1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Type.h"
37 
38 using namespace clang;
39 using namespace CodeGen;
40 
41 void CodeGenFunction::EmitDecl(const Decl &D) {
42   switch (D.getKind()) {
43   case Decl::BuiltinTemplate:
44   case Decl::TranslationUnit:
45   case Decl::ExternCContext:
46   case Decl::Namespace:
47   case Decl::UnresolvedUsingTypename:
48   case Decl::ClassTemplateSpecialization:
49   case Decl::ClassTemplatePartialSpecialization:
50   case Decl::VarTemplateSpecialization:
51   case Decl::VarTemplatePartialSpecialization:
52   case Decl::TemplateTypeParm:
53   case Decl::UnresolvedUsingValue:
54   case Decl::NonTypeTemplateParm:
55   case Decl::CXXDeductionGuide:
56   case Decl::CXXMethod:
57   case Decl::CXXConstructor:
58   case Decl::CXXDestructor:
59   case Decl::CXXConversion:
60   case Decl::Field:
61   case Decl::MSProperty:
62   case Decl::IndirectField:
63   case Decl::ObjCIvar:
64   case Decl::ObjCAtDefsField:
65   case Decl::ParmVar:
66   case Decl::ImplicitParam:
67   case Decl::ClassTemplate:
68   case Decl::VarTemplate:
69   case Decl::FunctionTemplate:
70   case Decl::TypeAliasTemplate:
71   case Decl::TemplateTemplateParm:
72   case Decl::ObjCMethod:
73   case Decl::ObjCCategory:
74   case Decl::ObjCProtocol:
75   case Decl::ObjCInterface:
76   case Decl::ObjCCategoryImpl:
77   case Decl::ObjCImplementation:
78   case Decl::ObjCProperty:
79   case Decl::ObjCCompatibleAlias:
80   case Decl::PragmaComment:
81   case Decl::PragmaDetectMismatch:
82   case Decl::AccessSpec:
83   case Decl::LinkageSpec:
84   case Decl::Export:
85   case Decl::ObjCPropertyImpl:
86   case Decl::FileScopeAsm:
87   case Decl::Friend:
88   case Decl::FriendTemplate:
89   case Decl::Block:
90   case Decl::Captured:
91   case Decl::ClassScopeFunctionSpecialization:
92   case Decl::UsingShadow:
93   case Decl::ConstructorUsingShadow:
94   case Decl::ObjCTypeParam:
95   case Decl::Binding:
96     llvm_unreachable("Declaration should not be in declstmts!");
97   case Decl::Function:  // void X();
98   case Decl::Record:    // struct/union/class X;
99   case Decl::Enum:      // enum X;
100   case Decl::EnumConstant: // enum ? { X = ? }
101   case Decl::CXXRecord: // struct/union/class X; [C++]
102   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
103   case Decl::Label:        // __label__ x;
104   case Decl::Import:
105   case Decl::OMPThreadPrivate:
106   case Decl::OMPCapturedExpr:
107   case Decl::Empty:
108     // None of these decls require codegen support.
109     return;
110 
111   case Decl::NamespaceAlias:
112     if (CGDebugInfo *DI = getDebugInfo())
113         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
114     return;
115   case Decl::Using:          // using X; [C++]
116     if (CGDebugInfo *DI = getDebugInfo())
117         DI->EmitUsingDecl(cast<UsingDecl>(D));
118     return;
119   case Decl::UsingPack:
120     for (auto *Using : cast<UsingPackDecl>(D).expansions())
121       EmitDecl(*Using);
122     return;
123   case Decl::UsingDirective: // using namespace X; [C++]
124     if (CGDebugInfo *DI = getDebugInfo())
125       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
126     return;
127   case Decl::Var:
128   case Decl::Decomposition: {
129     const VarDecl &VD = cast<VarDecl>(D);
130     assert(VD.isLocalVarDecl() &&
131            "Should not see file-scope variables inside a function!");
132     EmitVarDecl(VD);
133     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
134       for (auto *B : DD->bindings())
135         if (auto *HD = B->getHoldingVar())
136           EmitVarDecl(*HD);
137     return;
138   }
139 
140   case Decl::OMPDeclareReduction:
141     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
142 
143   case Decl::Typedef:      // typedef int X;
144   case Decl::TypeAlias: {  // using X = int; [C++0x]
145     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
146     QualType Ty = TD.getUnderlyingType();
147 
148     if (Ty->isVariablyModifiedType())
149       EmitVariablyModifiedType(Ty);
150   }
151   }
152 }
153 
154 /// EmitVarDecl - This method handles emission of any variable declaration
155 /// inside a function, including static vars etc.
156 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
157   if (D.hasExternalStorage())
158     // Don't emit it now, allow it to be emitted lazily on its first use.
159     return;
160 
161   // Some function-scope variable does not have static storage but still
162   // needs to be emitted like a static variable, e.g. a function-scope
163   // variable in constant address space in OpenCL.
164   if (D.getStorageDuration() != SD_Automatic) {
165     // Static sampler variables translated to function calls.
166     if (D.getType()->isSamplerT())
167       return;
168 
169     llvm::GlobalValue::LinkageTypes Linkage =
170         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
171 
172     // FIXME: We need to force the emission/use of a guard variable for
173     // some variables even if we can constant-evaluate them because
174     // we can't guarantee every translation unit will constant-evaluate them.
175 
176     return EmitStaticVarDecl(D, Linkage);
177   }
178 
179   if (D.getType().getAddressSpace() == LangAS::opencl_local)
180     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
181 
182   assert(D.hasLocalStorage());
183   return EmitAutoVarDecl(D);
184 }
185 
186 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
187   if (CGM.getLangOpts().CPlusPlus)
188     return CGM.getMangledName(&D).str();
189 
190   // If this isn't C++, we don't need a mangled name, just a pretty one.
191   assert(!D.isExternallyVisible() && "name shouldn't matter");
192   std::string ContextName;
193   const DeclContext *DC = D.getDeclContext();
194   if (auto *CD = dyn_cast<CapturedDecl>(DC))
195     DC = cast<DeclContext>(CD->getNonClosureContext());
196   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
197     ContextName = CGM.getMangledName(FD);
198   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
199     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
200   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
201     ContextName = OMD->getSelector().getAsString();
202   else
203     llvm_unreachable("Unknown context for static var decl");
204 
205   ContextName += "." + D.getNameAsString();
206   return ContextName;
207 }
208 
209 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
210     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
211   // In general, we don't always emit static var decls once before we reference
212   // them. It is possible to reference them before emitting the function that
213   // contains them, and it is possible to emit the containing function multiple
214   // times.
215   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
216     return ExistingGV;
217 
218   QualType Ty = D.getType();
219   assert(Ty->isConstantSizeType() && "VLAs can't be static");
220 
221   // Use the label if the variable is renamed with the asm-label extension.
222   std::string Name;
223   if (D.hasAttr<AsmLabelAttr>())
224     Name = getMangledName(&D);
225   else
226     Name = getStaticDeclName(*this, D);
227 
228   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
229   LangAS AS = GetGlobalVarAddressSpace(&D);
230   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
231 
232   // Local address space cannot have an initializer.
233   llvm::Constant *Init = nullptr;
234   if (Ty.getAddressSpace() != LangAS::opencl_local)
235     Init = EmitNullConstant(Ty);
236   else
237     Init = llvm::UndefValue::get(LTy);
238 
239   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
240       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
241       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
242   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
243 
244   if (supportsCOMDAT() && GV->isWeakForLinker())
245     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
246 
247   if (D.getTLSKind())
248     setTLSMode(GV, D);
249 
250   setGVProperties(GV, &D);
251 
252   // Make sure the result is of the correct type.
253   LangAS ExpectedAS = Ty.getAddressSpace();
254   llvm::Constant *Addr = GV;
255   if (AS != ExpectedAS) {
256     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
257         *this, GV, AS, ExpectedAS,
258         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
259   }
260 
261   setStaticLocalDeclAddress(&D, Addr);
262 
263   // Ensure that the static local gets initialized by making sure the parent
264   // function gets emitted eventually.
265   const Decl *DC = cast<Decl>(D.getDeclContext());
266 
267   // We can't name blocks or captured statements directly, so try to emit their
268   // parents.
269   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
270     DC = DC->getNonClosureContext();
271     // FIXME: Ensure that global blocks get emitted.
272     if (!DC)
273       return Addr;
274   }
275 
276   GlobalDecl GD;
277   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
278     GD = GlobalDecl(CD, Ctor_Base);
279   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
280     GD = GlobalDecl(DD, Dtor_Base);
281   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
282     GD = GlobalDecl(FD);
283   else {
284     // Don't do anything for Obj-C method decls or global closures. We should
285     // never defer them.
286     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
287   }
288   if (GD.getDecl()) {
289     // Disable emission of the parent function for the OpenMP device codegen.
290     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
291     (void)GetAddrOfGlobal(GD);
292   }
293 
294   return Addr;
295 }
296 
297 /// hasNontrivialDestruction - Determine whether a type's destruction is
298 /// non-trivial. If so, and the variable uses static initialization, we must
299 /// register its destructor to run on exit.
300 static bool hasNontrivialDestruction(QualType T) {
301   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
302   return RD && !RD->hasTrivialDestructor();
303 }
304 
305 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
306 /// global variable that has already been created for it.  If the initializer
307 /// has a different type than GV does, this may free GV and return a different
308 /// one.  Otherwise it just returns GV.
309 llvm::GlobalVariable *
310 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
311                                                llvm::GlobalVariable *GV) {
312   ConstantEmitter emitter(*this);
313   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
314 
315   // If constant emission failed, then this should be a C++ static
316   // initializer.
317   if (!Init) {
318     if (!getLangOpts().CPlusPlus)
319       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
320     else if (HaveInsertPoint()) {
321       // Since we have a static initializer, this global variable can't
322       // be constant.
323       GV->setConstant(false);
324 
325       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
326     }
327     return GV;
328   }
329 
330   // The initializer may differ in type from the global. Rewrite
331   // the global to match the initializer.  (We have to do this
332   // because some types, like unions, can't be completely represented
333   // in the LLVM type system.)
334   if (GV->getType()->getElementType() != Init->getType()) {
335     llvm::GlobalVariable *OldGV = GV;
336 
337     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
338                                   OldGV->isConstant(),
339                                   OldGV->getLinkage(), Init, "",
340                                   /*InsertBefore*/ OldGV,
341                                   OldGV->getThreadLocalMode(),
342                            CGM.getContext().getTargetAddressSpace(D.getType()));
343     GV->setVisibility(OldGV->getVisibility());
344     GV->setDSOLocal(OldGV->isDSOLocal());
345     GV->setComdat(OldGV->getComdat());
346 
347     // Steal the name of the old global
348     GV->takeName(OldGV);
349 
350     // Replace all uses of the old global with the new global
351     llvm::Constant *NewPtrForOldDecl =
352     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
353     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
354 
355     // Erase the old global, since it is no longer used.
356     OldGV->eraseFromParent();
357   }
358 
359   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
360   GV->setInitializer(Init);
361 
362   emitter.finalize(GV);
363 
364   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
365     // We have a constant initializer, but a nontrivial destructor. We still
366     // need to perform a guarded "initialization" in order to register the
367     // destructor.
368     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
369   }
370 
371   return GV;
372 }
373 
374 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
375                                       llvm::GlobalValue::LinkageTypes Linkage) {
376   // Check to see if we already have a global variable for this
377   // declaration.  This can happen when double-emitting function
378   // bodies, e.g. with complete and base constructors.
379   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
380   CharUnits alignment = getContext().getDeclAlign(&D);
381 
382   // Store into LocalDeclMap before generating initializer to handle
383   // circular references.
384   setAddrOfLocalVar(&D, Address(addr, alignment));
385 
386   // We can't have a VLA here, but we can have a pointer to a VLA,
387   // even though that doesn't really make any sense.
388   // Make sure to evaluate VLA bounds now so that we have them for later.
389   if (D.getType()->isVariablyModifiedType())
390     EmitVariablyModifiedType(D.getType());
391 
392   // Save the type in case adding the initializer forces a type change.
393   llvm::Type *expectedType = addr->getType();
394 
395   llvm::GlobalVariable *var =
396     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
397 
398   // CUDA's local and local static __shared__ variables should not
399   // have any non-empty initializers. This is ensured by Sema.
400   // Whatever initializer such variable may have when it gets here is
401   // a no-op and should not be emitted.
402   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
403                          D.hasAttr<CUDASharedAttr>();
404   // If this value has an initializer, emit it.
405   if (D.getInit() && !isCudaSharedVar)
406     var = AddInitializerToStaticVarDecl(D, var);
407 
408   var->setAlignment(alignment.getQuantity());
409 
410   if (D.hasAttr<AnnotateAttr>())
411     CGM.AddGlobalAnnotations(&D, var);
412 
413   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
414     var->addAttribute("bss-section", SA->getName());
415   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
416     var->addAttribute("data-section", SA->getName());
417   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
418     var->addAttribute("rodata-section", SA->getName());
419 
420   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
421     var->setSection(SA->getName());
422 
423   if (D.hasAttr<UsedAttr>())
424     CGM.addUsedGlobal(var);
425 
426   // We may have to cast the constant because of the initializer
427   // mismatch above.
428   //
429   // FIXME: It is really dangerous to store this in the map; if anyone
430   // RAUW's the GV uses of this constant will be invalid.
431   llvm::Constant *castedAddr =
432     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
433   if (var != castedAddr)
434     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
435   CGM.setStaticLocalDeclAddress(&D, castedAddr);
436 
437   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
438 
439   // Emit global variable debug descriptor for static vars.
440   CGDebugInfo *DI = getDebugInfo();
441   if (DI &&
442       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
443     DI->setLocation(D.getLocation());
444     DI->EmitGlobalVariable(var, &D);
445   }
446 }
447 
448 namespace {
449   struct DestroyObject final : EHScopeStack::Cleanup {
450     DestroyObject(Address addr, QualType type,
451                   CodeGenFunction::Destroyer *destroyer,
452                   bool useEHCleanupForArray)
453       : addr(addr), type(type), destroyer(destroyer),
454         useEHCleanupForArray(useEHCleanupForArray) {}
455 
456     Address addr;
457     QualType type;
458     CodeGenFunction::Destroyer *destroyer;
459     bool useEHCleanupForArray;
460 
461     void Emit(CodeGenFunction &CGF, Flags flags) override {
462       // Don't use an EH cleanup recursively from an EH cleanup.
463       bool useEHCleanupForArray =
464         flags.isForNormalCleanup() && this->useEHCleanupForArray;
465 
466       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
467     }
468   };
469 
470   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
471     DestroyNRVOVariable(Address addr,
472                         const CXXDestructorDecl *Dtor,
473                         llvm::Value *NRVOFlag)
474       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
475 
476     const CXXDestructorDecl *Dtor;
477     llvm::Value *NRVOFlag;
478     Address Loc;
479 
480     void Emit(CodeGenFunction &CGF, Flags flags) override {
481       // Along the exceptions path we always execute the dtor.
482       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
483 
484       llvm::BasicBlock *SkipDtorBB = nullptr;
485       if (NRVO) {
486         // If we exited via NRVO, we skip the destructor call.
487         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
488         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
489         llvm::Value *DidNRVO =
490           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
491         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
492         CGF.EmitBlock(RunDtorBB);
493       }
494 
495       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
496                                 /*ForVirtualBase=*/false,
497                                 /*Delegating=*/false,
498                                 Loc);
499 
500       if (NRVO) CGF.EmitBlock(SkipDtorBB);
501     }
502   };
503 
504   struct CallStackRestore final : EHScopeStack::Cleanup {
505     Address Stack;
506     CallStackRestore(Address Stack) : Stack(Stack) {}
507     void Emit(CodeGenFunction &CGF, Flags flags) override {
508       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
509       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
510       CGF.Builder.CreateCall(F, V);
511     }
512   };
513 
514   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
515     const VarDecl &Var;
516     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
517 
518     void Emit(CodeGenFunction &CGF, Flags flags) override {
519       // Compute the address of the local variable, in case it's a
520       // byref or something.
521       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
522                       Var.getType(), VK_LValue, SourceLocation());
523       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
524                                                 SourceLocation());
525       CGF.EmitExtendGCLifetime(value);
526     }
527   };
528 
529   struct CallCleanupFunction final : EHScopeStack::Cleanup {
530     llvm::Constant *CleanupFn;
531     const CGFunctionInfo &FnInfo;
532     const VarDecl &Var;
533 
534     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
535                         const VarDecl *Var)
536       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
537 
538     void Emit(CodeGenFunction &CGF, Flags flags) override {
539       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
540                       Var.getType(), VK_LValue, SourceLocation());
541       // Compute the address of the local variable, in case it's a byref
542       // or something.
543       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
544 
545       // In some cases, the type of the function argument will be different from
546       // the type of the pointer. An example of this is
547       // void f(void* arg);
548       // __attribute__((cleanup(f))) void *g;
549       //
550       // To fix this we insert a bitcast here.
551       QualType ArgTy = FnInfo.arg_begin()->type;
552       llvm::Value *Arg =
553         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
554 
555       CallArgList Args;
556       Args.add(RValue::get(Arg),
557                CGF.getContext().getPointerType(Var.getType()));
558       auto Callee = CGCallee::forDirect(CleanupFn);
559       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
560     }
561   };
562 } // end anonymous namespace
563 
564 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
565 /// variable with lifetime.
566 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
567                                     Address addr,
568                                     Qualifiers::ObjCLifetime lifetime) {
569   switch (lifetime) {
570   case Qualifiers::OCL_None:
571     llvm_unreachable("present but none");
572 
573   case Qualifiers::OCL_ExplicitNone:
574     // nothing to do
575     break;
576 
577   case Qualifiers::OCL_Strong: {
578     CodeGenFunction::Destroyer *destroyer =
579       (var.hasAttr<ObjCPreciseLifetimeAttr>()
580        ? CodeGenFunction::destroyARCStrongPrecise
581        : CodeGenFunction::destroyARCStrongImprecise);
582 
583     CleanupKind cleanupKind = CGF.getARCCleanupKind();
584     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
585                     cleanupKind & EHCleanup);
586     break;
587   }
588   case Qualifiers::OCL_Autoreleasing:
589     // nothing to do
590     break;
591 
592   case Qualifiers::OCL_Weak:
593     // __weak objects always get EH cleanups; otherwise, exceptions
594     // could cause really nasty crashes instead of mere leaks.
595     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
596                     CodeGenFunction::destroyARCWeak,
597                     /*useEHCleanup*/ true);
598     break;
599   }
600 }
601 
602 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
603   if (const Expr *e = dyn_cast<Expr>(s)) {
604     // Skip the most common kinds of expressions that make
605     // hierarchy-walking expensive.
606     s = e = e->IgnoreParenCasts();
607 
608     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
609       return (ref->getDecl() == &var);
610     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
611       const BlockDecl *block = be->getBlockDecl();
612       for (const auto &I : block->captures()) {
613         if (I.getVariable() == &var)
614           return true;
615       }
616     }
617   }
618 
619   for (const Stmt *SubStmt : s->children())
620     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
621     if (SubStmt && isAccessedBy(var, SubStmt))
622       return true;
623 
624   return false;
625 }
626 
627 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
628   if (!decl) return false;
629   if (!isa<VarDecl>(decl)) return false;
630   const VarDecl *var = cast<VarDecl>(decl);
631   return isAccessedBy(*var, e);
632 }
633 
634 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
635                                    const LValue &destLV, const Expr *init) {
636   bool needsCast = false;
637 
638   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
639     switch (castExpr->getCastKind()) {
640     // Look through casts that don't require representation changes.
641     case CK_NoOp:
642     case CK_BitCast:
643     case CK_BlockPointerToObjCPointerCast:
644       needsCast = true;
645       break;
646 
647     // If we find an l-value to r-value cast from a __weak variable,
648     // emit this operation as a copy or move.
649     case CK_LValueToRValue: {
650       const Expr *srcExpr = castExpr->getSubExpr();
651       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
652         return false;
653 
654       // Emit the source l-value.
655       LValue srcLV = CGF.EmitLValue(srcExpr);
656 
657       // Handle a formal type change to avoid asserting.
658       auto srcAddr = srcLV.getAddress();
659       if (needsCast) {
660         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
661                                          destLV.getAddress().getElementType());
662       }
663 
664       // If it was an l-value, use objc_copyWeak.
665       if (srcExpr->getValueKind() == VK_LValue) {
666         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
667       } else {
668         assert(srcExpr->getValueKind() == VK_XValue);
669         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
670       }
671       return true;
672     }
673 
674     // Stop at anything else.
675     default:
676       return false;
677     }
678 
679     init = castExpr->getSubExpr();
680   }
681   return false;
682 }
683 
684 static void drillIntoBlockVariable(CodeGenFunction &CGF,
685                                    LValue &lvalue,
686                                    const VarDecl *var) {
687   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
688 }
689 
690 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
691                                            SourceLocation Loc) {
692   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
693     return;
694 
695   auto Nullability = LHS.getType()->getNullability(getContext());
696   if (!Nullability || *Nullability != NullabilityKind::NonNull)
697     return;
698 
699   // Check if the right hand side of the assignment is nonnull, if the left
700   // hand side must be nonnull.
701   SanitizerScope SanScope(this);
702   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
703   llvm::Constant *StaticData[] = {
704       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
705       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
706       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
707   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
708             SanitizerHandler::TypeMismatch, StaticData, RHS);
709 }
710 
711 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
712                                      LValue lvalue, bool capturedByInit) {
713   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
714   if (!lifetime) {
715     llvm::Value *value = EmitScalarExpr(init);
716     if (capturedByInit)
717       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
718     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
719     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
720     return;
721   }
722 
723   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
724     init = DIE->getExpr();
725 
726   // If we're emitting a value with lifetime, we have to do the
727   // initialization *before* we leave the cleanup scopes.
728   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
729     enterFullExpression(ewc);
730     init = ewc->getSubExpr();
731   }
732   CodeGenFunction::RunCleanupsScope Scope(*this);
733 
734   // We have to maintain the illusion that the variable is
735   // zero-initialized.  If the variable might be accessed in its
736   // initializer, zero-initialize before running the initializer, then
737   // actually perform the initialization with an assign.
738   bool accessedByInit = false;
739   if (lifetime != Qualifiers::OCL_ExplicitNone)
740     accessedByInit = (capturedByInit || isAccessedBy(D, init));
741   if (accessedByInit) {
742     LValue tempLV = lvalue;
743     // Drill down to the __block object if necessary.
744     if (capturedByInit) {
745       // We can use a simple GEP for this because it can't have been
746       // moved yet.
747       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
748                                               cast<VarDecl>(D),
749                                               /*follow*/ false));
750     }
751 
752     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
753     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
754 
755     // If __weak, we want to use a barrier under certain conditions.
756     if (lifetime == Qualifiers::OCL_Weak)
757       EmitARCInitWeak(tempLV.getAddress(), zero);
758 
759     // Otherwise just do a simple store.
760     else
761       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
762   }
763 
764   // Emit the initializer.
765   llvm::Value *value = nullptr;
766 
767   switch (lifetime) {
768   case Qualifiers::OCL_None:
769     llvm_unreachable("present but none");
770 
771   case Qualifiers::OCL_ExplicitNone:
772     value = EmitARCUnsafeUnretainedScalarExpr(init);
773     break;
774 
775   case Qualifiers::OCL_Strong: {
776     value = EmitARCRetainScalarExpr(init);
777     break;
778   }
779 
780   case Qualifiers::OCL_Weak: {
781     // If it's not accessed by the initializer, try to emit the
782     // initialization with a copy or move.
783     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
784       return;
785     }
786 
787     // No way to optimize a producing initializer into this.  It's not
788     // worth optimizing for, because the value will immediately
789     // disappear in the common case.
790     value = EmitScalarExpr(init);
791 
792     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
793     if (accessedByInit)
794       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
795     else
796       EmitARCInitWeak(lvalue.getAddress(), value);
797     return;
798   }
799 
800   case Qualifiers::OCL_Autoreleasing:
801     value = EmitARCRetainAutoreleaseScalarExpr(init);
802     break;
803   }
804 
805   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
806 
807   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
808 
809   // If the variable might have been accessed by its initializer, we
810   // might have to initialize with a barrier.  We have to do this for
811   // both __weak and __strong, but __weak got filtered out above.
812   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
813     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
814     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
815     EmitARCRelease(oldValue, ARCImpreciseLifetime);
816     return;
817   }
818 
819   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
820 }
821 
822 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
823 /// non-zero parts of the specified initializer with equal or fewer than
824 /// NumStores scalar stores.
825 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
826                                                 unsigned &NumStores) {
827   // Zero and Undef never requires any extra stores.
828   if (isa<llvm::ConstantAggregateZero>(Init) ||
829       isa<llvm::ConstantPointerNull>(Init) ||
830       isa<llvm::UndefValue>(Init))
831     return true;
832   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
833       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
834       isa<llvm::ConstantExpr>(Init))
835     return Init->isNullValue() || NumStores--;
836 
837   // See if we can emit each element.
838   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
839     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
840       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
841       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
842         return false;
843     }
844     return true;
845   }
846 
847   if (llvm::ConstantDataSequential *CDS =
848         dyn_cast<llvm::ConstantDataSequential>(Init)) {
849     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
850       llvm::Constant *Elt = CDS->getElementAsConstant(i);
851       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
852         return false;
853     }
854     return true;
855   }
856 
857   // Anything else is hard and scary.
858   return false;
859 }
860 
861 /// emitStoresForInitAfterMemset - For inits that
862 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
863 /// stores that would be required.
864 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
865                                          bool isVolatile, CGBuilderTy &Builder) {
866   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
867          "called emitStoresForInitAfterMemset for zero or undef value.");
868 
869   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
870       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
871       isa<llvm::ConstantExpr>(Init)) {
872     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
873     return;
874   }
875 
876   if (llvm::ConstantDataSequential *CDS =
877           dyn_cast<llvm::ConstantDataSequential>(Init)) {
878     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
879       llvm::Constant *Elt = CDS->getElementAsConstant(i);
880 
881       // If necessary, get a pointer to the element and emit it.
882       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
883         emitStoresForInitAfterMemset(
884             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
885             isVolatile, Builder);
886     }
887     return;
888   }
889 
890   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
891          "Unknown value type!");
892 
893   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
894     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
895 
896     // If necessary, get a pointer to the element and emit it.
897     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
898       emitStoresForInitAfterMemset(
899           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
900           isVolatile, Builder);
901   }
902 }
903 
904 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
905 /// plus some stores to initialize a local variable instead of using a memcpy
906 /// from a constant global.  It is beneficial to use memset if the global is all
907 /// zeros, or mostly zeros and large.
908 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
909                                                   uint64_t GlobalSize) {
910   // If a global is all zeros, always use a memset.
911   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
912 
913   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
914   // do it if it will require 6 or fewer scalar stores.
915   // TODO: Should budget depends on the size?  Avoiding a large global warrants
916   // plopping in more stores.
917   unsigned StoreBudget = 6;
918   uint64_t SizeLimit = 32;
919 
920   return GlobalSize > SizeLimit &&
921          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
922 }
923 
924 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
925 /// variable declaration with auto, register, or no storage class specifier.
926 /// These turn into simple stack objects, or GlobalValues depending on target.
927 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
928   AutoVarEmission emission = EmitAutoVarAlloca(D);
929   EmitAutoVarInit(emission);
930   EmitAutoVarCleanups(emission);
931 }
932 
933 /// Emit a lifetime.begin marker if some criteria are satisfied.
934 /// \return a pointer to the temporary size Value if a marker was emitted, null
935 /// otherwise
936 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
937                                                 llvm::Value *Addr) {
938   if (!ShouldEmitLifetimeMarkers)
939     return nullptr;
940 
941   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
942   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
943   llvm::CallInst *C =
944       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
945   C->setDoesNotThrow();
946   return SizeV;
947 }
948 
949 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
950   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
951   llvm::CallInst *C =
952       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
953   C->setDoesNotThrow();
954 }
955 
956 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
957     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
958   // For each dimension stores its QualType and corresponding
959   // size-expression Value.
960   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
961 
962   // Break down the array into individual dimensions.
963   QualType Type1D = D.getType();
964   while (getContext().getAsVariableArrayType(Type1D)) {
965     auto VlaSize = getVLAElements1D(Type1D);
966     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
967       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
968     else {
969       auto SizeExprAddr = CreateDefaultAlignTempAlloca(
970           VlaSize.NumElts->getType(), "__vla_expr");
971       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
972       Dimensions.emplace_back(SizeExprAddr.getPointer(),
973                               Type1D.getUnqualifiedType());
974     }
975     Type1D = VlaSize.Type;
976   }
977 
978   if (!EmitDebugInfo)
979     return;
980 
981   // Register each dimension's size-expression with a DILocalVariable,
982   // so that it can be used by CGDebugInfo when instantiating a DISubrange
983   // to describe this array.
984   for (auto &VlaSize : Dimensions) {
985     llvm::Metadata *MD;
986     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
987       MD = llvm::ConstantAsMetadata::get(C);
988     else {
989       // Create an artificial VarDecl to generate debug info for.
990       IdentifierInfo &NameIdent = getContext().Idents.getOwn(
991           cast<llvm::AllocaInst>(VlaSize.NumElts)->getName());
992       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
993       auto QT = getContext().getIntTypeForBitwidth(
994           VlaExprTy->getScalarSizeInBits(), false);
995       auto *ArtificialDecl = VarDecl::Create(
996           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
997           D.getLocation(), D.getLocation(), &NameIdent, QT,
998           getContext().CreateTypeSourceInfo(QT), SC_Auto);
999       ArtificialDecl->setImplicit();
1000 
1001       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1002                                          Builder);
1003     }
1004     assert(MD && "No Size expression debug node created");
1005     DI->registerVLASizeExpression(VlaSize.Type, MD);
1006   }
1007 }
1008 
1009 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1010 /// local variable.  Does not emit initialization or destruction.
1011 CodeGenFunction::AutoVarEmission
1012 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1013   QualType Ty = D.getType();
1014   assert(
1015       Ty.getAddressSpace() == LangAS::Default ||
1016       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1017 
1018   AutoVarEmission emission(D);
1019 
1020   bool isByRef = D.hasAttr<BlocksAttr>();
1021   emission.IsByRef = isByRef;
1022 
1023   CharUnits alignment = getContext().getDeclAlign(&D);
1024 
1025   // If the type is variably-modified, emit all the VLA sizes for it.
1026   if (Ty->isVariablyModifiedType())
1027     EmitVariablyModifiedType(Ty);
1028 
1029   auto *DI = getDebugInfo();
1030   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1031                                  codegenoptions::LimitedDebugInfo;
1032 
1033   Address address = Address::invalid();
1034   if (Ty->isConstantSizeType()) {
1035     bool NRVO = getLangOpts().ElideConstructors &&
1036       D.isNRVOVariable();
1037 
1038     // If this value is an array or struct with a statically determinable
1039     // constant initializer, there are optimizations we can do.
1040     //
1041     // TODO: We should constant-evaluate the initializer of any variable,
1042     // as long as it is initialized by a constant expression. Currently,
1043     // isConstantInitializer produces wrong answers for structs with
1044     // reference or bitfield members, and a few other cases, and checking
1045     // for POD-ness protects us from some of these.
1046     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1047         (D.isConstexpr() ||
1048          ((Ty.isPODType(getContext()) ||
1049            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1050           D.getInit()->isConstantInitializer(getContext(), false)))) {
1051 
1052       // If the variable's a const type, and it's neither an NRVO
1053       // candidate nor a __block variable and has no mutable members,
1054       // emit it as a global instead.
1055       // Exception is if a variable is located in non-constant address space
1056       // in OpenCL.
1057       if ((!getLangOpts().OpenCL ||
1058            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1059           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
1060            CGM.isTypeConstant(Ty, true))) {
1061         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1062 
1063         // Signal this condition to later callbacks.
1064         emission.Addr = Address::invalid();
1065         assert(emission.wasEmittedAsGlobal());
1066         return emission;
1067       }
1068 
1069       // Otherwise, tell the initialization code that we're in this case.
1070       emission.IsConstantAggregate = true;
1071     }
1072 
1073     // A normal fixed sized variable becomes an alloca in the entry block,
1074     // unless:
1075     // - it's an NRVO variable.
1076     // - we are compiling OpenMP and it's an OpenMP local variable.
1077 
1078     Address OpenMPLocalAddr =
1079         getLangOpts().OpenMP
1080             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1081             : Address::invalid();
1082     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1083       address = OpenMPLocalAddr;
1084     } else if (NRVO) {
1085       // The named return value optimization: allocate this variable in the
1086       // return slot, so that we can elide the copy when returning this
1087       // variable (C++0x [class.copy]p34).
1088       address = ReturnValue;
1089 
1090       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1091         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
1092           // Create a flag that is used to indicate when the NRVO was applied
1093           // to this variable. Set it to zero to indicate that NRVO was not
1094           // applied.
1095           llvm::Value *Zero = Builder.getFalse();
1096           Address NRVOFlag =
1097             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1098           EnsureInsertPoint();
1099           Builder.CreateStore(Zero, NRVOFlag);
1100 
1101           // Record the NRVO flag for this variable.
1102           NRVOFlags[&D] = NRVOFlag.getPointer();
1103           emission.NRVOFlag = NRVOFlag.getPointer();
1104         }
1105       }
1106     } else {
1107       CharUnits allocaAlignment;
1108       llvm::Type *allocaTy;
1109       if (isByRef) {
1110         auto &byrefInfo = getBlockByrefInfo(&D);
1111         allocaTy = byrefInfo.Type;
1112         allocaAlignment = byrefInfo.ByrefAlignment;
1113       } else {
1114         allocaTy = ConvertTypeForMem(Ty);
1115         allocaAlignment = alignment;
1116       }
1117 
1118       // Create the alloca.  Note that we set the name separately from
1119       // building the instruction so that it's there even in no-asserts
1120       // builds.
1121       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName());
1122 
1123       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1124       // the catch parameter starts in the catchpad instruction, and we can't
1125       // insert code in those basic blocks.
1126       bool IsMSCatchParam =
1127           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1128 
1129       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1130       // if we don't have a valid insertion point (?).
1131       if (HaveInsertPoint() && !IsMSCatchParam) {
1132         // If there's a jump into the lifetime of this variable, its lifetime
1133         // gets broken up into several regions in IR, which requires more work
1134         // to handle correctly. For now, just omit the intrinsics; this is a
1135         // rare case, and it's better to just be conservatively correct.
1136         // PR28267.
1137         //
1138         // We have to do this in all language modes if there's a jump past the
1139         // declaration. We also have to do it in C if there's a jump to an
1140         // earlier point in the current block because non-VLA lifetimes begin as
1141         // soon as the containing block is entered, not when its variables
1142         // actually come into scope; suppressing the lifetime annotations
1143         // completely in this case is unnecessarily pessimistic, but again, this
1144         // is rare.
1145         if (!Bypasses.IsBypassed(&D) &&
1146             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1147           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1148           emission.SizeForLifetimeMarkers =
1149               EmitLifetimeStart(size, address.getPointer());
1150         }
1151       } else {
1152         assert(!emission.useLifetimeMarkers());
1153       }
1154     }
1155   } else {
1156     EnsureInsertPoint();
1157 
1158     if (!DidCallStackSave) {
1159       // Save the stack.
1160       Address Stack =
1161         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1162 
1163       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1164       llvm::Value *V = Builder.CreateCall(F);
1165       Builder.CreateStore(V, Stack);
1166 
1167       DidCallStackSave = true;
1168 
1169       // Push a cleanup block and restore the stack there.
1170       // FIXME: in general circumstances, this should be an EH cleanup.
1171       pushStackRestore(NormalCleanup, Stack);
1172     }
1173 
1174     auto VlaSize = getVLASize(Ty);
1175     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1176 
1177     // Allocate memory for the array.
1178     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts);
1179 
1180     // If we have debug info enabled, properly describe the VLA dimensions for
1181     // this type by registering the vla size expression for each of the
1182     // dimensions.
1183     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1184   }
1185 
1186   setAddrOfLocalVar(&D, address);
1187   emission.Addr = address;
1188 
1189   // Emit debug info for local var declaration.
1190   if (EmitDebugInfo && HaveInsertPoint()) {
1191     DI->setLocation(D.getLocation());
1192     (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1193   }
1194 
1195   if (D.hasAttr<AnnotateAttr>())
1196     EmitVarAnnotations(&D, address.getPointer());
1197 
1198   // Make sure we call @llvm.lifetime.end.
1199   if (emission.useLifetimeMarkers())
1200     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1201                                          emission.getAllocatedAddress(),
1202                                          emission.getSizeForLifetimeMarkers());
1203 
1204   return emission;
1205 }
1206 
1207 /// Determines whether the given __block variable is potentially
1208 /// captured by the given expression.
1209 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1210   // Skip the most common kinds of expressions that make
1211   // hierarchy-walking expensive.
1212   e = e->IgnoreParenCasts();
1213 
1214   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1215     const BlockDecl *block = be->getBlockDecl();
1216     for (const auto &I : block->captures()) {
1217       if (I.getVariable() == &var)
1218         return true;
1219     }
1220 
1221     // No need to walk into the subexpressions.
1222     return false;
1223   }
1224 
1225   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1226     const CompoundStmt *CS = SE->getSubStmt();
1227     for (const auto *BI : CS->body())
1228       if (const auto *E = dyn_cast<Expr>(BI)) {
1229         if (isCapturedBy(var, E))
1230             return true;
1231       }
1232       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1233           // special case declarations
1234           for (const auto *I : DS->decls()) {
1235               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1236                 const Expr *Init = VD->getInit();
1237                 if (Init && isCapturedBy(var, Init))
1238                   return true;
1239               }
1240           }
1241       }
1242       else
1243         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1244         // Later, provide code to poke into statements for capture analysis.
1245         return true;
1246     return false;
1247   }
1248 
1249   for (const Stmt *SubStmt : e->children())
1250     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1251       return true;
1252 
1253   return false;
1254 }
1255 
1256 /// \brief Determine whether the given initializer is trivial in the sense
1257 /// that it requires no code to be generated.
1258 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1259   if (!Init)
1260     return true;
1261 
1262   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1263     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1264       if (Constructor->isTrivial() &&
1265           Constructor->isDefaultConstructor() &&
1266           !Construct->requiresZeroInitialization())
1267         return true;
1268 
1269   return false;
1270 }
1271 
1272 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1273   assert(emission.Variable && "emission was not valid!");
1274 
1275   // If this was emitted as a global constant, we're done.
1276   if (emission.wasEmittedAsGlobal()) return;
1277 
1278   const VarDecl &D = *emission.Variable;
1279   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1280   QualType type = D.getType();
1281 
1282   // If this local has an initializer, emit it now.
1283   const Expr *Init = D.getInit();
1284 
1285   // If we are at an unreachable point, we don't need to emit the initializer
1286   // unless it contains a label.
1287   if (!HaveInsertPoint()) {
1288     if (!Init || !ContainsLabel(Init)) return;
1289     EnsureInsertPoint();
1290   }
1291 
1292   // Initialize the structure of a __block variable.
1293   if (emission.IsByRef)
1294     emitByrefStructureInit(emission);
1295 
1296   // Initialize the variable here if it doesn't have a initializer and it is a
1297   // C struct that is non-trivial to initialize or an array containing such a
1298   // struct.
1299   if (!Init &&
1300       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1301           QualType::PDIK_Struct) {
1302     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1303     if (emission.IsByRef)
1304       drillIntoBlockVariable(*this, Dst, &D);
1305     defaultInitNonTrivialCStructVar(Dst);
1306     return;
1307   }
1308 
1309   if (isTrivialInitializer(Init))
1310     return;
1311 
1312   // Check whether this is a byref variable that's potentially
1313   // captured and moved by its own initializer.  If so, we'll need to
1314   // emit the initializer first, then copy into the variable.
1315   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1316 
1317   Address Loc =
1318     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1319 
1320   llvm::Constant *constant = nullptr;
1321   if (emission.IsConstantAggregate || D.isConstexpr()) {
1322     assert(!capturedByInit && "constant init contains a capturing block?");
1323     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1324   }
1325 
1326   if (!constant) {
1327     LValue lv = MakeAddrLValue(Loc, type);
1328     lv.setNonGC(true);
1329     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1330   }
1331 
1332   if (!emission.IsConstantAggregate) {
1333     // For simple scalar/complex initialization, store the value directly.
1334     LValue lv = MakeAddrLValue(Loc, type);
1335     lv.setNonGC(true);
1336     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1337   }
1338 
1339   // If this is a simple aggregate initialization, we can optimize it
1340   // in various ways.
1341   bool isVolatile = type.isVolatileQualified();
1342 
1343   llvm::Value *SizeVal =
1344     llvm::ConstantInt::get(IntPtrTy,
1345                            getContext().getTypeSizeInChars(type).getQuantity());
1346 
1347   llvm::Type *BP = AllocaInt8PtrTy;
1348   if (Loc.getType() != BP)
1349     Loc = Builder.CreateBitCast(Loc, BP);
1350 
1351   // If the initializer is all or mostly zeros, codegen with memset then do
1352   // a few stores afterward.
1353   if (shouldUseMemSetPlusStoresToInitialize(constant,
1354                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1355     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1356                          isVolatile);
1357     // Zero and undef don't require a stores.
1358     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1359       Loc = Builder.CreateBitCast(Loc,
1360         constant->getType()->getPointerTo(Loc.getAddressSpace()));
1361       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
1362                                    isVolatile, Builder);
1363     }
1364   } else {
1365     // Otherwise, create a temporary global with the initializer then
1366     // memcpy from the global to the alloca.
1367     std::string Name = getStaticDeclName(CGM, D);
1368     unsigned AS = 0;
1369     if (getLangOpts().OpenCL) {
1370       AS = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
1371       BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS);
1372     }
1373     llvm::GlobalVariable *GV =
1374       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1375                                llvm::GlobalValue::PrivateLinkage,
1376                                constant, Name, nullptr,
1377                                llvm::GlobalValue::NotThreadLocal, AS);
1378     GV->setAlignment(Loc.getAlignment().getQuantity());
1379     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1380 
1381     Address SrcPtr = Address(GV, Loc.getAlignment());
1382     if (SrcPtr.getType() != BP)
1383       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1384 
1385     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1386   }
1387 }
1388 
1389 /// Emit an expression as an initializer for a variable at the given
1390 /// location.  The expression is not necessarily the normal
1391 /// initializer for the variable, and the address is not necessarily
1392 /// its normal location.
1393 ///
1394 /// \param init the initializing expression
1395 /// \param var the variable to act as if we're initializing
1396 /// \param loc the address to initialize; its type is a pointer
1397 ///   to the LLVM mapping of the variable's type
1398 /// \param alignment the alignment of the address
1399 /// \param capturedByInit true if the variable is a __block variable
1400 ///   whose address is potentially changed by the initializer
1401 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1402                                      LValue lvalue, bool capturedByInit) {
1403   QualType type = D->getType();
1404 
1405   if (type->isReferenceType()) {
1406     RValue rvalue = EmitReferenceBindingToExpr(init);
1407     if (capturedByInit)
1408       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1409     EmitStoreThroughLValue(rvalue, lvalue, true);
1410     return;
1411   }
1412   switch (getEvaluationKind(type)) {
1413   case TEK_Scalar:
1414     EmitScalarInit(init, D, lvalue, capturedByInit);
1415     return;
1416   case TEK_Complex: {
1417     ComplexPairTy complex = EmitComplexExpr(init);
1418     if (capturedByInit)
1419       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1420     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1421     return;
1422   }
1423   case TEK_Aggregate:
1424     if (type->isAtomicType()) {
1425       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1426     } else {
1427       // TODO: how can we delay here if D is captured by its initializer?
1428       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1429                                               AggValueSlot::IsDestructed,
1430                                          AggValueSlot::DoesNotNeedGCBarriers,
1431                                               AggValueSlot::IsNotAliased));
1432     }
1433     return;
1434   }
1435   llvm_unreachable("bad evaluation kind");
1436 }
1437 
1438 /// Enter a destroy cleanup for the given local variable.
1439 void CodeGenFunction::emitAutoVarTypeCleanup(
1440                             const CodeGenFunction::AutoVarEmission &emission,
1441                             QualType::DestructionKind dtorKind) {
1442   assert(dtorKind != QualType::DK_none);
1443 
1444   // Note that for __block variables, we want to destroy the
1445   // original stack object, not the possibly forwarded object.
1446   Address addr = emission.getObjectAddress(*this);
1447 
1448   const VarDecl *var = emission.Variable;
1449   QualType type = var->getType();
1450 
1451   CleanupKind cleanupKind = NormalAndEHCleanup;
1452   CodeGenFunction::Destroyer *destroyer = nullptr;
1453 
1454   switch (dtorKind) {
1455   case QualType::DK_none:
1456     llvm_unreachable("no cleanup for trivially-destructible variable");
1457 
1458   case QualType::DK_cxx_destructor:
1459     // If there's an NRVO flag on the emission, we need a different
1460     // cleanup.
1461     if (emission.NRVOFlag) {
1462       assert(!type->isArrayType());
1463       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1464       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
1465                                                dtor, emission.NRVOFlag);
1466       return;
1467     }
1468     break;
1469 
1470   case QualType::DK_objc_strong_lifetime:
1471     // Suppress cleanups for pseudo-strong variables.
1472     if (var->isARCPseudoStrong()) return;
1473 
1474     // Otherwise, consider whether to use an EH cleanup or not.
1475     cleanupKind = getARCCleanupKind();
1476 
1477     // Use the imprecise destroyer by default.
1478     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1479       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1480     break;
1481 
1482   case QualType::DK_objc_weak_lifetime:
1483     break;
1484 
1485   case QualType::DK_nontrivial_c_struct:
1486     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1487     break;
1488   }
1489 
1490   // If we haven't chosen a more specific destroyer, use the default.
1491   if (!destroyer) destroyer = getDestroyer(dtorKind);
1492 
1493   // Use an EH cleanup in array destructors iff the destructor itself
1494   // is being pushed as an EH cleanup.
1495   bool useEHCleanup = (cleanupKind & EHCleanup);
1496   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1497                                      useEHCleanup);
1498 }
1499 
1500 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1501   assert(emission.Variable && "emission was not valid!");
1502 
1503   // If this was emitted as a global constant, we're done.
1504   if (emission.wasEmittedAsGlobal()) return;
1505 
1506   // If we don't have an insertion point, we're done.  Sema prevents
1507   // us from jumping into any of these scopes anyway.
1508   if (!HaveInsertPoint()) return;
1509 
1510   const VarDecl &D = *emission.Variable;
1511 
1512   // Check the type for a cleanup.
1513   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1514     emitAutoVarTypeCleanup(emission, dtorKind);
1515 
1516   // In GC mode, honor objc_precise_lifetime.
1517   if (getLangOpts().getGC() != LangOptions::NonGC &&
1518       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1519     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1520   }
1521 
1522   // Handle the cleanup attribute.
1523   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1524     const FunctionDecl *FD = CA->getFunctionDecl();
1525 
1526     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1527     assert(F && "Could not find function!");
1528 
1529     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1530     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1531   }
1532 
1533   // If this is a block variable, call _Block_object_destroy
1534   // (on the unforwarded address).
1535   if (emission.IsByRef)
1536     enterByrefCleanup(emission);
1537 }
1538 
1539 CodeGenFunction::Destroyer *
1540 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1541   switch (kind) {
1542   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1543   case QualType::DK_cxx_destructor:
1544     return destroyCXXObject;
1545   case QualType::DK_objc_strong_lifetime:
1546     return destroyARCStrongPrecise;
1547   case QualType::DK_objc_weak_lifetime:
1548     return destroyARCWeak;
1549   case QualType::DK_nontrivial_c_struct:
1550     return destroyNonTrivialCStruct;
1551   }
1552   llvm_unreachable("Unknown DestructionKind");
1553 }
1554 
1555 /// pushEHDestroy - Push the standard destructor for the given type as
1556 /// an EH-only cleanup.
1557 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1558                                     Address addr, QualType type) {
1559   assert(dtorKind && "cannot push destructor for trivial type");
1560   assert(needsEHCleanup(dtorKind));
1561 
1562   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1563 }
1564 
1565 /// pushDestroy - Push the standard destructor for the given type as
1566 /// at least a normal cleanup.
1567 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1568                                   Address addr, QualType type) {
1569   assert(dtorKind && "cannot push destructor for trivial type");
1570 
1571   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1572   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1573               cleanupKind & EHCleanup);
1574 }
1575 
1576 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1577                                   QualType type, Destroyer *destroyer,
1578                                   bool useEHCleanupForArray) {
1579   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1580                                      destroyer, useEHCleanupForArray);
1581 }
1582 
1583 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1584   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1585 }
1586 
1587 void CodeGenFunction::pushLifetimeExtendedDestroy(
1588     CleanupKind cleanupKind, Address addr, QualType type,
1589     Destroyer *destroyer, bool useEHCleanupForArray) {
1590   assert(!isInConditionalBranch() &&
1591          "performing lifetime extension from within conditional");
1592 
1593   // Push an EH-only cleanup for the object now.
1594   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1595   // around in case a temporary's destructor throws an exception.
1596   if (cleanupKind & EHCleanup)
1597     EHStack.pushCleanup<DestroyObject>(
1598         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1599         destroyer, useEHCleanupForArray);
1600 
1601   // Remember that we need to push a full cleanup for the object at the
1602   // end of the full-expression.
1603   pushCleanupAfterFullExpr<DestroyObject>(
1604       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1605 }
1606 
1607 /// emitDestroy - Immediately perform the destruction of the given
1608 /// object.
1609 ///
1610 /// \param addr - the address of the object; a type*
1611 /// \param type - the type of the object; if an array type, all
1612 ///   objects are destroyed in reverse order
1613 /// \param destroyer - the function to call to destroy individual
1614 ///   elements
1615 /// \param useEHCleanupForArray - whether an EH cleanup should be
1616 ///   used when destroying array elements, in case one of the
1617 ///   destructions throws an exception
1618 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1619                                   Destroyer *destroyer,
1620                                   bool useEHCleanupForArray) {
1621   const ArrayType *arrayType = getContext().getAsArrayType(type);
1622   if (!arrayType)
1623     return destroyer(*this, addr, type);
1624 
1625   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1626 
1627   CharUnits elementAlign =
1628     addr.getAlignment()
1629         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1630 
1631   // Normally we have to check whether the array is zero-length.
1632   bool checkZeroLength = true;
1633 
1634   // But if the array length is constant, we can suppress that.
1635   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1636     // ...and if it's constant zero, we can just skip the entire thing.
1637     if (constLength->isZero()) return;
1638     checkZeroLength = false;
1639   }
1640 
1641   llvm::Value *begin = addr.getPointer();
1642   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1643   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1644                    checkZeroLength, useEHCleanupForArray);
1645 }
1646 
1647 /// emitArrayDestroy - Destroys all the elements of the given array,
1648 /// beginning from last to first.  The array cannot be zero-length.
1649 ///
1650 /// \param begin - a type* denoting the first element of the array
1651 /// \param end - a type* denoting one past the end of the array
1652 /// \param elementType - the element type of the array
1653 /// \param destroyer - the function to call to destroy elements
1654 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1655 ///   the remaining elements in case the destruction of a single
1656 ///   element throws
1657 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1658                                        llvm::Value *end,
1659                                        QualType elementType,
1660                                        CharUnits elementAlign,
1661                                        Destroyer *destroyer,
1662                                        bool checkZeroLength,
1663                                        bool useEHCleanup) {
1664   assert(!elementType->isArrayType());
1665 
1666   // The basic structure here is a do-while loop, because we don't
1667   // need to check for the zero-element case.
1668   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1669   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1670 
1671   if (checkZeroLength) {
1672     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1673                                                 "arraydestroy.isempty");
1674     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1675   }
1676 
1677   // Enter the loop body, making that address the current address.
1678   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1679   EmitBlock(bodyBB);
1680   llvm::PHINode *elementPast =
1681     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1682   elementPast->addIncoming(end, entryBB);
1683 
1684   // Shift the address back by one element.
1685   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1686   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1687                                                    "arraydestroy.element");
1688 
1689   if (useEHCleanup)
1690     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1691                                    destroyer);
1692 
1693   // Perform the actual destruction there.
1694   destroyer(*this, Address(element, elementAlign), elementType);
1695 
1696   if (useEHCleanup)
1697     PopCleanupBlock();
1698 
1699   // Check whether we've reached the end.
1700   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1701   Builder.CreateCondBr(done, doneBB, bodyBB);
1702   elementPast->addIncoming(element, Builder.GetInsertBlock());
1703 
1704   // Done.
1705   EmitBlock(doneBB);
1706 }
1707 
1708 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1709 /// emitArrayDestroy, the element type here may still be an array type.
1710 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1711                                     llvm::Value *begin, llvm::Value *end,
1712                                     QualType type, CharUnits elementAlign,
1713                                     CodeGenFunction::Destroyer *destroyer) {
1714   // If the element type is itself an array, drill down.
1715   unsigned arrayDepth = 0;
1716   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1717     // VLAs don't require a GEP index to walk into.
1718     if (!isa<VariableArrayType>(arrayType))
1719       arrayDepth++;
1720     type = arrayType->getElementType();
1721   }
1722 
1723   if (arrayDepth) {
1724     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1725 
1726     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1727     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1728     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1729   }
1730 
1731   // Destroy the array.  We don't ever need an EH cleanup because we
1732   // assume that we're in an EH cleanup ourselves, so a throwing
1733   // destructor causes an immediate terminate.
1734   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1735                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1736 }
1737 
1738 namespace {
1739   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1740   /// array destroy where the end pointer is regularly determined and
1741   /// does not need to be loaded from a local.
1742   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1743     llvm::Value *ArrayBegin;
1744     llvm::Value *ArrayEnd;
1745     QualType ElementType;
1746     CodeGenFunction::Destroyer *Destroyer;
1747     CharUnits ElementAlign;
1748   public:
1749     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1750                                QualType elementType, CharUnits elementAlign,
1751                                CodeGenFunction::Destroyer *destroyer)
1752       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1753         ElementType(elementType), Destroyer(destroyer),
1754         ElementAlign(elementAlign) {}
1755 
1756     void Emit(CodeGenFunction &CGF, Flags flags) override {
1757       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1758                               ElementType, ElementAlign, Destroyer);
1759     }
1760   };
1761 
1762   /// IrregularPartialArrayDestroy - a cleanup which performs a
1763   /// partial array destroy where the end pointer is irregularly
1764   /// determined and must be loaded from a local.
1765   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1766     llvm::Value *ArrayBegin;
1767     Address ArrayEndPointer;
1768     QualType ElementType;
1769     CodeGenFunction::Destroyer *Destroyer;
1770     CharUnits ElementAlign;
1771   public:
1772     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1773                                  Address arrayEndPointer,
1774                                  QualType elementType,
1775                                  CharUnits elementAlign,
1776                                  CodeGenFunction::Destroyer *destroyer)
1777       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1778         ElementType(elementType), Destroyer(destroyer),
1779         ElementAlign(elementAlign) {}
1780 
1781     void Emit(CodeGenFunction &CGF, Flags flags) override {
1782       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1783       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1784                               ElementType, ElementAlign, Destroyer);
1785     }
1786   };
1787 } // end anonymous namespace
1788 
1789 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1790 /// already-constructed elements of the given array.  The cleanup
1791 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1792 ///
1793 /// \param elementType - the immediate element type of the array;
1794 ///   possibly still an array type
1795 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1796                                                        Address arrayEndPointer,
1797                                                        QualType elementType,
1798                                                        CharUnits elementAlign,
1799                                                        Destroyer *destroyer) {
1800   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1801                                                     arrayBegin, arrayEndPointer,
1802                                                     elementType, elementAlign,
1803                                                     destroyer);
1804 }
1805 
1806 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1807 /// already-constructed elements of the given array.  The cleanup
1808 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1809 ///
1810 /// \param elementType - the immediate element type of the array;
1811 ///   possibly still an array type
1812 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1813                                                      llvm::Value *arrayEnd,
1814                                                      QualType elementType,
1815                                                      CharUnits elementAlign,
1816                                                      Destroyer *destroyer) {
1817   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1818                                                   arrayBegin, arrayEnd,
1819                                                   elementType, elementAlign,
1820                                                   destroyer);
1821 }
1822 
1823 /// Lazily declare the @llvm.lifetime.start intrinsic.
1824 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1825   if (LifetimeStartFn)
1826     return LifetimeStartFn;
1827   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1828     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
1829   return LifetimeStartFn;
1830 }
1831 
1832 /// Lazily declare the @llvm.lifetime.end intrinsic.
1833 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1834   if (LifetimeEndFn)
1835     return LifetimeEndFn;
1836   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1837     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
1838   return LifetimeEndFn;
1839 }
1840 
1841 namespace {
1842   /// A cleanup to perform a release of an object at the end of a
1843   /// function.  This is used to balance out the incoming +1 of a
1844   /// ns_consumed argument when we can't reasonably do that just by
1845   /// not doing the initial retain for a __block argument.
1846   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1847     ConsumeARCParameter(llvm::Value *param,
1848                         ARCPreciseLifetime_t precise)
1849       : Param(param), Precise(precise) {}
1850 
1851     llvm::Value *Param;
1852     ARCPreciseLifetime_t Precise;
1853 
1854     void Emit(CodeGenFunction &CGF, Flags flags) override {
1855       CGF.EmitARCRelease(Param, Precise);
1856     }
1857   };
1858 } // end anonymous namespace
1859 
1860 /// Emit an alloca (or GlobalValue depending on target)
1861 /// for the specified parameter and set up LocalDeclMap.
1862 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1863                                    unsigned ArgNo) {
1864   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1865   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1866          "Invalid argument to EmitParmDecl");
1867 
1868   Arg.getAnyValue()->setName(D.getName());
1869 
1870   QualType Ty = D.getType();
1871 
1872   // Use better IR generation for certain implicit parameters.
1873   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1874     // The only implicit argument a block has is its literal.
1875     // This may be passed as an inalloca'ed value on Windows x86.
1876     if (BlockInfo) {
1877       llvm::Value *V = Arg.isIndirect()
1878                            ? Builder.CreateLoad(Arg.getIndirectAddress())
1879                            : Arg.getDirectValue();
1880       setBlockContextParameter(IPD, ArgNo, V);
1881       return;
1882     }
1883   }
1884 
1885   Address DeclPtr = Address::invalid();
1886   bool DoStore = false;
1887   bool IsScalar = hasScalarEvaluationKind(Ty);
1888   // If we already have a pointer to the argument, reuse the input pointer.
1889   if (Arg.isIndirect()) {
1890     DeclPtr = Arg.getIndirectAddress();
1891     // If we have a prettier pointer type at this point, bitcast to that.
1892     unsigned AS = DeclPtr.getType()->getAddressSpace();
1893     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1894     if (DeclPtr.getType() != IRTy)
1895       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
1896     // Indirect argument is in alloca address space, which may be different
1897     // from the default address space.
1898     auto AllocaAS = CGM.getASTAllocaAddressSpace();
1899     auto *V = DeclPtr.getPointer();
1900     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
1901     auto DestLangAS =
1902         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
1903     if (SrcLangAS != DestLangAS) {
1904       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
1905              CGM.getDataLayout().getAllocaAddrSpace());
1906       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
1907       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
1908       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
1909                             *this, V, SrcLangAS, DestLangAS, T, true),
1910                         DeclPtr.getAlignment());
1911     }
1912 
1913     // Push a destructor cleanup for this parameter if the ABI requires it.
1914     // Don't push a cleanup in a thunk for a method that will also emit a
1915     // cleanup.
1916     if (!IsScalar && !CurFuncIsThunk &&
1917         getContext().isParamDestroyedInCallee(Ty)) {
1918       if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
1919         assert((DtorKind == QualType::DK_cxx_destructor ||
1920                 DtorKind == QualType::DK_nontrivial_c_struct) &&
1921                "unexpected destructor type");
1922         pushDestroy(DtorKind, DeclPtr, Ty);
1923       }
1924     }
1925   } else {
1926     // Check if the parameter address is controlled by OpenMP runtime.
1927     Address OpenMPLocalAddr =
1928         getLangOpts().OpenMP
1929             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1930             : Address::invalid();
1931     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1932       DeclPtr = OpenMPLocalAddr;
1933     } else {
1934       // Otherwise, create a temporary to hold the value.
1935       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
1936                               D.getName() + ".addr");
1937     }
1938     DoStore = true;
1939   }
1940 
1941   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
1942 
1943   LValue lv = MakeAddrLValue(DeclPtr, Ty);
1944   if (IsScalar) {
1945     Qualifiers qs = Ty.getQualifiers();
1946     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1947       // We honor __attribute__((ns_consumed)) for types with lifetime.
1948       // For __strong, it's handled by just skipping the initial retain;
1949       // otherwise we have to balance out the initial +1 with an extra
1950       // cleanup to do the release at the end of the function.
1951       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1952 
1953       // 'self' is always formally __strong, but if this is not an
1954       // init method then we don't want to retain it.
1955       if (D.isARCPseudoStrong()) {
1956         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1957         assert(&D == method->getSelfDecl());
1958         assert(lt == Qualifiers::OCL_Strong);
1959         assert(qs.hasConst());
1960         assert(method->getMethodFamily() != OMF_init);
1961         (void) method;
1962         lt = Qualifiers::OCL_ExplicitNone;
1963       }
1964 
1965       // Load objects passed indirectly.
1966       if (Arg.isIndirect() && !ArgVal)
1967         ArgVal = Builder.CreateLoad(DeclPtr);
1968 
1969       if (lt == Qualifiers::OCL_Strong) {
1970         if (!isConsumed) {
1971           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1972             // use objc_storeStrong(&dest, value) for retaining the
1973             // object. But first, store a null into 'dest' because
1974             // objc_storeStrong attempts to release its old value.
1975             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1976             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1977             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
1978             DoStore = false;
1979           }
1980           else
1981           // Don't use objc_retainBlock for block pointers, because we
1982           // don't want to Block_copy something just because we got it
1983           // as a parameter.
1984             ArgVal = EmitARCRetainNonBlock(ArgVal);
1985         }
1986       } else {
1987         // Push the cleanup for a consumed parameter.
1988         if (isConsumed) {
1989           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1990                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1991           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
1992                                                    precise);
1993         }
1994 
1995         if (lt == Qualifiers::OCL_Weak) {
1996           EmitARCInitWeak(DeclPtr, ArgVal);
1997           DoStore = false; // The weak init is a store, no need to do two.
1998         }
1999       }
2000 
2001       // Enter the cleanup scope.
2002       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2003     }
2004   }
2005 
2006   // Store the initial value into the alloca.
2007   if (DoStore)
2008     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2009 
2010   setAddrOfLocalVar(&D, DeclPtr);
2011 
2012   // Emit debug info for param declaration.
2013   if (CGDebugInfo *DI = getDebugInfo()) {
2014     if (CGM.getCodeGenOpts().getDebugInfo() >=
2015         codegenoptions::LimitedDebugInfo) {
2016       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2017     }
2018   }
2019 
2020   if (D.hasAttr<AnnotateAttr>())
2021     EmitVarAnnotations(&D, DeclPtr.getPointer());
2022 
2023   // We can only check return value nullability if all arguments to the
2024   // function satisfy their nullability preconditions. This makes it necessary
2025   // to emit null checks for args in the function body itself.
2026   if (requiresReturnValueNullabilityCheck()) {
2027     auto Nullability = Ty->getNullability(getContext());
2028     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2029       SanitizerScope SanScope(this);
2030       RetValNullabilityPrecondition =
2031           Builder.CreateAnd(RetValNullabilityPrecondition,
2032                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2033     }
2034   }
2035 }
2036 
2037 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2038                                             CodeGenFunction *CGF) {
2039   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2040     return;
2041   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2042 }
2043