1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenCLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclOpenMP.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Type.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 void CodeGenFunction::EmitDecl(const Decl &D) {
40   switch (D.getKind()) {
41   case Decl::BuiltinTemplate:
42   case Decl::TranslationUnit:
43   case Decl::ExternCContext:
44   case Decl::Namespace:
45   case Decl::UnresolvedUsingTypename:
46   case Decl::ClassTemplateSpecialization:
47   case Decl::ClassTemplatePartialSpecialization:
48   case Decl::VarTemplateSpecialization:
49   case Decl::VarTemplatePartialSpecialization:
50   case Decl::TemplateTypeParm:
51   case Decl::UnresolvedUsingValue:
52   case Decl::NonTypeTemplateParm:
53   case Decl::CXXDeductionGuide:
54   case Decl::CXXMethod:
55   case Decl::CXXConstructor:
56   case Decl::CXXDestructor:
57   case Decl::CXXConversion:
58   case Decl::Field:
59   case Decl::MSProperty:
60   case Decl::IndirectField:
61   case Decl::ObjCIvar:
62   case Decl::ObjCAtDefsField:
63   case Decl::ParmVar:
64   case Decl::ImplicitParam:
65   case Decl::ClassTemplate:
66   case Decl::VarTemplate:
67   case Decl::FunctionTemplate:
68   case Decl::TypeAliasTemplate:
69   case Decl::TemplateTemplateParm:
70   case Decl::ObjCMethod:
71   case Decl::ObjCCategory:
72   case Decl::ObjCProtocol:
73   case Decl::ObjCInterface:
74   case Decl::ObjCCategoryImpl:
75   case Decl::ObjCImplementation:
76   case Decl::ObjCProperty:
77   case Decl::ObjCCompatibleAlias:
78   case Decl::PragmaComment:
79   case Decl::PragmaDetectMismatch:
80   case Decl::AccessSpec:
81   case Decl::LinkageSpec:
82   case Decl::Export:
83   case Decl::ObjCPropertyImpl:
84   case Decl::FileScopeAsm:
85   case Decl::Friend:
86   case Decl::FriendTemplate:
87   case Decl::Block:
88   case Decl::Captured:
89   case Decl::ClassScopeFunctionSpecialization:
90   case Decl::UsingShadow:
91   case Decl::ConstructorUsingShadow:
92   case Decl::ObjCTypeParam:
93   case Decl::Binding:
94     llvm_unreachable("Declaration should not be in declstmts!");
95   case Decl::Function:  // void X();
96   case Decl::Record:    // struct/union/class X;
97   case Decl::Enum:      // enum X;
98   case Decl::EnumConstant: // enum ? { X = ? }
99   case Decl::CXXRecord: // struct/union/class X; [C++]
100   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
101   case Decl::Label:        // __label__ x;
102   case Decl::Import:
103   case Decl::OMPThreadPrivate:
104   case Decl::OMPCapturedExpr:
105   case Decl::Empty:
106     // None of these decls require codegen support.
107     return;
108 
109   case Decl::NamespaceAlias:
110     if (CGDebugInfo *DI = getDebugInfo())
111         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
112     return;
113   case Decl::Using:          // using X; [C++]
114     if (CGDebugInfo *DI = getDebugInfo())
115         DI->EmitUsingDecl(cast<UsingDecl>(D));
116     return;
117   case Decl::UsingPack:
118     for (auto *Using : cast<UsingPackDecl>(D).expansions())
119       EmitDecl(*Using);
120     return;
121   case Decl::UsingDirective: // using namespace X; [C++]
122     if (CGDebugInfo *DI = getDebugInfo())
123       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
124     return;
125   case Decl::Var:
126   case Decl::Decomposition: {
127     const VarDecl &VD = cast<VarDecl>(D);
128     assert(VD.isLocalVarDecl() &&
129            "Should not see file-scope variables inside a function!");
130     EmitVarDecl(VD);
131     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
132       for (auto *B : DD->bindings())
133         if (auto *HD = B->getHoldingVar())
134           EmitVarDecl(*HD);
135     return;
136   }
137 
138   case Decl::OMPDeclareReduction:
139     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
140 
141   case Decl::Typedef:      // typedef int X;
142   case Decl::TypeAlias: {  // using X = int; [C++0x]
143     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
144     QualType Ty = TD.getUnderlyingType();
145 
146     if (Ty->isVariablyModifiedType())
147       EmitVariablyModifiedType(Ty);
148   }
149   }
150 }
151 
152 /// EmitVarDecl - This method handles emission of any variable declaration
153 /// inside a function, including static vars etc.
154 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
155   if (D.isStaticLocal()) {
156     llvm::GlobalValue::LinkageTypes Linkage =
157         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
158 
159     // FIXME: We need to force the emission/use of a guard variable for
160     // some variables even if we can constant-evaluate them because
161     // we can't guarantee every translation unit will constant-evaluate them.
162 
163     return EmitStaticVarDecl(D, Linkage);
164   }
165 
166   if (D.hasExternalStorage())
167     // Don't emit it now, allow it to be emitted lazily on its first use.
168     return;
169 
170   if (D.getType().getAddressSpace() == LangAS::opencl_local)
171     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
172 
173   assert(D.hasLocalStorage());
174   return EmitAutoVarDecl(D);
175 }
176 
177 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
178   if (CGM.getLangOpts().CPlusPlus)
179     return CGM.getMangledName(&D).str();
180 
181   // If this isn't C++, we don't need a mangled name, just a pretty one.
182   assert(!D.isExternallyVisible() && "name shouldn't matter");
183   std::string ContextName;
184   const DeclContext *DC = D.getDeclContext();
185   if (auto *CD = dyn_cast<CapturedDecl>(DC))
186     DC = cast<DeclContext>(CD->getNonClosureContext());
187   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
188     ContextName = CGM.getMangledName(FD);
189   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
190     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
191   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
192     ContextName = OMD->getSelector().getAsString();
193   else
194     llvm_unreachable("Unknown context for static var decl");
195 
196   ContextName += "." + D.getNameAsString();
197   return ContextName;
198 }
199 
200 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
201     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
202   // In general, we don't always emit static var decls once before we reference
203   // them. It is possible to reference them before emitting the function that
204   // contains them, and it is possible to emit the containing function multiple
205   // times.
206   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
207     return ExistingGV;
208 
209   QualType Ty = D.getType();
210   assert(Ty->isConstantSizeType() && "VLAs can't be static");
211 
212   // Use the label if the variable is renamed with the asm-label extension.
213   std::string Name;
214   if (D.hasAttr<AsmLabelAttr>())
215     Name = getMangledName(&D);
216   else
217     Name = getStaticDeclName(*this, D);
218 
219   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
220   unsigned AddrSpace =
221       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
222 
223   // Local address space cannot have an initializer.
224   llvm::Constant *Init = nullptr;
225   if (Ty.getAddressSpace() != LangAS::opencl_local)
226     Init = EmitNullConstant(Ty);
227   else
228     Init = llvm::UndefValue::get(LTy);
229 
230   llvm::GlobalVariable *GV =
231     new llvm::GlobalVariable(getModule(), LTy,
232                              Ty.isConstant(getContext()), Linkage,
233                              Init, Name, nullptr,
234                              llvm::GlobalVariable::NotThreadLocal,
235                              AddrSpace);
236   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
237   setGlobalVisibility(GV, &D);
238 
239   if (supportsCOMDAT() && GV->isWeakForLinker())
240     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
241 
242   if (D.getTLSKind())
243     setTLSMode(GV, D);
244 
245   if (D.isExternallyVisible()) {
246     if (D.hasAttr<DLLImportAttr>())
247       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
248     else if (D.hasAttr<DLLExportAttr>())
249       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
250   }
251 
252   // Make sure the result is of the correct type.
253   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
254   llvm::Constant *Addr = GV;
255   if (AddrSpace != ExpectedAddrSpace) {
256     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
257     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
258   }
259 
260   setStaticLocalDeclAddress(&D, Addr);
261 
262   // Ensure that the static local gets initialized by making sure the parent
263   // function gets emitted eventually.
264   const Decl *DC = cast<Decl>(D.getDeclContext());
265 
266   // We can't name blocks or captured statements directly, so try to emit their
267   // parents.
268   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
269     DC = DC->getNonClosureContext();
270     // FIXME: Ensure that global blocks get emitted.
271     if (!DC)
272       return Addr;
273   }
274 
275   GlobalDecl GD;
276   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
277     GD = GlobalDecl(CD, Ctor_Base);
278   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
279     GD = GlobalDecl(DD, Dtor_Base);
280   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
281     GD = GlobalDecl(FD);
282   else {
283     // Don't do anything for Obj-C method decls or global closures. We should
284     // never defer them.
285     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
286   }
287   if (GD.getDecl())
288     (void)GetAddrOfGlobal(GD);
289 
290   return Addr;
291 }
292 
293 /// hasNontrivialDestruction - Determine whether a type's destruction is
294 /// non-trivial. If so, and the variable uses static initialization, we must
295 /// register its destructor to run on exit.
296 static bool hasNontrivialDestruction(QualType T) {
297   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
298   return RD && !RD->hasTrivialDestructor();
299 }
300 
301 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
302 /// global variable that has already been created for it.  If the initializer
303 /// has a different type than GV does, this may free GV and return a different
304 /// one.  Otherwise it just returns GV.
305 llvm::GlobalVariable *
306 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
307                                                llvm::GlobalVariable *GV) {
308   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
309 
310   // If constant emission failed, then this should be a C++ static
311   // initializer.
312   if (!Init) {
313     if (!getLangOpts().CPlusPlus)
314       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
315     else if (HaveInsertPoint()) {
316       // Since we have a static initializer, this global variable can't
317       // be constant.
318       GV->setConstant(false);
319 
320       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
321     }
322     return GV;
323   }
324 
325   // The initializer may differ in type from the global. Rewrite
326   // the global to match the initializer.  (We have to do this
327   // because some types, like unions, can't be completely represented
328   // in the LLVM type system.)
329   if (GV->getType()->getElementType() != Init->getType()) {
330     llvm::GlobalVariable *OldGV = GV;
331 
332     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
333                                   OldGV->isConstant(),
334                                   OldGV->getLinkage(), Init, "",
335                                   /*InsertBefore*/ OldGV,
336                                   OldGV->getThreadLocalMode(),
337                            CGM.getContext().getTargetAddressSpace(D.getType()));
338     GV->setVisibility(OldGV->getVisibility());
339     GV->setComdat(OldGV->getComdat());
340 
341     // Steal the name of the old global
342     GV->takeName(OldGV);
343 
344     // Replace all uses of the old global with the new global
345     llvm::Constant *NewPtrForOldDecl =
346     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
347     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
348 
349     // Erase the old global, since it is no longer used.
350     OldGV->eraseFromParent();
351   }
352 
353   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
354   GV->setInitializer(Init);
355 
356   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
357     // We have a constant initializer, but a nontrivial destructor. We still
358     // need to perform a guarded "initialization" in order to register the
359     // destructor.
360     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
361   }
362 
363   return GV;
364 }
365 
366 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
367                                       llvm::GlobalValue::LinkageTypes Linkage) {
368   // Check to see if we already have a global variable for this
369   // declaration.  This can happen when double-emitting function
370   // bodies, e.g. with complete and base constructors.
371   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
372   CharUnits alignment = getContext().getDeclAlign(&D);
373 
374   // Store into LocalDeclMap before generating initializer to handle
375   // circular references.
376   setAddrOfLocalVar(&D, Address(addr, alignment));
377 
378   // We can't have a VLA here, but we can have a pointer to a VLA,
379   // even though that doesn't really make any sense.
380   // Make sure to evaluate VLA bounds now so that we have them for later.
381   if (D.getType()->isVariablyModifiedType())
382     EmitVariablyModifiedType(D.getType());
383 
384   // Save the type in case adding the initializer forces a type change.
385   llvm::Type *expectedType = addr->getType();
386 
387   llvm::GlobalVariable *var =
388     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
389 
390   // CUDA's local and local static __shared__ variables should not
391   // have any non-empty initializers. This is ensured by Sema.
392   // Whatever initializer such variable may have when it gets here is
393   // a no-op and should not be emitted.
394   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
395                          D.hasAttr<CUDASharedAttr>();
396   // If this value has an initializer, emit it.
397   if (D.getInit() && !isCudaSharedVar)
398     var = AddInitializerToStaticVarDecl(D, var);
399 
400   var->setAlignment(alignment.getQuantity());
401 
402   if (D.hasAttr<AnnotateAttr>())
403     CGM.AddGlobalAnnotations(&D, var);
404 
405   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
406     var->setSection(SA->getName());
407 
408   if (D.hasAttr<UsedAttr>())
409     CGM.addUsedGlobal(var);
410 
411   // We may have to cast the constant because of the initializer
412   // mismatch above.
413   //
414   // FIXME: It is really dangerous to store this in the map; if anyone
415   // RAUW's the GV uses of this constant will be invalid.
416   llvm::Constant *castedAddr =
417     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
418   if (var != castedAddr)
419     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
420   CGM.setStaticLocalDeclAddress(&D, castedAddr);
421 
422   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
423 
424   // Emit global variable debug descriptor for static vars.
425   CGDebugInfo *DI = getDebugInfo();
426   if (DI &&
427       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
428     DI->setLocation(D.getLocation());
429     DI->EmitGlobalVariable(var, &D);
430   }
431 }
432 
433 namespace {
434   struct DestroyObject final : EHScopeStack::Cleanup {
435     DestroyObject(Address addr, QualType type,
436                   CodeGenFunction::Destroyer *destroyer,
437                   bool useEHCleanupForArray)
438       : addr(addr), type(type), destroyer(destroyer),
439         useEHCleanupForArray(useEHCleanupForArray) {}
440 
441     Address addr;
442     QualType type;
443     CodeGenFunction::Destroyer *destroyer;
444     bool useEHCleanupForArray;
445 
446     void Emit(CodeGenFunction &CGF, Flags flags) override {
447       // Don't use an EH cleanup recursively from an EH cleanup.
448       bool useEHCleanupForArray =
449         flags.isForNormalCleanup() && this->useEHCleanupForArray;
450 
451       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
452     }
453   };
454 
455   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
456     DestroyNRVOVariable(Address addr,
457                         const CXXDestructorDecl *Dtor,
458                         llvm::Value *NRVOFlag)
459       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
460 
461     const CXXDestructorDecl *Dtor;
462     llvm::Value *NRVOFlag;
463     Address Loc;
464 
465     void Emit(CodeGenFunction &CGF, Flags flags) override {
466       // Along the exceptions path we always execute the dtor.
467       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
468 
469       llvm::BasicBlock *SkipDtorBB = nullptr;
470       if (NRVO) {
471         // If we exited via NRVO, we skip the destructor call.
472         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
473         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
474         llvm::Value *DidNRVO =
475           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
476         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
477         CGF.EmitBlock(RunDtorBB);
478       }
479 
480       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
481                                 /*ForVirtualBase=*/false,
482                                 /*Delegating=*/false,
483                                 Loc);
484 
485       if (NRVO) CGF.EmitBlock(SkipDtorBB);
486     }
487   };
488 
489   struct CallStackRestore final : EHScopeStack::Cleanup {
490     Address Stack;
491     CallStackRestore(Address Stack) : Stack(Stack) {}
492     void Emit(CodeGenFunction &CGF, Flags flags) override {
493       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
494       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
495       CGF.Builder.CreateCall(F, V);
496     }
497   };
498 
499   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
500     const VarDecl &Var;
501     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
502 
503     void Emit(CodeGenFunction &CGF, Flags flags) override {
504       // Compute the address of the local variable, in case it's a
505       // byref or something.
506       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
507                       Var.getType(), VK_LValue, SourceLocation());
508       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
509                                                 SourceLocation());
510       CGF.EmitExtendGCLifetime(value);
511     }
512   };
513 
514   struct CallCleanupFunction final : EHScopeStack::Cleanup {
515     llvm::Constant *CleanupFn;
516     const CGFunctionInfo &FnInfo;
517     const VarDecl &Var;
518 
519     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
520                         const VarDecl *Var)
521       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
522 
523     void Emit(CodeGenFunction &CGF, Flags flags) override {
524       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
525                       Var.getType(), VK_LValue, SourceLocation());
526       // Compute the address of the local variable, in case it's a byref
527       // or something.
528       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
529 
530       // In some cases, the type of the function argument will be different from
531       // the type of the pointer. An example of this is
532       // void f(void* arg);
533       // __attribute__((cleanup(f))) void *g;
534       //
535       // To fix this we insert a bitcast here.
536       QualType ArgTy = FnInfo.arg_begin()->type;
537       llvm::Value *Arg =
538         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
539 
540       CallArgList Args;
541       Args.add(RValue::get(Arg),
542                CGF.getContext().getPointerType(Var.getType()));
543       auto Callee = CGCallee::forDirect(CleanupFn);
544       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
545     }
546   };
547 } // end anonymous namespace
548 
549 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
550 /// variable with lifetime.
551 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
552                                     Address addr,
553                                     Qualifiers::ObjCLifetime lifetime) {
554   switch (lifetime) {
555   case Qualifiers::OCL_None:
556     llvm_unreachable("present but none");
557 
558   case Qualifiers::OCL_ExplicitNone:
559     // nothing to do
560     break;
561 
562   case Qualifiers::OCL_Strong: {
563     CodeGenFunction::Destroyer *destroyer =
564       (var.hasAttr<ObjCPreciseLifetimeAttr>()
565        ? CodeGenFunction::destroyARCStrongPrecise
566        : CodeGenFunction::destroyARCStrongImprecise);
567 
568     CleanupKind cleanupKind = CGF.getARCCleanupKind();
569     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
570                     cleanupKind & EHCleanup);
571     break;
572   }
573   case Qualifiers::OCL_Autoreleasing:
574     // nothing to do
575     break;
576 
577   case Qualifiers::OCL_Weak:
578     // __weak objects always get EH cleanups; otherwise, exceptions
579     // could cause really nasty crashes instead of mere leaks.
580     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
581                     CodeGenFunction::destroyARCWeak,
582                     /*useEHCleanup*/ true);
583     break;
584   }
585 }
586 
587 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
588   if (const Expr *e = dyn_cast<Expr>(s)) {
589     // Skip the most common kinds of expressions that make
590     // hierarchy-walking expensive.
591     s = e = e->IgnoreParenCasts();
592 
593     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
594       return (ref->getDecl() == &var);
595     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
596       const BlockDecl *block = be->getBlockDecl();
597       for (const auto &I : block->captures()) {
598         if (I.getVariable() == &var)
599           return true;
600       }
601     }
602   }
603 
604   for (const Stmt *SubStmt : s->children())
605     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
606     if (SubStmt && isAccessedBy(var, SubStmt))
607       return true;
608 
609   return false;
610 }
611 
612 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
613   if (!decl) return false;
614   if (!isa<VarDecl>(decl)) return false;
615   const VarDecl *var = cast<VarDecl>(decl);
616   return isAccessedBy(*var, e);
617 }
618 
619 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
620                                    const LValue &destLV, const Expr *init) {
621   bool needsCast = false;
622 
623   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
624     switch (castExpr->getCastKind()) {
625     // Look through casts that don't require representation changes.
626     case CK_NoOp:
627     case CK_BitCast:
628     case CK_BlockPointerToObjCPointerCast:
629       needsCast = true;
630       break;
631 
632     // If we find an l-value to r-value cast from a __weak variable,
633     // emit this operation as a copy or move.
634     case CK_LValueToRValue: {
635       const Expr *srcExpr = castExpr->getSubExpr();
636       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
637         return false;
638 
639       // Emit the source l-value.
640       LValue srcLV = CGF.EmitLValue(srcExpr);
641 
642       // Handle a formal type change to avoid asserting.
643       auto srcAddr = srcLV.getAddress();
644       if (needsCast) {
645         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
646                                          destLV.getAddress().getElementType());
647       }
648 
649       // If it was an l-value, use objc_copyWeak.
650       if (srcExpr->getValueKind() == VK_LValue) {
651         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
652       } else {
653         assert(srcExpr->getValueKind() == VK_XValue);
654         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
655       }
656       return true;
657     }
658 
659     // Stop at anything else.
660     default:
661       return false;
662     }
663 
664     init = castExpr->getSubExpr();
665   }
666   return false;
667 }
668 
669 static void drillIntoBlockVariable(CodeGenFunction &CGF,
670                                    LValue &lvalue,
671                                    const VarDecl *var) {
672   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
673 }
674 
675 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
676                                      LValue lvalue, bool capturedByInit) {
677   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
678   if (!lifetime) {
679     llvm::Value *value = EmitScalarExpr(init);
680     if (capturedByInit)
681       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
682     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
683     return;
684   }
685 
686   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
687     init = DIE->getExpr();
688 
689   // If we're emitting a value with lifetime, we have to do the
690   // initialization *before* we leave the cleanup scopes.
691   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
692     enterFullExpression(ewc);
693     init = ewc->getSubExpr();
694   }
695   CodeGenFunction::RunCleanupsScope Scope(*this);
696 
697   // We have to maintain the illusion that the variable is
698   // zero-initialized.  If the variable might be accessed in its
699   // initializer, zero-initialize before running the initializer, then
700   // actually perform the initialization with an assign.
701   bool accessedByInit = false;
702   if (lifetime != Qualifiers::OCL_ExplicitNone)
703     accessedByInit = (capturedByInit || isAccessedBy(D, init));
704   if (accessedByInit) {
705     LValue tempLV = lvalue;
706     // Drill down to the __block object if necessary.
707     if (capturedByInit) {
708       // We can use a simple GEP for this because it can't have been
709       // moved yet.
710       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
711                                               cast<VarDecl>(D),
712                                               /*follow*/ false));
713     }
714 
715     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
716     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
717 
718     // If __weak, we want to use a barrier under certain conditions.
719     if (lifetime == Qualifiers::OCL_Weak)
720       EmitARCInitWeak(tempLV.getAddress(), zero);
721 
722     // Otherwise just do a simple store.
723     else
724       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
725   }
726 
727   // Emit the initializer.
728   llvm::Value *value = nullptr;
729 
730   switch (lifetime) {
731   case Qualifiers::OCL_None:
732     llvm_unreachable("present but none");
733 
734   case Qualifiers::OCL_ExplicitNone:
735     value = EmitARCUnsafeUnretainedScalarExpr(init);
736     break;
737 
738   case Qualifiers::OCL_Strong: {
739     value = EmitARCRetainScalarExpr(init);
740     break;
741   }
742 
743   case Qualifiers::OCL_Weak: {
744     // If it's not accessed by the initializer, try to emit the
745     // initialization with a copy or move.
746     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
747       return;
748     }
749 
750     // No way to optimize a producing initializer into this.  It's not
751     // worth optimizing for, because the value will immediately
752     // disappear in the common case.
753     value = EmitScalarExpr(init);
754 
755     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
756     if (accessedByInit)
757       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
758     else
759       EmitARCInitWeak(lvalue.getAddress(), value);
760     return;
761   }
762 
763   case Qualifiers::OCL_Autoreleasing:
764     value = EmitARCRetainAutoreleaseScalarExpr(init);
765     break;
766   }
767 
768   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
769 
770   // If the variable might have been accessed by its initializer, we
771   // might have to initialize with a barrier.  We have to do this for
772   // both __weak and __strong, but __weak got filtered out above.
773   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
774     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
775     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
776     EmitARCRelease(oldValue, ARCImpreciseLifetime);
777     return;
778   }
779 
780   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
781 }
782 
783 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
784 /// non-zero parts of the specified initializer with equal or fewer than
785 /// NumStores scalar stores.
786 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
787                                                 unsigned &NumStores) {
788   // Zero and Undef never requires any extra stores.
789   if (isa<llvm::ConstantAggregateZero>(Init) ||
790       isa<llvm::ConstantPointerNull>(Init) ||
791       isa<llvm::UndefValue>(Init))
792     return true;
793   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
794       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
795       isa<llvm::ConstantExpr>(Init))
796     return Init->isNullValue() || NumStores--;
797 
798   // See if we can emit each element.
799   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
800     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
801       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
802       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
803         return false;
804     }
805     return true;
806   }
807 
808   if (llvm::ConstantDataSequential *CDS =
809         dyn_cast<llvm::ConstantDataSequential>(Init)) {
810     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
811       llvm::Constant *Elt = CDS->getElementAsConstant(i);
812       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
813         return false;
814     }
815     return true;
816   }
817 
818   // Anything else is hard and scary.
819   return false;
820 }
821 
822 /// emitStoresForInitAfterMemset - For inits that
823 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
824 /// stores that would be required.
825 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
826                                          bool isVolatile, CGBuilderTy &Builder) {
827   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
828          "called emitStoresForInitAfterMemset for zero or undef value.");
829 
830   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
831       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
832       isa<llvm::ConstantExpr>(Init)) {
833     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
834     return;
835   }
836 
837   if (llvm::ConstantDataSequential *CDS =
838           dyn_cast<llvm::ConstantDataSequential>(Init)) {
839     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
840       llvm::Constant *Elt = CDS->getElementAsConstant(i);
841 
842       // If necessary, get a pointer to the element and emit it.
843       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
844         emitStoresForInitAfterMemset(
845             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
846             isVolatile, Builder);
847     }
848     return;
849   }
850 
851   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
852          "Unknown value type!");
853 
854   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
855     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
856 
857     // If necessary, get a pointer to the element and emit it.
858     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
859       emitStoresForInitAfterMemset(
860           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
861           isVolatile, Builder);
862   }
863 }
864 
865 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
866 /// plus some stores to initialize a local variable instead of using a memcpy
867 /// from a constant global.  It is beneficial to use memset if the global is all
868 /// zeros, or mostly zeros and large.
869 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
870                                                   uint64_t GlobalSize) {
871   // If a global is all zeros, always use a memset.
872   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
873 
874   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
875   // do it if it will require 6 or fewer scalar stores.
876   // TODO: Should budget depends on the size?  Avoiding a large global warrants
877   // plopping in more stores.
878   unsigned StoreBudget = 6;
879   uint64_t SizeLimit = 32;
880 
881   return GlobalSize > SizeLimit &&
882          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
883 }
884 
885 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
886 /// variable declaration with auto, register, or no storage class specifier.
887 /// These turn into simple stack objects, or GlobalValues depending on target.
888 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
889   AutoVarEmission emission = EmitAutoVarAlloca(D);
890   EmitAutoVarInit(emission);
891   EmitAutoVarCleanups(emission);
892 }
893 
894 /// Emit a lifetime.begin marker if some criteria are satisfied.
895 /// \return a pointer to the temporary size Value if a marker was emitted, null
896 /// otherwise
897 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
898                                                 llvm::Value *Addr) {
899   if (!ShouldEmitLifetimeMarkers)
900     return nullptr;
901 
902   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
903   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
904   llvm::CallInst *C =
905       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
906   C->setDoesNotThrow();
907   return SizeV;
908 }
909 
910 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
911   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
912   llvm::CallInst *C =
913       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
914   C->setDoesNotThrow();
915 }
916 
917 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
918 /// local variable.  Does not emit initialization or destruction.
919 CodeGenFunction::AutoVarEmission
920 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
921   QualType Ty = D.getType();
922 
923   AutoVarEmission emission(D);
924 
925   bool isByRef = D.hasAttr<BlocksAttr>();
926   emission.IsByRef = isByRef;
927 
928   CharUnits alignment = getContext().getDeclAlign(&D);
929 
930   // If the type is variably-modified, emit all the VLA sizes for it.
931   if (Ty->isVariablyModifiedType())
932     EmitVariablyModifiedType(Ty);
933 
934   Address address = Address::invalid();
935   if (Ty->isConstantSizeType()) {
936     bool NRVO = getLangOpts().ElideConstructors &&
937       D.isNRVOVariable();
938 
939     // If this value is an array or struct with a statically determinable
940     // constant initializer, there are optimizations we can do.
941     //
942     // TODO: We should constant-evaluate the initializer of any variable,
943     // as long as it is initialized by a constant expression. Currently,
944     // isConstantInitializer produces wrong answers for structs with
945     // reference or bitfield members, and a few other cases, and checking
946     // for POD-ness protects us from some of these.
947     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
948         (D.isConstexpr() ||
949          ((Ty.isPODType(getContext()) ||
950            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
951           D.getInit()->isConstantInitializer(getContext(), false)))) {
952 
953       // If the variable's a const type, and it's neither an NRVO
954       // candidate nor a __block variable and has no mutable members,
955       // emit it as a global instead.
956       // Exception is if a variable is located in non-constant address space
957       // in OpenCL.
958       if ((!getLangOpts().OpenCL ||
959            Ty.getAddressSpace() == LangAS::opencl_constant) &&
960           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
961            CGM.isTypeConstant(Ty, true))) {
962         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
963 
964         // Signal this condition to later callbacks.
965         emission.Addr = Address::invalid();
966         assert(emission.wasEmittedAsGlobal());
967         return emission;
968       }
969 
970       // Otherwise, tell the initialization code that we're in this case.
971       emission.IsConstantAggregate = true;
972     }
973 
974     // A normal fixed sized variable becomes an alloca in the entry block,
975     // unless it's an NRVO variable.
976 
977     if (NRVO) {
978       // The named return value optimization: allocate this variable in the
979       // return slot, so that we can elide the copy when returning this
980       // variable (C++0x [class.copy]p34).
981       address = ReturnValue;
982 
983       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
984         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
985           // Create a flag that is used to indicate when the NRVO was applied
986           // to this variable. Set it to zero to indicate that NRVO was not
987           // applied.
988           llvm::Value *Zero = Builder.getFalse();
989           Address NRVOFlag =
990             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
991           EnsureInsertPoint();
992           Builder.CreateStore(Zero, NRVOFlag);
993 
994           // Record the NRVO flag for this variable.
995           NRVOFlags[&D] = NRVOFlag.getPointer();
996           emission.NRVOFlag = NRVOFlag.getPointer();
997         }
998       }
999     } else {
1000       CharUnits allocaAlignment;
1001       llvm::Type *allocaTy;
1002       if (isByRef) {
1003         auto &byrefInfo = getBlockByrefInfo(&D);
1004         allocaTy = byrefInfo.Type;
1005         allocaAlignment = byrefInfo.ByrefAlignment;
1006       } else {
1007         allocaTy = ConvertTypeForMem(Ty);
1008         allocaAlignment = alignment;
1009       }
1010 
1011       // Create the alloca.  Note that we set the name separately from
1012       // building the instruction so that it's there even in no-asserts
1013       // builds.
1014       address = CreateTempAlloca(allocaTy, allocaAlignment);
1015       address.getPointer()->setName(D.getName());
1016 
1017       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1018       // the catch parameter starts in the catchpad instruction, and we can't
1019       // insert code in those basic blocks.
1020       bool IsMSCatchParam =
1021           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1022 
1023       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1024       // if we don't have a valid insertion point (?).
1025       if (HaveInsertPoint() && !IsMSCatchParam) {
1026         // If there's a jump into the lifetime of this variable, its lifetime
1027         // gets broken up into several regions in IR, which requires more work
1028         // to handle correctly. For now, just omit the intrinsics; this is a
1029         // rare case, and it's better to just be conservatively correct.
1030         // PR28267.
1031         //
1032         // We have to do this in all language modes if there's a jump past the
1033         // declaration. We also have to do it in C if there's a jump to an
1034         // earlier point in the current block because non-VLA lifetimes begin as
1035         // soon as the containing block is entered, not when its variables
1036         // actually come into scope; suppressing the lifetime annotations
1037         // completely in this case is unnecessarily pessimistic, but again, this
1038         // is rare.
1039         if (!Bypasses.IsBypassed(&D) &&
1040             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1041           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1042           emission.SizeForLifetimeMarkers =
1043               EmitLifetimeStart(size, address.getPointer());
1044         }
1045       } else {
1046         assert(!emission.useLifetimeMarkers());
1047       }
1048     }
1049   } else {
1050     EnsureInsertPoint();
1051 
1052     if (!DidCallStackSave) {
1053       // Save the stack.
1054       Address Stack =
1055         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1056 
1057       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1058       llvm::Value *V = Builder.CreateCall(F);
1059       Builder.CreateStore(V, Stack);
1060 
1061       DidCallStackSave = true;
1062 
1063       // Push a cleanup block and restore the stack there.
1064       // FIXME: in general circumstances, this should be an EH cleanup.
1065       pushStackRestore(NormalCleanup, Stack);
1066     }
1067 
1068     llvm::Value *elementCount;
1069     QualType elementType;
1070     std::tie(elementCount, elementType) = getVLASize(Ty);
1071 
1072     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
1073 
1074     // Allocate memory for the array.
1075     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1076     vla->setAlignment(alignment.getQuantity());
1077 
1078     address = Address(vla, alignment);
1079   }
1080 
1081   setAddrOfLocalVar(&D, address);
1082   emission.Addr = address;
1083 
1084   // Emit debug info for local var declaration.
1085   if (HaveInsertPoint())
1086     if (CGDebugInfo *DI = getDebugInfo()) {
1087       if (CGM.getCodeGenOpts().getDebugInfo() >=
1088           codegenoptions::LimitedDebugInfo) {
1089         DI->setLocation(D.getLocation());
1090         DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1091       }
1092     }
1093 
1094   if (D.hasAttr<AnnotateAttr>())
1095     EmitVarAnnotations(&D, address.getPointer());
1096 
1097   return emission;
1098 }
1099 
1100 /// Determines whether the given __block variable is potentially
1101 /// captured by the given expression.
1102 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1103   // Skip the most common kinds of expressions that make
1104   // hierarchy-walking expensive.
1105   e = e->IgnoreParenCasts();
1106 
1107   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1108     const BlockDecl *block = be->getBlockDecl();
1109     for (const auto &I : block->captures()) {
1110       if (I.getVariable() == &var)
1111         return true;
1112     }
1113 
1114     // No need to walk into the subexpressions.
1115     return false;
1116   }
1117 
1118   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1119     const CompoundStmt *CS = SE->getSubStmt();
1120     for (const auto *BI : CS->body())
1121       if (const auto *E = dyn_cast<Expr>(BI)) {
1122         if (isCapturedBy(var, E))
1123             return true;
1124       }
1125       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1126           // special case declarations
1127           for (const auto *I : DS->decls()) {
1128               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1129                 const Expr *Init = VD->getInit();
1130                 if (Init && isCapturedBy(var, Init))
1131                   return true;
1132               }
1133           }
1134       }
1135       else
1136         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1137         // Later, provide code to poke into statements for capture analysis.
1138         return true;
1139     return false;
1140   }
1141 
1142   for (const Stmt *SubStmt : e->children())
1143     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1144       return true;
1145 
1146   return false;
1147 }
1148 
1149 /// \brief Determine whether the given initializer is trivial in the sense
1150 /// that it requires no code to be generated.
1151 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1152   if (!Init)
1153     return true;
1154 
1155   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1156     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1157       if (Constructor->isTrivial() &&
1158           Constructor->isDefaultConstructor() &&
1159           !Construct->requiresZeroInitialization())
1160         return true;
1161 
1162   return false;
1163 }
1164 
1165 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1166   assert(emission.Variable && "emission was not valid!");
1167 
1168   // If this was emitted as a global constant, we're done.
1169   if (emission.wasEmittedAsGlobal()) return;
1170 
1171   const VarDecl &D = *emission.Variable;
1172   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1173   QualType type = D.getType();
1174 
1175   // If this local has an initializer, emit it now.
1176   const Expr *Init = D.getInit();
1177 
1178   // If we are at an unreachable point, we don't need to emit the initializer
1179   // unless it contains a label.
1180   if (!HaveInsertPoint()) {
1181     if (!Init || !ContainsLabel(Init)) return;
1182     EnsureInsertPoint();
1183   }
1184 
1185   // Initialize the structure of a __block variable.
1186   if (emission.IsByRef)
1187     emitByrefStructureInit(emission);
1188 
1189   if (isTrivialInitializer(Init))
1190     return;
1191 
1192   // Check whether this is a byref variable that's potentially
1193   // captured and moved by its own initializer.  If so, we'll need to
1194   // emit the initializer first, then copy into the variable.
1195   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1196 
1197   Address Loc =
1198     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1199 
1200   llvm::Constant *constant = nullptr;
1201   if (emission.IsConstantAggregate || D.isConstexpr()) {
1202     assert(!capturedByInit && "constant init contains a capturing block?");
1203     constant = CGM.EmitConstantInit(D, this);
1204   }
1205 
1206   if (!constant) {
1207     LValue lv = MakeAddrLValue(Loc, type);
1208     lv.setNonGC(true);
1209     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1210   }
1211 
1212   if (!emission.IsConstantAggregate) {
1213     // For simple scalar/complex initialization, store the value directly.
1214     LValue lv = MakeAddrLValue(Loc, type);
1215     lv.setNonGC(true);
1216     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1217   }
1218 
1219   // If this is a simple aggregate initialization, we can optimize it
1220   // in various ways.
1221   bool isVolatile = type.isVolatileQualified();
1222 
1223   llvm::Value *SizeVal =
1224     llvm::ConstantInt::get(IntPtrTy,
1225                            getContext().getTypeSizeInChars(type).getQuantity());
1226 
1227   llvm::Type *BP = Int8PtrTy;
1228   if (Loc.getType() != BP)
1229     Loc = Builder.CreateBitCast(Loc, BP);
1230 
1231   // If the initializer is all or mostly zeros, codegen with memset then do
1232   // a few stores afterward.
1233   if (shouldUseMemSetPlusStoresToInitialize(constant,
1234                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1235     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1236                          isVolatile);
1237     // Zero and undef don't require a stores.
1238     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1239       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1240       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
1241                                    isVolatile, Builder);
1242     }
1243   } else {
1244     // Otherwise, create a temporary global with the initializer then
1245     // memcpy from the global to the alloca.
1246     std::string Name = getStaticDeclName(CGM, D);
1247     unsigned AS = 0;
1248     if (getLangOpts().OpenCL) {
1249       AS = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
1250       BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS);
1251     }
1252     llvm::GlobalVariable *GV =
1253       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1254                                llvm::GlobalValue::PrivateLinkage,
1255                                constant, Name, nullptr,
1256                                llvm::GlobalValue::NotThreadLocal, AS);
1257     GV->setAlignment(Loc.getAlignment().getQuantity());
1258     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1259 
1260     Address SrcPtr = Address(GV, Loc.getAlignment());
1261     if (SrcPtr.getType() != BP)
1262       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1263 
1264     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1265   }
1266 }
1267 
1268 /// Emit an expression as an initializer for a variable at the given
1269 /// location.  The expression is not necessarily the normal
1270 /// initializer for the variable, and the address is not necessarily
1271 /// its normal location.
1272 ///
1273 /// \param init the initializing expression
1274 /// \param var the variable to act as if we're initializing
1275 /// \param loc the address to initialize; its type is a pointer
1276 ///   to the LLVM mapping of the variable's type
1277 /// \param alignment the alignment of the address
1278 /// \param capturedByInit true if the variable is a __block variable
1279 ///   whose address is potentially changed by the initializer
1280 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1281                                      LValue lvalue, bool capturedByInit) {
1282   QualType type = D->getType();
1283 
1284   if (type->isReferenceType()) {
1285     RValue rvalue = EmitReferenceBindingToExpr(init);
1286     if (capturedByInit)
1287       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1288     EmitStoreThroughLValue(rvalue, lvalue, true);
1289     return;
1290   }
1291   switch (getEvaluationKind(type)) {
1292   case TEK_Scalar:
1293     EmitScalarInit(init, D, lvalue, capturedByInit);
1294     return;
1295   case TEK_Complex: {
1296     ComplexPairTy complex = EmitComplexExpr(init);
1297     if (capturedByInit)
1298       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1299     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1300     return;
1301   }
1302   case TEK_Aggregate:
1303     if (type->isAtomicType()) {
1304       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1305     } else {
1306       // TODO: how can we delay here if D is captured by its initializer?
1307       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1308                                               AggValueSlot::IsDestructed,
1309                                          AggValueSlot::DoesNotNeedGCBarriers,
1310                                               AggValueSlot::IsNotAliased));
1311     }
1312     return;
1313   }
1314   llvm_unreachable("bad evaluation kind");
1315 }
1316 
1317 /// Enter a destroy cleanup for the given local variable.
1318 void CodeGenFunction::emitAutoVarTypeCleanup(
1319                             const CodeGenFunction::AutoVarEmission &emission,
1320                             QualType::DestructionKind dtorKind) {
1321   assert(dtorKind != QualType::DK_none);
1322 
1323   // Note that for __block variables, we want to destroy the
1324   // original stack object, not the possibly forwarded object.
1325   Address addr = emission.getObjectAddress(*this);
1326 
1327   const VarDecl *var = emission.Variable;
1328   QualType type = var->getType();
1329 
1330   CleanupKind cleanupKind = NormalAndEHCleanup;
1331   CodeGenFunction::Destroyer *destroyer = nullptr;
1332 
1333   switch (dtorKind) {
1334   case QualType::DK_none:
1335     llvm_unreachable("no cleanup for trivially-destructible variable");
1336 
1337   case QualType::DK_cxx_destructor:
1338     // If there's an NRVO flag on the emission, we need a different
1339     // cleanup.
1340     if (emission.NRVOFlag) {
1341       assert(!type->isArrayType());
1342       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1343       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
1344                                                dtor, emission.NRVOFlag);
1345       return;
1346     }
1347     break;
1348 
1349   case QualType::DK_objc_strong_lifetime:
1350     // Suppress cleanups for pseudo-strong variables.
1351     if (var->isARCPseudoStrong()) return;
1352 
1353     // Otherwise, consider whether to use an EH cleanup or not.
1354     cleanupKind = getARCCleanupKind();
1355 
1356     // Use the imprecise destroyer by default.
1357     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1358       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1359     break;
1360 
1361   case QualType::DK_objc_weak_lifetime:
1362     break;
1363   }
1364 
1365   // If we haven't chosen a more specific destroyer, use the default.
1366   if (!destroyer) destroyer = getDestroyer(dtorKind);
1367 
1368   // Use an EH cleanup in array destructors iff the destructor itself
1369   // is being pushed as an EH cleanup.
1370   bool useEHCleanup = (cleanupKind & EHCleanup);
1371   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1372                                      useEHCleanup);
1373 }
1374 
1375 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1376   assert(emission.Variable && "emission was not valid!");
1377 
1378   // If this was emitted as a global constant, we're done.
1379   if (emission.wasEmittedAsGlobal()) return;
1380 
1381   // If we don't have an insertion point, we're done.  Sema prevents
1382   // us from jumping into any of these scopes anyway.
1383   if (!HaveInsertPoint()) return;
1384 
1385   const VarDecl &D = *emission.Variable;
1386 
1387   // Make sure we call @llvm.lifetime.end.  This needs to happen
1388   // *last*, so the cleanup needs to be pushed *first*.
1389   if (emission.useLifetimeMarkers())
1390     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1391                                          emission.getAllocatedAddress(),
1392                                          emission.getSizeForLifetimeMarkers());
1393 
1394   // Check the type for a cleanup.
1395   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1396     emitAutoVarTypeCleanup(emission, dtorKind);
1397 
1398   // In GC mode, honor objc_precise_lifetime.
1399   if (getLangOpts().getGC() != LangOptions::NonGC &&
1400       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1401     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1402   }
1403 
1404   // Handle the cleanup attribute.
1405   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1406     const FunctionDecl *FD = CA->getFunctionDecl();
1407 
1408     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1409     assert(F && "Could not find function!");
1410 
1411     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1412     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1413   }
1414 
1415   // If this is a block variable, call _Block_object_destroy
1416   // (on the unforwarded address).
1417   if (emission.IsByRef)
1418     enterByrefCleanup(emission);
1419 }
1420 
1421 CodeGenFunction::Destroyer *
1422 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1423   switch (kind) {
1424   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1425   case QualType::DK_cxx_destructor:
1426     return destroyCXXObject;
1427   case QualType::DK_objc_strong_lifetime:
1428     return destroyARCStrongPrecise;
1429   case QualType::DK_objc_weak_lifetime:
1430     return destroyARCWeak;
1431   }
1432   llvm_unreachable("Unknown DestructionKind");
1433 }
1434 
1435 /// pushEHDestroy - Push the standard destructor for the given type as
1436 /// an EH-only cleanup.
1437 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1438                                     Address addr, QualType type) {
1439   assert(dtorKind && "cannot push destructor for trivial type");
1440   assert(needsEHCleanup(dtorKind));
1441 
1442   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1443 }
1444 
1445 /// pushDestroy - Push the standard destructor for the given type as
1446 /// at least a normal cleanup.
1447 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1448                                   Address addr, QualType type) {
1449   assert(dtorKind && "cannot push destructor for trivial type");
1450 
1451   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1452   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1453               cleanupKind & EHCleanup);
1454 }
1455 
1456 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1457                                   QualType type, Destroyer *destroyer,
1458                                   bool useEHCleanupForArray) {
1459   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1460                                      destroyer, useEHCleanupForArray);
1461 }
1462 
1463 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1464   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1465 }
1466 
1467 void CodeGenFunction::pushLifetimeExtendedDestroy(
1468     CleanupKind cleanupKind, Address addr, QualType type,
1469     Destroyer *destroyer, bool useEHCleanupForArray) {
1470   assert(!isInConditionalBranch() &&
1471          "performing lifetime extension from within conditional");
1472 
1473   // Push an EH-only cleanup for the object now.
1474   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1475   // around in case a temporary's destructor throws an exception.
1476   if (cleanupKind & EHCleanup)
1477     EHStack.pushCleanup<DestroyObject>(
1478         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1479         destroyer, useEHCleanupForArray);
1480 
1481   // Remember that we need to push a full cleanup for the object at the
1482   // end of the full-expression.
1483   pushCleanupAfterFullExpr<DestroyObject>(
1484       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1485 }
1486 
1487 /// emitDestroy - Immediately perform the destruction of the given
1488 /// object.
1489 ///
1490 /// \param addr - the address of the object; a type*
1491 /// \param type - the type of the object; if an array type, all
1492 ///   objects are destroyed in reverse order
1493 /// \param destroyer - the function to call to destroy individual
1494 ///   elements
1495 /// \param useEHCleanupForArray - whether an EH cleanup should be
1496 ///   used when destroying array elements, in case one of the
1497 ///   destructions throws an exception
1498 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1499                                   Destroyer *destroyer,
1500                                   bool useEHCleanupForArray) {
1501   const ArrayType *arrayType = getContext().getAsArrayType(type);
1502   if (!arrayType)
1503     return destroyer(*this, addr, type);
1504 
1505   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1506 
1507   CharUnits elementAlign =
1508     addr.getAlignment()
1509         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1510 
1511   // Normally we have to check whether the array is zero-length.
1512   bool checkZeroLength = true;
1513 
1514   // But if the array length is constant, we can suppress that.
1515   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1516     // ...and if it's constant zero, we can just skip the entire thing.
1517     if (constLength->isZero()) return;
1518     checkZeroLength = false;
1519   }
1520 
1521   llvm::Value *begin = addr.getPointer();
1522   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1523   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1524                    checkZeroLength, useEHCleanupForArray);
1525 }
1526 
1527 /// emitArrayDestroy - Destroys all the elements of the given array,
1528 /// beginning from last to first.  The array cannot be zero-length.
1529 ///
1530 /// \param begin - a type* denoting the first element of the array
1531 /// \param end - a type* denoting one past the end of the array
1532 /// \param elementType - the element type of the array
1533 /// \param destroyer - the function to call to destroy elements
1534 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1535 ///   the remaining elements in case the destruction of a single
1536 ///   element throws
1537 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1538                                        llvm::Value *end,
1539                                        QualType elementType,
1540                                        CharUnits elementAlign,
1541                                        Destroyer *destroyer,
1542                                        bool checkZeroLength,
1543                                        bool useEHCleanup) {
1544   assert(!elementType->isArrayType());
1545 
1546   // The basic structure here is a do-while loop, because we don't
1547   // need to check for the zero-element case.
1548   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1549   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1550 
1551   if (checkZeroLength) {
1552     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1553                                                 "arraydestroy.isempty");
1554     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1555   }
1556 
1557   // Enter the loop body, making that address the current address.
1558   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1559   EmitBlock(bodyBB);
1560   llvm::PHINode *elementPast =
1561     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1562   elementPast->addIncoming(end, entryBB);
1563 
1564   // Shift the address back by one element.
1565   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1566   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1567                                                    "arraydestroy.element");
1568 
1569   if (useEHCleanup)
1570     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1571                                    destroyer);
1572 
1573   // Perform the actual destruction there.
1574   destroyer(*this, Address(element, elementAlign), elementType);
1575 
1576   if (useEHCleanup)
1577     PopCleanupBlock();
1578 
1579   // Check whether we've reached the end.
1580   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1581   Builder.CreateCondBr(done, doneBB, bodyBB);
1582   elementPast->addIncoming(element, Builder.GetInsertBlock());
1583 
1584   // Done.
1585   EmitBlock(doneBB);
1586 }
1587 
1588 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1589 /// emitArrayDestroy, the element type here may still be an array type.
1590 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1591                                     llvm::Value *begin, llvm::Value *end,
1592                                     QualType type, CharUnits elementAlign,
1593                                     CodeGenFunction::Destroyer *destroyer) {
1594   // If the element type is itself an array, drill down.
1595   unsigned arrayDepth = 0;
1596   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1597     // VLAs don't require a GEP index to walk into.
1598     if (!isa<VariableArrayType>(arrayType))
1599       arrayDepth++;
1600     type = arrayType->getElementType();
1601   }
1602 
1603   if (arrayDepth) {
1604     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1605 
1606     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1607     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1608     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1609   }
1610 
1611   // Destroy the array.  We don't ever need an EH cleanup because we
1612   // assume that we're in an EH cleanup ourselves, so a throwing
1613   // destructor causes an immediate terminate.
1614   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1615                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1616 }
1617 
1618 namespace {
1619   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1620   /// array destroy where the end pointer is regularly determined and
1621   /// does not need to be loaded from a local.
1622   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1623     llvm::Value *ArrayBegin;
1624     llvm::Value *ArrayEnd;
1625     QualType ElementType;
1626     CodeGenFunction::Destroyer *Destroyer;
1627     CharUnits ElementAlign;
1628   public:
1629     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1630                                QualType elementType, CharUnits elementAlign,
1631                                CodeGenFunction::Destroyer *destroyer)
1632       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1633         ElementType(elementType), Destroyer(destroyer),
1634         ElementAlign(elementAlign) {}
1635 
1636     void Emit(CodeGenFunction &CGF, Flags flags) override {
1637       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1638                               ElementType, ElementAlign, Destroyer);
1639     }
1640   };
1641 
1642   /// IrregularPartialArrayDestroy - a cleanup which performs a
1643   /// partial array destroy where the end pointer is irregularly
1644   /// determined and must be loaded from a local.
1645   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1646     llvm::Value *ArrayBegin;
1647     Address ArrayEndPointer;
1648     QualType ElementType;
1649     CodeGenFunction::Destroyer *Destroyer;
1650     CharUnits ElementAlign;
1651   public:
1652     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1653                                  Address arrayEndPointer,
1654                                  QualType elementType,
1655                                  CharUnits elementAlign,
1656                                  CodeGenFunction::Destroyer *destroyer)
1657       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1658         ElementType(elementType), Destroyer(destroyer),
1659         ElementAlign(elementAlign) {}
1660 
1661     void Emit(CodeGenFunction &CGF, Flags flags) override {
1662       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1663       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1664                               ElementType, ElementAlign, Destroyer);
1665     }
1666   };
1667 } // end anonymous namespace
1668 
1669 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1670 /// already-constructed elements of the given array.  The cleanup
1671 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1672 ///
1673 /// \param elementType - the immediate element type of the array;
1674 ///   possibly still an array type
1675 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1676                                                        Address arrayEndPointer,
1677                                                        QualType elementType,
1678                                                        CharUnits elementAlign,
1679                                                        Destroyer *destroyer) {
1680   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1681                                                     arrayBegin, arrayEndPointer,
1682                                                     elementType, elementAlign,
1683                                                     destroyer);
1684 }
1685 
1686 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1687 /// already-constructed elements of the given array.  The cleanup
1688 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1689 ///
1690 /// \param elementType - the immediate element type of the array;
1691 ///   possibly still an array type
1692 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1693                                                      llvm::Value *arrayEnd,
1694                                                      QualType elementType,
1695                                                      CharUnits elementAlign,
1696                                                      Destroyer *destroyer) {
1697   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1698                                                   arrayBegin, arrayEnd,
1699                                                   elementType, elementAlign,
1700                                                   destroyer);
1701 }
1702 
1703 /// Lazily declare the @llvm.lifetime.start intrinsic.
1704 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1705   if (LifetimeStartFn) return LifetimeStartFn;
1706   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1707                                             llvm::Intrinsic::lifetime_start);
1708   return LifetimeStartFn;
1709 }
1710 
1711 /// Lazily declare the @llvm.lifetime.end intrinsic.
1712 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1713   if (LifetimeEndFn) return LifetimeEndFn;
1714   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1715                                               llvm::Intrinsic::lifetime_end);
1716   return LifetimeEndFn;
1717 }
1718 
1719 namespace {
1720   /// A cleanup to perform a release of an object at the end of a
1721   /// function.  This is used to balance out the incoming +1 of a
1722   /// ns_consumed argument when we can't reasonably do that just by
1723   /// not doing the initial retain for a __block argument.
1724   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1725     ConsumeARCParameter(llvm::Value *param,
1726                         ARCPreciseLifetime_t precise)
1727       : Param(param), Precise(precise) {}
1728 
1729     llvm::Value *Param;
1730     ARCPreciseLifetime_t Precise;
1731 
1732     void Emit(CodeGenFunction &CGF, Flags flags) override {
1733       CGF.EmitARCRelease(Param, Precise);
1734     }
1735   };
1736 } // end anonymous namespace
1737 
1738 /// Emit an alloca (or GlobalValue depending on target)
1739 /// for the specified parameter and set up LocalDeclMap.
1740 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1741                                    unsigned ArgNo) {
1742   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1743   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1744          "Invalid argument to EmitParmDecl");
1745 
1746   Arg.getAnyValue()->setName(D.getName());
1747 
1748   QualType Ty = D.getType();
1749 
1750   // Use better IR generation for certain implicit parameters.
1751   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1752     // The only implicit argument a block has is its literal.
1753     // We assume this is always passed directly.
1754     if (BlockInfo) {
1755       setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue());
1756       return;
1757     }
1758 
1759     // Apply any prologue 'this' adjustments required by the ABI. Be careful to
1760     // handle the case where 'this' is passed indirectly as part of an inalloca
1761     // struct.
1762     if (const CXXMethodDecl *MD =
1763             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1764       if (MD->isVirtual() && IPD == CXXABIThisDecl) {
1765         llvm::Value *This = Arg.isIndirect()
1766                                 ? Builder.CreateLoad(Arg.getIndirectAddress())
1767                                 : Arg.getDirectValue();
1768         This = CGM.getCXXABI().adjustThisParameterInVirtualFunctionPrologue(
1769             *this, CurGD, This);
1770         if (Arg.isIndirect())
1771           Builder.CreateStore(This, Arg.getIndirectAddress());
1772         else
1773           Arg = ParamValue::forDirect(This);
1774       }
1775     }
1776   }
1777 
1778   Address DeclPtr = Address::invalid();
1779   bool DoStore = false;
1780   bool IsScalar = hasScalarEvaluationKind(Ty);
1781   // If we already have a pointer to the argument, reuse the input pointer.
1782   if (Arg.isIndirect()) {
1783     DeclPtr = Arg.getIndirectAddress();
1784     // If we have a prettier pointer type at this point, bitcast to that.
1785     unsigned AS = DeclPtr.getType()->getAddressSpace();
1786     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1787     if (DeclPtr.getType() != IRTy)
1788       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
1789 
1790     // Push a destructor cleanup for this parameter if the ABI requires it.
1791     // Don't push a cleanup in a thunk for a method that will also emit a
1792     // cleanup.
1793     if (!IsScalar && !CurFuncIsThunk &&
1794         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1795       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1796       if (RD && RD->hasNonTrivialDestructor())
1797         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1798     }
1799   } else {
1800     // Otherwise, create a temporary to hold the value.
1801     DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
1802                             D.getName() + ".addr");
1803     DoStore = true;
1804   }
1805 
1806   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
1807 
1808   LValue lv = MakeAddrLValue(DeclPtr, Ty);
1809   if (IsScalar) {
1810     Qualifiers qs = Ty.getQualifiers();
1811     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1812       // We honor __attribute__((ns_consumed)) for types with lifetime.
1813       // For __strong, it's handled by just skipping the initial retain;
1814       // otherwise we have to balance out the initial +1 with an extra
1815       // cleanup to do the release at the end of the function.
1816       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1817 
1818       // 'self' is always formally __strong, but if this is not an
1819       // init method then we don't want to retain it.
1820       if (D.isARCPseudoStrong()) {
1821         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1822         assert(&D == method->getSelfDecl());
1823         assert(lt == Qualifiers::OCL_Strong);
1824         assert(qs.hasConst());
1825         assert(method->getMethodFamily() != OMF_init);
1826         (void) method;
1827         lt = Qualifiers::OCL_ExplicitNone;
1828       }
1829 
1830       if (lt == Qualifiers::OCL_Strong) {
1831         if (!isConsumed) {
1832           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1833             // use objc_storeStrong(&dest, value) for retaining the
1834             // object. But first, store a null into 'dest' because
1835             // objc_storeStrong attempts to release its old value.
1836             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1837             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1838             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
1839             DoStore = false;
1840           }
1841           else
1842           // Don't use objc_retainBlock for block pointers, because we
1843           // don't want to Block_copy something just because we got it
1844           // as a parameter.
1845             ArgVal = EmitARCRetainNonBlock(ArgVal);
1846         }
1847       } else {
1848         // Push the cleanup for a consumed parameter.
1849         if (isConsumed) {
1850           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1851                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1852           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
1853                                                    precise);
1854         }
1855 
1856         if (lt == Qualifiers::OCL_Weak) {
1857           EmitARCInitWeak(DeclPtr, ArgVal);
1858           DoStore = false; // The weak init is a store, no need to do two.
1859         }
1860       }
1861 
1862       // Enter the cleanup scope.
1863       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1864     }
1865   }
1866 
1867   // Store the initial value into the alloca.
1868   if (DoStore)
1869     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
1870 
1871   setAddrOfLocalVar(&D, DeclPtr);
1872 
1873   // Emit debug info for param declaration.
1874   if (CGDebugInfo *DI = getDebugInfo()) {
1875     if (CGM.getCodeGenOpts().getDebugInfo() >=
1876         codegenoptions::LimitedDebugInfo) {
1877       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
1878     }
1879   }
1880 
1881   if (D.hasAttr<AnnotateAttr>())
1882     EmitVarAnnotations(&D, DeclPtr.getPointer());
1883 }
1884 
1885 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
1886                                             CodeGenFunction *CGF) {
1887   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
1888     return;
1889   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
1890 }
1891