1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/Type.h" 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 45 "Clang max alignment greater than what LLVM supports?"); 46 47 void CodeGenFunction::EmitDecl(const Decl &D) { 48 switch (D.getKind()) { 49 case Decl::BuiltinTemplate: 50 case Decl::TranslationUnit: 51 case Decl::ExternCContext: 52 case Decl::Namespace: 53 case Decl::UnresolvedUsingTypename: 54 case Decl::ClassTemplateSpecialization: 55 case Decl::ClassTemplatePartialSpecialization: 56 case Decl::VarTemplateSpecialization: 57 case Decl::VarTemplatePartialSpecialization: 58 case Decl::TemplateTypeParm: 59 case Decl::UnresolvedUsingValue: 60 case Decl::NonTypeTemplateParm: 61 case Decl::CXXDeductionGuide: 62 case Decl::CXXMethod: 63 case Decl::CXXConstructor: 64 case Decl::CXXDestructor: 65 case Decl::CXXConversion: 66 case Decl::Field: 67 case Decl::MSProperty: 68 case Decl::IndirectField: 69 case Decl::ObjCIvar: 70 case Decl::ObjCAtDefsField: 71 case Decl::ParmVar: 72 case Decl::ImplicitParam: 73 case Decl::ClassTemplate: 74 case Decl::VarTemplate: 75 case Decl::FunctionTemplate: 76 case Decl::TypeAliasTemplate: 77 case Decl::TemplateTemplateParm: 78 case Decl::ObjCMethod: 79 case Decl::ObjCCategory: 80 case Decl::ObjCProtocol: 81 case Decl::ObjCInterface: 82 case Decl::ObjCCategoryImpl: 83 case Decl::ObjCImplementation: 84 case Decl::ObjCProperty: 85 case Decl::ObjCCompatibleAlias: 86 case Decl::PragmaComment: 87 case Decl::PragmaDetectMismatch: 88 case Decl::AccessSpec: 89 case Decl::LinkageSpec: 90 case Decl::Export: 91 case Decl::ObjCPropertyImpl: 92 case Decl::FileScopeAsm: 93 case Decl::Friend: 94 case Decl::FriendTemplate: 95 case Decl::Block: 96 case Decl::Captured: 97 case Decl::ClassScopeFunctionSpecialization: 98 case Decl::UsingShadow: 99 case Decl::ConstructorUsingShadow: 100 case Decl::ObjCTypeParam: 101 case Decl::Binding: 102 llvm_unreachable("Declaration should not be in declstmts!"); 103 case Decl::Function: // void X(); 104 case Decl::Record: // struct/union/class X; 105 case Decl::Enum: // enum X; 106 case Decl::EnumConstant: // enum ? { X = ? } 107 case Decl::CXXRecord: // struct/union/class X; [C++] 108 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 109 case Decl::Label: // __label__ x; 110 case Decl::Import: 111 case Decl::MSGuid: // __declspec(uuid("...")) 112 case Decl::OMPThreadPrivate: 113 case Decl::OMPAllocate: 114 case Decl::OMPCapturedExpr: 115 case Decl::OMPRequires: 116 case Decl::Empty: 117 case Decl::Concept: 118 case Decl::LifetimeExtendedTemporary: 119 case Decl::RequiresExprBody: 120 // None of these decls require codegen support. 121 return; 122 123 case Decl::NamespaceAlias: 124 if (CGDebugInfo *DI = getDebugInfo()) 125 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 126 return; 127 case Decl::Using: // using X; [C++] 128 if (CGDebugInfo *DI = getDebugInfo()) 129 DI->EmitUsingDecl(cast<UsingDecl>(D)); 130 return; 131 case Decl::UsingPack: 132 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 133 EmitDecl(*Using); 134 return; 135 case Decl::UsingDirective: // using namespace X; [C++] 136 if (CGDebugInfo *DI = getDebugInfo()) 137 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 138 return; 139 case Decl::Var: 140 case Decl::Decomposition: { 141 const VarDecl &VD = cast<VarDecl>(D); 142 assert(VD.isLocalVarDecl() && 143 "Should not see file-scope variables inside a function!"); 144 EmitVarDecl(VD); 145 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 146 for (auto *B : DD->bindings()) 147 if (auto *HD = B->getHoldingVar()) 148 EmitVarDecl(*HD); 149 return; 150 } 151 152 case Decl::OMPDeclareReduction: 153 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 154 155 case Decl::OMPDeclareMapper: 156 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 157 158 case Decl::Typedef: // typedef int X; 159 case Decl::TypeAlias: { // using X = int; [C++0x] 160 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 161 QualType Ty = TD.getUnderlyingType(); 162 163 if (Ty->isVariablyModifiedType()) 164 EmitVariablyModifiedType(Ty); 165 166 return; 167 } 168 } 169 } 170 171 /// EmitVarDecl - This method handles emission of any variable declaration 172 /// inside a function, including static vars etc. 173 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 174 if (D.hasExternalStorage()) 175 // Don't emit it now, allow it to be emitted lazily on its first use. 176 return; 177 178 // Some function-scope variable does not have static storage but still 179 // needs to be emitted like a static variable, e.g. a function-scope 180 // variable in constant address space in OpenCL. 181 if (D.getStorageDuration() != SD_Automatic) { 182 // Static sampler variables translated to function calls. 183 if (D.getType()->isSamplerT()) 184 return; 185 186 llvm::GlobalValue::LinkageTypes Linkage = 187 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 188 189 // FIXME: We need to force the emission/use of a guard variable for 190 // some variables even if we can constant-evaluate them because 191 // we can't guarantee every translation unit will constant-evaluate them. 192 193 return EmitStaticVarDecl(D, Linkage); 194 } 195 196 if (D.getType().getAddressSpace() == LangAS::opencl_local) 197 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 198 199 assert(D.hasLocalStorage()); 200 return EmitAutoVarDecl(D); 201 } 202 203 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 204 if (CGM.getLangOpts().CPlusPlus) 205 return CGM.getMangledName(&D).str(); 206 207 // If this isn't C++, we don't need a mangled name, just a pretty one. 208 assert(!D.isExternallyVisible() && "name shouldn't matter"); 209 std::string ContextName; 210 const DeclContext *DC = D.getDeclContext(); 211 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 212 DC = cast<DeclContext>(CD->getNonClosureContext()); 213 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 214 ContextName = std::string(CGM.getMangledName(FD)); 215 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 216 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 217 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 218 ContextName = OMD->getSelector().getAsString(); 219 else 220 llvm_unreachable("Unknown context for static var decl"); 221 222 ContextName += "." + D.getNameAsString(); 223 return ContextName; 224 } 225 226 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 227 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 228 // In general, we don't always emit static var decls once before we reference 229 // them. It is possible to reference them before emitting the function that 230 // contains them, and it is possible to emit the containing function multiple 231 // times. 232 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 233 return ExistingGV; 234 235 QualType Ty = D.getType(); 236 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 237 238 // Use the label if the variable is renamed with the asm-label extension. 239 std::string Name; 240 if (D.hasAttr<AsmLabelAttr>()) 241 Name = std::string(getMangledName(&D)); 242 else 243 Name = getStaticDeclName(*this, D); 244 245 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 246 LangAS AS = GetGlobalVarAddressSpace(&D); 247 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 248 249 // OpenCL variables in local address space and CUDA shared 250 // variables cannot have an initializer. 251 llvm::Constant *Init = nullptr; 252 if (Ty.getAddressSpace() == LangAS::opencl_local || 253 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 254 Init = llvm::UndefValue::get(LTy); 255 else 256 Init = EmitNullConstant(Ty); 257 258 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 259 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 260 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 261 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 262 263 if (supportsCOMDAT() && GV->isWeakForLinker()) 264 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 265 266 if (D.getTLSKind()) 267 setTLSMode(GV, D); 268 269 setGVProperties(GV, &D); 270 271 // Make sure the result is of the correct type. 272 LangAS ExpectedAS = Ty.getAddressSpace(); 273 llvm::Constant *Addr = GV; 274 if (AS != ExpectedAS) { 275 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 276 *this, GV, AS, ExpectedAS, 277 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 278 } 279 280 setStaticLocalDeclAddress(&D, Addr); 281 282 // Ensure that the static local gets initialized by making sure the parent 283 // function gets emitted eventually. 284 const Decl *DC = cast<Decl>(D.getDeclContext()); 285 286 // We can't name blocks or captured statements directly, so try to emit their 287 // parents. 288 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 289 DC = DC->getNonClosureContext(); 290 // FIXME: Ensure that global blocks get emitted. 291 if (!DC) 292 return Addr; 293 } 294 295 GlobalDecl GD; 296 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 297 GD = GlobalDecl(CD, Ctor_Base); 298 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 299 GD = GlobalDecl(DD, Dtor_Base); 300 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 301 GD = GlobalDecl(FD); 302 else { 303 // Don't do anything for Obj-C method decls or global closures. We should 304 // never defer them. 305 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 306 } 307 if (GD.getDecl()) { 308 // Disable emission of the parent function for the OpenMP device codegen. 309 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 310 (void)GetAddrOfGlobal(GD); 311 } 312 313 return Addr; 314 } 315 316 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 317 /// global variable that has already been created for it. If the initializer 318 /// has a different type than GV does, this may free GV and return a different 319 /// one. Otherwise it just returns GV. 320 llvm::GlobalVariable * 321 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 322 llvm::GlobalVariable *GV) { 323 ConstantEmitter emitter(*this); 324 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 325 326 // If constant emission failed, then this should be a C++ static 327 // initializer. 328 if (!Init) { 329 if (!getLangOpts().CPlusPlus) 330 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 331 else if (HaveInsertPoint()) { 332 // Since we have a static initializer, this global variable can't 333 // be constant. 334 GV->setConstant(false); 335 336 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 337 } 338 return GV; 339 } 340 341 // The initializer may differ in type from the global. Rewrite 342 // the global to match the initializer. (We have to do this 343 // because some types, like unions, can't be completely represented 344 // in the LLVM type system.) 345 if (GV->getValueType() != Init->getType()) { 346 llvm::GlobalVariable *OldGV = GV; 347 348 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 349 OldGV->isConstant(), 350 OldGV->getLinkage(), Init, "", 351 /*InsertBefore*/ OldGV, 352 OldGV->getThreadLocalMode(), 353 CGM.getContext().getTargetAddressSpace(D.getType())); 354 GV->setVisibility(OldGV->getVisibility()); 355 GV->setDSOLocal(OldGV->isDSOLocal()); 356 GV->setComdat(OldGV->getComdat()); 357 358 // Steal the name of the old global 359 GV->takeName(OldGV); 360 361 // Replace all uses of the old global with the new global 362 llvm::Constant *NewPtrForOldDecl = 363 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 364 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 365 366 // Erase the old global, since it is no longer used. 367 OldGV->eraseFromParent(); 368 } 369 370 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 371 GV->setInitializer(Init); 372 373 emitter.finalize(GV); 374 375 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 376 HaveInsertPoint()) { 377 // We have a constant initializer, but a nontrivial destructor. We still 378 // need to perform a guarded "initialization" in order to register the 379 // destructor. 380 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 381 } 382 383 return GV; 384 } 385 386 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 387 llvm::GlobalValue::LinkageTypes Linkage) { 388 // Check to see if we already have a global variable for this 389 // declaration. This can happen when double-emitting function 390 // bodies, e.g. with complete and base constructors. 391 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 392 CharUnits alignment = getContext().getDeclAlign(&D); 393 394 // Store into LocalDeclMap before generating initializer to handle 395 // circular references. 396 setAddrOfLocalVar(&D, Address(addr, alignment)); 397 398 // We can't have a VLA here, but we can have a pointer to a VLA, 399 // even though that doesn't really make any sense. 400 // Make sure to evaluate VLA bounds now so that we have them for later. 401 if (D.getType()->isVariablyModifiedType()) 402 EmitVariablyModifiedType(D.getType()); 403 404 // Save the type in case adding the initializer forces a type change. 405 llvm::Type *expectedType = addr->getType(); 406 407 llvm::GlobalVariable *var = 408 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 409 410 // CUDA's local and local static __shared__ variables should not 411 // have any non-empty initializers. This is ensured by Sema. 412 // Whatever initializer such variable may have when it gets here is 413 // a no-op and should not be emitted. 414 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 415 D.hasAttr<CUDASharedAttr>(); 416 // If this value has an initializer, emit it. 417 if (D.getInit() && !isCudaSharedVar) 418 var = AddInitializerToStaticVarDecl(D, var); 419 420 var->setAlignment(alignment.getAsAlign()); 421 422 if (D.hasAttr<AnnotateAttr>()) 423 CGM.AddGlobalAnnotations(&D, var); 424 425 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 426 var->addAttribute("bss-section", SA->getName()); 427 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 428 var->addAttribute("data-section", SA->getName()); 429 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 430 var->addAttribute("rodata-section", SA->getName()); 431 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 432 var->addAttribute("relro-section", SA->getName()); 433 434 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 435 var->setSection(SA->getName()); 436 437 if (D.hasAttr<UsedAttr>()) 438 CGM.addUsedGlobal(var); 439 440 // We may have to cast the constant because of the initializer 441 // mismatch above. 442 // 443 // FIXME: It is really dangerous to store this in the map; if anyone 444 // RAUW's the GV uses of this constant will be invalid. 445 llvm::Constant *castedAddr = 446 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 447 if (var != castedAddr) 448 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 449 CGM.setStaticLocalDeclAddress(&D, castedAddr); 450 451 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 452 453 // Emit global variable debug descriptor for static vars. 454 CGDebugInfo *DI = getDebugInfo(); 455 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 456 DI->setLocation(D.getLocation()); 457 DI->EmitGlobalVariable(var, &D); 458 } 459 } 460 461 namespace { 462 struct DestroyObject final : EHScopeStack::Cleanup { 463 DestroyObject(Address addr, QualType type, 464 CodeGenFunction::Destroyer *destroyer, 465 bool useEHCleanupForArray) 466 : addr(addr), type(type), destroyer(destroyer), 467 useEHCleanupForArray(useEHCleanupForArray) {} 468 469 Address addr; 470 QualType type; 471 CodeGenFunction::Destroyer *destroyer; 472 bool useEHCleanupForArray; 473 474 void Emit(CodeGenFunction &CGF, Flags flags) override { 475 // Don't use an EH cleanup recursively from an EH cleanup. 476 bool useEHCleanupForArray = 477 flags.isForNormalCleanup() && this->useEHCleanupForArray; 478 479 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 480 } 481 }; 482 483 template <class Derived> 484 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 485 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 486 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 487 488 llvm::Value *NRVOFlag; 489 Address Loc; 490 QualType Ty; 491 492 void Emit(CodeGenFunction &CGF, Flags flags) override { 493 // Along the exceptions path we always execute the dtor. 494 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 495 496 llvm::BasicBlock *SkipDtorBB = nullptr; 497 if (NRVO) { 498 // If we exited via NRVO, we skip the destructor call. 499 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 500 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 501 llvm::Value *DidNRVO = 502 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 503 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 504 CGF.EmitBlock(RunDtorBB); 505 } 506 507 static_cast<Derived *>(this)->emitDestructorCall(CGF); 508 509 if (NRVO) CGF.EmitBlock(SkipDtorBB); 510 } 511 512 virtual ~DestroyNRVOVariable() = default; 513 }; 514 515 struct DestroyNRVOVariableCXX final 516 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 517 DestroyNRVOVariableCXX(Address addr, QualType type, 518 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 519 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 520 Dtor(Dtor) {} 521 522 const CXXDestructorDecl *Dtor; 523 524 void emitDestructorCall(CodeGenFunction &CGF) { 525 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 526 /*ForVirtualBase=*/false, 527 /*Delegating=*/false, Loc, Ty); 528 } 529 }; 530 531 struct DestroyNRVOVariableC final 532 : DestroyNRVOVariable<DestroyNRVOVariableC> { 533 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 534 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 535 536 void emitDestructorCall(CodeGenFunction &CGF) { 537 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 538 } 539 }; 540 541 struct CallStackRestore final : EHScopeStack::Cleanup { 542 Address Stack; 543 CallStackRestore(Address Stack) : Stack(Stack) {} 544 void Emit(CodeGenFunction &CGF, Flags flags) override { 545 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 546 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 547 CGF.Builder.CreateCall(F, V); 548 } 549 }; 550 551 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 552 const VarDecl &Var; 553 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 554 555 void Emit(CodeGenFunction &CGF, Flags flags) override { 556 // Compute the address of the local variable, in case it's a 557 // byref or something. 558 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 559 Var.getType(), VK_LValue, SourceLocation()); 560 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 561 SourceLocation()); 562 CGF.EmitExtendGCLifetime(value); 563 } 564 }; 565 566 struct CallCleanupFunction final : EHScopeStack::Cleanup { 567 llvm::Constant *CleanupFn; 568 const CGFunctionInfo &FnInfo; 569 const VarDecl &Var; 570 571 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 572 const VarDecl *Var) 573 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 574 575 void Emit(CodeGenFunction &CGF, Flags flags) override { 576 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 577 Var.getType(), VK_LValue, SourceLocation()); 578 // Compute the address of the local variable, in case it's a byref 579 // or something. 580 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 581 582 // In some cases, the type of the function argument will be different from 583 // the type of the pointer. An example of this is 584 // void f(void* arg); 585 // __attribute__((cleanup(f))) void *g; 586 // 587 // To fix this we insert a bitcast here. 588 QualType ArgTy = FnInfo.arg_begin()->type; 589 llvm::Value *Arg = 590 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 591 592 CallArgList Args; 593 Args.add(RValue::get(Arg), 594 CGF.getContext().getPointerType(Var.getType())); 595 auto Callee = CGCallee::forDirect(CleanupFn); 596 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 597 } 598 }; 599 } // end anonymous namespace 600 601 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 602 /// variable with lifetime. 603 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 604 Address addr, 605 Qualifiers::ObjCLifetime lifetime) { 606 switch (lifetime) { 607 case Qualifiers::OCL_None: 608 llvm_unreachable("present but none"); 609 610 case Qualifiers::OCL_ExplicitNone: 611 // nothing to do 612 break; 613 614 case Qualifiers::OCL_Strong: { 615 CodeGenFunction::Destroyer *destroyer = 616 (var.hasAttr<ObjCPreciseLifetimeAttr>() 617 ? CodeGenFunction::destroyARCStrongPrecise 618 : CodeGenFunction::destroyARCStrongImprecise); 619 620 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 621 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 622 cleanupKind & EHCleanup); 623 break; 624 } 625 case Qualifiers::OCL_Autoreleasing: 626 // nothing to do 627 break; 628 629 case Qualifiers::OCL_Weak: 630 // __weak objects always get EH cleanups; otherwise, exceptions 631 // could cause really nasty crashes instead of mere leaks. 632 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 633 CodeGenFunction::destroyARCWeak, 634 /*useEHCleanup*/ true); 635 break; 636 } 637 } 638 639 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 640 if (const Expr *e = dyn_cast<Expr>(s)) { 641 // Skip the most common kinds of expressions that make 642 // hierarchy-walking expensive. 643 s = e = e->IgnoreParenCasts(); 644 645 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 646 return (ref->getDecl() == &var); 647 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 648 const BlockDecl *block = be->getBlockDecl(); 649 for (const auto &I : block->captures()) { 650 if (I.getVariable() == &var) 651 return true; 652 } 653 } 654 } 655 656 for (const Stmt *SubStmt : s->children()) 657 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 658 if (SubStmt && isAccessedBy(var, SubStmt)) 659 return true; 660 661 return false; 662 } 663 664 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 665 if (!decl) return false; 666 if (!isa<VarDecl>(decl)) return false; 667 const VarDecl *var = cast<VarDecl>(decl); 668 return isAccessedBy(*var, e); 669 } 670 671 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 672 const LValue &destLV, const Expr *init) { 673 bool needsCast = false; 674 675 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 676 switch (castExpr->getCastKind()) { 677 // Look through casts that don't require representation changes. 678 case CK_NoOp: 679 case CK_BitCast: 680 case CK_BlockPointerToObjCPointerCast: 681 needsCast = true; 682 break; 683 684 // If we find an l-value to r-value cast from a __weak variable, 685 // emit this operation as a copy or move. 686 case CK_LValueToRValue: { 687 const Expr *srcExpr = castExpr->getSubExpr(); 688 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 689 return false; 690 691 // Emit the source l-value. 692 LValue srcLV = CGF.EmitLValue(srcExpr); 693 694 // Handle a formal type change to avoid asserting. 695 auto srcAddr = srcLV.getAddress(CGF); 696 if (needsCast) { 697 srcAddr = CGF.Builder.CreateElementBitCast( 698 srcAddr, destLV.getAddress(CGF).getElementType()); 699 } 700 701 // If it was an l-value, use objc_copyWeak. 702 if (srcExpr->getValueKind() == VK_LValue) { 703 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 704 } else { 705 assert(srcExpr->getValueKind() == VK_XValue); 706 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 707 } 708 return true; 709 } 710 711 // Stop at anything else. 712 default: 713 return false; 714 } 715 716 init = castExpr->getSubExpr(); 717 } 718 return false; 719 } 720 721 static void drillIntoBlockVariable(CodeGenFunction &CGF, 722 LValue &lvalue, 723 const VarDecl *var) { 724 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 725 } 726 727 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 728 SourceLocation Loc) { 729 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 730 return; 731 732 auto Nullability = LHS.getType()->getNullability(getContext()); 733 if (!Nullability || *Nullability != NullabilityKind::NonNull) 734 return; 735 736 // Check if the right hand side of the assignment is nonnull, if the left 737 // hand side must be nonnull. 738 SanitizerScope SanScope(this); 739 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 740 llvm::Constant *StaticData[] = { 741 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 742 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 743 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 744 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 745 SanitizerHandler::TypeMismatch, StaticData, RHS); 746 } 747 748 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 749 LValue lvalue, bool capturedByInit) { 750 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 751 if (!lifetime) { 752 llvm::Value *value = EmitScalarExpr(init); 753 if (capturedByInit) 754 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 755 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 756 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 757 return; 758 } 759 760 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 761 init = DIE->getExpr(); 762 763 // If we're emitting a value with lifetime, we have to do the 764 // initialization *before* we leave the cleanup scopes. 765 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 766 enterFullExpression(fe); 767 init = fe->getSubExpr(); 768 } 769 CodeGenFunction::RunCleanupsScope Scope(*this); 770 771 // We have to maintain the illusion that the variable is 772 // zero-initialized. If the variable might be accessed in its 773 // initializer, zero-initialize before running the initializer, then 774 // actually perform the initialization with an assign. 775 bool accessedByInit = false; 776 if (lifetime != Qualifiers::OCL_ExplicitNone) 777 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 778 if (accessedByInit) { 779 LValue tempLV = lvalue; 780 // Drill down to the __block object if necessary. 781 if (capturedByInit) { 782 // We can use a simple GEP for this because it can't have been 783 // moved yet. 784 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 785 cast<VarDecl>(D), 786 /*follow*/ false)); 787 } 788 789 auto ty = 790 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 791 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 792 793 // If __weak, we want to use a barrier under certain conditions. 794 if (lifetime == Qualifiers::OCL_Weak) 795 EmitARCInitWeak(tempLV.getAddress(*this), zero); 796 797 // Otherwise just do a simple store. 798 else 799 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 800 } 801 802 // Emit the initializer. 803 llvm::Value *value = nullptr; 804 805 switch (lifetime) { 806 case Qualifiers::OCL_None: 807 llvm_unreachable("present but none"); 808 809 case Qualifiers::OCL_Strong: { 810 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 811 value = EmitARCRetainScalarExpr(init); 812 break; 813 } 814 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 815 // that we omit the retain, and causes non-autoreleased return values to be 816 // immediately released. 817 LLVM_FALLTHROUGH; 818 } 819 820 case Qualifiers::OCL_ExplicitNone: 821 value = EmitARCUnsafeUnretainedScalarExpr(init); 822 break; 823 824 case Qualifiers::OCL_Weak: { 825 // If it's not accessed by the initializer, try to emit the 826 // initialization with a copy or move. 827 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 828 return; 829 } 830 831 // No way to optimize a producing initializer into this. It's not 832 // worth optimizing for, because the value will immediately 833 // disappear in the common case. 834 value = EmitScalarExpr(init); 835 836 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 837 if (accessedByInit) 838 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 839 else 840 EmitARCInitWeak(lvalue.getAddress(*this), value); 841 return; 842 } 843 844 case Qualifiers::OCL_Autoreleasing: 845 value = EmitARCRetainAutoreleaseScalarExpr(init); 846 break; 847 } 848 849 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 850 851 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 852 853 // If the variable might have been accessed by its initializer, we 854 // might have to initialize with a barrier. We have to do this for 855 // both __weak and __strong, but __weak got filtered out above. 856 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 857 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 858 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 859 EmitARCRelease(oldValue, ARCImpreciseLifetime); 860 return; 861 } 862 863 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 864 } 865 866 /// Decide whether we can emit the non-zero parts of the specified initializer 867 /// with equal or fewer than NumStores scalar stores. 868 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 869 unsigned &NumStores) { 870 // Zero and Undef never requires any extra stores. 871 if (isa<llvm::ConstantAggregateZero>(Init) || 872 isa<llvm::ConstantPointerNull>(Init) || 873 isa<llvm::UndefValue>(Init)) 874 return true; 875 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 876 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 877 isa<llvm::ConstantExpr>(Init)) 878 return Init->isNullValue() || NumStores--; 879 880 // See if we can emit each element. 881 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 882 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 883 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 884 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 885 return false; 886 } 887 return true; 888 } 889 890 if (llvm::ConstantDataSequential *CDS = 891 dyn_cast<llvm::ConstantDataSequential>(Init)) { 892 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 893 llvm::Constant *Elt = CDS->getElementAsConstant(i); 894 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 895 return false; 896 } 897 return true; 898 } 899 900 // Anything else is hard and scary. 901 return false; 902 } 903 904 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 905 /// the scalar stores that would be required. 906 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 907 llvm::Constant *Init, Address Loc, 908 bool isVolatile, CGBuilderTy &Builder) { 909 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 910 "called emitStoresForInitAfterBZero for zero or undef value."); 911 912 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 913 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 914 isa<llvm::ConstantExpr>(Init)) { 915 Builder.CreateStore(Init, Loc, isVolatile); 916 return; 917 } 918 919 if (llvm::ConstantDataSequential *CDS = 920 dyn_cast<llvm::ConstantDataSequential>(Init)) { 921 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 922 llvm::Constant *Elt = CDS->getElementAsConstant(i); 923 924 // If necessary, get a pointer to the element and emit it. 925 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 926 emitStoresForInitAfterBZero( 927 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 928 Builder); 929 } 930 return; 931 } 932 933 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 934 "Unknown value type!"); 935 936 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 937 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 938 939 // If necessary, get a pointer to the element and emit it. 940 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 941 emitStoresForInitAfterBZero(CGM, Elt, 942 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 943 isVolatile, Builder); 944 } 945 } 946 947 /// Decide whether we should use bzero plus some stores to initialize a local 948 /// variable instead of using a memcpy from a constant global. It is beneficial 949 /// to use bzero if the global is all zeros, or mostly zeros and large. 950 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 951 uint64_t GlobalSize) { 952 // If a global is all zeros, always use a bzero. 953 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 954 955 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 956 // do it if it will require 6 or fewer scalar stores. 957 // TODO: Should budget depends on the size? Avoiding a large global warrants 958 // plopping in more stores. 959 unsigned StoreBudget = 6; 960 uint64_t SizeLimit = 32; 961 962 return GlobalSize > SizeLimit && 963 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 964 } 965 966 /// Decide whether we should use memset to initialize a local variable instead 967 /// of using a memcpy from a constant global. Assumes we've already decided to 968 /// not user bzero. 969 /// FIXME We could be more clever, as we are for bzero above, and generate 970 /// memset followed by stores. It's unclear that's worth the effort. 971 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 972 uint64_t GlobalSize, 973 const llvm::DataLayout &DL) { 974 uint64_t SizeLimit = 32; 975 if (GlobalSize <= SizeLimit) 976 return nullptr; 977 return llvm::isBytewiseValue(Init, DL); 978 } 979 980 /// Decide whether we want to split a constant structure or array store into a 981 /// sequence of its fields' stores. This may cost us code size and compilation 982 /// speed, but plays better with store optimizations. 983 static bool shouldSplitConstantStore(CodeGenModule &CGM, 984 uint64_t GlobalByteSize) { 985 // Don't break things that occupy more than one cacheline. 986 uint64_t ByteSizeLimit = 64; 987 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 988 return false; 989 if (GlobalByteSize <= ByteSizeLimit) 990 return true; 991 return false; 992 } 993 994 enum class IsPattern { No, Yes }; 995 996 /// Generate a constant filled with either a pattern or zeroes. 997 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 998 llvm::Type *Ty) { 999 if (isPattern == IsPattern::Yes) 1000 return initializationPatternFor(CGM, Ty); 1001 else 1002 return llvm::Constant::getNullValue(Ty); 1003 } 1004 1005 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1006 llvm::Constant *constant); 1007 1008 /// Helper function for constWithPadding() to deal with padding in structures. 1009 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1010 IsPattern isPattern, 1011 llvm::StructType *STy, 1012 llvm::Constant *constant) { 1013 const llvm::DataLayout &DL = CGM.getDataLayout(); 1014 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1015 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1016 unsigned SizeSoFar = 0; 1017 SmallVector<llvm::Constant *, 8> Values; 1018 bool NestedIntact = true; 1019 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1020 unsigned CurOff = Layout->getElementOffset(i); 1021 if (SizeSoFar < CurOff) { 1022 assert(!STy->isPacked()); 1023 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1024 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1025 } 1026 llvm::Constant *CurOp; 1027 if (constant->isZeroValue()) 1028 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1029 else 1030 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1031 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1032 if (CurOp != NewOp) 1033 NestedIntact = false; 1034 Values.push_back(NewOp); 1035 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1036 } 1037 unsigned TotalSize = Layout->getSizeInBytes(); 1038 if (SizeSoFar < TotalSize) { 1039 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1040 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1041 } 1042 if (NestedIntact && Values.size() == STy->getNumElements()) 1043 return constant; 1044 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1045 } 1046 1047 /// Replace all padding bytes in a given constant with either a pattern byte or 1048 /// 0x00. 1049 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1050 llvm::Constant *constant) { 1051 llvm::Type *OrigTy = constant->getType(); 1052 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1053 return constStructWithPadding(CGM, isPattern, STy, constant); 1054 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1055 llvm::SmallVector<llvm::Constant *, 8> Values; 1056 uint64_t Size = ArrayTy->getNumElements(); 1057 if (!Size) 1058 return constant; 1059 llvm::Type *ElemTy = ArrayTy->getElementType(); 1060 bool ZeroInitializer = constant->isNullValue(); 1061 llvm::Constant *OpValue, *PaddedOp; 1062 if (ZeroInitializer) { 1063 OpValue = llvm::Constant::getNullValue(ElemTy); 1064 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1065 } 1066 for (unsigned Op = 0; Op != Size; ++Op) { 1067 if (!ZeroInitializer) { 1068 OpValue = constant->getAggregateElement(Op); 1069 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1070 } 1071 Values.push_back(PaddedOp); 1072 } 1073 auto *NewElemTy = Values[0]->getType(); 1074 if (NewElemTy == ElemTy) 1075 return constant; 1076 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1077 return llvm::ConstantArray::get(NewArrayTy, Values); 1078 } 1079 // FIXME: Add handling for tail padding in vectors. Vectors don't 1080 // have padding between or inside elements, but the total amount of 1081 // data can be less than the allocated size. 1082 return constant; 1083 } 1084 1085 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1086 llvm::Constant *Constant, 1087 CharUnits Align) { 1088 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1089 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1090 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1091 return CC->getNameAsString(); 1092 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1093 return CD->getNameAsString(); 1094 return std::string(getMangledName(FD)); 1095 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1096 return OM->getNameAsString(); 1097 } else if (isa<BlockDecl>(DC)) { 1098 return "<block>"; 1099 } else if (isa<CapturedDecl>(DC)) { 1100 return "<captured>"; 1101 } else { 1102 llvm_unreachable("expected a function or method"); 1103 } 1104 }; 1105 1106 // Form a simple per-variable cache of these values in case we find we 1107 // want to reuse them. 1108 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1109 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1110 auto *Ty = Constant->getType(); 1111 bool isConstant = true; 1112 llvm::GlobalVariable *InsertBefore = nullptr; 1113 unsigned AS = 1114 getContext().getTargetAddressSpace(getStringLiteralAddressSpace()); 1115 std::string Name; 1116 if (D.hasGlobalStorage()) 1117 Name = getMangledName(&D).str() + ".const"; 1118 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1119 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1120 else 1121 llvm_unreachable("local variable has no parent function or method"); 1122 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1123 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1124 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1125 GV->setAlignment(Align.getAsAlign()); 1126 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1127 CacheEntry = GV; 1128 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1129 CacheEntry->setAlignment(Align.getAsAlign()); 1130 } 1131 1132 return Address(CacheEntry, Align); 1133 } 1134 1135 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1136 const VarDecl &D, 1137 CGBuilderTy &Builder, 1138 llvm::Constant *Constant, 1139 CharUnits Align) { 1140 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1141 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1142 SrcPtr.getAddressSpace()); 1143 if (SrcPtr.getType() != BP) 1144 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1145 return SrcPtr; 1146 } 1147 1148 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1149 Address Loc, bool isVolatile, 1150 CGBuilderTy &Builder, 1151 llvm::Constant *constant) { 1152 auto *Ty = constant->getType(); 1153 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1154 if (!ConstantSize) 1155 return; 1156 1157 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1158 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1159 if (canDoSingleStore) { 1160 Builder.CreateStore(constant, Loc, isVolatile); 1161 return; 1162 } 1163 1164 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1165 1166 // If the initializer is all or mostly the same, codegen with bzero / memset 1167 // then do a few stores afterward. 1168 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1169 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal, 1170 isVolatile); 1171 1172 bool valueAlreadyCorrect = 1173 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1174 if (!valueAlreadyCorrect) { 1175 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1176 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1177 } 1178 return; 1179 } 1180 1181 // If the initializer is a repeated byte pattern, use memset. 1182 llvm::Value *Pattern = 1183 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1184 if (Pattern) { 1185 uint64_t Value = 0x00; 1186 if (!isa<llvm::UndefValue>(Pattern)) { 1187 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1188 assert(AP.getBitWidth() <= 8); 1189 Value = AP.getLimitedValue(); 1190 } 1191 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, 1192 isVolatile); 1193 return; 1194 } 1195 1196 // If the initializer is small, use a handful of stores. 1197 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1198 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1199 // FIXME: handle the case when STy != Loc.getElementType(). 1200 if (STy == Loc.getElementType()) { 1201 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1202 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1203 emitStoresForConstant( 1204 CGM, D, EltPtr, isVolatile, Builder, 1205 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1206 } 1207 return; 1208 } 1209 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1210 // FIXME: handle the case when ATy != Loc.getElementType(). 1211 if (ATy == Loc.getElementType()) { 1212 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1213 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1214 emitStoresForConstant( 1215 CGM, D, EltPtr, isVolatile, Builder, 1216 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1217 } 1218 return; 1219 } 1220 } 1221 } 1222 1223 // Copy from a global. 1224 Builder.CreateMemCpy(Loc, 1225 createUnnamedGlobalForMemcpyFrom( 1226 CGM, D, Builder, constant, Loc.getAlignment()), 1227 SizeVal, isVolatile); 1228 } 1229 1230 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1231 Address Loc, bool isVolatile, 1232 CGBuilderTy &Builder) { 1233 llvm::Type *ElTy = Loc.getElementType(); 1234 llvm::Constant *constant = 1235 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1236 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1237 } 1238 1239 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1240 Address Loc, bool isVolatile, 1241 CGBuilderTy &Builder) { 1242 llvm::Type *ElTy = Loc.getElementType(); 1243 llvm::Constant *constant = constWithPadding( 1244 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1245 assert(!isa<llvm::UndefValue>(constant)); 1246 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1247 } 1248 1249 static bool containsUndef(llvm::Constant *constant) { 1250 auto *Ty = constant->getType(); 1251 if (isa<llvm::UndefValue>(constant)) 1252 return true; 1253 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1254 for (llvm::Use &Op : constant->operands()) 1255 if (containsUndef(cast<llvm::Constant>(Op))) 1256 return true; 1257 return false; 1258 } 1259 1260 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1261 llvm::Constant *constant) { 1262 auto *Ty = constant->getType(); 1263 if (isa<llvm::UndefValue>(constant)) 1264 return patternOrZeroFor(CGM, isPattern, Ty); 1265 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1266 return constant; 1267 if (!containsUndef(constant)) 1268 return constant; 1269 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1270 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1271 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1272 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1273 } 1274 if (Ty->isStructTy()) 1275 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1276 if (Ty->isArrayTy()) 1277 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1278 assert(Ty->isVectorTy()); 1279 return llvm::ConstantVector::get(Values); 1280 } 1281 1282 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1283 /// variable declaration with auto, register, or no storage class specifier. 1284 /// These turn into simple stack objects, or GlobalValues depending on target. 1285 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1286 AutoVarEmission emission = EmitAutoVarAlloca(D); 1287 EmitAutoVarInit(emission); 1288 EmitAutoVarCleanups(emission); 1289 } 1290 1291 /// Emit a lifetime.begin marker if some criteria are satisfied. 1292 /// \return a pointer to the temporary size Value if a marker was emitted, null 1293 /// otherwise 1294 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1295 llvm::Value *Addr) { 1296 if (!ShouldEmitLifetimeMarkers) 1297 return nullptr; 1298 1299 assert(Addr->getType()->getPointerAddressSpace() == 1300 CGM.getDataLayout().getAllocaAddrSpace() && 1301 "Pointer should be in alloca address space"); 1302 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1303 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1304 llvm::CallInst *C = 1305 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1306 C->setDoesNotThrow(); 1307 return SizeV; 1308 } 1309 1310 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1311 assert(Addr->getType()->getPointerAddressSpace() == 1312 CGM.getDataLayout().getAllocaAddrSpace() && 1313 "Pointer should be in alloca address space"); 1314 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1315 llvm::CallInst *C = 1316 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1317 C->setDoesNotThrow(); 1318 } 1319 1320 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1321 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1322 // For each dimension stores its QualType and corresponding 1323 // size-expression Value. 1324 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1325 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1326 1327 // Break down the array into individual dimensions. 1328 QualType Type1D = D.getType(); 1329 while (getContext().getAsVariableArrayType(Type1D)) { 1330 auto VlaSize = getVLAElements1D(Type1D); 1331 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1332 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1333 else { 1334 // Generate a locally unique name for the size expression. 1335 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1336 SmallString<12> Buffer; 1337 StringRef NameRef = Name.toStringRef(Buffer); 1338 auto &Ident = getContext().Idents.getOwn(NameRef); 1339 VLAExprNames.push_back(&Ident); 1340 auto SizeExprAddr = 1341 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1342 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1343 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1344 Type1D.getUnqualifiedType()); 1345 } 1346 Type1D = VlaSize.Type; 1347 } 1348 1349 if (!EmitDebugInfo) 1350 return; 1351 1352 // Register each dimension's size-expression with a DILocalVariable, 1353 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1354 // to describe this array. 1355 unsigned NameIdx = 0; 1356 for (auto &VlaSize : Dimensions) { 1357 llvm::Metadata *MD; 1358 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1359 MD = llvm::ConstantAsMetadata::get(C); 1360 else { 1361 // Create an artificial VarDecl to generate debug info for. 1362 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1363 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1364 auto QT = getContext().getIntTypeForBitwidth( 1365 VlaExprTy->getScalarSizeInBits(), false); 1366 auto *ArtificialDecl = VarDecl::Create( 1367 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1368 D.getLocation(), D.getLocation(), NameIdent, QT, 1369 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1370 ArtificialDecl->setImplicit(); 1371 1372 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1373 Builder); 1374 } 1375 assert(MD && "No Size expression debug node created"); 1376 DI->registerVLASizeExpression(VlaSize.Type, MD); 1377 } 1378 } 1379 1380 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1381 /// local variable. Does not emit initialization or destruction. 1382 CodeGenFunction::AutoVarEmission 1383 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1384 QualType Ty = D.getType(); 1385 assert( 1386 Ty.getAddressSpace() == LangAS::Default || 1387 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1388 1389 AutoVarEmission emission(D); 1390 1391 bool isEscapingByRef = D.isEscapingByref(); 1392 emission.IsEscapingByRef = isEscapingByRef; 1393 1394 CharUnits alignment = getContext().getDeclAlign(&D); 1395 1396 // If the type is variably-modified, emit all the VLA sizes for it. 1397 if (Ty->isVariablyModifiedType()) 1398 EmitVariablyModifiedType(Ty); 1399 1400 auto *DI = getDebugInfo(); 1401 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1402 1403 Address address = Address::invalid(); 1404 Address AllocaAddr = Address::invalid(); 1405 Address OpenMPLocalAddr = 1406 getLangOpts().OpenMP 1407 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1408 : Address::invalid(); 1409 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1410 1411 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1412 address = OpenMPLocalAddr; 1413 } else if (Ty->isConstantSizeType()) { 1414 // If this value is an array or struct with a statically determinable 1415 // constant initializer, there are optimizations we can do. 1416 // 1417 // TODO: We should constant-evaluate the initializer of any variable, 1418 // as long as it is initialized by a constant expression. Currently, 1419 // isConstantInitializer produces wrong answers for structs with 1420 // reference or bitfield members, and a few other cases, and checking 1421 // for POD-ness protects us from some of these. 1422 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1423 (D.isConstexpr() || 1424 ((Ty.isPODType(getContext()) || 1425 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1426 D.getInit()->isConstantInitializer(getContext(), false)))) { 1427 1428 // If the variable's a const type, and it's neither an NRVO 1429 // candidate nor a __block variable and has no mutable members, 1430 // emit it as a global instead. 1431 // Exception is if a variable is located in non-constant address space 1432 // in OpenCL. 1433 if ((!getLangOpts().OpenCL || 1434 Ty.getAddressSpace() == LangAS::opencl_constant) && 1435 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1436 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1437 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1438 1439 // Signal this condition to later callbacks. 1440 emission.Addr = Address::invalid(); 1441 assert(emission.wasEmittedAsGlobal()); 1442 return emission; 1443 } 1444 1445 // Otherwise, tell the initialization code that we're in this case. 1446 emission.IsConstantAggregate = true; 1447 } 1448 1449 // A normal fixed sized variable becomes an alloca in the entry block, 1450 // unless: 1451 // - it's an NRVO variable. 1452 // - we are compiling OpenMP and it's an OpenMP local variable. 1453 if (NRVO) { 1454 // The named return value optimization: allocate this variable in the 1455 // return slot, so that we can elide the copy when returning this 1456 // variable (C++0x [class.copy]p34). 1457 address = ReturnValue; 1458 1459 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1460 const auto *RD = RecordTy->getDecl(); 1461 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1462 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1463 RD->isNonTrivialToPrimitiveDestroy()) { 1464 // Create a flag that is used to indicate when the NRVO was applied 1465 // to this variable. Set it to zero to indicate that NRVO was not 1466 // applied. 1467 llvm::Value *Zero = Builder.getFalse(); 1468 Address NRVOFlag = 1469 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1470 EnsureInsertPoint(); 1471 Builder.CreateStore(Zero, NRVOFlag); 1472 1473 // Record the NRVO flag for this variable. 1474 NRVOFlags[&D] = NRVOFlag.getPointer(); 1475 emission.NRVOFlag = NRVOFlag.getPointer(); 1476 } 1477 } 1478 } else { 1479 CharUnits allocaAlignment; 1480 llvm::Type *allocaTy; 1481 if (isEscapingByRef) { 1482 auto &byrefInfo = getBlockByrefInfo(&D); 1483 allocaTy = byrefInfo.Type; 1484 allocaAlignment = byrefInfo.ByrefAlignment; 1485 } else { 1486 allocaTy = ConvertTypeForMem(Ty); 1487 allocaAlignment = alignment; 1488 } 1489 1490 // Create the alloca. Note that we set the name separately from 1491 // building the instruction so that it's there even in no-asserts 1492 // builds. 1493 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1494 /*ArraySize=*/nullptr, &AllocaAddr); 1495 1496 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1497 // the catch parameter starts in the catchpad instruction, and we can't 1498 // insert code in those basic blocks. 1499 bool IsMSCatchParam = 1500 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1501 1502 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1503 // if we don't have a valid insertion point (?). 1504 if (HaveInsertPoint() && !IsMSCatchParam) { 1505 // If there's a jump into the lifetime of this variable, its lifetime 1506 // gets broken up into several regions in IR, which requires more work 1507 // to handle correctly. For now, just omit the intrinsics; this is a 1508 // rare case, and it's better to just be conservatively correct. 1509 // PR28267. 1510 // 1511 // We have to do this in all language modes if there's a jump past the 1512 // declaration. We also have to do it in C if there's a jump to an 1513 // earlier point in the current block because non-VLA lifetimes begin as 1514 // soon as the containing block is entered, not when its variables 1515 // actually come into scope; suppressing the lifetime annotations 1516 // completely in this case is unnecessarily pessimistic, but again, this 1517 // is rare. 1518 if (!Bypasses.IsBypassed(&D) && 1519 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1520 llvm::TypeSize size = 1521 CGM.getDataLayout().getTypeAllocSize(allocaTy); 1522 emission.SizeForLifetimeMarkers = 1523 size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer()) 1524 : EmitLifetimeStart(size.getFixedSize(), 1525 AllocaAddr.getPointer()); 1526 } 1527 } else { 1528 assert(!emission.useLifetimeMarkers()); 1529 } 1530 } 1531 } else { 1532 EnsureInsertPoint(); 1533 1534 if (!DidCallStackSave) { 1535 // Save the stack. 1536 Address Stack = 1537 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1538 1539 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1540 llvm::Value *V = Builder.CreateCall(F); 1541 Builder.CreateStore(V, Stack); 1542 1543 DidCallStackSave = true; 1544 1545 // Push a cleanup block and restore the stack there. 1546 // FIXME: in general circumstances, this should be an EH cleanup. 1547 pushStackRestore(NormalCleanup, Stack); 1548 } 1549 1550 auto VlaSize = getVLASize(Ty); 1551 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1552 1553 // Allocate memory for the array. 1554 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1555 &AllocaAddr); 1556 1557 // If we have debug info enabled, properly describe the VLA dimensions for 1558 // this type by registering the vla size expression for each of the 1559 // dimensions. 1560 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1561 } 1562 1563 setAddrOfLocalVar(&D, address); 1564 emission.Addr = address; 1565 emission.AllocaAddr = AllocaAddr; 1566 1567 // Emit debug info for local var declaration. 1568 if (EmitDebugInfo && HaveInsertPoint()) { 1569 Address DebugAddr = address; 1570 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1571 DI->setLocation(D.getLocation()); 1572 1573 // If NRVO, use a pointer to the return address. 1574 if (UsePointerValue) 1575 DebugAddr = ReturnValuePointer; 1576 1577 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1578 UsePointerValue); 1579 } 1580 1581 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1582 EmitVarAnnotations(&D, address.getPointer()); 1583 1584 // Make sure we call @llvm.lifetime.end. 1585 if (emission.useLifetimeMarkers()) 1586 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1587 emission.getOriginalAllocatedAddress(), 1588 emission.getSizeForLifetimeMarkers()); 1589 1590 return emission; 1591 } 1592 1593 static bool isCapturedBy(const VarDecl &, const Expr *); 1594 1595 /// Determines whether the given __block variable is potentially 1596 /// captured by the given statement. 1597 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1598 if (const Expr *E = dyn_cast<Expr>(S)) 1599 return isCapturedBy(Var, E); 1600 for (const Stmt *SubStmt : S->children()) 1601 if (isCapturedBy(Var, SubStmt)) 1602 return true; 1603 return false; 1604 } 1605 1606 /// Determines whether the given __block variable is potentially 1607 /// captured by the given expression. 1608 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1609 // Skip the most common kinds of expressions that make 1610 // hierarchy-walking expensive. 1611 E = E->IgnoreParenCasts(); 1612 1613 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1614 const BlockDecl *Block = BE->getBlockDecl(); 1615 for (const auto &I : Block->captures()) { 1616 if (I.getVariable() == &Var) 1617 return true; 1618 } 1619 1620 // No need to walk into the subexpressions. 1621 return false; 1622 } 1623 1624 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1625 const CompoundStmt *CS = SE->getSubStmt(); 1626 for (const auto *BI : CS->body()) 1627 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1628 if (isCapturedBy(Var, BIE)) 1629 return true; 1630 } 1631 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1632 // special case declarations 1633 for (const auto *I : DS->decls()) { 1634 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1635 const Expr *Init = VD->getInit(); 1636 if (Init && isCapturedBy(Var, Init)) 1637 return true; 1638 } 1639 } 1640 } 1641 else 1642 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1643 // Later, provide code to poke into statements for capture analysis. 1644 return true; 1645 return false; 1646 } 1647 1648 for (const Stmt *SubStmt : E->children()) 1649 if (isCapturedBy(Var, SubStmt)) 1650 return true; 1651 1652 return false; 1653 } 1654 1655 /// Determine whether the given initializer is trivial in the sense 1656 /// that it requires no code to be generated. 1657 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1658 if (!Init) 1659 return true; 1660 1661 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1662 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1663 if (Constructor->isTrivial() && 1664 Constructor->isDefaultConstructor() && 1665 !Construct->requiresZeroInitialization()) 1666 return true; 1667 1668 return false; 1669 } 1670 1671 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1672 const VarDecl &D, 1673 Address Loc) { 1674 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1675 CharUnits Size = getContext().getTypeSizeInChars(type); 1676 bool isVolatile = type.isVolatileQualified(); 1677 if (!Size.isZero()) { 1678 switch (trivialAutoVarInit) { 1679 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1680 llvm_unreachable("Uninitialized handled by caller"); 1681 case LangOptions::TrivialAutoVarInitKind::Zero: 1682 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1683 break; 1684 case LangOptions::TrivialAutoVarInitKind::Pattern: 1685 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1686 break; 1687 } 1688 return; 1689 } 1690 1691 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1692 // them, so emit a memcpy with the VLA size to initialize each element. 1693 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1694 // will catch that code, but there exists code which generates zero-sized 1695 // VLAs. Be nice and initialize whatever they requested. 1696 const auto *VlaType = getContext().getAsVariableArrayType(type); 1697 if (!VlaType) 1698 return; 1699 auto VlaSize = getVLASize(VlaType); 1700 auto SizeVal = VlaSize.NumElts; 1701 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1702 switch (trivialAutoVarInit) { 1703 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1704 llvm_unreachable("Uninitialized handled by caller"); 1705 1706 case LangOptions::TrivialAutoVarInitKind::Zero: 1707 if (!EltSize.isOne()) 1708 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1709 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1710 isVolatile); 1711 break; 1712 1713 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1714 llvm::Type *ElTy = Loc.getElementType(); 1715 llvm::Constant *Constant = constWithPadding( 1716 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1717 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1718 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1719 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1720 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1721 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1722 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1723 "vla.iszerosized"); 1724 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1725 EmitBlock(SetupBB); 1726 if (!EltSize.isOne()) 1727 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1728 llvm::Value *BaseSizeInChars = 1729 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1730 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1731 llvm::Value *End = 1732 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1733 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1734 EmitBlock(LoopBB); 1735 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1736 Cur->addIncoming(Begin.getPointer(), OriginBB); 1737 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1738 Builder.CreateMemCpy(Address(Cur, CurAlign), 1739 createUnnamedGlobalForMemcpyFrom( 1740 CGM, D, Builder, Constant, ConstantAlign), 1741 BaseSizeInChars, isVolatile); 1742 llvm::Value *Next = 1743 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1744 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1745 Builder.CreateCondBr(Done, ContBB, LoopBB); 1746 Cur->addIncoming(Next, LoopBB); 1747 EmitBlock(ContBB); 1748 } break; 1749 } 1750 } 1751 1752 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1753 assert(emission.Variable && "emission was not valid!"); 1754 1755 // If this was emitted as a global constant, we're done. 1756 if (emission.wasEmittedAsGlobal()) return; 1757 1758 const VarDecl &D = *emission.Variable; 1759 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1760 QualType type = D.getType(); 1761 1762 // If this local has an initializer, emit it now. 1763 const Expr *Init = D.getInit(); 1764 1765 // If we are at an unreachable point, we don't need to emit the initializer 1766 // unless it contains a label. 1767 if (!HaveInsertPoint()) { 1768 if (!Init || !ContainsLabel(Init)) return; 1769 EnsureInsertPoint(); 1770 } 1771 1772 // Initialize the structure of a __block variable. 1773 if (emission.IsEscapingByRef) 1774 emitByrefStructureInit(emission); 1775 1776 // Initialize the variable here if it doesn't have a initializer and it is a 1777 // C struct that is non-trivial to initialize or an array containing such a 1778 // struct. 1779 if (!Init && 1780 type.isNonTrivialToPrimitiveDefaultInitialize() == 1781 QualType::PDIK_Struct) { 1782 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1783 if (emission.IsEscapingByRef) 1784 drillIntoBlockVariable(*this, Dst, &D); 1785 defaultInitNonTrivialCStructVar(Dst); 1786 return; 1787 } 1788 1789 // Check whether this is a byref variable that's potentially 1790 // captured and moved by its own initializer. If so, we'll need to 1791 // emit the initializer first, then copy into the variable. 1792 bool capturedByInit = 1793 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1794 1795 bool locIsByrefHeader = !capturedByInit; 1796 const Address Loc = 1797 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1798 1799 // Note: constexpr already initializes everything correctly. 1800 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1801 (D.isConstexpr() 1802 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1803 : (D.getAttr<UninitializedAttr>() 1804 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1805 : getContext().getLangOpts().getTrivialAutoVarInit())); 1806 1807 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1808 if (trivialAutoVarInit == 1809 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1810 return; 1811 1812 // Only initialize a __block's storage: we always initialize the header. 1813 if (emission.IsEscapingByRef && !locIsByrefHeader) 1814 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1815 1816 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1817 }; 1818 1819 if (isTrivialInitializer(Init)) 1820 return initializeWhatIsTechnicallyUninitialized(Loc); 1821 1822 llvm::Constant *constant = nullptr; 1823 if (emission.IsConstantAggregate || 1824 D.mightBeUsableInConstantExpressions(getContext())) { 1825 assert(!capturedByInit && "constant init contains a capturing block?"); 1826 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1827 if (constant && !constant->isZeroValue() && 1828 (trivialAutoVarInit != 1829 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1830 IsPattern isPattern = 1831 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1832 ? IsPattern::Yes 1833 : IsPattern::No; 1834 // C guarantees that brace-init with fewer initializers than members in 1835 // the aggregate will initialize the rest of the aggregate as-if it were 1836 // static initialization. In turn static initialization guarantees that 1837 // padding is initialized to zero bits. We could instead pattern-init if D 1838 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1839 // behavior. 1840 constant = constWithPadding(CGM, IsPattern::No, 1841 replaceUndef(CGM, isPattern, constant)); 1842 } 1843 } 1844 1845 if (!constant) { 1846 initializeWhatIsTechnicallyUninitialized(Loc); 1847 LValue lv = MakeAddrLValue(Loc, type); 1848 lv.setNonGC(true); 1849 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1850 } 1851 1852 if (!emission.IsConstantAggregate) { 1853 // For simple scalar/complex initialization, store the value directly. 1854 LValue lv = MakeAddrLValue(Loc, type); 1855 lv.setNonGC(true); 1856 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1857 } 1858 1859 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1860 emitStoresForConstant( 1861 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1862 type.isVolatileQualified(), Builder, constant); 1863 } 1864 1865 /// Emit an expression as an initializer for an object (variable, field, etc.) 1866 /// at the given location. The expression is not necessarily the normal 1867 /// initializer for the object, and the address is not necessarily 1868 /// its normal location. 1869 /// 1870 /// \param init the initializing expression 1871 /// \param D the object to act as if we're initializing 1872 /// \param loc the address to initialize; its type is a pointer 1873 /// to the LLVM mapping of the object's type 1874 /// \param alignment the alignment of the address 1875 /// \param capturedByInit true if \p D is a __block variable 1876 /// whose address is potentially changed by the initializer 1877 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1878 LValue lvalue, bool capturedByInit) { 1879 QualType type = D->getType(); 1880 1881 if (type->isReferenceType()) { 1882 RValue rvalue = EmitReferenceBindingToExpr(init); 1883 if (capturedByInit) 1884 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1885 EmitStoreThroughLValue(rvalue, lvalue, true); 1886 return; 1887 } 1888 switch (getEvaluationKind(type)) { 1889 case TEK_Scalar: 1890 EmitScalarInit(init, D, lvalue, capturedByInit); 1891 return; 1892 case TEK_Complex: { 1893 ComplexPairTy complex = EmitComplexExpr(init); 1894 if (capturedByInit) 1895 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1896 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1897 return; 1898 } 1899 case TEK_Aggregate: 1900 if (type->isAtomicType()) { 1901 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1902 } else { 1903 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1904 if (isa<VarDecl>(D)) 1905 Overlap = AggValueSlot::DoesNotOverlap; 1906 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1907 Overlap = getOverlapForFieldInit(FD); 1908 // TODO: how can we delay here if D is captured by its initializer? 1909 EmitAggExpr(init, AggValueSlot::forLValue( 1910 lvalue, *this, AggValueSlot::IsDestructed, 1911 AggValueSlot::DoesNotNeedGCBarriers, 1912 AggValueSlot::IsNotAliased, Overlap)); 1913 } 1914 return; 1915 } 1916 llvm_unreachable("bad evaluation kind"); 1917 } 1918 1919 /// Enter a destroy cleanup for the given local variable. 1920 void CodeGenFunction::emitAutoVarTypeCleanup( 1921 const CodeGenFunction::AutoVarEmission &emission, 1922 QualType::DestructionKind dtorKind) { 1923 assert(dtorKind != QualType::DK_none); 1924 1925 // Note that for __block variables, we want to destroy the 1926 // original stack object, not the possibly forwarded object. 1927 Address addr = emission.getObjectAddress(*this); 1928 1929 const VarDecl *var = emission.Variable; 1930 QualType type = var->getType(); 1931 1932 CleanupKind cleanupKind = NormalAndEHCleanup; 1933 CodeGenFunction::Destroyer *destroyer = nullptr; 1934 1935 switch (dtorKind) { 1936 case QualType::DK_none: 1937 llvm_unreachable("no cleanup for trivially-destructible variable"); 1938 1939 case QualType::DK_cxx_destructor: 1940 // If there's an NRVO flag on the emission, we need a different 1941 // cleanup. 1942 if (emission.NRVOFlag) { 1943 assert(!type->isArrayType()); 1944 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1945 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1946 emission.NRVOFlag); 1947 return; 1948 } 1949 break; 1950 1951 case QualType::DK_objc_strong_lifetime: 1952 // Suppress cleanups for pseudo-strong variables. 1953 if (var->isARCPseudoStrong()) return; 1954 1955 // Otherwise, consider whether to use an EH cleanup or not. 1956 cleanupKind = getARCCleanupKind(); 1957 1958 // Use the imprecise destroyer by default. 1959 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1960 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1961 break; 1962 1963 case QualType::DK_objc_weak_lifetime: 1964 break; 1965 1966 case QualType::DK_nontrivial_c_struct: 1967 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1968 if (emission.NRVOFlag) { 1969 assert(!type->isArrayType()); 1970 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1971 emission.NRVOFlag, type); 1972 return; 1973 } 1974 break; 1975 } 1976 1977 // If we haven't chosen a more specific destroyer, use the default. 1978 if (!destroyer) destroyer = getDestroyer(dtorKind); 1979 1980 // Use an EH cleanup in array destructors iff the destructor itself 1981 // is being pushed as an EH cleanup. 1982 bool useEHCleanup = (cleanupKind & EHCleanup); 1983 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1984 useEHCleanup); 1985 } 1986 1987 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1988 assert(emission.Variable && "emission was not valid!"); 1989 1990 // If this was emitted as a global constant, we're done. 1991 if (emission.wasEmittedAsGlobal()) return; 1992 1993 // If we don't have an insertion point, we're done. Sema prevents 1994 // us from jumping into any of these scopes anyway. 1995 if (!HaveInsertPoint()) return; 1996 1997 const VarDecl &D = *emission.Variable; 1998 1999 // Check the type for a cleanup. 2000 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2001 emitAutoVarTypeCleanup(emission, dtorKind); 2002 2003 // In GC mode, honor objc_precise_lifetime. 2004 if (getLangOpts().getGC() != LangOptions::NonGC && 2005 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2006 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2007 } 2008 2009 // Handle the cleanup attribute. 2010 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2011 const FunctionDecl *FD = CA->getFunctionDecl(); 2012 2013 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2014 assert(F && "Could not find function!"); 2015 2016 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2017 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2018 } 2019 2020 // If this is a block variable, call _Block_object_destroy 2021 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2022 // mode. 2023 if (emission.IsEscapingByRef && 2024 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2025 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2026 if (emission.Variable->getType().isObjCGCWeak()) 2027 Flags |= BLOCK_FIELD_IS_WEAK; 2028 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2029 /*LoadBlockVarAddr*/ false, 2030 cxxDestructorCanThrow(emission.Variable->getType())); 2031 } 2032 } 2033 2034 CodeGenFunction::Destroyer * 2035 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2036 switch (kind) { 2037 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2038 case QualType::DK_cxx_destructor: 2039 return destroyCXXObject; 2040 case QualType::DK_objc_strong_lifetime: 2041 return destroyARCStrongPrecise; 2042 case QualType::DK_objc_weak_lifetime: 2043 return destroyARCWeak; 2044 case QualType::DK_nontrivial_c_struct: 2045 return destroyNonTrivialCStruct; 2046 } 2047 llvm_unreachable("Unknown DestructionKind"); 2048 } 2049 2050 /// pushEHDestroy - Push the standard destructor for the given type as 2051 /// an EH-only cleanup. 2052 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2053 Address addr, QualType type) { 2054 assert(dtorKind && "cannot push destructor for trivial type"); 2055 assert(needsEHCleanup(dtorKind)); 2056 2057 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2058 } 2059 2060 /// pushDestroy - Push the standard destructor for the given type as 2061 /// at least a normal cleanup. 2062 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2063 Address addr, QualType type) { 2064 assert(dtorKind && "cannot push destructor for trivial type"); 2065 2066 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2067 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2068 cleanupKind & EHCleanup); 2069 } 2070 2071 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2072 QualType type, Destroyer *destroyer, 2073 bool useEHCleanupForArray) { 2074 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2075 destroyer, useEHCleanupForArray); 2076 } 2077 2078 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2079 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2080 } 2081 2082 void CodeGenFunction::pushLifetimeExtendedDestroy( 2083 CleanupKind cleanupKind, Address addr, QualType type, 2084 Destroyer *destroyer, bool useEHCleanupForArray) { 2085 // Push an EH-only cleanup for the object now. 2086 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2087 // around in case a temporary's destructor throws an exception. 2088 if (cleanupKind & EHCleanup) 2089 EHStack.pushCleanup<DestroyObject>( 2090 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2091 destroyer, useEHCleanupForArray); 2092 2093 // Remember that we need to push a full cleanup for the object at the 2094 // end of the full-expression. 2095 pushCleanupAfterFullExpr<DestroyObject>( 2096 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2097 } 2098 2099 /// emitDestroy - Immediately perform the destruction of the given 2100 /// object. 2101 /// 2102 /// \param addr - the address of the object; a type* 2103 /// \param type - the type of the object; if an array type, all 2104 /// objects are destroyed in reverse order 2105 /// \param destroyer - the function to call to destroy individual 2106 /// elements 2107 /// \param useEHCleanupForArray - whether an EH cleanup should be 2108 /// used when destroying array elements, in case one of the 2109 /// destructions throws an exception 2110 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2111 Destroyer *destroyer, 2112 bool useEHCleanupForArray) { 2113 const ArrayType *arrayType = getContext().getAsArrayType(type); 2114 if (!arrayType) 2115 return destroyer(*this, addr, type); 2116 2117 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2118 2119 CharUnits elementAlign = 2120 addr.getAlignment() 2121 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2122 2123 // Normally we have to check whether the array is zero-length. 2124 bool checkZeroLength = true; 2125 2126 // But if the array length is constant, we can suppress that. 2127 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2128 // ...and if it's constant zero, we can just skip the entire thing. 2129 if (constLength->isZero()) return; 2130 checkZeroLength = false; 2131 } 2132 2133 llvm::Value *begin = addr.getPointer(); 2134 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2135 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2136 checkZeroLength, useEHCleanupForArray); 2137 } 2138 2139 /// emitArrayDestroy - Destroys all the elements of the given array, 2140 /// beginning from last to first. The array cannot be zero-length. 2141 /// 2142 /// \param begin - a type* denoting the first element of the array 2143 /// \param end - a type* denoting one past the end of the array 2144 /// \param elementType - the element type of the array 2145 /// \param destroyer - the function to call to destroy elements 2146 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2147 /// the remaining elements in case the destruction of a single 2148 /// element throws 2149 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2150 llvm::Value *end, 2151 QualType elementType, 2152 CharUnits elementAlign, 2153 Destroyer *destroyer, 2154 bool checkZeroLength, 2155 bool useEHCleanup) { 2156 assert(!elementType->isArrayType()); 2157 2158 // The basic structure here is a do-while loop, because we don't 2159 // need to check for the zero-element case. 2160 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2161 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2162 2163 if (checkZeroLength) { 2164 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2165 "arraydestroy.isempty"); 2166 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2167 } 2168 2169 // Enter the loop body, making that address the current address. 2170 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2171 EmitBlock(bodyBB); 2172 llvm::PHINode *elementPast = 2173 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2174 elementPast->addIncoming(end, entryBB); 2175 2176 // Shift the address back by one element. 2177 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2178 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2179 "arraydestroy.element"); 2180 2181 if (useEHCleanup) 2182 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2183 destroyer); 2184 2185 // Perform the actual destruction there. 2186 destroyer(*this, Address(element, elementAlign), elementType); 2187 2188 if (useEHCleanup) 2189 PopCleanupBlock(); 2190 2191 // Check whether we've reached the end. 2192 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2193 Builder.CreateCondBr(done, doneBB, bodyBB); 2194 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2195 2196 // Done. 2197 EmitBlock(doneBB); 2198 } 2199 2200 /// Perform partial array destruction as if in an EH cleanup. Unlike 2201 /// emitArrayDestroy, the element type here may still be an array type. 2202 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2203 llvm::Value *begin, llvm::Value *end, 2204 QualType type, CharUnits elementAlign, 2205 CodeGenFunction::Destroyer *destroyer) { 2206 // If the element type is itself an array, drill down. 2207 unsigned arrayDepth = 0; 2208 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2209 // VLAs don't require a GEP index to walk into. 2210 if (!isa<VariableArrayType>(arrayType)) 2211 arrayDepth++; 2212 type = arrayType->getElementType(); 2213 } 2214 2215 if (arrayDepth) { 2216 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2217 2218 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2219 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2220 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2221 } 2222 2223 // Destroy the array. We don't ever need an EH cleanup because we 2224 // assume that we're in an EH cleanup ourselves, so a throwing 2225 // destructor causes an immediate terminate. 2226 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2227 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2228 } 2229 2230 namespace { 2231 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2232 /// array destroy where the end pointer is regularly determined and 2233 /// does not need to be loaded from a local. 2234 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2235 llvm::Value *ArrayBegin; 2236 llvm::Value *ArrayEnd; 2237 QualType ElementType; 2238 CodeGenFunction::Destroyer *Destroyer; 2239 CharUnits ElementAlign; 2240 public: 2241 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2242 QualType elementType, CharUnits elementAlign, 2243 CodeGenFunction::Destroyer *destroyer) 2244 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2245 ElementType(elementType), Destroyer(destroyer), 2246 ElementAlign(elementAlign) {} 2247 2248 void Emit(CodeGenFunction &CGF, Flags flags) override { 2249 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2250 ElementType, ElementAlign, Destroyer); 2251 } 2252 }; 2253 2254 /// IrregularPartialArrayDestroy - a cleanup which performs a 2255 /// partial array destroy where the end pointer is irregularly 2256 /// determined and must be loaded from a local. 2257 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2258 llvm::Value *ArrayBegin; 2259 Address ArrayEndPointer; 2260 QualType ElementType; 2261 CodeGenFunction::Destroyer *Destroyer; 2262 CharUnits ElementAlign; 2263 public: 2264 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2265 Address arrayEndPointer, 2266 QualType elementType, 2267 CharUnits elementAlign, 2268 CodeGenFunction::Destroyer *destroyer) 2269 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2270 ElementType(elementType), Destroyer(destroyer), 2271 ElementAlign(elementAlign) {} 2272 2273 void Emit(CodeGenFunction &CGF, Flags flags) override { 2274 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2275 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2276 ElementType, ElementAlign, Destroyer); 2277 } 2278 }; 2279 } // end anonymous namespace 2280 2281 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2282 /// already-constructed elements of the given array. The cleanup 2283 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2284 /// 2285 /// \param elementType - the immediate element type of the array; 2286 /// possibly still an array type 2287 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2288 Address arrayEndPointer, 2289 QualType elementType, 2290 CharUnits elementAlign, 2291 Destroyer *destroyer) { 2292 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2293 arrayBegin, arrayEndPointer, 2294 elementType, elementAlign, 2295 destroyer); 2296 } 2297 2298 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2299 /// already-constructed elements of the given array. The cleanup 2300 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2301 /// 2302 /// \param elementType - the immediate element type of the array; 2303 /// possibly still an array type 2304 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2305 llvm::Value *arrayEnd, 2306 QualType elementType, 2307 CharUnits elementAlign, 2308 Destroyer *destroyer) { 2309 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2310 arrayBegin, arrayEnd, 2311 elementType, elementAlign, 2312 destroyer); 2313 } 2314 2315 /// Lazily declare the @llvm.lifetime.start intrinsic. 2316 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2317 if (LifetimeStartFn) 2318 return LifetimeStartFn; 2319 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2320 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2321 return LifetimeStartFn; 2322 } 2323 2324 /// Lazily declare the @llvm.lifetime.end intrinsic. 2325 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2326 if (LifetimeEndFn) 2327 return LifetimeEndFn; 2328 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2329 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2330 return LifetimeEndFn; 2331 } 2332 2333 namespace { 2334 /// A cleanup to perform a release of an object at the end of a 2335 /// function. This is used to balance out the incoming +1 of a 2336 /// ns_consumed argument when we can't reasonably do that just by 2337 /// not doing the initial retain for a __block argument. 2338 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2339 ConsumeARCParameter(llvm::Value *param, 2340 ARCPreciseLifetime_t precise) 2341 : Param(param), Precise(precise) {} 2342 2343 llvm::Value *Param; 2344 ARCPreciseLifetime_t Precise; 2345 2346 void Emit(CodeGenFunction &CGF, Flags flags) override { 2347 CGF.EmitARCRelease(Param, Precise); 2348 } 2349 }; 2350 } // end anonymous namespace 2351 2352 /// Emit an alloca (or GlobalValue depending on target) 2353 /// for the specified parameter and set up LocalDeclMap. 2354 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2355 unsigned ArgNo) { 2356 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2357 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2358 "Invalid argument to EmitParmDecl"); 2359 2360 Arg.getAnyValue()->setName(D.getName()); 2361 2362 QualType Ty = D.getType(); 2363 2364 // Use better IR generation for certain implicit parameters. 2365 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2366 // The only implicit argument a block has is its literal. 2367 // This may be passed as an inalloca'ed value on Windows x86. 2368 if (BlockInfo) { 2369 llvm::Value *V = Arg.isIndirect() 2370 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2371 : Arg.getDirectValue(); 2372 setBlockContextParameter(IPD, ArgNo, V); 2373 return; 2374 } 2375 } 2376 2377 Address DeclPtr = Address::invalid(); 2378 bool DoStore = false; 2379 bool IsScalar = hasScalarEvaluationKind(Ty); 2380 // If we already have a pointer to the argument, reuse the input pointer. 2381 if (Arg.isIndirect()) { 2382 DeclPtr = Arg.getIndirectAddress(); 2383 // If we have a prettier pointer type at this point, bitcast to that. 2384 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2385 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2386 if (DeclPtr.getType() != IRTy) 2387 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2388 // Indirect argument is in alloca address space, which may be different 2389 // from the default address space. 2390 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2391 auto *V = DeclPtr.getPointer(); 2392 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2393 auto DestLangAS = 2394 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2395 if (SrcLangAS != DestLangAS) { 2396 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2397 CGM.getDataLayout().getAllocaAddrSpace()); 2398 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2399 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2400 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2401 *this, V, SrcLangAS, DestLangAS, T, true), 2402 DeclPtr.getAlignment()); 2403 } 2404 2405 // Push a destructor cleanup for this parameter if the ABI requires it. 2406 // Don't push a cleanup in a thunk for a method that will also emit a 2407 // cleanup. 2408 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2409 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2410 if (QualType::DestructionKind DtorKind = 2411 D.needsDestruction(getContext())) { 2412 assert((DtorKind == QualType::DK_cxx_destructor || 2413 DtorKind == QualType::DK_nontrivial_c_struct) && 2414 "unexpected destructor type"); 2415 pushDestroy(DtorKind, DeclPtr, Ty); 2416 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2417 EHStack.stable_begin(); 2418 } 2419 } 2420 } else { 2421 // Check if the parameter address is controlled by OpenMP runtime. 2422 Address OpenMPLocalAddr = 2423 getLangOpts().OpenMP 2424 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2425 : Address::invalid(); 2426 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2427 DeclPtr = OpenMPLocalAddr; 2428 } else { 2429 // Otherwise, create a temporary to hold the value. 2430 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2431 D.getName() + ".addr"); 2432 } 2433 DoStore = true; 2434 } 2435 2436 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2437 2438 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2439 if (IsScalar) { 2440 Qualifiers qs = Ty.getQualifiers(); 2441 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2442 // We honor __attribute__((ns_consumed)) for types with lifetime. 2443 // For __strong, it's handled by just skipping the initial retain; 2444 // otherwise we have to balance out the initial +1 with an extra 2445 // cleanup to do the release at the end of the function. 2446 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2447 2448 // If a parameter is pseudo-strong then we can omit the implicit retain. 2449 if (D.isARCPseudoStrong()) { 2450 assert(lt == Qualifiers::OCL_Strong && 2451 "pseudo-strong variable isn't strong?"); 2452 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2453 lt = Qualifiers::OCL_ExplicitNone; 2454 } 2455 2456 // Load objects passed indirectly. 2457 if (Arg.isIndirect() && !ArgVal) 2458 ArgVal = Builder.CreateLoad(DeclPtr); 2459 2460 if (lt == Qualifiers::OCL_Strong) { 2461 if (!isConsumed) { 2462 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2463 // use objc_storeStrong(&dest, value) for retaining the 2464 // object. But first, store a null into 'dest' because 2465 // objc_storeStrong attempts to release its old value. 2466 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2467 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2468 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2469 DoStore = false; 2470 } 2471 else 2472 // Don't use objc_retainBlock for block pointers, because we 2473 // don't want to Block_copy something just because we got it 2474 // as a parameter. 2475 ArgVal = EmitARCRetainNonBlock(ArgVal); 2476 } 2477 } else { 2478 // Push the cleanup for a consumed parameter. 2479 if (isConsumed) { 2480 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2481 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2482 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2483 precise); 2484 } 2485 2486 if (lt == Qualifiers::OCL_Weak) { 2487 EmitARCInitWeak(DeclPtr, ArgVal); 2488 DoStore = false; // The weak init is a store, no need to do two. 2489 } 2490 } 2491 2492 // Enter the cleanup scope. 2493 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2494 } 2495 } 2496 2497 // Store the initial value into the alloca. 2498 if (DoStore) 2499 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2500 2501 setAddrOfLocalVar(&D, DeclPtr); 2502 2503 // Emit debug info for param declarations in non-thunk functions. 2504 if (CGDebugInfo *DI = getDebugInfo()) { 2505 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) { 2506 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2507 } 2508 } 2509 2510 if (D.hasAttr<AnnotateAttr>()) 2511 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2512 2513 // We can only check return value nullability if all arguments to the 2514 // function satisfy their nullability preconditions. This makes it necessary 2515 // to emit null checks for args in the function body itself. 2516 if (requiresReturnValueNullabilityCheck()) { 2517 auto Nullability = Ty->getNullability(getContext()); 2518 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2519 SanitizerScope SanScope(this); 2520 RetValNullabilityPrecondition = 2521 Builder.CreateAnd(RetValNullabilityPrecondition, 2522 Builder.CreateIsNotNull(Arg.getAnyValue())); 2523 } 2524 } 2525 } 2526 2527 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2528 CodeGenFunction *CGF) { 2529 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2530 return; 2531 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2532 } 2533 2534 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2535 CodeGenFunction *CGF) { 2536 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2537 (!LangOpts.EmitAllDecls && !D->isUsed())) 2538 return; 2539 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2540 } 2541 2542 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2543 getOpenMPRuntime().processRequiresDirective(D); 2544 } 2545