1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Type.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 33 void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::IndirectField: 49 case Decl::ObjCIvar: 50 case Decl::ObjCAtDefsField: 51 case Decl::ParmVar: 52 case Decl::ImplicitParam: 53 case Decl::ClassTemplate: 54 case Decl::FunctionTemplate: 55 case Decl::TypeAliasTemplate: 56 case Decl::TemplateTemplateParm: 57 case Decl::ObjCMethod: 58 case Decl::ObjCCategory: 59 case Decl::ObjCProtocol: 60 case Decl::ObjCInterface: 61 case Decl::ObjCCategoryImpl: 62 case Decl::ObjCImplementation: 63 case Decl::ObjCProperty: 64 case Decl::ObjCCompatibleAlias: 65 case Decl::AccessSpec: 66 case Decl::LinkageSpec: 67 case Decl::ObjCPropertyImpl: 68 case Decl::FileScopeAsm: 69 case Decl::Friend: 70 case Decl::FriendTemplate: 71 case Decl::Block: 72 case Decl::ClassScopeFunctionSpecialization: 73 llvm_unreachable("Declaration should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 case Decl::Import: 86 case Decl::OMPThreadPrivate: 87 case Decl::Empty: 88 // None of these decls require codegen support. 89 return; 90 91 case Decl::Var: { 92 const VarDecl &VD = cast<VarDecl>(D); 93 assert(VD.isLocalVarDecl() && 94 "Should not see file-scope variables inside a function!"); 95 return EmitVarDecl(VD); 96 } 97 98 case Decl::Typedef: // typedef int X; 99 case Decl::TypeAlias: { // using X = int; [C++0x] 100 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 101 QualType Ty = TD.getUnderlyingType(); 102 103 if (Ty->isVariablyModifiedType()) 104 EmitVariablyModifiedType(Ty); 105 } 106 } 107 } 108 109 /// EmitVarDecl - This method handles emission of any variable declaration 110 /// inside a function, including static vars etc. 111 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 112 switch (D.getStorageClassAsWritten()) { 113 case SC_None: 114 case SC_Auto: 115 case SC_Register: 116 return EmitAutoVarDecl(D); 117 case SC_Static: { 118 llvm::GlobalValue::LinkageTypes Linkage = 119 llvm::GlobalValue::InternalLinkage; 120 121 // If the function definition has some sort of weak linkage, its 122 // static variables should also be weak so that they get properly 123 // uniqued. We can't do this in C, though, because there's no 124 // standard way to agree on which variables are the same (i.e. 125 // there's no mangling). 126 if (getLangOpts().CPlusPlus) 127 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 128 Linkage = CurFn->getLinkage(); 129 130 return EmitStaticVarDecl(D, Linkage); 131 } 132 case SC_Extern: 133 case SC_PrivateExtern: 134 // Don't emit it now, allow it to be emitted lazily on its first use. 135 return; 136 case SC_OpenCLWorkGroupLocal: 137 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 138 } 139 140 llvm_unreachable("Unknown storage class"); 141 } 142 143 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 144 const char *Separator) { 145 CodeGenModule &CGM = CGF.CGM; 146 if (CGF.getLangOpts().CPlusPlus) { 147 StringRef Name = CGM.getMangledName(&D); 148 return Name.str(); 149 } 150 151 std::string ContextName; 152 if (!CGF.CurFuncDecl) { 153 // Better be in a block declared in global scope. 154 const NamedDecl *ND = cast<NamedDecl>(&D); 155 const DeclContext *DC = ND->getDeclContext(); 156 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 157 MangleBuffer Name; 158 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 159 ContextName = Name.getString(); 160 } 161 else 162 llvm_unreachable("Unknown context for block static var decl"); 163 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 164 StringRef Name = CGM.getMangledName(FD); 165 ContextName = Name.str(); 166 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 167 ContextName = CGF.CurFn->getName(); 168 else 169 llvm_unreachable("Unknown context for static var decl"); 170 171 return ContextName + Separator + D.getNameAsString(); 172 } 173 174 llvm::GlobalVariable * 175 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 176 const char *Separator, 177 llvm::GlobalValue::LinkageTypes Linkage) { 178 QualType Ty = D.getType(); 179 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 180 181 // Use the label if the variable is renamed with the asm-label extension. 182 std::string Name; 183 if (D.hasAttr<AsmLabelAttr>()) 184 Name = CGM.getMangledName(&D); 185 else 186 Name = GetStaticDeclName(*this, D, Separator); 187 188 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 189 unsigned AddrSpace = 190 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); 191 llvm::GlobalVariable *GV = 192 new llvm::GlobalVariable(CGM.getModule(), LTy, 193 Ty.isConstant(getContext()), Linkage, 194 CGM.EmitNullConstant(D.getType()), Name, 0, 195 llvm::GlobalVariable::NotThreadLocal, 196 AddrSpace); 197 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 198 if (Linkage != llvm::GlobalValue::InternalLinkage) 199 GV->setVisibility(CurFn->getVisibility()); 200 201 if (D.isThreadSpecified()) 202 CGM.setTLSMode(GV, D); 203 204 return GV; 205 } 206 207 /// hasNontrivialDestruction - Determine whether a type's destruction is 208 /// non-trivial. If so, and the variable uses static initialization, we must 209 /// register its destructor to run on exit. 210 static bool hasNontrivialDestruction(QualType T) { 211 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 212 return RD && !RD->hasTrivialDestructor(); 213 } 214 215 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 216 /// global variable that has already been created for it. If the initializer 217 /// has a different type than GV does, this may free GV and return a different 218 /// one. Otherwise it just returns GV. 219 llvm::GlobalVariable * 220 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 221 llvm::GlobalVariable *GV) { 222 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 223 224 // If constant emission failed, then this should be a C++ static 225 // initializer. 226 if (!Init) { 227 if (!getLangOpts().CPlusPlus) 228 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 229 else if (Builder.GetInsertBlock()) { 230 // Since we have a static initializer, this global variable can't 231 // be constant. 232 GV->setConstant(false); 233 234 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 235 } 236 return GV; 237 } 238 239 // The initializer may differ in type from the global. Rewrite 240 // the global to match the initializer. (We have to do this 241 // because some types, like unions, can't be completely represented 242 // in the LLVM type system.) 243 if (GV->getType()->getElementType() != Init->getType()) { 244 llvm::GlobalVariable *OldGV = GV; 245 246 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 247 OldGV->isConstant(), 248 OldGV->getLinkage(), Init, "", 249 /*InsertBefore*/ OldGV, 250 OldGV->getThreadLocalMode(), 251 CGM.getContext().getTargetAddressSpace(D.getType())); 252 GV->setVisibility(OldGV->getVisibility()); 253 254 // Steal the name of the old global 255 GV->takeName(OldGV); 256 257 // Replace all uses of the old global with the new global 258 llvm::Constant *NewPtrForOldDecl = 259 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 260 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 261 262 // Erase the old global, since it is no longer used. 263 OldGV->eraseFromParent(); 264 } 265 266 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 267 GV->setInitializer(Init); 268 269 if (hasNontrivialDestruction(D.getType())) { 270 // We have a constant initializer, but a nontrivial destructor. We still 271 // need to perform a guarded "initialization" in order to register the 272 // destructor. 273 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 274 } 275 276 return GV; 277 } 278 279 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 280 llvm::GlobalValue::LinkageTypes Linkage) { 281 llvm::Value *&DMEntry = LocalDeclMap[&D]; 282 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 283 284 // Check to see if we already have a global variable for this 285 // declaration. This can happen when double-emitting function 286 // bodies, e.g. with complete and base constructors. 287 llvm::Constant *addr = 288 CGM.getStaticLocalDeclAddress(&D); 289 290 llvm::GlobalVariable *var; 291 if (addr) { 292 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 293 } else { 294 addr = var = CreateStaticVarDecl(D, ".", Linkage); 295 } 296 297 // Store into LocalDeclMap before generating initializer to handle 298 // circular references. 299 DMEntry = addr; 300 CGM.setStaticLocalDeclAddress(&D, addr); 301 302 // We can't have a VLA here, but we can have a pointer to a VLA, 303 // even though that doesn't really make any sense. 304 // Make sure to evaluate VLA bounds now so that we have them for later. 305 if (D.getType()->isVariablyModifiedType()) 306 EmitVariablyModifiedType(D.getType()); 307 308 // Save the type in case adding the initializer forces a type change. 309 llvm::Type *expectedType = addr->getType(); 310 311 // If this value has an initializer, emit it. 312 if (D.getInit()) 313 var = AddInitializerToStaticVarDecl(D, var); 314 315 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 316 317 if (D.hasAttr<AnnotateAttr>()) 318 CGM.AddGlobalAnnotations(&D, var); 319 320 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 321 var->setSection(SA->getName()); 322 323 if (D.hasAttr<UsedAttr>()) 324 CGM.AddUsedGlobal(var); 325 326 // We may have to cast the constant because of the initializer 327 // mismatch above. 328 // 329 // FIXME: It is really dangerous to store this in the map; if anyone 330 // RAUW's the GV uses of this constant will be invalid. 331 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType); 332 DMEntry = castedAddr; 333 CGM.setStaticLocalDeclAddress(&D, castedAddr); 334 335 // Emit global variable debug descriptor for static vars. 336 CGDebugInfo *DI = getDebugInfo(); 337 if (DI && 338 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 339 DI->setLocation(D.getLocation()); 340 DI->EmitGlobalVariable(var, &D); 341 } 342 } 343 344 namespace { 345 struct DestroyObject : EHScopeStack::Cleanup { 346 DestroyObject(llvm::Value *addr, QualType type, 347 CodeGenFunction::Destroyer *destroyer, 348 bool useEHCleanupForArray) 349 : addr(addr), type(type), destroyer(destroyer), 350 useEHCleanupForArray(useEHCleanupForArray) {} 351 352 llvm::Value *addr; 353 QualType type; 354 CodeGenFunction::Destroyer *destroyer; 355 bool useEHCleanupForArray; 356 357 void Emit(CodeGenFunction &CGF, Flags flags) { 358 // Don't use an EH cleanup recursively from an EH cleanup. 359 bool useEHCleanupForArray = 360 flags.isForNormalCleanup() && this->useEHCleanupForArray; 361 362 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 363 } 364 }; 365 366 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 367 DestroyNRVOVariable(llvm::Value *addr, 368 const CXXDestructorDecl *Dtor, 369 llvm::Value *NRVOFlag) 370 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 371 372 const CXXDestructorDecl *Dtor; 373 llvm::Value *NRVOFlag; 374 llvm::Value *Loc; 375 376 void Emit(CodeGenFunction &CGF, Flags flags) { 377 // Along the exceptions path we always execute the dtor. 378 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 379 380 llvm::BasicBlock *SkipDtorBB = 0; 381 if (NRVO) { 382 // If we exited via NRVO, we skip the destructor call. 383 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 384 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 385 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 386 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 387 CGF.EmitBlock(RunDtorBB); 388 } 389 390 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 391 /*ForVirtualBase=*/false, 392 /*Delegating=*/false, 393 Loc); 394 395 if (NRVO) CGF.EmitBlock(SkipDtorBB); 396 } 397 }; 398 399 struct CallStackRestore : EHScopeStack::Cleanup { 400 llvm::Value *Stack; 401 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 402 void Emit(CodeGenFunction &CGF, Flags flags) { 403 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 404 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 405 CGF.Builder.CreateCall(F, V); 406 } 407 }; 408 409 struct ExtendGCLifetime : EHScopeStack::Cleanup { 410 const VarDecl &Var; 411 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 412 413 void Emit(CodeGenFunction &CGF, Flags flags) { 414 // Compute the address of the local variable, in case it's a 415 // byref or something. 416 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 417 Var.getType(), VK_LValue, SourceLocation()); 418 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 419 CGF.EmitExtendGCLifetime(value); 420 } 421 }; 422 423 struct CallCleanupFunction : EHScopeStack::Cleanup { 424 llvm::Constant *CleanupFn; 425 const CGFunctionInfo &FnInfo; 426 const VarDecl &Var; 427 428 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 429 const VarDecl *Var) 430 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 431 432 void Emit(CodeGenFunction &CGF, Flags flags) { 433 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 434 Var.getType(), VK_LValue, SourceLocation()); 435 // Compute the address of the local variable, in case it's a byref 436 // or something. 437 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 438 439 // In some cases, the type of the function argument will be different from 440 // the type of the pointer. An example of this is 441 // void f(void* arg); 442 // __attribute__((cleanup(f))) void *g; 443 // 444 // To fix this we insert a bitcast here. 445 QualType ArgTy = FnInfo.arg_begin()->type; 446 llvm::Value *Arg = 447 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 448 449 CallArgList Args; 450 Args.add(RValue::get(Arg), 451 CGF.getContext().getPointerType(Var.getType())); 452 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 453 } 454 }; 455 456 /// A cleanup to call @llvm.lifetime.end. 457 class CallLifetimeEnd : public EHScopeStack::Cleanup { 458 llvm::Value *Addr; 459 llvm::Value *Size; 460 public: 461 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 462 : Addr(addr), Size(size) {} 463 464 void Emit(CodeGenFunction &CGF, Flags flags) { 465 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 466 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 467 Size, castAddr) 468 ->setDoesNotThrow(); 469 } 470 }; 471 } 472 473 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 474 /// variable with lifetime. 475 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 476 llvm::Value *addr, 477 Qualifiers::ObjCLifetime lifetime) { 478 switch (lifetime) { 479 case Qualifiers::OCL_None: 480 llvm_unreachable("present but none"); 481 482 case Qualifiers::OCL_ExplicitNone: 483 // nothing to do 484 break; 485 486 case Qualifiers::OCL_Strong: { 487 CodeGenFunction::Destroyer *destroyer = 488 (var.hasAttr<ObjCPreciseLifetimeAttr>() 489 ? CodeGenFunction::destroyARCStrongPrecise 490 : CodeGenFunction::destroyARCStrongImprecise); 491 492 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 493 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 494 cleanupKind & EHCleanup); 495 break; 496 } 497 case Qualifiers::OCL_Autoreleasing: 498 // nothing to do 499 break; 500 501 case Qualifiers::OCL_Weak: 502 // __weak objects always get EH cleanups; otherwise, exceptions 503 // could cause really nasty crashes instead of mere leaks. 504 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 505 CodeGenFunction::destroyARCWeak, 506 /*useEHCleanup*/ true); 507 break; 508 } 509 } 510 511 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 512 if (const Expr *e = dyn_cast<Expr>(s)) { 513 // Skip the most common kinds of expressions that make 514 // hierarchy-walking expensive. 515 s = e = e->IgnoreParenCasts(); 516 517 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 518 return (ref->getDecl() == &var); 519 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 520 const BlockDecl *block = be->getBlockDecl(); 521 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 522 e = block->capture_end(); i != e; ++i) { 523 if (i->getVariable() == &var) 524 return true; 525 } 526 } 527 } 528 529 for (Stmt::const_child_range children = s->children(); children; ++children) 530 // children might be null; as in missing decl or conditional of an if-stmt. 531 if ((*children) && isAccessedBy(var, *children)) 532 return true; 533 534 return false; 535 } 536 537 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 538 if (!decl) return false; 539 if (!isa<VarDecl>(decl)) return false; 540 const VarDecl *var = cast<VarDecl>(decl); 541 return isAccessedBy(*var, e); 542 } 543 544 static void drillIntoBlockVariable(CodeGenFunction &CGF, 545 LValue &lvalue, 546 const VarDecl *var) { 547 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 548 } 549 550 void CodeGenFunction::EmitScalarInit(const Expr *init, 551 const ValueDecl *D, 552 LValue lvalue, 553 bool capturedByInit) { 554 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 555 if (!lifetime) { 556 llvm::Value *value = EmitScalarExpr(init); 557 if (capturedByInit) 558 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 559 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 560 return; 561 } 562 563 // If we're emitting a value with lifetime, we have to do the 564 // initialization *before* we leave the cleanup scopes. 565 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 566 enterFullExpression(ewc); 567 init = ewc->getSubExpr(); 568 } 569 CodeGenFunction::RunCleanupsScope Scope(*this); 570 571 // We have to maintain the illusion that the variable is 572 // zero-initialized. If the variable might be accessed in its 573 // initializer, zero-initialize before running the initializer, then 574 // actually perform the initialization with an assign. 575 bool accessedByInit = false; 576 if (lifetime != Qualifiers::OCL_ExplicitNone) 577 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 578 if (accessedByInit) { 579 LValue tempLV = lvalue; 580 // Drill down to the __block object if necessary. 581 if (capturedByInit) { 582 // We can use a simple GEP for this because it can't have been 583 // moved yet. 584 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 585 getByRefValueLLVMField(cast<VarDecl>(D)))); 586 } 587 588 llvm::PointerType *ty 589 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 590 ty = cast<llvm::PointerType>(ty->getElementType()); 591 592 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 593 594 // If __weak, we want to use a barrier under certain conditions. 595 if (lifetime == Qualifiers::OCL_Weak) 596 EmitARCInitWeak(tempLV.getAddress(), zero); 597 598 // Otherwise just do a simple store. 599 else 600 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 601 } 602 603 // Emit the initializer. 604 llvm::Value *value = 0; 605 606 switch (lifetime) { 607 case Qualifiers::OCL_None: 608 llvm_unreachable("present but none"); 609 610 case Qualifiers::OCL_ExplicitNone: 611 // nothing to do 612 value = EmitScalarExpr(init); 613 break; 614 615 case Qualifiers::OCL_Strong: { 616 value = EmitARCRetainScalarExpr(init); 617 break; 618 } 619 620 case Qualifiers::OCL_Weak: { 621 // No way to optimize a producing initializer into this. It's not 622 // worth optimizing for, because the value will immediately 623 // disappear in the common case. 624 value = EmitScalarExpr(init); 625 626 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 627 if (accessedByInit) 628 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 629 else 630 EmitARCInitWeak(lvalue.getAddress(), value); 631 return; 632 } 633 634 case Qualifiers::OCL_Autoreleasing: 635 value = EmitARCRetainAutoreleaseScalarExpr(init); 636 break; 637 } 638 639 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 640 641 // If the variable might have been accessed by its initializer, we 642 // might have to initialize with a barrier. We have to do this for 643 // both __weak and __strong, but __weak got filtered out above. 644 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 645 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 646 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 647 EmitARCRelease(oldValue, ARCImpreciseLifetime); 648 return; 649 } 650 651 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 652 } 653 654 /// EmitScalarInit - Initialize the given lvalue with the given object. 655 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 656 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 657 if (!lifetime) 658 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 659 660 switch (lifetime) { 661 case Qualifiers::OCL_None: 662 llvm_unreachable("present but none"); 663 664 case Qualifiers::OCL_ExplicitNone: 665 // nothing to do 666 break; 667 668 case Qualifiers::OCL_Strong: 669 init = EmitARCRetain(lvalue.getType(), init); 670 break; 671 672 case Qualifiers::OCL_Weak: 673 // Initialize and then skip the primitive store. 674 EmitARCInitWeak(lvalue.getAddress(), init); 675 return; 676 677 case Qualifiers::OCL_Autoreleasing: 678 init = EmitARCRetainAutorelease(lvalue.getType(), init); 679 break; 680 } 681 682 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 683 } 684 685 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 686 /// non-zero parts of the specified initializer with equal or fewer than 687 /// NumStores scalar stores. 688 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 689 unsigned &NumStores) { 690 // Zero and Undef never requires any extra stores. 691 if (isa<llvm::ConstantAggregateZero>(Init) || 692 isa<llvm::ConstantPointerNull>(Init) || 693 isa<llvm::UndefValue>(Init)) 694 return true; 695 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 696 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 697 isa<llvm::ConstantExpr>(Init)) 698 return Init->isNullValue() || NumStores--; 699 700 // See if we can emit each element. 701 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 702 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 703 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 704 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 705 return false; 706 } 707 return true; 708 } 709 710 if (llvm::ConstantDataSequential *CDS = 711 dyn_cast<llvm::ConstantDataSequential>(Init)) { 712 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 713 llvm::Constant *Elt = CDS->getElementAsConstant(i); 714 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 715 return false; 716 } 717 return true; 718 } 719 720 // Anything else is hard and scary. 721 return false; 722 } 723 724 /// emitStoresForInitAfterMemset - For inits that 725 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 726 /// stores that would be required. 727 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 728 bool isVolatile, CGBuilderTy &Builder) { 729 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 730 "called emitStoresForInitAfterMemset for zero or undef value."); 731 732 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 733 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 734 isa<llvm::ConstantExpr>(Init)) { 735 Builder.CreateStore(Init, Loc, isVolatile); 736 return; 737 } 738 739 if (llvm::ConstantDataSequential *CDS = 740 dyn_cast<llvm::ConstantDataSequential>(Init)) { 741 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 742 llvm::Constant *Elt = CDS->getElementAsConstant(i); 743 744 // If necessary, get a pointer to the element and emit it. 745 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 746 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 747 isVolatile, Builder); 748 } 749 return; 750 } 751 752 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 753 "Unknown value type!"); 754 755 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 756 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 757 758 // If necessary, get a pointer to the element and emit it. 759 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 760 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 761 isVolatile, Builder); 762 } 763 } 764 765 766 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 767 /// plus some stores to initialize a local variable instead of using a memcpy 768 /// from a constant global. It is beneficial to use memset if the global is all 769 /// zeros, or mostly zeros and large. 770 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 771 uint64_t GlobalSize) { 772 // If a global is all zeros, always use a memset. 773 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 774 775 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 776 // do it if it will require 6 or fewer scalar stores. 777 // TODO: Should budget depends on the size? Avoiding a large global warrants 778 // plopping in more stores. 779 unsigned StoreBudget = 6; 780 uint64_t SizeLimit = 32; 781 782 return GlobalSize > SizeLimit && 783 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 784 } 785 786 /// Should we use the LLVM lifetime intrinsics for the given local variable? 787 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 788 unsigned Size) { 789 // For now, only in optimized builds. 790 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 791 return false; 792 793 // Limit the size of marked objects to 32 bytes. We don't want to increase 794 // compile time by marking tiny objects. 795 unsigned SizeThreshold = 32; 796 797 return Size > SizeThreshold; 798 } 799 800 801 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 802 /// variable declaration with auto, register, or no storage class specifier. 803 /// These turn into simple stack objects, or GlobalValues depending on target. 804 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 805 AutoVarEmission emission = EmitAutoVarAlloca(D); 806 EmitAutoVarInit(emission); 807 EmitAutoVarCleanups(emission); 808 } 809 810 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 811 /// local variable. Does not emit initalization or destruction. 812 CodeGenFunction::AutoVarEmission 813 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 814 QualType Ty = D.getType(); 815 816 AutoVarEmission emission(D); 817 818 bool isByRef = D.hasAttr<BlocksAttr>(); 819 emission.IsByRef = isByRef; 820 821 CharUnits alignment = getContext().getDeclAlign(&D); 822 emission.Alignment = alignment; 823 824 // If the type is variably-modified, emit all the VLA sizes for it. 825 if (Ty->isVariablyModifiedType()) 826 EmitVariablyModifiedType(Ty); 827 828 llvm::Value *DeclPtr; 829 if (Ty->isConstantSizeType()) { 830 bool NRVO = getLangOpts().ElideConstructors && 831 D.isNRVOVariable(); 832 833 // If this value is a POD array or struct with a statically 834 // determinable constant initializer, there are optimizations we can do. 835 // 836 // TODO: We should constant-evaluate the initializer of any variable, 837 // as long as it is initialized by a constant expression. Currently, 838 // isConstantInitializer produces wrong answers for structs with 839 // reference or bitfield members, and a few other cases, and checking 840 // for POD-ness protects us from some of these. 841 if (D.getInit() && 842 (Ty->isArrayType() || Ty->isRecordType()) && 843 (Ty.isPODType(getContext()) || 844 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 845 D.getInit()->isConstantInitializer(getContext(), false)) { 846 847 // If the variable's a const type, and it's neither an NRVO 848 // candidate nor a __block variable and has no mutable members, 849 // emit it as a global instead. 850 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 851 CGM.isTypeConstant(Ty, true)) { 852 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 853 854 emission.Address = 0; // signal this condition to later callbacks 855 assert(emission.wasEmittedAsGlobal()); 856 return emission; 857 } 858 859 // Otherwise, tell the initialization code that we're in this case. 860 emission.IsConstantAggregate = true; 861 } 862 863 // A normal fixed sized variable becomes an alloca in the entry block, 864 // unless it's an NRVO variable. 865 llvm::Type *LTy = ConvertTypeForMem(Ty); 866 867 if (NRVO) { 868 // The named return value optimization: allocate this variable in the 869 // return slot, so that we can elide the copy when returning this 870 // variable (C++0x [class.copy]p34). 871 DeclPtr = ReturnValue; 872 873 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 874 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 875 // Create a flag that is used to indicate when the NRVO was applied 876 // to this variable. Set it to zero to indicate that NRVO was not 877 // applied. 878 llvm::Value *Zero = Builder.getFalse(); 879 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 880 EnsureInsertPoint(); 881 Builder.CreateStore(Zero, NRVOFlag); 882 883 // Record the NRVO flag for this variable. 884 NRVOFlags[&D] = NRVOFlag; 885 emission.NRVOFlag = NRVOFlag; 886 } 887 } 888 } else { 889 if (isByRef) 890 LTy = BuildByRefType(&D); 891 892 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 893 Alloc->setName(D.getName()); 894 895 CharUnits allocaAlignment = alignment; 896 if (isByRef) 897 allocaAlignment = std::max(allocaAlignment, 898 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 899 Alloc->setAlignment(allocaAlignment.getQuantity()); 900 DeclPtr = Alloc; 901 902 // Emit a lifetime intrinsic if meaningful. There's no point 903 // in doing this if we don't have a valid insertion point (?). 904 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 905 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 906 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 907 908 emission.SizeForLifetimeMarkers = sizeV; 909 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 910 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 911 ->setDoesNotThrow(); 912 } else { 913 assert(!emission.useLifetimeMarkers()); 914 } 915 } 916 } else { 917 EnsureInsertPoint(); 918 919 if (!DidCallStackSave) { 920 // Save the stack. 921 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 922 923 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 924 llvm::Value *V = Builder.CreateCall(F); 925 926 Builder.CreateStore(V, Stack); 927 928 DidCallStackSave = true; 929 930 // Push a cleanup block and restore the stack there. 931 // FIXME: in general circumstances, this should be an EH cleanup. 932 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 933 } 934 935 llvm::Value *elementCount; 936 QualType elementType; 937 llvm::tie(elementCount, elementType) = getVLASize(Ty); 938 939 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 940 941 // Allocate memory for the array. 942 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 943 vla->setAlignment(alignment.getQuantity()); 944 945 DeclPtr = vla; 946 } 947 948 llvm::Value *&DMEntry = LocalDeclMap[&D]; 949 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 950 DMEntry = DeclPtr; 951 emission.Address = DeclPtr; 952 953 // Emit debug info for local var declaration. 954 if (HaveInsertPoint()) 955 if (CGDebugInfo *DI = getDebugInfo()) { 956 if (CGM.getCodeGenOpts().getDebugInfo() 957 >= CodeGenOptions::LimitedDebugInfo) { 958 DI->setLocation(D.getLocation()); 959 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 960 } 961 } 962 963 if (D.hasAttr<AnnotateAttr>()) 964 EmitVarAnnotations(&D, emission.Address); 965 966 return emission; 967 } 968 969 /// Determines whether the given __block variable is potentially 970 /// captured by the given expression. 971 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 972 // Skip the most common kinds of expressions that make 973 // hierarchy-walking expensive. 974 e = e->IgnoreParenCasts(); 975 976 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 977 const BlockDecl *block = be->getBlockDecl(); 978 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 979 e = block->capture_end(); i != e; ++i) { 980 if (i->getVariable() == &var) 981 return true; 982 } 983 984 // No need to walk into the subexpressions. 985 return false; 986 } 987 988 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 989 const CompoundStmt *CS = SE->getSubStmt(); 990 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 991 BE = CS->body_end(); BI != BE; ++BI) 992 if (Expr *E = dyn_cast<Expr>((*BI))) { 993 if (isCapturedBy(var, E)) 994 return true; 995 } 996 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 997 // special case declarations 998 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 999 I != E; ++I) { 1000 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 1001 Expr *Init = VD->getInit(); 1002 if (Init && isCapturedBy(var, Init)) 1003 return true; 1004 } 1005 } 1006 } 1007 else 1008 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1009 // Later, provide code to poke into statements for capture analysis. 1010 return true; 1011 return false; 1012 } 1013 1014 for (Stmt::const_child_range children = e->children(); children; ++children) 1015 if (isCapturedBy(var, cast<Expr>(*children))) 1016 return true; 1017 1018 return false; 1019 } 1020 1021 /// \brief Determine whether the given initializer is trivial in the sense 1022 /// that it requires no code to be generated. 1023 static bool isTrivialInitializer(const Expr *Init) { 1024 if (!Init) 1025 return true; 1026 1027 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1028 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1029 if (Constructor->isTrivial() && 1030 Constructor->isDefaultConstructor() && 1031 !Construct->requiresZeroInitialization()) 1032 return true; 1033 1034 return false; 1035 } 1036 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1037 assert(emission.Variable && "emission was not valid!"); 1038 1039 // If this was emitted as a global constant, we're done. 1040 if (emission.wasEmittedAsGlobal()) return; 1041 1042 const VarDecl &D = *emission.Variable; 1043 QualType type = D.getType(); 1044 1045 // If this local has an initializer, emit it now. 1046 const Expr *Init = D.getInit(); 1047 1048 // If we are at an unreachable point, we don't need to emit the initializer 1049 // unless it contains a label. 1050 if (!HaveInsertPoint()) { 1051 if (!Init || !ContainsLabel(Init)) return; 1052 EnsureInsertPoint(); 1053 } 1054 1055 // Initialize the structure of a __block variable. 1056 if (emission.IsByRef) 1057 emitByrefStructureInit(emission); 1058 1059 if (isTrivialInitializer(Init)) 1060 return; 1061 1062 CharUnits alignment = emission.Alignment; 1063 1064 // Check whether this is a byref variable that's potentially 1065 // captured and moved by its own initializer. If so, we'll need to 1066 // emit the initializer first, then copy into the variable. 1067 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1068 1069 llvm::Value *Loc = 1070 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1071 1072 llvm::Constant *constant = 0; 1073 if (emission.IsConstantAggregate) { 1074 assert(!capturedByInit && "constant init contains a capturing block?"); 1075 constant = CGM.EmitConstantInit(D, this); 1076 } 1077 1078 if (!constant) { 1079 LValue lv = MakeAddrLValue(Loc, type, alignment); 1080 lv.setNonGC(true); 1081 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1082 } 1083 1084 // If this is a simple aggregate initialization, we can optimize it 1085 // in various ways. 1086 bool isVolatile = type.isVolatileQualified(); 1087 1088 llvm::Value *SizeVal = 1089 llvm::ConstantInt::get(IntPtrTy, 1090 getContext().getTypeSizeInChars(type).getQuantity()); 1091 1092 llvm::Type *BP = Int8PtrTy; 1093 if (Loc->getType() != BP) 1094 Loc = Builder.CreateBitCast(Loc, BP); 1095 1096 // If the initializer is all or mostly zeros, codegen with memset then do 1097 // a few stores afterward. 1098 if (shouldUseMemSetPlusStoresToInitialize(constant, 1099 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1100 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1101 alignment.getQuantity(), isVolatile); 1102 // Zero and undef don't require a stores. 1103 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1104 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1105 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1106 } 1107 } else { 1108 // Otherwise, create a temporary global with the initializer then 1109 // memcpy from the global to the alloca. 1110 std::string Name = GetStaticDeclName(*this, D, "."); 1111 llvm::GlobalVariable *GV = 1112 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1113 llvm::GlobalValue::PrivateLinkage, 1114 constant, Name); 1115 GV->setAlignment(alignment.getQuantity()); 1116 GV->setUnnamedAddr(true); 1117 1118 llvm::Value *SrcPtr = GV; 1119 if (SrcPtr->getType() != BP) 1120 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1121 1122 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1123 isVolatile); 1124 } 1125 } 1126 1127 /// Emit an expression as an initializer for a variable at the given 1128 /// location. The expression is not necessarily the normal 1129 /// initializer for the variable, and the address is not necessarily 1130 /// its normal location. 1131 /// 1132 /// \param init the initializing expression 1133 /// \param var the variable to act as if we're initializing 1134 /// \param loc the address to initialize; its type is a pointer 1135 /// to the LLVM mapping of the variable's type 1136 /// \param alignment the alignment of the address 1137 /// \param capturedByInit true if the variable is a __block variable 1138 /// whose address is potentially changed by the initializer 1139 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1140 const ValueDecl *D, 1141 LValue lvalue, 1142 bool capturedByInit) { 1143 QualType type = D->getType(); 1144 1145 if (type->isReferenceType()) { 1146 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1147 if (capturedByInit) 1148 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1149 EmitStoreThroughLValue(rvalue, lvalue, true); 1150 return; 1151 } 1152 switch (getEvaluationKind(type)) { 1153 case TEK_Scalar: 1154 EmitScalarInit(init, D, lvalue, capturedByInit); 1155 return; 1156 case TEK_Complex: { 1157 ComplexPairTy complex = EmitComplexExpr(init); 1158 if (capturedByInit) 1159 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1160 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1161 return; 1162 } 1163 case TEK_Aggregate: 1164 if (type->isAtomicType()) { 1165 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1166 } else { 1167 // TODO: how can we delay here if D is captured by its initializer? 1168 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1169 AggValueSlot::IsDestructed, 1170 AggValueSlot::DoesNotNeedGCBarriers, 1171 AggValueSlot::IsNotAliased)); 1172 } 1173 MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init); 1174 return; 1175 } 1176 llvm_unreachable("bad evaluation kind"); 1177 } 1178 1179 /// Enter a destroy cleanup for the given local variable. 1180 void CodeGenFunction::emitAutoVarTypeCleanup( 1181 const CodeGenFunction::AutoVarEmission &emission, 1182 QualType::DestructionKind dtorKind) { 1183 assert(dtorKind != QualType::DK_none); 1184 1185 // Note that for __block variables, we want to destroy the 1186 // original stack object, not the possibly forwarded object. 1187 llvm::Value *addr = emission.getObjectAddress(*this); 1188 1189 const VarDecl *var = emission.Variable; 1190 QualType type = var->getType(); 1191 1192 CleanupKind cleanupKind = NormalAndEHCleanup; 1193 CodeGenFunction::Destroyer *destroyer = 0; 1194 1195 switch (dtorKind) { 1196 case QualType::DK_none: 1197 llvm_unreachable("no cleanup for trivially-destructible variable"); 1198 1199 case QualType::DK_cxx_destructor: 1200 // If there's an NRVO flag on the emission, we need a different 1201 // cleanup. 1202 if (emission.NRVOFlag) { 1203 assert(!type->isArrayType()); 1204 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1205 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1206 emission.NRVOFlag); 1207 return; 1208 } 1209 break; 1210 1211 case QualType::DK_objc_strong_lifetime: 1212 // Suppress cleanups for pseudo-strong variables. 1213 if (var->isARCPseudoStrong()) return; 1214 1215 // Otherwise, consider whether to use an EH cleanup or not. 1216 cleanupKind = getARCCleanupKind(); 1217 1218 // Use the imprecise destroyer by default. 1219 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1220 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1221 break; 1222 1223 case QualType::DK_objc_weak_lifetime: 1224 break; 1225 } 1226 1227 // If we haven't chosen a more specific destroyer, use the default. 1228 if (!destroyer) destroyer = getDestroyer(dtorKind); 1229 1230 // Use an EH cleanup in array destructors iff the destructor itself 1231 // is being pushed as an EH cleanup. 1232 bool useEHCleanup = (cleanupKind & EHCleanup); 1233 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1234 useEHCleanup); 1235 } 1236 1237 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1238 assert(emission.Variable && "emission was not valid!"); 1239 1240 // If this was emitted as a global constant, we're done. 1241 if (emission.wasEmittedAsGlobal()) return; 1242 1243 // If we don't have an insertion point, we're done. Sema prevents 1244 // us from jumping into any of these scopes anyway. 1245 if (!HaveInsertPoint()) return; 1246 1247 const VarDecl &D = *emission.Variable; 1248 1249 // Make sure we call @llvm.lifetime.end. This needs to happen 1250 // *last*, so the cleanup needs to be pushed *first*. 1251 if (emission.useLifetimeMarkers()) { 1252 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1253 emission.getAllocatedAddress(), 1254 emission.getSizeForLifetimeMarkers()); 1255 } 1256 1257 // Check the type for a cleanup. 1258 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1259 emitAutoVarTypeCleanup(emission, dtorKind); 1260 1261 // In GC mode, honor objc_precise_lifetime. 1262 if (getLangOpts().getGC() != LangOptions::NonGC && 1263 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1264 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1265 } 1266 1267 // Handle the cleanup attribute. 1268 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1269 const FunctionDecl *FD = CA->getFunctionDecl(); 1270 1271 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1272 assert(F && "Could not find function!"); 1273 1274 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1275 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1276 } 1277 1278 // If this is a block variable, call _Block_object_destroy 1279 // (on the unforwarded address). 1280 if (emission.IsByRef) 1281 enterByrefCleanup(emission); 1282 } 1283 1284 CodeGenFunction::Destroyer * 1285 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1286 switch (kind) { 1287 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1288 case QualType::DK_cxx_destructor: 1289 return destroyCXXObject; 1290 case QualType::DK_objc_strong_lifetime: 1291 return destroyARCStrongPrecise; 1292 case QualType::DK_objc_weak_lifetime: 1293 return destroyARCWeak; 1294 } 1295 llvm_unreachable("Unknown DestructionKind"); 1296 } 1297 1298 /// pushEHDestroy - Push the standard destructor for the given type as 1299 /// an EH-only cleanup. 1300 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1301 llvm::Value *addr, QualType type) { 1302 assert(dtorKind && "cannot push destructor for trivial type"); 1303 assert(needsEHCleanup(dtorKind)); 1304 1305 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1306 } 1307 1308 /// pushDestroy - Push the standard destructor for the given type as 1309 /// at least a normal cleanup. 1310 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1311 llvm::Value *addr, QualType type) { 1312 assert(dtorKind && "cannot push destructor for trivial type"); 1313 1314 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1315 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1316 cleanupKind & EHCleanup); 1317 } 1318 1319 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1320 QualType type, Destroyer *destroyer, 1321 bool useEHCleanupForArray) { 1322 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1323 destroyer, useEHCleanupForArray); 1324 } 1325 1326 /// emitDestroy - Immediately perform the destruction of the given 1327 /// object. 1328 /// 1329 /// \param addr - the address of the object; a type* 1330 /// \param type - the type of the object; if an array type, all 1331 /// objects are destroyed in reverse order 1332 /// \param destroyer - the function to call to destroy individual 1333 /// elements 1334 /// \param useEHCleanupForArray - whether an EH cleanup should be 1335 /// used when destroying array elements, in case one of the 1336 /// destructions throws an exception 1337 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1338 Destroyer *destroyer, 1339 bool useEHCleanupForArray) { 1340 const ArrayType *arrayType = getContext().getAsArrayType(type); 1341 if (!arrayType) 1342 return destroyer(*this, addr, type); 1343 1344 llvm::Value *begin = addr; 1345 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1346 1347 // Normally we have to check whether the array is zero-length. 1348 bool checkZeroLength = true; 1349 1350 // But if the array length is constant, we can suppress that. 1351 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1352 // ...and if it's constant zero, we can just skip the entire thing. 1353 if (constLength->isZero()) return; 1354 checkZeroLength = false; 1355 } 1356 1357 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1358 emitArrayDestroy(begin, end, type, destroyer, 1359 checkZeroLength, useEHCleanupForArray); 1360 } 1361 1362 /// emitArrayDestroy - Destroys all the elements of the given array, 1363 /// beginning from last to first. The array cannot be zero-length. 1364 /// 1365 /// \param begin - a type* denoting the first element of the array 1366 /// \param end - a type* denoting one past the end of the array 1367 /// \param type - the element type of the array 1368 /// \param destroyer - the function to call to destroy elements 1369 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1370 /// the remaining elements in case the destruction of a single 1371 /// element throws 1372 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1373 llvm::Value *end, 1374 QualType type, 1375 Destroyer *destroyer, 1376 bool checkZeroLength, 1377 bool useEHCleanup) { 1378 assert(!type->isArrayType()); 1379 1380 // The basic structure here is a do-while loop, because we don't 1381 // need to check for the zero-element case. 1382 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1383 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1384 1385 if (checkZeroLength) { 1386 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1387 "arraydestroy.isempty"); 1388 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1389 } 1390 1391 // Enter the loop body, making that address the current address. 1392 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1393 EmitBlock(bodyBB); 1394 llvm::PHINode *elementPast = 1395 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1396 elementPast->addIncoming(end, entryBB); 1397 1398 // Shift the address back by one element. 1399 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1400 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1401 "arraydestroy.element"); 1402 1403 if (useEHCleanup) 1404 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1405 1406 // Perform the actual destruction there. 1407 destroyer(*this, element, type); 1408 1409 if (useEHCleanup) 1410 PopCleanupBlock(); 1411 1412 // Check whether we've reached the end. 1413 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1414 Builder.CreateCondBr(done, doneBB, bodyBB); 1415 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1416 1417 // Done. 1418 EmitBlock(doneBB); 1419 } 1420 1421 /// Perform partial array destruction as if in an EH cleanup. Unlike 1422 /// emitArrayDestroy, the element type here may still be an array type. 1423 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1424 llvm::Value *begin, llvm::Value *end, 1425 QualType type, 1426 CodeGenFunction::Destroyer *destroyer) { 1427 // If the element type is itself an array, drill down. 1428 unsigned arrayDepth = 0; 1429 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1430 // VLAs don't require a GEP index to walk into. 1431 if (!isa<VariableArrayType>(arrayType)) 1432 arrayDepth++; 1433 type = arrayType->getElementType(); 1434 } 1435 1436 if (arrayDepth) { 1437 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1438 1439 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1440 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1441 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1442 } 1443 1444 // Destroy the array. We don't ever need an EH cleanup because we 1445 // assume that we're in an EH cleanup ourselves, so a throwing 1446 // destructor causes an immediate terminate. 1447 CGF.emitArrayDestroy(begin, end, type, destroyer, 1448 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1449 } 1450 1451 namespace { 1452 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1453 /// array destroy where the end pointer is regularly determined and 1454 /// does not need to be loaded from a local. 1455 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1456 llvm::Value *ArrayBegin; 1457 llvm::Value *ArrayEnd; 1458 QualType ElementType; 1459 CodeGenFunction::Destroyer *Destroyer; 1460 public: 1461 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1462 QualType elementType, 1463 CodeGenFunction::Destroyer *destroyer) 1464 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1465 ElementType(elementType), Destroyer(destroyer) {} 1466 1467 void Emit(CodeGenFunction &CGF, Flags flags) { 1468 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1469 ElementType, Destroyer); 1470 } 1471 }; 1472 1473 /// IrregularPartialArrayDestroy - a cleanup which performs a 1474 /// partial array destroy where the end pointer is irregularly 1475 /// determined and must be loaded from a local. 1476 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1477 llvm::Value *ArrayBegin; 1478 llvm::Value *ArrayEndPointer; 1479 QualType ElementType; 1480 CodeGenFunction::Destroyer *Destroyer; 1481 public: 1482 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1483 llvm::Value *arrayEndPointer, 1484 QualType elementType, 1485 CodeGenFunction::Destroyer *destroyer) 1486 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1487 ElementType(elementType), Destroyer(destroyer) {} 1488 1489 void Emit(CodeGenFunction &CGF, Flags flags) { 1490 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1491 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1492 ElementType, Destroyer); 1493 } 1494 }; 1495 } 1496 1497 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1498 /// already-constructed elements of the given array. The cleanup 1499 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1500 /// 1501 /// \param elementType - the immediate element type of the array; 1502 /// possibly still an array type 1503 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1504 llvm::Value *arrayEndPointer, 1505 QualType elementType, 1506 Destroyer *destroyer) { 1507 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1508 arrayBegin, arrayEndPointer, 1509 elementType, destroyer); 1510 } 1511 1512 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1513 /// already-constructed elements of the given array. The cleanup 1514 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1515 /// 1516 /// \param elementType - the immediate element type of the array; 1517 /// possibly still an array type 1518 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1519 llvm::Value *arrayEnd, 1520 QualType elementType, 1521 Destroyer *destroyer) { 1522 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1523 arrayBegin, arrayEnd, 1524 elementType, destroyer); 1525 } 1526 1527 /// Lazily declare the @llvm.lifetime.start intrinsic. 1528 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1529 if (LifetimeStartFn) return LifetimeStartFn; 1530 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1531 llvm::Intrinsic::lifetime_start); 1532 return LifetimeStartFn; 1533 } 1534 1535 /// Lazily declare the @llvm.lifetime.end intrinsic. 1536 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1537 if (LifetimeEndFn) return LifetimeEndFn; 1538 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1539 llvm::Intrinsic::lifetime_end); 1540 return LifetimeEndFn; 1541 } 1542 1543 namespace { 1544 /// A cleanup to perform a release of an object at the end of a 1545 /// function. This is used to balance out the incoming +1 of a 1546 /// ns_consumed argument when we can't reasonably do that just by 1547 /// not doing the initial retain for a __block argument. 1548 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1549 ConsumeARCParameter(llvm::Value *param, 1550 ARCPreciseLifetime_t precise) 1551 : Param(param), Precise(precise) {} 1552 1553 llvm::Value *Param; 1554 ARCPreciseLifetime_t Precise; 1555 1556 void Emit(CodeGenFunction &CGF, Flags flags) { 1557 CGF.EmitARCRelease(Param, Precise); 1558 } 1559 }; 1560 } 1561 1562 /// Emit an alloca (or GlobalValue depending on target) 1563 /// for the specified parameter and set up LocalDeclMap. 1564 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1565 unsigned ArgNo) { 1566 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1567 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1568 "Invalid argument to EmitParmDecl"); 1569 1570 Arg->setName(D.getName()); 1571 1572 QualType Ty = D.getType(); 1573 1574 // Use better IR generation for certain implicit parameters. 1575 if (isa<ImplicitParamDecl>(D)) { 1576 // The only implicit argument a block has is its literal. 1577 if (BlockInfo) { 1578 LocalDeclMap[&D] = Arg; 1579 llvm::Value *LocalAddr = 0; 1580 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1581 // Allocate a stack slot to let debug info survive the RA. 1582 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1583 D.getName() + ".addr"); 1584 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1585 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1586 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1587 LocalAddr = Builder.CreateLoad(Alloc); 1588 } 1589 1590 if (CGDebugInfo *DI = getDebugInfo()) { 1591 if (CGM.getCodeGenOpts().getDebugInfo() 1592 >= CodeGenOptions::LimitedDebugInfo) { 1593 DI->setLocation(D.getLocation()); 1594 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); 1595 } 1596 } 1597 1598 return; 1599 } 1600 } 1601 1602 llvm::Value *DeclPtr; 1603 // If this is an aggregate or variable sized value, reuse the input pointer. 1604 if (!Ty->isConstantSizeType() || 1605 !CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1606 DeclPtr = Arg; 1607 } else { 1608 // Otherwise, create a temporary to hold the value. 1609 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1610 D.getName() + ".addr"); 1611 CharUnits Align = getContext().getDeclAlign(&D); 1612 Alloc->setAlignment(Align.getQuantity()); 1613 DeclPtr = Alloc; 1614 1615 bool doStore = true; 1616 1617 Qualifiers qs = Ty.getQualifiers(); 1618 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1619 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1620 // We honor __attribute__((ns_consumed)) for types with lifetime. 1621 // For __strong, it's handled by just skipping the initial retain; 1622 // otherwise we have to balance out the initial +1 with an extra 1623 // cleanup to do the release at the end of the function. 1624 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1625 1626 // 'self' is always formally __strong, but if this is not an 1627 // init method then we don't want to retain it. 1628 if (D.isARCPseudoStrong()) { 1629 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1630 assert(&D == method->getSelfDecl()); 1631 assert(lt == Qualifiers::OCL_Strong); 1632 assert(qs.hasConst()); 1633 assert(method->getMethodFamily() != OMF_init); 1634 (void) method; 1635 lt = Qualifiers::OCL_ExplicitNone; 1636 } 1637 1638 if (lt == Qualifiers::OCL_Strong) { 1639 if (!isConsumed) { 1640 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1641 // use objc_storeStrong(&dest, value) for retaining the 1642 // object. But first, store a null into 'dest' because 1643 // objc_storeStrong attempts to release its old value. 1644 llvm::Value * Null = CGM.EmitNullConstant(D.getType()); 1645 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1646 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1647 doStore = false; 1648 } 1649 else 1650 // Don't use objc_retainBlock for block pointers, because we 1651 // don't want to Block_copy something just because we got it 1652 // as a parameter. 1653 Arg = EmitARCRetainNonBlock(Arg); 1654 } 1655 } else { 1656 // Push the cleanup for a consumed parameter. 1657 if (isConsumed) { 1658 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1659 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1660 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1661 precise); 1662 } 1663 1664 if (lt == Qualifiers::OCL_Weak) { 1665 EmitARCInitWeak(DeclPtr, Arg); 1666 doStore = false; // The weak init is a store, no need to do two. 1667 } 1668 } 1669 1670 // Enter the cleanup scope. 1671 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1672 } 1673 1674 // Store the initial value into the alloca. 1675 if (doStore) 1676 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1677 } 1678 1679 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1680 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1681 DMEntry = DeclPtr; 1682 1683 // Emit debug info for param declaration. 1684 if (CGDebugInfo *DI = getDebugInfo()) { 1685 if (CGM.getCodeGenOpts().getDebugInfo() 1686 >= CodeGenOptions::LimitedDebugInfo) { 1687 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1688 } 1689 } 1690 1691 if (D.hasAttr<AnnotateAttr>()) 1692 EmitVarAnnotations(&D, DeclPtr); 1693 } 1694