may differ in type from the global. Rewrite
335   // the global to match the initializer.  (We have to do this
336   // because some types, like unions, can't be completely represented
337   // in the LLVM type system.)
338   if (GV->getType()->getElementType() != Init->getType()) {
339     llvm::GlobalVariable *OldGV = GV;
340 
341     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
342                                   OldGV->isConstant(),
343                                   OldGV->getLinkage(), Init, "",
344                                   /*InsertBefore*/ OldGV,
345                                   OldGV->getThreadLocalMode(),
346                            CGM.getContext().getTargetAddressSpace(D.getType()));
347     GV->setVisibility(OldGV->getVisibility());
348     GV->setDSOLocal(OldGV->isDSOLocal());
349     GV->setComdat(OldGV->getComdat());
350 
351     // Steal the name of the old global
352     GV->takeName(OldGV);
353 
354     // Replace all uses of the old global with the new global
355     llvm::Constant *NewPtrForOldDecl =
356     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
357     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
358 
359     // Erase the old global, since it is no longer used.
360     OldGV->eraseFromParent();
361   }
362 
363   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
364   GV->setInitializer(Init);
365 
366   emitter.finalize(GV);
367 
368   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
369     // We have a constant initializer, but a nontrivial destructor. We still
370     // need to perform a guarded "initialization" in order to register the
371     // destructor.
372     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
373   }
374 
375   return GV;
376 }
377 
378 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
379                                       llvm::GlobalValue::LinkageTypes Linkage) {
380   // Check to see if we already have a global variable for this
381   // declaration.  This can happen when double-emitting function
382   // bodies, e.g. with complete and base constructors.
383   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
384   CharUnits alignment = getContext().getDeclAlign(&D);
385 
386   // Store into LocalDeclMap before generating initializer to handle
387   // circular references.
388   setAddrOfLocalVar(&D, Address(addr, alignment));
389 
390   // We can't have a VLA here, but we can have a pointer to a VLA,
391   // even though that doesn't really make any sense.
392   // Make sure to evaluate VLA bounds now so that we have them for later.
393   if (D.getType()->isVariablyModifiedType())
394     EmitVariablyModifiedType(D.getType());
395 
396   // Save the type in case adding the initializer forces a type change.
397   llvm::Type *expectedType = addr->getType();
398 
399   llvm::GlobalVariable *var =
400     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
401 
402   // CUDA's local and local static __shared__ variables should not
403   // have any non-empty initializers. This is ensured by Sema.
404   // Whatever initializer such variable may have when it gets here is
405   // a no-op and should not be emitted.
406   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
407                          D.hasAttr<CUDASharedAttr>();
408   // If this value has an initializer, emit it.
409   if (D.getInit() && !isCudaSharedVar)
410     var = AddInitializerToStaticVarDecl(D, var);
411 
412   var->setAlignment(alignment.getQuantity());
413 
414   if (D.hasAttr<AnnotateAttr>())
415     CGM.AddGlobalAnnotations(&D, var);
416 
417   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
418     var->addAttribute("bss-section", SA->getName());
419   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
420     var->addAttribute("data-section", SA->getName());
421   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
422     var->addAttribute("rodata-section", SA->getName());
423 
424   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
425     var->setSection(SA->getName());
426 
427   if (D.hasAttr<UsedAttr>())
428     CGM.addUsedGlobal(var);
429 
430   // We may have to cast the constant because of the initializer
431   // mismatch above.
432   //
433   // FIXME: It is really dangerous to store this in the map; if anyone
434   // RAUW's the GV uses of this constant will be invalid.
435   llvm::Constant *castedAddr =
436     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
437   if (var != castedAddr)
438     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
439   CGM.setStaticLocalDeclAddress(&D, castedAddr);
440 
441   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
442 
443   // Emit global variable debug descriptor for static vars.
444   CGDebugInfo *DI = getDebugInfo();
445   if (DI &&
446       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
447     DI->setLocation(D.getLocation());
448     DI->EmitGlobalVariable(var, &D);
449   }
450 }
451 
452 namespace {
453   struct DestroyObject final : EHScopeStack::Cleanup {
454     DestroyObject(Address addr, QualType type,
455                   CodeGenFunction::Destroyer *destroyer,
456                   bool useEHCleanupForArray)
457       : addr(addr), type(type), destroyer(destroyer),
458         useEHCleanupForArray(useEHCleanupForArray) {}
459 
460     Address addr;
461     QualType type;
462     CodeGenFunction::Destroyer *destroyer;
463     bool useEHCleanupForArray;
464 
465     void Emit(CodeGenFunction &CGF, Flags flags) override {
466       // Don't use an EH cleanup recursively from an EH cleanup.
467       bool useEHCleanupForArray =
468         flags.isForNormalCleanup() && this->useEHCleanupForArray;
469 
470       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
471     }
472   };
473 
474   template <class Derived>
475   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
476     DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag)
477         : NRVOFlag(NRVOFlag), Loc(addr) {}
478 
479     llvm::Value *NRVOFlag;
480     Address Loc;
481 
482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       // Along the exceptions path we always execute the dtor.
484       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
485 
486       llvm::BasicBlock *SkipDtorBB = nullptr;
487       if (NRVO) {
488         // If we exited via NRVO, we skip the destructor call.
489         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
490         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
491         llvm::Value *DidNRVO =
492           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
493         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
494         CGF.EmitBlock(RunDtorBB);
495       }
496 
497       static_cast<Derived *>(this)->emitDestructorCall(CGF);
498 
499       if (NRVO) CGF.EmitBlock(SkipDtorBB);
500     }
501 
502     virtual ~DestroyNRVOVariable() = default;
503   };
504 
505   struct DestroyNRVOVariableCXX final
506       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
507     DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor,
508                            llvm::Value *NRVOFlag)
509       : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag),
510         Dtor(Dtor) {}
511 
512     const CXXDestructorDecl *Dtor;
513 
514     void emitDestructorCall(CodeGenFunction &CGF) {
515       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
516                                 /*ForVirtualBase=*/false,
517                                 /*Delegating=*/false, Loc);
518     }
519   };
520 
521   struct DestroyNRVOVariableC final
522       : DestroyNRVOVariable<DestroyNRVOVariableC> {
523     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
524         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {}
525 
526     QualType Ty;
527 
528     void emitDestructorCall(CodeGenFunction &CGF) {
529       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
530     }
531   };
532 
533   struct CallStackRestore final : EHScopeStack::Cleanup {
534     Address Stack;
535     CallStackRestore(Address Stack) : Stack(Stack) {}
536     void Emit(CodeGenFunction &CGF, Flags flags) override {
537       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
538       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
539       CGF.Builder.CreateCall(F, V);
540     }
541   };
542 
543   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
544     const VarDecl &Var;
545     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
546 
547     void Emit(CodeGenFunction &CGF, Flags flags) override {
548       // Compute the address of the local variable, in case it's a
549       // byref or something.
550       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
551                       Var.getType(), VK_LValue, SourceLocation());
552       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
553                                                 SourceLocation());
554       CGF.EmitExtendGCLifetime(value);
555     }
556   };
557 
558   struct CallCleanupFunction final : EHScopeStack::Cleanup {
559     llvm::Constant *CleanupFn;
560     const CGFunctionInfo &FnInfo;
561     const VarDecl &Var;
562 
563     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
564                         const VarDecl *Var)
565       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
566 
567     void Emit(CodeGenFunction &CGF, Flags flags) override {
568       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
569                       Var.getType(), VK_LValue, SourceLocation());
570       // Compute the address of the local variable, in case it's a byref
571       // or something.
572       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
573 
574       // In some cases, the type of the function argument will be different from
575       // the type of the pointer. An example of this is
576       // void f(void* arg);
577       // __attribute__((cleanup(f))) void *g;
578       //
579       // To fix this we insert a bitcast here.
580       QualType ArgTy = FnInfo.arg_begin()->type;
581       llvm::Value *Arg =
582         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
583 
584       CallArgList Args;
585       Args.add(RValue::get(Arg),
586                CGF.getContext().getPointerType(Var.getType()));
587       auto Callee = CGCallee::forDirect(CleanupFn);
588       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
589     }
590   };
591 } // end anonymous namespace
592 
593 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
594 /// variable with lifetime.
595 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
596                                     Address addr,
597                                     Qualifiers::ObjCLifetime lifetime) {
598   switch (lifetime) {
599   case Qualifiers::OCL_None:
600     llvm_unreachable("present but none");
601 
602   case Qualifiers::OCL_ExplicitNone:
603     // nothing to do
604     break;
605 
606   case Qualifiers::OCL_Strong: {
607     CodeGenFunction::Destroyer *destroyer =
608       (var.hasAttr<ObjCPreciseLifetimeAttr>()
609        ? CodeGenFunction::destroyARCStrongPrecise
610        : CodeGenFunction::destroyARCStrongImprecise);
611 
612     CleanupKind cleanupKind = CGF.getARCCleanupKind();
613     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
614                     cleanupKind & EHCleanup);
615     break;
616   }
617   case Qualifiers::OCL_Autoreleasing:
618     // nothing to do
619     break;
620 
621   case Qualifiers::OCL_Weak:
622     // __weak objects always get EH cleanups; otherwise, exceptions
623     // could cause really nasty crashes instead of mere leaks.
624     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
625                     CodeGenFunction::destroyARCWeak,
626                     /*useEHCleanup*/ true);
627     break;
628   }
629 }
630 
631 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
632   if (const Expr *e = dyn_cast<Expr>(s)) {
633     // Skip the most common kinds of expressions that make
634     // hierarchy-walking expensive.
635     s = e = e->IgnoreParenCasts();
636 
637     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
638       return (ref->getDecl() == &var);
639     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
640       const BlockDecl *block = be->getBlockDecl();
641       for (const auto &I : block->captures()) {
642         if (I.getVariable() == &var)
643           return true;
644       }
645     }
646   }
647 
648   for (const Stmt *SubStmt : s->children())
649     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
650     if (SubStmt && isAccessedBy(var, SubStmt))
651       return true;
652 
653   return false;
654 }
655 
656 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
657   if (!decl) return false;
658   if (!isa<VarDecl>(decl)) return false;
659   const VarDecl *var = cast<VarDecl>(decl);
660   return isAccessedBy(*var, e);
661 }
662 
663 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
664                                    const LValue &destLV, const Expr *init) {
665   bool needsCast = false;
666 
667   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
668     switch (castExpr->getCastKind()) {
669     // Look through casts that don't require representation changes.
670     case CK_NoOp:
671     case CK_BitCast:
672     case CK_BlockPointerToObjCPointerCast:
673       needsCast = true;
674       break;
675 
676     // If we find an l-value to r-value cast from a __weak variable,
677     // emit this operation as a copy or move.
678     case CK_LValueToRValue: {
679       const Expr *srcExpr = castExpr->getSubExpr();
680       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
681         return false;
682 
683       // Emit the source l-value.
684       LValue srcLV = CGF.EmitLValue(srcExpr);
685 
686       // Handle a formal type change to avoid asserting.
687       auto srcAddr = srcLV.getAddress();
688       if (needsCast) {
689         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
690                                          destLV.getAddress().getElementType());
691       }
692 
693       // If it was an l-value, use objc_copyWeak.
694       if (srcExpr->getValueKind() == VK_LValue) {
695         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
696       } else {
697         assert(srcExpr->getValueKind() == VK_XValue);
698         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
699       }
700       return true;
701     }
702 
703     // Stop at anything else.
704     default:
705       return false;
706     }
707 
708     init = castExpr->getSubExpr();
709   }
710   return false;
711 }
712 
713 static void drillIntoBlockVariable(CodeGenFunction &CGF,
714                                    LValue &lvalue,
715                                    const VarDecl *var) {
716   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
717 }
718 
719 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
720                                            SourceLocation Loc) {
721   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
722     return;
723 
724   auto Nullability = LHS.getType()->getNullability(getContext());
725   if (!Nullability || *Nullability != NullabilityKind::NonNull)
726     return;
727 
728   // Check if the right hand side of the assignment is nonnull, if the left
729   // hand side must be nonnull.
730   SanitizerScope SanScope(this);
731   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
732   llvm::Constant *StaticData[] = {
733       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
734       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
735       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
736   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
737             SanitizerHandler::TypeMismatch, StaticData, RHS);
738 }
739 
740 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
741                                      LValue lvalue, bool capturedByInit) {
742   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
743   if (!lifetime) {
744     llvm::Value *value = EmitScalarExpr(init);
745     if (capturedByInit)
746       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
747     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
748     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
749     return;
750   }
751 
752   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
753     init = DIE->getExpr();
754 
755   // If we're emitting a value with lifetime, we have to do the
756   // initialization *before* we leave the cleanup scopes.
757   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
758     enterFullExpression(fe);
759     init = fe->getSubExpr();
760   }
761   CodeGenFunction::RunCleanupsScope Scope(*this);
762 
763   // We have to maintain the illusion that the variable is
764   // zero-initialized.  If the variable might be accessed in its
765   // initializer, zero-initialize before running the initializer, then
766   // actually perform the initialization with an assign.
767   bool accessedByInit = false;
768   if (lifetime != Qualifiers::OCL_ExplicitNone)
769     accessedByInit = (capturedByInit || isAccessedBy(D, init));
770   if (accessedByInit) {
771     LValue tempLV = lvalue;
772     // Drill down to the __block object if necessary.
773     if (capturedByInit) {
774       // We can use a simple GEP for this because it can't have been
775       // moved yet.
776       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
777                                               cast<VarDecl>(D),
778                                               /*follow*/ false));
779     }
780 
781     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
782     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
783 
784     // If __weak, we want to use a barrier under certain conditions.
785     if (lifetime == Qualifiers::OCL_Weak)
786       EmitARCInitWeak(tempLV.getAddress(), zero);
787 
788     // Otherwise just do a simple store.
789     else
790       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
791   }
792 
793   // Emit the initializer.
794   llvm::Value *value = nullptr;
795 
796   switch (lifetime) {
797   case Qualifiers::OCL_None:
798     llvm_unreachable("present but none");
799 
800   case Qualifiers::OCL_ExplicitNone:
801     value = EmitARCUnsafeUnretainedScalarExpr(init);
802     break;
803 
804   case Qualifiers::OCL_Strong: {
805     value = EmitARCRetainScalarExpr(init);
806     break;
807   }
808 
809   case Qualifiers::OCL_Weak: {
810     // If it's not accessed by the initializer, try to emit the
811     // initialization with a copy or move.
812     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
813       return;
814     }
815 
816     // No way to optimize a producing initializer into this.  It's not
817     // worth optimizing for, because the value will immediately
818     // disappear in the common case.
819     value = EmitScalarExpr(init);
820 
821     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
822     if (accessedByInit)
823       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
824     else
825       EmitARCInitWeak(lvalue.getAddress(), value);
826     return;
827   }
828 
829   case Qualifiers::OCL_Autoreleasing:
830     value = EmitARCRetainAutoreleaseScalarExpr(init);
831     break;
832   }
833 
834   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
835 
836   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
837 
838   // If the variable might have been accessed by its initializer, we
839   // might have to initialize with a barrier.  We have to do this for
840   // both __weak and __strong, but __weak got filtered out above.
841   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
842     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
843     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
844     EmitARCRelease(oldValue, ARCImpreciseLifetime);
845     return;
846   }
847 
848   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
849 }
850 
851 /// Decide whether we can emit the non-zero parts of the specified initializer
852 /// with equal or fewer than NumStores scalar stores.
853 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
854                                                unsigned &NumStores) {
855   // Zero and Undef never requires any extra stores.
856   if (isa<llvm::ConstantAggregateZero>(Init) ||
857       isa<llvm::ConstantPointerNull>(Init) ||
858       isa<llvm::UndefValue>(Init))
859     return true;
860   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
861       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
862       isa<llvm::ConstantExpr>(Init))
863     return Init->isNullValue() || NumStores--;
864 
865   // See if we can emit each element.
866   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
867     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
868       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
869       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
870         return false;
871     }
872     return true;
873   }
874 
875   if (llvm::ConstantDataSequential *CDS =
876         dyn_cast<llvm::ConstantDataSequential>(Init)) {
877     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
878       llvm::Constant *Elt = CDS->getElementAsConstant(i);
879       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
880         return false;
881     }
882     return true;
883   }
884 
885   // Anything else is hard and scary.
886   return false;
887 }
888 
889 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
890 /// the scalar stores that would be required.
891 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
892                                         llvm::Constant *Init, Address Loc,
893                                         bool isVolatile, CGBuilderTy &Builder) {
894   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
895          "called emitStoresForInitAfterBZero for zero or undef value.");
896 
897   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
898       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
899       isa<llvm::ConstantExpr>(Init)) {
900     Builder.CreateStore(Init, Loc, isVolatile);
901     return;
902   }
903 
904   if (llvm::ConstantDataSequential *CDS =
905           dyn_cast<llvm::ConstantDataSequential>(Init)) {
906     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
907       llvm::Constant *Elt = CDS->getElementAsConstant(i);
908 
909       // If necessary, get a pointer to the element and emit it.
910       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
911         emitStoresForInitAfterBZero(
912             CGM, Elt,
913             Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
914             isVolatile, Builder);
915     }
916     return;
917   }
918 
919   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
920          "Unknown value type!");
921 
922   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
923     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
924 
925     // If necessary, get a pointer to the element and emit it.
926     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
927       emitStoresForInitAfterBZero(
928           CGM, Elt,
929           Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
930           isVolatile, Builder);
931   }
932 }
933 
934 /// Decide whether we should use bzero plus some stores to initialize a local
935 /// variable instead of using a memcpy from a constant global.  It is beneficial
936 /// to use bzero if the global is all zeros, or mostly zeros and large.
937 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
938                                                  uint64_t GlobalSize) {
939   // If a global is all zeros, always use a bzero.
940   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
941 
942   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
943   // do it if it will require 6 or fewer scalar stores.
944   // TODO: Should budget depends on the size?  Avoiding a large global warrants
945   // plopping in more stores.
946   unsigned StoreBudget = 6;
947   uint64_t SizeLimit = 32;
948 
949   return GlobalSize > SizeLimit &&
950          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
951 }
952 
953 /// Decide whether we should use memset to initialize a local variable instead
954 /// of using a memcpy from a constant global. Assumes we've already decided to
955 /// not user bzero.
956 /// FIXME We could be more clever, as we are for bzero above, and generate
957 ///       memset followed by stores. It's unclear that's worth the effort.
958 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
959                                                 uint64_t GlobalSize) {
960   uint64_t SizeLimit = 32;
961   if (GlobalSize <= SizeLimit)
962     return nullptr;
963   return llvm::isBytewiseValue(Init);
964 }
965 
966 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
967                                   Address Loc, bool isVolatile,
968                                   CGBuilderTy &Builder,
969                                   llvm::Constant *constant) {
970   auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
971   auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext());
972 
973   // If the initializer is all or mostly the same, codegen with bzero / memset
974   // then do a few stores afterward.
975   uint64_t ConstantSize =
976       CGM.getDataLayout().getTypeAllocSize(constant->getType());
977   auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize);
978   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
979     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
980                          isVolatile);
981 
982     bool valueAlreadyCorrect =
983         constant->isNullValue() || isa<llvm::UndefValue>(constant);
984     if (!valueAlreadyCorrect) {
985       Loc = Builder.CreateBitCast(
986           Loc, constant->getType()->getPointerTo(Loc.getAddressSpace()));
987       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
988     }
989     return;
990   }
991 
992   llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize);
993   if (Pattern) {
994     uint64_t Value = 0x00;
995     if (!isa<llvm::UndefValue>(Pattern)) {
996       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
997       assert(AP.getBitWidth() <= 8);
998       Value = AP.getLimitedValue();
999     }
1000     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal,
1001                          isVolatile);
1002     return;
1003   }
1004 
1005   // Otherwise, create a temporary global with the initializer then memcpy from
1006   // the global to the alloca.
1007   std::string Name = getStaticDeclName(CGM, D);
1008   unsigned AS = CGM.getContext().getTargetAddressSpace(
1009       CGM.getStringLiteralAddressSpace());
1010   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS);
1011 
1012   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1013       CGM.getModule(), constant->getType(), true,
1014       llvm::GlobalValue::PrivateLinkage, constant, Name, nullptr,
1015       llvm::GlobalValue::NotThreadLocal, AS);
1016   GV->setAlignment(Loc.getAlignment().getQuantity());
1017   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1018 
1019   Address SrcPtr = Address(GV, Loc.getAlignment());
1020   if (SrcPtr.getType() != BP)
1021     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1022 
1023   Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1024 }
1025 
1026 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1027 /// variable declaration with auto, register, or no storage class specifier.
1028 /// These turn into simple stack objects, or GlobalValues depending on target.
1029 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1030   AutoVarEmission emission = EmitAutoVarAlloca(D);
1031   EmitAutoVarInit(emission);
1032   EmitAutoVarCleanups(emission);
1033 }
1034 
1035 /// Emit a lifetime.begin marker if some criteria are satisfied.
1036 /// \return a pointer to the temporary size Value if a marker was emitted, null
1037 /// otherwise
1038 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1039                                                 llvm::Value *Addr) {
1040   if (!ShouldEmitLifetimeMarkers)
1041     return nullptr;
1042 
1043   assert(Addr->getType()->getPointerAddressSpace() ==
1044              CGM.getDataLayout().getAllocaAddrSpace() &&
1045          "Pointer should be in alloca address space");
1046   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1047   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1048   llvm::CallInst *C =
1049       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1050   C->setDoesNotThrow();
1051   return SizeV;
1052 }
1053 
1054 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1055   assert(Addr->getType()->getPointerAddressSpace() ==
1056              CGM.getDataLayout().getAllocaAddrSpace() &&
1057          "Pointer should be in alloca address space");
1058   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1059   llvm::CallInst *C =
1060       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1061   C->setDoesNotThrow();
1062 }
1063 
1064 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1065     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1066   // For each dimension stores its QualType and corresponding
1067   // size-expression Value.
1068   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1069   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1070 
1071   // Break down the array into individual dimensions.
1072   QualType Type1D = D.getType();
1073   while (getContext().getAsVariableArrayType(Type1D)) {
1074     auto VlaSize = getVLAElements1D(Type1D);
1075     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1076       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1077     else {
1078       // Generate a locally unique name for the size expression.
1079       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1080       SmallString<12> Buffer;
1081       StringRef NameRef = Name.toStringRef(Buffer);
1082       auto &Ident = getContext().Idents.getOwn(NameRef);
1083       VLAExprNames.push_back(&Ident);
1084       auto SizeExprAddr =
1085           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1086       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1087       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1088                               Type1D.getUnqualifiedType());
1089     }
1090     Type1D = VlaSize.Type;
1091   }
1092 
1093   if (!EmitDebugInfo)
1094     return;
1095 
1096   // Register each dimension's size-expression with a DILocalVariable,
1097   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1098   // to describe this array.
1099   unsigned NameIdx = 0;
1100   for (auto &VlaSize : Dimensions) {
1101     llvm::Metadata *MD;
1102     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1103       MD = llvm::ConstantAsMetadata::get(C);
1104     else {
1105       // Create an artificial VarDecl to generate debug info for.
1106       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1107       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1108       auto QT = getContext().getIntTypeForBitwidth(
1109           VlaExprTy->getScalarSizeInBits(), false);
1110       auto *ArtificialDecl = VarDecl::Create(
1111           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1112           D.getLocation(), D.getLocation(), NameIdent, QT,
1113           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1114       ArtificialDecl->setImplicit();
1115 
1116       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1117                                          Builder);
1118     }
1119     assert(MD && "No Size expression debug node created");
1120     DI->registerVLASizeExpression(VlaSize.Type, MD);
1121   }
1122 }
1123 
1124 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1125 /// local variable.  Does not emit initialization or destruction.
1126 CodeGenFunction::AutoVarEmission
1127 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1128   QualType Ty = D.getType();
1129   assert(
1130       Ty.getAddressSpace() == LangAS::Default ||
1131       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1132 
1133   AutoVarEmission emission(D);
1134 
1135   bool isEscapingByRef = D.isEscapingByref();
1136   emission.IsEscapingByRef = isEscapingByRef;
1137 
1138   CharUnits alignment = getContext().getDeclAlign(&D);
1139 
1140   // If the type is variably-modified, emit all the VLA sizes for it.
1141   if (Ty->isVariablyModifiedType())
1142     EmitVariablyModifiedType(Ty);
1143 
1144   auto *DI = getDebugInfo();
1145   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1146                                  codegenoptions::LimitedDebugInfo;
1147 
1148   Address address = Address::invalid();
1149   Address AllocaAddr = Address::invalid();
1150   if (Ty->isConstantSizeType()) {
1151     bool NRVO = getLangOpts().ElideConstructors &&
1152       D.isNRVOVariable();
1153 
1154     // If this value is an array or struct with a statically determinable
1155     // constant initializer, there are optimizations we can do.
1156     //
1157     // TODO: We should constant-evaluate the initializer of any variable,
1158     // as long as it is initialized by a constant expression. Currently,
1159     // isConstantInitializer produces wrong answers for structs with
1160     // reference or bitfield members, and a few other cases, and checking
1161     // for POD-ness protects us from some of these.
1162     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1163         (D.isConstexpr() ||
1164          ((Ty.isPODType(getContext()) ||
1165            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1166           D.getInit()->isConstantInitializer(getContext(), false)))) {
1167 
1168       // If the variable's a const type, and it's neither an NRVO
1169       // candidate nor a __block variable and has no mutable members,
1170       // emit it as a global instead.
1171       // Exception is if a variable is located in non-constant address space
1172       // in OpenCL.
1173       if ((!getLangOpts().OpenCL ||
1174            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1175           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1176            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1177         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1178 
1179         // Signal this condition to later callbacks.
1180         emission.Addr = Address::invalid();
1181         assert(emission.wasEmittedAsGlobal());
1182         return emission;
1183       }
1184 
1185       // Otherwise, tell the initialization code that we're in this case.
1186       emission.IsConstantAggregate = true;
1187     }
1188 
1189     // A normal fixed sized variable becomes an alloca in the entry block,
1190     // unless:
1191     // - it's an NRVO variable.
1192     // - we are compiling OpenMP and it's an OpenMP local variable.
1193 
1194     Address OpenMPLocalAddr =
1195         getLangOpts().OpenMP
1196             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1197             : Address::invalid();
1198     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1199       address = OpenMPLocalAddr;
1200     } else if (NRVO) {
1201       // The named return value optimization: allocate this variable in the
1202       // return slot, so that we can elide the copy when returning this
1203       // variable (C++0x [class.copy]p34).
1204       address = ReturnValue;
1205 
1206       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1207         const auto *RD = RecordTy->getDecl();
1208         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1209         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1210             RD->isNonTrivialToPrimitiveDestroy()) {
1211           // Create a flag that is used to indicate when the NRVO was applied
1212           // to this variable. Set it to zero to indicate that NRVO was not
1213           // applied.
1214           llvm::Value *Zero = Builder.getFalse();
1215           Address NRVOFlag =
1216             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1217           EnsureInsertPoint();
1218           Builder.CreateStore(Zero, NRVOFlag);
1219 
1220           // Record the NRVO flag for this variable.
1221           NRVOFlags[&D] = NRVOFlag.getPointer();
1222           emission.NRVOFlag = NRVOFlag.getPointer();
1223         }
1224       }
1225     } else {
1226       CharUnits allocaAlignment;
1227       llvm::Type *allocaTy;
1228       if (isEscapingByRef) {
1229         auto &byrefInfo = getBlockByrefInfo(&D);
1230         allocaTy = byrefInfo.Type;
1231         allocaAlignment = byrefInfo.ByrefAlignment;
1232       } else {
1233         allocaTy = ConvertTypeForMem(Ty);
1234         allocaAlignment = alignment;
1235       }
1236 
1237       // Create the alloca.  Note that we set the name separately from
1238       // building the instruction so that it's there even in no-asserts
1239       // builds.
1240       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1241                                  /*ArraySize=*/nullptr, &AllocaAddr);
1242 
1243       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1244       // the catch parameter starts in the catchpad instruction, and we can't
1245       // insert code in those basic blocks.
1246       bool IsMSCatchParam =
1247           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1248 
1249       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1250       // if we don't have a valid insertion point (?).
1251       if (HaveInsertPoint() && !IsMSCatchParam) {
1252         // If there's a jump into the lifetime of this variable, its lifetime
1253         // gets broken up into several regions in IR, which requires more work
1254         // to handle correctly. For now, just omit the intrinsics; this is a
1255         // rare case, and it's better to just be conservatively correct.
1256         // PR28267.
1257         //
1258         // We have to do this in all language modes if there's a jump past the
1259         // declaration. We also have to do it in C if there's a jump to an
1260         // earlier point in the current block because non-VLA lifetimes begin as
1261         // soon as the containing block is entered, not when its variables
1262         // actually come into scope; suppressing the lifetime annotations
1263         // completely in this case is unnecessarily pessimistic, but again, this
1264         // is rare.
1265         if (!Bypasses.IsBypassed(&D) &&
1266             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1267           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1268           emission.SizeForLifetimeMarkers =
1269               EmitLifetimeStart(size, AllocaAddr.getPointer());
1270         }
1271       } else {
1272         assert(!emission.useLifetimeMarkers());
1273       }
1274     }
1275   } else {
1276     EnsureInsertPoint();
1277 
1278     if (!DidCallStackSave) {
1279       // Save the stack.
1280       Address Stack =
1281         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1282 
1283       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1284       llvm::Value *V = Builder.CreateCall(F);
1285       Builder.CreateStore(V, Stack);
1286 
1287       DidCallStackSave = true;
1288 
1289       // Push a cleanup block and restore the stack there.
1290       // FIXME: in general circumstances, this should be an EH cleanup.
1291       pushStackRestore(NormalCleanup, Stack);
1292     }
1293 
1294     auto VlaSize = getVLASize(Ty);
1295     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1296 
1297     // Allocate memory for the array.
1298     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1299                                &AllocaAddr);
1300 
1301     // If we have debug info enabled, properly describe the VLA dimensions for
1302     // this type by registering the vla size expression for each of the
1303     // dimensions.
1304     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1305   }
1306 
1307   setAddrOfLocalVar(&D, address);
1308   emission.Addr = address;
1309   emission.AllocaAddr = AllocaAddr;
1310 
1311   // Emit debug info for local var declaration.
1312   if (EmitDebugInfo && HaveInsertPoint()) {
1313     DI->setLocation(D.getLocation());
1314     (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1315   }
1316 
1317   if (D.hasAttr<AnnotateAttr>())
1318     EmitVarAnnotations(&D, address.getPointer());
1319 
1320   // Make sure we call @llvm.lifetime.end.
1321   if (emission.useLifetimeMarkers())
1322     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1323                                          emission.getOriginalAllocatedAddress(),
1324                                          emission.getSizeForLifetimeMarkers());
1325 
1326   return emission;
1327 }
1328 
1329 static bool isCapturedBy(const VarDecl &, const Expr *);
1330 
1331 /// Determines whether the given __block variable is potentially
1332 /// captured by the given statement.
1333 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1334   if (const Expr *E = dyn_cast<Expr>(S))
1335     return isCapturedBy(Var, E);
1336   for (const Stmt *SubStmt : S->children())
1337     if (isCapturedBy(Var, SubStmt))
1338       return true;
1339   return false;
1340 }
1341 
1342 /// Determines whether the given __block variable is potentially
1343 /// captured by the given expression.
1344 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1345   // Skip the most common kinds of expressions that make
1346   // hierarchy-walking expensive.
1347   E = E->IgnoreParenCasts();
1348 
1349   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1350     const BlockDecl *Block = BE->getBlockDecl();
1351     for (const auto &I : Block->captures()) {
1352       if (I.getVariable() == &Var)
1353         return true;
1354     }
1355 
1356     // No need to walk into the subexpressions.
1357     return false;
1358   }
1359 
1360   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1361     const CompoundStmt *CS = SE->getSubStmt();
1362     for (const auto *BI : CS->body())
1363       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1364         if (isCapturedBy(Var, BIE))
1365           return true;
1366       }
1367       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1368           // special case declarations
1369           for (const auto *I : DS->decls()) {
1370               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1371                 const Expr *Init = VD->getInit();
1372                 if (Init && isCapturedBy(Var, Init))
1373                   return true;
1374               }
1375           }
1376       }
1377       else
1378         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1379         // Later, provide code to poke into statements for capture analysis.
1380         return true;
1381     return false;
1382   }
1383 
1384   for (const Stmt *SubStmt : E->children())
1385     if (isCapturedBy(Var, SubStmt))
1386       return true;
1387 
1388   return false;
1389 }
1390 
1391 /// Determine whether the given initializer is trivial in the sense
1392 /// that it requires no code to be generated.
1393 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1394   if (!Init)
1395     return true;
1396 
1397   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1398     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1399       if (Constructor->isTrivial() &&
1400           Constructor->isDefaultConstructor() &&
1401           !Construct->requiresZeroInitialization())
1402         return true;
1403 
1404   return false;
1405 }
1406 
1407 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1408   assert(emission.Variable && "emission was not valid!");
1409 
1410   // If this was emitted as a global constant, we're done.
1411   if (emission.wasEmittedAsGlobal()) return;
1412 
1413   const VarDecl &D = *emission.Variable;
1414   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1415   QualType type = D.getType();
1416 
1417   // If this local has an initializer, emit it now.
1418   const Expr *Init = D.getInit();
1419 
1420   // If we are at an unreachable point, we don't need to emit the initializer
1421   // unless it contains a label.
1422   if (!HaveInsertPoint()) {
1423     if (!Init || !ContainsLabel(Init)) return;
1424     EnsureInsertPoint();
1425   }
1426 
1427   // Initialize the structure of a __block variable.
1428   if (emission.IsEscapingByRef)
1429     emitByrefStructureInit(emission);
1430 
1431   // Initialize the variable here if it doesn't have a initializer and it is a
1432   // C struct that is non-trivial to initialize or an array containing such a
1433   // struct.
1434   if (!Init &&
1435       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1436           QualType::PDIK_Struct) {
1437     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1438     if (emission.IsEscapingByRef)
1439       drillIntoBlockVariable(*this, Dst, &D);
1440     defaultInitNonTrivialCStructVar(Dst);
1441     return;
1442   }
1443 
1444   if (isTrivialInitializer(Init))
1445     return;
1446 
1447   // Check whether this is a byref variable that's potentially
1448   // captured and moved by its own initializer.  If so, we'll need to
1449   // emit the initializer first, then copy into the variable.
1450   bool capturedByInit = emission.IsEscapingByRef && isCapturedBy(D, Init);
1451 
1452   Address Loc =
1453     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1454 
1455   llvm::Constant *constant = nullptr;
1456   if (emission.IsConstantAggregate || D.isConstexpr()) {
1457     assert(!capturedByInit && "constant init contains a capturing block?");
1458     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1459   }
1460 
1461   if (!constant) {
1462     LValue lv = MakeAddrLValue(Loc, type);
1463     lv.setNonGC(true);
1464     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1465   }
1466 
1467   if (!emission.IsConstantAggregate) {
1468     // For simple scalar/complex initialization, store the value directly.
1469     LValue lv = MakeAddrLValue(Loc, type);
1470     lv.setNonGC(true);
1471     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1472   }
1473 
1474   // If this is a simple aggregate initialization, we can optimize it
1475   // in various ways.
1476   bool isVolatile = type.isVolatileQualified();
1477 
1478   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1479   if (Loc.getType() != BP)
1480     Loc = Builder.CreateBitCast(Loc, BP);
1481 
1482   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1483 }
1484 
1485 /// Emit an expression as an initializer for an object (variable, field, etc.)
1486 /// at the given location.  The expression is not necessarily the normal
1487 /// initializer for the object, and the address is not necessarily
1488 /// its normal location.
1489 ///
1490 /// \param init the initializing expression
1491 /// \param D the object to act as if we're initializing
1492 /// \param loc the address to initialize; its type is a pointer
1493 ///   to the LLVM mapping of the object's type
1494 /// \param alignment the alignment of the address
1495 /// \param capturedByInit true if \p D is a __block variable
1496 ///   whose address is potentially changed by the initializer
1497 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1498                                      LValue lvalue, bool capturedByInit) {
1499   QualType type = D->getType();
1500 
1501   if (type->isReferenceType()) {
1502     RValue rvalue = EmitReferenceBindingToExpr(init);
1503     if (capturedByInit)
1504       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1505     EmitStoreThroughLValue(rvalue, lvalue, true);
1506     return;
1507   }
1508   switch (getEvaluationKind(type)) {
1509   case TEK_Scalar:
1510     EmitScalarInit(init, D, lvalue, capturedByInit);
1511     return;
1512   case TEK_Complex: {
1513     ComplexPairTy complex = EmitComplexExpr(init);
1514     if (capturedByInit)
1515       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1516     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1517     return;
1518   }
1519   case TEK_Aggregate:
1520     if (type->isAtomicType()) {
1521       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1522     } else {
1523       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1524       if (isa<VarDecl>(D))
1525         Overlap = AggValueSlot::DoesNotOverlap;
1526       else if (auto *FD = dyn_cast<FieldDecl>(D))
1527         Overlap = overlapForFieldInit(FD);
1528       // TODO: how can we delay here if D is captured by its initializer?
1529       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1530                                               AggValueSlot::IsDestructed,
1531                                          AggValueSlot::DoesNotNeedGCBarriers,
1532                                               AggValueSlot::IsNotAliased,
1533                                               Overlap));
1534     }
1535     return;
1536   }
1537   llvm_unreachable("bad evaluation kind");
1538 }
1539 
1540 /// Enter a destroy cleanup for the given local variable.
1541 void CodeGenFunction::emitAutoVarTypeCleanup(
1542                             const CodeGenFunction::AutoVarEmission &emission,
1543                             QualType::DestructionKind dtorKind) {
1544   assert(dtorKind != QualType::DK_none);
1545 
1546   // Note that for __block variables, we want to destroy the
1547   // original stack object, not the possibly forwarded object.
1548   Address addr = emission.getObjectAddress(*this);
1549 
1550   const VarDecl *var = emission.Variable;
1551   QualType type = var->getType();
1552 
1553   CleanupKind cleanupKind = NormalAndEHCleanup;
1554   CodeGenFunction::Destroyer *destroyer = nullptr;
1555 
1556   switch (dtorKind) {
1557   case QualType::DK_none:
1558     llvm_unreachable("no cleanup for trivially-destructible variable");
1559 
1560   case QualType::DK_cxx_destructor:
1561     // If there's an NRVO flag on the emission, we need a different
1562     // cleanup.
1563     if (emission.NRVOFlag) {
1564       assert(!type->isArrayType());
1565       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1566       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor,
1567                                                   emission.NRVOFlag);
1568       return;
1569     }
1570     break;
1571 
1572   case QualType::DK_objc_strong_lifetime:
1573     // Suppress cleanups for pseudo-strong variables.
1574     if (var->isARCPseudoStrong()) return;
1575 
1576     // Otherwise, consider whether to use an EH cleanup or not.
1577     cleanupKind = getARCCleanupKind();
1578 
1579     // Use the imprecise destroyer by default.
1580     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1581       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1582     break;
1583 
1584   case QualType::DK_objc_weak_lifetime:
1585     break;
1586 
1587   case QualType::DK_nontrivial_c_struct:
1588     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1589     if (emission.NRVOFlag) {
1590       assert(!type->isArrayType());
1591       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1592                                                 emission.NRVOFlag, type);
1593       return;
1594     }
1595     break;
1596   }
1597 
1598   // If we haven't chosen a more specific destroyer, use the default.
1599   if (!destroyer) destroyer = getDestroyer(dtorKind);
1600 
1601   // Use an EH cleanup in array destructors iff the destructor itself
1602   // is being pushed as an EH cleanup.
1603   bool useEHCleanup = (cleanupKind & EHCleanup);
1604   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1605                                      useEHCleanup);
1606 }
1607 
1608 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1609   assert(emission.Variable && "emission was not valid!");
1610 
1611   // If this was emitted as a global constant, we're done.
1612   if (emission.wasEmittedAsGlobal()) return;
1613 
1614   // If we don't have an insertion point, we're done.  Sema prevents
1615   // us from jumping into any of these scopes anyway.
1616   if (!HaveInsertPoint()) return;
1617 
1618   const VarDecl &D = *emission.Variable;
1619 
1620   // Check the type for a cleanup.
1621   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1622     emitAutoVarTypeCleanup(emission, dtorKind);
1623 
1624   // In GC mode, honor objc_precise_lifetime.
1625   if (getLangOpts().getGC() != LangOptions::NonGC &&
1626       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1627     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1628   }
1629 
1630   // Handle the cleanup attribute.
1631   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1632     const FunctionDecl *FD = CA->getFunctionDecl();
1633 
1634     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1635     assert(F && "Could not find function!");
1636 
1637     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1638     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1639   }
1640 
1641   // If this is a block variable, call _Block_object_destroy
1642   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
1643   // mode.
1644   if (emission.IsEscapingByRef &&
1645       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
1646     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
1647     if (emission.Variable->getType().isObjCGCWeak())
1648       Flags |= BLOCK_FIELD_IS_WEAK;
1649     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
1650                       /*LoadBlockVarAddr*/ false,
1651                       cxxDestructorCanThrow(emission.Variable->getType()));
1652   }
1653 }
1654 
1655 CodeGenFunction::Destroyer *
1656 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1657   switch (kind) {
1658   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1659   case QualType::DK_cxx_destructor:
1660     return destroyCXXObject;
1661   case QualType::DK_objc_strong_lifetime:
1662     return destroyARCStrongPrecise;
1663   case QualType::DK_objc_weak_lifetime:
1664     return destroyARCWeak;
1665   case QualType::DK_nontrivial_c_struct:
1666     return destroyNonTrivialCStruct;
1667   }
1668   llvm_unreachable("Unknown DestructionKind");
1669 }
1670 
1671 /// pushEHDestroy - Push the standard destructor for the given type as
1672 /// an EH-only cleanup.
1673 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1674                                     Address addr, QualType type) {
1675   assert(dtorKind && "cannot push destructor for trivial type");
1676   assert(needsEHCleanup(dtorKind));
1677 
1678   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1679 }
1680 
1681 /// pushDestroy - Push the standard destructor for the given type as
1682 /// at least a normal cleanup.
1683 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1684                                   Address addr, QualType type) {
1685   assert(dtorKind && "cannot push destructor for trivial type");
1686 
1687   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1688   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1689               cleanupKind & EHCleanup);
1690 }
1691 
1692 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1693                                   QualType type, Destroyer *destroyer,
1694                                   bool useEHCleanupForArray) {
1695   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1696                                      destroyer, useEHCleanupForArray);
1697 }
1698 
1699 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1700   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1701 }
1702 
1703 void CodeGenFunction::pushLifetimeExtendedDestroy(
1704     CleanupKind cleanupKind, Address addr, QualType type,
1705     Destroyer *destroyer, bool useEHCleanupForArray) {
1706   // Push an EH-only cleanup for the object now.
1707   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1708   // around in case a temporary's destructor throws an exception.
1709   if (cleanupKind & EHCleanup)
1710     EHStack.pushCleanup<DestroyObject>(
1711         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1712         destroyer, useEHCleanupForArray);
1713 
1714   // Remember that we need to push a full cleanup for the object at the
1715   // end of the full-expression.
1716   pushCleanupAfterFullExpr<DestroyObject>(
1717       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1718 }
1719 
1720 /// emitDestroy - Immediately perform the destruction of the given
1721 /// object.
1722 ///
1723 /// \param addr - the address of the object; a type*
1724 /// \param type - the type of the object; if an array type, all
1725 ///   objects are destroyed in reverse order
1726 /// \param destroyer - the function to call to destroy individual
1727 ///   elements
1728 /// \param useEHCleanupForArray - whether an EH cleanup should be
1729 ///   used when destroying array elements, in case one of the
1730 ///   destructions throws an exception
1731 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1732                                   Destroyer *destroyer,
1733                                   bool useEHCleanupForArray) {
1734   const ArrayType *arrayType = getContext().getAsArrayType(type);
1735   if (!arrayType)
1736     return destroyer(*this, addr, type);
1737 
1738   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1739 
1740   CharUnits elementAlign =
1741     addr.getAlignment()
1742         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1743 
1744   // Normally we have to check whether the array is zero-length.
1745   bool checkZeroLength = true;
1746 
1747   // But if the array length is constant, we can suppress that.
1748   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1749     // ...and if it's constant zero, we can just skip the entire thing.
1750     if (constLength->isZero()) return;
1751     checkZeroLength = false;
1752   }
1753 
1754   llvm::Value *begin = addr.getPointer();
1755   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1756   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1757                    checkZeroLength, useEHCleanupForArray);
1758 }
1759 
1760 /// emitArrayDestroy - Destroys all the elements of the given array,
1761 /// beginning from last to first.  The array cannot be zero-length.
1762 ///
1763 /// \param begin - a type* denoting the first element of the array
1764 /// \param end - a type* denoting one past the end of the array
1765 /// \param elementType - the element type of the array
1766 /// \param destroyer - the function to call to destroy elements
1767 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1768 ///   the remaining elements in case the destruction of a single
1769 ///   element throws
1770 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1771                                        llvm::Value *end,
1772                                        QualType elementType,
1773                                        CharUnits elementAlign,
1774                                        Destroyer *destroyer,
1775                                        bool checkZeroLength,
1776                                        bool useEHCleanup) {
1777   assert(!elementType->isArrayType());
1778 
1779   // The basic structure here is a do-while loop, because we don't
1780   // need to check for the zero-element case.
1781   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1782   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1783 
1784   if (checkZeroLength) {
1785     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1786                                                 "arraydestroy.isempty");
1787     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1788   }
1789 
1790   // Enter the loop body, making that address the current address.
1791   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1792   EmitBlock(bodyBB);
1793   llvm::PHINode *elementPast =
1794     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1795   elementPast->addIncoming(end, entryBB);
1796 
1797   // Shift the address back by one element.
1798   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1799   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1800                                                    "arraydestroy.element");
1801 
1802   if (useEHCleanup)
1803     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1804                                    destroyer);
1805 
1806   // Perform the actual destruction there.
1807   destroyer(*this, Address(element, elementAlign), elementType);
1808 
1809   if (useEHCleanup)
1810     PopCleanupBlock();
1811 
1812   // Check whether we've reached the end.
1813   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1814   Builder.CreateCondBr(done, doneBB, bodyBB);
1815   elementPast->addIncoming(element, Builder.GetInsertBlock());
1816 
1817   // Done.
1818   EmitBlock(doneBB);
1819 }
1820 
1821 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1822 /// emitArrayDestroy, the element type here may still be an array type.
1823 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1824                                     llvm::Value *begin, llvm::Value *end,
1825                                     QualType type, CharUnits elementAlign,
1826                                     CodeGenFunction::Destroyer *destroyer) {
1827   // If the element type is itself an array, drill down.
1828   unsigned arrayDepth = 0;
1829   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1830     // VLAs don't require a GEP index to walk into.
1831     if (!isa<VariableArrayType>(arrayType))
1832       arrayDepth++;
1833     type = arrayType->getElementType();
1834   }
1835 
1836   if (arrayDepth) {
1837     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1838 
1839     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1840     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1841     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1842   }
1843 
1844   // Destroy the array.  We don't ever need an EH cleanup because we
1845   // assume that we're in an EH cleanup ourselves, so a throwing
1846   // destructor causes an immediate terminate.
1847   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1848                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1849 }
1850 
1851 namespace {
1852   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1853   /// array destroy where the end pointer is regularly determined and
1854   /// does not need to be loaded from a local.
1855   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1856     llvm::Value *ArrayBegin;
1857     llvm::Value *ArrayEnd;
1858     QualType ElementType;
1859     CodeGenFunction::Destroyer *Destroyer;
1860     CharUnits ElementAlign;
1861   public:
1862     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1863                                QualType elementType, CharUnits elementAlign,
1864                                CodeGenFunction::Destroyer *destroyer)
1865       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1866         ElementType(elementType), Destroyer(destroyer),
1867         ElementAlign(elementAlign) {}
1868 
1869     void Emit(CodeGenFunction &CGF, Flags flags) override {
1870       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1871                               ElementType, ElementAlign, Destroyer);
1872     }
1873   };
1874 
1875   /// IrregularPartialArrayDestroy - a cleanup which performs a
1876   /// partial array destroy where the end pointer is irregularly
1877   /// determined and must be loaded from a local.
1878   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1879     llvm::Value *ArrayBegin;
1880     Address ArrayEndPointer;
1881     QualType ElementType;
1882     CodeGenFunction::Destroyer *Destroyer;
1883     CharUnits ElementAlign;
1884   public:
1885     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1886                                  Address arrayEndPointer,
1887                                  QualType elementType,
1888                                  CharUnits elementAlign,
1889                                  CodeGenFunction::Destroyer *destroyer)
1890       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1891         ElementType(elementType), Destroyer(destroyer),
1892         ElementAlign(elementAlign) {}
1893 
1894     void Emit(CodeGenFunction &CGF, Flags flags) override {
1895       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1896       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1897                               ElementType, ElementAlign, Destroyer);
1898     }
1899   };
1900 } // end anonymous namespace
1901 
1902 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1903 /// already-constructed elements of the given array.  The cleanup
1904 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1905 ///
1906 /// \param elementType - the immediate element type of the array;
1907 ///   possibly still an array type
1908 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1909                                                        Address arrayEndPointer,
1910                                                        QualType elementType,
1911                                                        CharUnits elementAlign,
1912                                                        Destroyer *destroyer) {
1913   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1914                                                     arrayBegin, arrayEndPointer,
1915                                                     elementType, elementAlign,
1916                                                     destroyer);
1917 }
1918 
1919 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1920 /// already-constructed elements of the given array.  The cleanup
1921 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1922 ///
1923 /// \param elementType - the immediate element type of the array;
1924 ///   possibly still an array type
1925 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1926                                                      llvm::Value *arrayEnd,
1927                                                      QualType elementType,
1928                                                      CharUnits elementAlign,
1929                                                      Destroyer *destroyer) {
1930   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1931                                                   arrayBegin, arrayEnd,
1932                                                   elementType, elementAlign,
1933                                                   destroyer);
1934 }
1935 
1936 /// Lazily declare the @llvm.lifetime.start intrinsic.
1937 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1938   if (LifetimeStartFn)
1939     return LifetimeStartFn;
1940   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1941     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
1942   return LifetimeStartFn;
1943 }
1944 
1945 /// Lazily declare the @llvm.lifetime.end intrinsic.
1946 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1947   if (LifetimeEndFn)
1948     return LifetimeEndFn;
1949   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1950     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
1951   return LifetimeEndFn;
1952 }
1953 
1954 namespace {
1955   /// A cleanup to perform a release of an object at the end of a
1956   /// function.  This is used to balance out the incoming +1 of a
1957   /// ns_consumed argument when we can't reasonably do that just by
1958   /// not doing the initial retain for a __block argument.
1959   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1960     ConsumeARCParameter(llvm::Value *param,
1961                         ARCPreciseLifetime_t precise)
1962       : Param(param), Precise(precise) {}
1963 
1964     llvm::Value *Param;
1965     ARCPreciseLifetime_t Precise;
1966 
1967     void Emit(CodeGenFunction &CGF, Flags flags) override {
1968       CGF.EmitARCRelease(Param, Precise);
1969     }
1970   };
1971 } // end anonymous namespace
1972 
1973 /// Emit an alloca (or GlobalValue depending on target)
1974 /// for the specified parameter and set up LocalDeclMap.
1975 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1976                                    unsigned ArgNo) {
1977   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1978   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1979          "Invalid argument to EmitParmDecl");
1980 
1981   Arg.getAnyValue()->setName(D.getName());
1982 
1983   QualType Ty = D.getType();
1984 
1985   // Use better IR generation for certain implicit parameters.
1986   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1987     // The only implicit argument a block has is its literal.
1988     // This may be passed as an inalloca'ed value on Windows x86.
1989     if (BlockInfo) {
1990       llvm::Value *V = Arg.isIndirect()
1991                            ? Builder.CreateLoad(Arg.getIndirectAddress())
1992                            : Arg.getDirectValue();
1993       setBlockContextParameter(IPD, ArgNo, V);
1994       return;
1995     }
1996   }
1997 
1998   Address DeclPtr = Address::invalid();
1999   bool DoStore = false;
2000   bool IsScalar = hasScalarEvaluationKind(Ty);
2001   // If we already have a pointer to the argument, reuse the input pointer.
2002   if (Arg.isIndirect()) {
2003     DeclPtr = Arg.getIndirectAddress();
2004     // If we have a prettier pointer type at this point, bitcast to that.
2005     unsigned AS = DeclPtr.getType()->getAddressSpace();
2006     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2007     if (DeclPtr.getType() != IRTy)
2008       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2009     // Indirect argument is in alloca address space, which may be different
2010     // from the default address space.
2011     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2012     auto *V = DeclPtr.getPointer();
2013     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2014     auto DestLangAS =
2015         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2016     if (SrcLangAS != DestLangAS) {
2017       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2018              CGM.getDataLayout().getAllocaAddrSpace());
2019       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2020       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2021       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2022                             *this, V, SrcLangAS, DestLangAS, T, true),
2023                         DeclPtr.getAlignment());
2024     }
2025 
2026     // Push a destructor cleanup for this parameter if the ABI requires it.
2027     // Don't push a cleanup in a thunk for a method that will also emit a
2028     // cleanup.
2029     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2030         Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2031       if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
2032         assert((DtorKind == QualType::DK_cxx_destructor ||
2033                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2034                "unexpected destructor type");
2035         pushDestroy(DtorKind, DeclPtr, Ty);
2036         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2037             EHStack.stable_begin();
2038       }
2039     }
2040   } else {
2041     // Check if the parameter address is controlled by OpenMP runtime.
2042     Address OpenMPLocalAddr =
2043         getLangOpts().OpenMP
2044             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2045             : Address::invalid();
2046     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2047       DeclPtr = OpenMPLocalAddr;
2048     } else {
2049       // Otherwise, create a temporary to hold the value.
2050       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2051                               D.getName() + ".addr");
2052     }
2053     DoStore = true;
2054   }
2055 
2056   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2057 
2058   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2059   if (IsScalar) {
2060     Qualifiers qs = Ty.getQualifiers();
2061     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2062       // We honor __attribute__((ns_consumed)) for types with lifetime.
2063       // For __strong, it's handled by just skipping the initial retain;
2064       // otherwise we have to balance out the initial +1 with an extra
2065       // cleanup to do the release at the end of the function.
2066       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2067 
2068       // 'self' is always formally __strong, but if this is not an
2069       // init method then we don't want to retain it.
2070       if (D.isARCPseudoStrong()) {
2071         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
2072         assert(&D == method->getSelfDecl());
2073         assert(lt == Qualifiers::OCL_Strong);
2074         assert(qs.hasConst());
2075         assert(method->getMethodFamily() != OMF_init);
2076         (void) method;
2077         lt = Qualifiers::OCL_ExplicitNone;
2078       }
2079 
2080       // Load objects passed indirectly.
2081       if (Arg.isIndirect() && !ArgVal)
2082         ArgVal = Builder.CreateLoad(DeclPtr);
2083 
2084       if (lt == Qualifiers::OCL_Strong) {
2085         if (!isConsumed) {
2086           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2087             // use objc_storeStrong(&dest, value) for retaining the
2088             // object. But first, store a null into 'dest' because
2089             // objc_storeStrong attempts to release its old value.
2090             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2091             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2092             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2093             DoStore = false;
2094           }
2095           else
2096           // Don't use objc_retainBlock for block pointers, because we
2097           // don't want to Block_copy something just because we got it
2098           // as a parameter.
2099             ArgVal = EmitARCRetainNonBlock(ArgVal);
2100         }
2101       } else {
2102         // Push the cleanup for a consumed parameter.
2103         if (isConsumed) {
2104           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2105                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2106           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2107                                                    precise);
2108         }
2109 
2110         if (lt == Qualifiers::OCL_Weak) {
2111           EmitARCInitWeak(DeclPtr, ArgVal);
2112           DoStore = false; // The weak init is a store, no need to do two.
2113         }
2114       }
2115 
2116       // Enter the cleanup scope.
2117       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2118     }
2119   }
2120 
2121   // Store the initial value into the alloca.
2122   if (DoStore)
2123     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2124 
2125   setAddrOfLocalVar(&D, DeclPtr);
2126 
2127   // Emit debug info for param declaration.
2128   if (CGDebugInfo *DI = getDebugInfo()) {
2129     if (CGM.getCodeGenOpts().getDebugInfo() >=
2130         codegenoptions::LimitedDebugInfo) {
2131       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2132     }
2133   }
2134 
2135   if (D.hasAttr<AnnotateAttr>())
2136     EmitVarAnnotations(&D, DeclPtr.getPointer());
2137 
2138   // We can only check return value nullability if all arguments to the
2139   // function satisfy their nullability preconditions. This makes it necessary
2140   // to emit null checks for args in the function body itself.
2141   if (requiresReturnValueNullabilityCheck()) {
2142     auto Nullability = Ty->getNullability(getContext());
2143     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2144       SanitizerScope SanScope(this);
2145       RetValNullabilityPrecondition =
2146           Builder.CreateAnd(RetValNullabilityPrecondition,
2147                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2148     }
2149   }
2150 }
2151 
2152 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2153                                             CodeGenFunction *CGF) {
2154   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2155     return;
2156   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2157 }
2158 
2159 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2160   //Do nothing - here to avoid build errors
2161 }
2162