1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/Type.h" 39 40 using namespace clang; 41 using namespace CodeGen; 42 43 void CodeGenFunction::EmitDecl(const Decl &D) { 44 switch (D.getKind()) { 45 case Decl::BuiltinTemplate: 46 case Decl::TranslationUnit: 47 case Decl::ExternCContext: 48 case Decl::Namespace: 49 case Decl::UnresolvedUsingTypename: 50 case Decl::ClassTemplateSpecialization: 51 case Decl::ClassTemplatePartialSpecialization: 52 case Decl::VarTemplateSpecialization: 53 case Decl::VarTemplatePartialSpecialization: 54 case Decl::TemplateTypeParm: 55 case Decl::UnresolvedUsingValue: 56 case Decl::NonTypeTemplateParm: 57 case Decl::CXXDeductionGuide: 58 case Decl::CXXMethod: 59 case Decl::CXXConstructor: 60 case Decl::CXXDestructor: 61 case Decl::CXXConversion: 62 case Decl::Field: 63 case Decl::MSProperty: 64 case Decl::IndirectField: 65 case Decl::ObjCIvar: 66 case Decl::ObjCAtDefsField: 67 case Decl::ParmVar: 68 case Decl::ImplicitParam: 69 case Decl::ClassTemplate: 70 case Decl::VarTemplate: 71 case Decl::FunctionTemplate: 72 case Decl::TypeAliasTemplate: 73 case Decl::TemplateTemplateParm: 74 case Decl::ObjCMethod: 75 case Decl::ObjCCategory: 76 case Decl::ObjCProtocol: 77 case Decl::ObjCInterface: 78 case Decl::ObjCCategoryImpl: 79 case Decl::ObjCImplementation: 80 case Decl::ObjCProperty: 81 case Decl::ObjCCompatibleAlias: 82 case Decl::PragmaComment: 83 case Decl::PragmaDetectMismatch: 84 case Decl::AccessSpec: 85 case Decl::LinkageSpec: 86 case Decl::Export: 87 case Decl::ObjCPropertyImpl: 88 case Decl::FileScopeAsm: 89 case Decl::Friend: 90 case Decl::FriendTemplate: 91 case Decl::Block: 92 case Decl::Captured: 93 case Decl::ClassScopeFunctionSpecialization: 94 case Decl::UsingShadow: 95 case Decl::ConstructorUsingShadow: 96 case Decl::ObjCTypeParam: 97 case Decl::Binding: 98 llvm_unreachable("Declaration should not be in declstmts!"); 99 case Decl::Function: // void X(); 100 case Decl::Record: // struct/union/class X; 101 case Decl::Enum: // enum X; 102 case Decl::EnumConstant: // enum ? { X = ? } 103 case Decl::CXXRecord: // struct/union/class X; [C++] 104 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 105 case Decl::Label: // __label__ x; 106 case Decl::Import: 107 case Decl::OMPThreadPrivate: 108 case Decl::OMPAllocate: 109 case Decl::OMPCapturedExpr: 110 case Decl::OMPRequires: 111 case Decl::Empty: 112 case Decl::Concept: 113 case Decl::LifetimeExtendedTemporary: 114 // None of these decls require codegen support. 115 return; 116 117 case Decl::NamespaceAlias: 118 if (CGDebugInfo *DI = getDebugInfo()) 119 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 120 return; 121 case Decl::Using: // using X; [C++] 122 if (CGDebugInfo *DI = getDebugInfo()) 123 DI->EmitUsingDecl(cast<UsingDecl>(D)); 124 return; 125 case Decl::UsingPack: 126 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 127 EmitDecl(*Using); 128 return; 129 case Decl::UsingDirective: // using namespace X; [C++] 130 if (CGDebugInfo *DI = getDebugInfo()) 131 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 132 return; 133 case Decl::Var: 134 case Decl::Decomposition: { 135 const VarDecl &VD = cast<VarDecl>(D); 136 assert(VD.isLocalVarDecl() && 137 "Should not see file-scope variables inside a function!"); 138 EmitVarDecl(VD); 139 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 140 for (auto *B : DD->bindings()) 141 if (auto *HD = B->getHoldingVar()) 142 EmitVarDecl(*HD); 143 return; 144 } 145 146 case Decl::OMPDeclareReduction: 147 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 148 149 case Decl::OMPDeclareMapper: 150 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 151 152 case Decl::Typedef: // typedef int X; 153 case Decl::TypeAlias: { // using X = int; [C++0x] 154 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 155 QualType Ty = TD.getUnderlyingType(); 156 157 if (Ty->isVariablyModifiedType()) 158 EmitVariablyModifiedType(Ty); 159 160 return; 161 } 162 } 163 } 164 165 /// EmitVarDecl - This method handles emission of any variable declaration 166 /// inside a function, including static vars etc. 167 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 168 if (D.hasExternalStorage()) 169 // Don't emit it now, allow it to be emitted lazily on its first use. 170 return; 171 172 // Some function-scope variable does not have static storage but still 173 // needs to be emitted like a static variable, e.g. a function-scope 174 // variable in constant address space in OpenCL. 175 if (D.getStorageDuration() != SD_Automatic) { 176 // Static sampler variables translated to function calls. 177 if (D.getType()->isSamplerT()) 178 return; 179 180 llvm::GlobalValue::LinkageTypes Linkage = 181 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 182 183 // FIXME: We need to force the emission/use of a guard variable for 184 // some variables even if we can constant-evaluate them because 185 // we can't guarantee every translation unit will constant-evaluate them. 186 187 return EmitStaticVarDecl(D, Linkage); 188 } 189 190 if (D.getType().getAddressSpace() == LangAS::opencl_local) 191 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 192 193 assert(D.hasLocalStorage()); 194 return EmitAutoVarDecl(D); 195 } 196 197 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 198 if (CGM.getLangOpts().CPlusPlus) 199 return CGM.getMangledName(&D).str(); 200 201 // If this isn't C++, we don't need a mangled name, just a pretty one. 202 assert(!D.isExternallyVisible() && "name shouldn't matter"); 203 std::string ContextName; 204 const DeclContext *DC = D.getDeclContext(); 205 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 206 DC = cast<DeclContext>(CD->getNonClosureContext()); 207 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 208 ContextName = CGM.getMangledName(FD); 209 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 210 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 211 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 212 ContextName = OMD->getSelector().getAsString(); 213 else 214 llvm_unreachable("Unknown context for static var decl"); 215 216 ContextName += "." + D.getNameAsString(); 217 return ContextName; 218 } 219 220 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 221 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 222 // In general, we don't always emit static var decls once before we reference 223 // them. It is possible to reference them before emitting the function that 224 // contains them, and it is possible to emit the containing function multiple 225 // times. 226 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 227 return ExistingGV; 228 229 QualType Ty = D.getType(); 230 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 231 232 // Use the label if the variable is renamed with the asm-label extension. 233 std::string Name; 234 if (D.hasAttr<AsmLabelAttr>()) 235 Name = getMangledName(&D); 236 else 237 Name = getStaticDeclName(*this, D); 238 239 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 240 LangAS AS = GetGlobalVarAddressSpace(&D); 241 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 242 243 // OpenCL variables in local address space and CUDA shared 244 // variables cannot have an initializer. 245 llvm::Constant *Init = nullptr; 246 if (Ty.getAddressSpace() == LangAS::opencl_local || 247 D.hasAttr<CUDASharedAttr>()) 248 Init = llvm::UndefValue::get(LTy); 249 else 250 Init = EmitNullConstant(Ty); 251 252 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 253 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 254 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 255 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 256 257 if (supportsCOMDAT() && GV->isWeakForLinker()) 258 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 259 260 if (D.getTLSKind()) 261 setTLSMode(GV, D); 262 263 setGVProperties(GV, &D); 264 265 // Make sure the result is of the correct type. 266 LangAS ExpectedAS = Ty.getAddressSpace(); 267 llvm::Constant *Addr = GV; 268 if (AS != ExpectedAS) { 269 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 270 *this, GV, AS, ExpectedAS, 271 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 272 } 273 274 setStaticLocalDeclAddress(&D, Addr); 275 276 // Ensure that the static local gets initialized by making sure the parent 277 // function gets emitted eventually. 278 const Decl *DC = cast<Decl>(D.getDeclContext()); 279 280 // We can't name blocks or captured statements directly, so try to emit their 281 // parents. 282 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 283 DC = DC->getNonClosureContext(); 284 // FIXME: Ensure that global blocks get emitted. 285 if (!DC) 286 return Addr; 287 } 288 289 GlobalDecl GD; 290 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 291 GD = GlobalDecl(CD, Ctor_Base); 292 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 293 GD = GlobalDecl(DD, Dtor_Base); 294 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 295 GD = GlobalDecl(FD); 296 else { 297 // Don't do anything for Obj-C method decls or global closures. We should 298 // never defer them. 299 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 300 } 301 if (GD.getDecl()) { 302 // Disable emission of the parent function for the OpenMP device codegen. 303 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 304 (void)GetAddrOfGlobal(GD); 305 } 306 307 return Addr; 308 } 309 310 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 311 /// global variable that has already been created for it. If the initializer 312 /// has a different type than GV does, this may free GV and return a different 313 /// one. Otherwise it just returns GV. 314 llvm::GlobalVariable * 315 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 316 llvm::GlobalVariable *GV) { 317 ConstantEmitter emitter(*this); 318 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 319 320 // If constant emission failed, then this should be a C++ static 321 // initializer. 322 if (!Init) { 323 if (!getLangOpts().CPlusPlus) 324 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 325 else if (HaveInsertPoint()) { 326 // Since we have a static initializer, this global variable can't 327 // be constant. 328 GV->setConstant(false); 329 330 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 331 } 332 return GV; 333 } 334 335 // The initializer may differ in type from the global. Rewrite 336 // the global to match the initializer. (We have to do this 337 // because some types, like unions, can't be completely represented 338 // in the LLVM type system.) 339 if (GV->getType()->getElementType() != Init->getType()) { 340 llvm::GlobalVariable *OldGV = GV; 341 342 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 343 OldGV->isConstant(), 344 OldGV->getLinkage(), Init, "", 345 /*InsertBefore*/ OldGV, 346 OldGV->getThreadLocalMode(), 347 CGM.getContext().getTargetAddressSpace(D.getType())); 348 GV->setVisibility(OldGV->getVisibility()); 349 GV->setDSOLocal(OldGV->isDSOLocal()); 350 GV->setComdat(OldGV->getComdat()); 351 352 // Steal the name of the old global 353 GV->takeName(OldGV); 354 355 // Replace all uses of the old global with the new global 356 llvm::Constant *NewPtrForOldDecl = 357 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 358 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 359 360 // Erase the old global, since it is no longer used. 361 OldGV->eraseFromParent(); 362 } 363 364 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 365 GV->setInitializer(Init); 366 367 emitter.finalize(GV); 368 369 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 370 HaveInsertPoint()) { 371 // We have a constant initializer, but a nontrivial destructor. We still 372 // need to perform a guarded "initialization" in order to register the 373 // destructor. 374 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 375 } 376 377 return GV; 378 } 379 380 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 381 llvm::GlobalValue::LinkageTypes Linkage) { 382 // Check to see if we already have a global variable for this 383 // declaration. This can happen when double-emitting function 384 // bodies, e.g. with complete and base constructors. 385 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 386 CharUnits alignment = getContext().getDeclAlign(&D); 387 388 // Store into LocalDeclMap before generating initializer to handle 389 // circular references. 390 setAddrOfLocalVar(&D, Address(addr, alignment)); 391 392 // We can't have a VLA here, but we can have a pointer to a VLA, 393 // even though that doesn't really make any sense. 394 // Make sure to evaluate VLA bounds now so that we have them for later. 395 if (D.getType()->isVariablyModifiedType()) 396 EmitVariablyModifiedType(D.getType()); 397 398 // Save the type in case adding the initializer forces a type change. 399 llvm::Type *expectedType = addr->getType(); 400 401 llvm::GlobalVariable *var = 402 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 403 404 // CUDA's local and local static __shared__ variables should not 405 // have any non-empty initializers. This is ensured by Sema. 406 // Whatever initializer such variable may have when it gets here is 407 // a no-op and should not be emitted. 408 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 409 D.hasAttr<CUDASharedAttr>(); 410 // If this value has an initializer, emit it. 411 if (D.getInit() && !isCudaSharedVar) 412 var = AddInitializerToStaticVarDecl(D, var); 413 414 var->setAlignment(alignment.getAsAlign()); 415 416 if (D.hasAttr<AnnotateAttr>()) 417 CGM.AddGlobalAnnotations(&D, var); 418 419 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 420 var->addAttribute("bss-section", SA->getName()); 421 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 422 var->addAttribute("data-section", SA->getName()); 423 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 424 var->addAttribute("rodata-section", SA->getName()); 425 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 426 var->addAttribute("relro-section", SA->getName()); 427 428 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 429 var->setSection(SA->getName()); 430 431 if (D.hasAttr<UsedAttr>()) 432 CGM.addUsedGlobal(var); 433 434 // We may have to cast the constant because of the initializer 435 // mismatch above. 436 // 437 // FIXME: It is really dangerous to store this in the map; if anyone 438 // RAUW's the GV uses of this constant will be invalid. 439 llvm::Constant *castedAddr = 440 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 441 if (var != castedAddr) 442 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 443 CGM.setStaticLocalDeclAddress(&D, castedAddr); 444 445 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 446 447 // Emit global variable debug descriptor for static vars. 448 CGDebugInfo *DI = getDebugInfo(); 449 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 450 DI->setLocation(D.getLocation()); 451 DI->EmitGlobalVariable(var, &D); 452 } 453 } 454 455 namespace { 456 struct DestroyObject final : EHScopeStack::Cleanup { 457 DestroyObject(Address addr, QualType type, 458 CodeGenFunction::Destroyer *destroyer, 459 bool useEHCleanupForArray) 460 : addr(addr), type(type), destroyer(destroyer), 461 useEHCleanupForArray(useEHCleanupForArray) {} 462 463 Address addr; 464 QualType type; 465 CodeGenFunction::Destroyer *destroyer; 466 bool useEHCleanupForArray; 467 468 void Emit(CodeGenFunction &CGF, Flags flags) override { 469 // Don't use an EH cleanup recursively from an EH cleanup. 470 bool useEHCleanupForArray = 471 flags.isForNormalCleanup() && this->useEHCleanupForArray; 472 473 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 474 } 475 }; 476 477 template <class Derived> 478 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 479 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 480 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 481 482 llvm::Value *NRVOFlag; 483 Address Loc; 484 QualType Ty; 485 486 void Emit(CodeGenFunction &CGF, Flags flags) override { 487 // Along the exceptions path we always execute the dtor. 488 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 489 490 llvm::BasicBlock *SkipDtorBB = nullptr; 491 if (NRVO) { 492 // If we exited via NRVO, we skip the destructor call. 493 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 494 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 495 llvm::Value *DidNRVO = 496 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 497 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 498 CGF.EmitBlock(RunDtorBB); 499 } 500 501 static_cast<Derived *>(this)->emitDestructorCall(CGF); 502 503 if (NRVO) CGF.EmitBlock(SkipDtorBB); 504 } 505 506 virtual ~DestroyNRVOVariable() = default; 507 }; 508 509 struct DestroyNRVOVariableCXX final 510 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 511 DestroyNRVOVariableCXX(Address addr, QualType type, 512 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 513 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 514 Dtor(Dtor) {} 515 516 const CXXDestructorDecl *Dtor; 517 518 void emitDestructorCall(CodeGenFunction &CGF) { 519 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 520 /*ForVirtualBase=*/false, 521 /*Delegating=*/false, Loc, Ty); 522 } 523 }; 524 525 struct DestroyNRVOVariableC final 526 : DestroyNRVOVariable<DestroyNRVOVariableC> { 527 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 528 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 529 530 void emitDestructorCall(CodeGenFunction &CGF) { 531 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 532 } 533 }; 534 535 struct CallStackRestore final : EHScopeStack::Cleanup { 536 Address Stack; 537 CallStackRestore(Address Stack) : Stack(Stack) {} 538 void Emit(CodeGenFunction &CGF, Flags flags) override { 539 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 540 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 541 CGF.Builder.CreateCall(F, V); 542 } 543 }; 544 545 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 546 const VarDecl &Var; 547 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 548 549 void Emit(CodeGenFunction &CGF, Flags flags) override { 550 // Compute the address of the local variable, in case it's a 551 // byref or something. 552 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 553 Var.getType(), VK_LValue, SourceLocation()); 554 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 555 SourceLocation()); 556 CGF.EmitExtendGCLifetime(value); 557 } 558 }; 559 560 struct CallCleanupFunction final : EHScopeStack::Cleanup { 561 llvm::Constant *CleanupFn; 562 const CGFunctionInfo &FnInfo; 563 const VarDecl &Var; 564 565 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 566 const VarDecl *Var) 567 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 568 569 void Emit(CodeGenFunction &CGF, Flags flags) override { 570 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 571 Var.getType(), VK_LValue, SourceLocation()); 572 // Compute the address of the local variable, in case it's a byref 573 // or something. 574 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 575 576 // In some cases, the type of the function argument will be different from 577 // the type of the pointer. An example of this is 578 // void f(void* arg); 579 // __attribute__((cleanup(f))) void *g; 580 // 581 // To fix this we insert a bitcast here. 582 QualType ArgTy = FnInfo.arg_begin()->type; 583 llvm::Value *Arg = 584 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 585 586 CallArgList Args; 587 Args.add(RValue::get(Arg), 588 CGF.getContext().getPointerType(Var.getType())); 589 auto Callee = CGCallee::forDirect(CleanupFn); 590 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 591 } 592 }; 593 } // end anonymous namespace 594 595 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 596 /// variable with lifetime. 597 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 598 Address addr, 599 Qualifiers::ObjCLifetime lifetime) { 600 switch (lifetime) { 601 case Qualifiers::OCL_None: 602 llvm_unreachable("present but none"); 603 604 case Qualifiers::OCL_ExplicitNone: 605 // nothing to do 606 break; 607 608 case Qualifiers::OCL_Strong: { 609 CodeGenFunction::Destroyer *destroyer = 610 (var.hasAttr<ObjCPreciseLifetimeAttr>() 611 ? CodeGenFunction::destroyARCStrongPrecise 612 : CodeGenFunction::destroyARCStrongImprecise); 613 614 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 615 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 616 cleanupKind & EHCleanup); 617 break; 618 } 619 case Qualifiers::OCL_Autoreleasing: 620 // nothing to do 621 break; 622 623 case Qualifiers::OCL_Weak: 624 // __weak objects always get EH cleanups; otherwise, exceptions 625 // could cause really nasty crashes instead of mere leaks. 626 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 627 CodeGenFunction::destroyARCWeak, 628 /*useEHCleanup*/ true); 629 break; 630 } 631 } 632 633 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 634 if (const Expr *e = dyn_cast<Expr>(s)) { 635 // Skip the most common kinds of expressions that make 636 // hierarchy-walking expensive. 637 s = e = e->IgnoreParenCasts(); 638 639 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 640 return (ref->getDecl() == &var); 641 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 642 const BlockDecl *block = be->getBlockDecl(); 643 for (const auto &I : block->captures()) { 644 if (I.getVariable() == &var) 645 return true; 646 } 647 } 648 } 649 650 for (const Stmt *SubStmt : s->children()) 651 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 652 if (SubStmt && isAccessedBy(var, SubStmt)) 653 return true; 654 655 return false; 656 } 657 658 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 659 if (!decl) return false; 660 if (!isa<VarDecl>(decl)) return false; 661 const VarDecl *var = cast<VarDecl>(decl); 662 return isAccessedBy(*var, e); 663 } 664 665 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 666 const LValue &destLV, const Expr *init) { 667 bool needsCast = false; 668 669 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 670 switch (castExpr->getCastKind()) { 671 // Look through casts that don't require representation changes. 672 case CK_NoOp: 673 case CK_BitCast: 674 case CK_BlockPointerToObjCPointerCast: 675 needsCast = true; 676 break; 677 678 // If we find an l-value to r-value cast from a __weak variable, 679 // emit this operation as a copy or move. 680 case CK_LValueToRValue: { 681 const Expr *srcExpr = castExpr->getSubExpr(); 682 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 683 return false; 684 685 // Emit the source l-value. 686 LValue srcLV = CGF.EmitLValue(srcExpr); 687 688 // Handle a formal type change to avoid asserting. 689 auto srcAddr = srcLV.getAddress(CGF); 690 if (needsCast) { 691 srcAddr = CGF.Builder.CreateElementBitCast( 692 srcAddr, destLV.getAddress(CGF).getElementType()); 693 } 694 695 // If it was an l-value, use objc_copyWeak. 696 if (srcExpr->getValueKind() == VK_LValue) { 697 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 698 } else { 699 assert(srcExpr->getValueKind() == VK_XValue); 700 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 701 } 702 return true; 703 } 704 705 // Stop at anything else. 706 default: 707 return false; 708 } 709 710 init = castExpr->getSubExpr(); 711 } 712 return false; 713 } 714 715 static void drillIntoBlockVariable(CodeGenFunction &CGF, 716 LValue &lvalue, 717 const VarDecl *var) { 718 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 719 } 720 721 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 722 SourceLocation Loc) { 723 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 724 return; 725 726 auto Nullability = LHS.getType()->getNullability(getContext()); 727 if (!Nullability || *Nullability != NullabilityKind::NonNull) 728 return; 729 730 // Check if the right hand side of the assignment is nonnull, if the left 731 // hand side must be nonnull. 732 SanitizerScope SanScope(this); 733 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 734 llvm::Constant *StaticData[] = { 735 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 736 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 737 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 738 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 739 SanitizerHandler::TypeMismatch, StaticData, RHS); 740 } 741 742 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 743 LValue lvalue, bool capturedByInit) { 744 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 745 if (!lifetime) { 746 llvm::Value *value = EmitScalarExpr(init); 747 if (capturedByInit) 748 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 749 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 750 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 751 return; 752 } 753 754 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 755 init = DIE->getExpr(); 756 757 // If we're emitting a value with lifetime, we have to do the 758 // initialization *before* we leave the cleanup scopes. 759 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 760 enterFullExpression(fe); 761 init = fe->getSubExpr(); 762 } 763 CodeGenFunction::RunCleanupsScope Scope(*this); 764 765 // We have to maintain the illusion that the variable is 766 // zero-initialized. If the variable might be accessed in its 767 // initializer, zero-initialize before running the initializer, then 768 // actually perform the initialization with an assign. 769 bool accessedByInit = false; 770 if (lifetime != Qualifiers::OCL_ExplicitNone) 771 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 772 if (accessedByInit) { 773 LValue tempLV = lvalue; 774 // Drill down to the __block object if necessary. 775 if (capturedByInit) { 776 // We can use a simple GEP for this because it can't have been 777 // moved yet. 778 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 779 cast<VarDecl>(D), 780 /*follow*/ false)); 781 } 782 783 auto ty = 784 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 785 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 786 787 // If __weak, we want to use a barrier under certain conditions. 788 if (lifetime == Qualifiers::OCL_Weak) 789 EmitARCInitWeak(tempLV.getAddress(*this), zero); 790 791 // Otherwise just do a simple store. 792 else 793 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 794 } 795 796 // Emit the initializer. 797 llvm::Value *value = nullptr; 798 799 switch (lifetime) { 800 case Qualifiers::OCL_None: 801 llvm_unreachable("present but none"); 802 803 case Qualifiers::OCL_Strong: { 804 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 805 value = EmitARCRetainScalarExpr(init); 806 break; 807 } 808 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 809 // that we omit the retain, and causes non-autoreleased return values to be 810 // immediately released. 811 LLVM_FALLTHROUGH; 812 } 813 814 case Qualifiers::OCL_ExplicitNone: 815 value = EmitARCUnsafeUnretainedScalarExpr(init); 816 break; 817 818 case Qualifiers::OCL_Weak: { 819 // If it's not accessed by the initializer, try to emit the 820 // initialization with a copy or move. 821 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 822 return; 823 } 824 825 // No way to optimize a producing initializer into this. It's not 826 // worth optimizing for, because the value will immediately 827 // disappear in the common case. 828 value = EmitScalarExpr(init); 829 830 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 831 if (accessedByInit) 832 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 833 else 834 EmitARCInitWeak(lvalue.getAddress(*this), value); 835 return; 836 } 837 838 case Qualifiers::OCL_Autoreleasing: 839 value = EmitARCRetainAutoreleaseScalarExpr(init); 840 break; 841 } 842 843 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 844 845 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 846 847 // If the variable might have been accessed by its initializer, we 848 // might have to initialize with a barrier. We have to do this for 849 // both __weak and __strong, but __weak got filtered out above. 850 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 851 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 852 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 853 EmitARCRelease(oldValue, ARCImpreciseLifetime); 854 return; 855 } 856 857 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 858 } 859 860 /// Decide whether we can emit the non-zero parts of the specified initializer 861 /// with equal or fewer than NumStores scalar stores. 862 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 863 unsigned &NumStores) { 864 // Zero and Undef never requires any extra stores. 865 if (isa<llvm::ConstantAggregateZero>(Init) || 866 isa<llvm::ConstantPointerNull>(Init) || 867 isa<llvm::UndefValue>(Init)) 868 return true; 869 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 870 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 871 isa<llvm::ConstantExpr>(Init)) 872 return Init->isNullValue() || NumStores--; 873 874 // See if we can emit each element. 875 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 876 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 877 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 878 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 879 return false; 880 } 881 return true; 882 } 883 884 if (llvm::ConstantDataSequential *CDS = 885 dyn_cast<llvm::ConstantDataSequential>(Init)) { 886 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 887 llvm::Constant *Elt = CDS->getElementAsConstant(i); 888 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 889 return false; 890 } 891 return true; 892 } 893 894 // Anything else is hard and scary. 895 return false; 896 } 897 898 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 899 /// the scalar stores that would be required. 900 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 901 llvm::Constant *Init, Address Loc, 902 bool isVolatile, CGBuilderTy &Builder) { 903 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 904 "called emitStoresForInitAfterBZero for zero or undef value."); 905 906 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 907 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 908 isa<llvm::ConstantExpr>(Init)) { 909 Builder.CreateStore(Init, Loc, isVolatile); 910 return; 911 } 912 913 if (llvm::ConstantDataSequential *CDS = 914 dyn_cast<llvm::ConstantDataSequential>(Init)) { 915 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 916 llvm::Constant *Elt = CDS->getElementAsConstant(i); 917 918 // If necessary, get a pointer to the element and emit it. 919 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 920 emitStoresForInitAfterBZero( 921 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 922 Builder); 923 } 924 return; 925 } 926 927 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 928 "Unknown value type!"); 929 930 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 931 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 932 933 // If necessary, get a pointer to the element and emit it. 934 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 935 emitStoresForInitAfterBZero(CGM, Elt, 936 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 937 isVolatile, Builder); 938 } 939 } 940 941 /// Decide whether we should use bzero plus some stores to initialize a local 942 /// variable instead of using a memcpy from a constant global. It is beneficial 943 /// to use bzero if the global is all zeros, or mostly zeros and large. 944 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 945 uint64_t GlobalSize) { 946 // If a global is all zeros, always use a bzero. 947 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 948 949 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 950 // do it if it will require 6 or fewer scalar stores. 951 // TODO: Should budget depends on the size? Avoiding a large global warrants 952 // plopping in more stores. 953 unsigned StoreBudget = 6; 954 uint64_t SizeLimit = 32; 955 956 return GlobalSize > SizeLimit && 957 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 958 } 959 960 /// Decide whether we should use memset to initialize a local variable instead 961 /// of using a memcpy from a constant global. Assumes we've already decided to 962 /// not user bzero. 963 /// FIXME We could be more clever, as we are for bzero above, and generate 964 /// memset followed by stores. It's unclear that's worth the effort. 965 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 966 uint64_t GlobalSize, 967 const llvm::DataLayout &DL) { 968 uint64_t SizeLimit = 32; 969 if (GlobalSize <= SizeLimit) 970 return nullptr; 971 return llvm::isBytewiseValue(Init, DL); 972 } 973 974 /// Decide whether we want to split a constant structure or array store into a 975 /// sequence of its fields' stores. This may cost us code size and compilation 976 /// speed, but plays better with store optimizations. 977 static bool shouldSplitConstantStore(CodeGenModule &CGM, 978 uint64_t GlobalByteSize) { 979 // Don't break things that occupy more than one cacheline. 980 uint64_t ByteSizeLimit = 64; 981 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 982 return false; 983 if (GlobalByteSize <= ByteSizeLimit) 984 return true; 985 return false; 986 } 987 988 enum class IsPattern { No, Yes }; 989 990 /// Generate a constant filled with either a pattern or zeroes. 991 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 992 llvm::Type *Ty) { 993 if (isPattern == IsPattern::Yes) 994 return initializationPatternFor(CGM, Ty); 995 else 996 return llvm::Constant::getNullValue(Ty); 997 } 998 999 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1000 llvm::Constant *constant); 1001 1002 /// Helper function for constWithPadding() to deal with padding in structures. 1003 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1004 IsPattern isPattern, 1005 llvm::StructType *STy, 1006 llvm::Constant *constant) { 1007 const llvm::DataLayout &DL = CGM.getDataLayout(); 1008 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1009 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1010 unsigned SizeSoFar = 0; 1011 SmallVector<llvm::Constant *, 8> Values; 1012 bool NestedIntact = true; 1013 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1014 unsigned CurOff = Layout->getElementOffset(i); 1015 if (SizeSoFar < CurOff) { 1016 assert(!STy->isPacked()); 1017 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1018 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1019 } 1020 llvm::Constant *CurOp; 1021 if (constant->isZeroValue()) 1022 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1023 else 1024 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1025 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1026 if (CurOp != NewOp) 1027 NestedIntact = false; 1028 Values.push_back(NewOp); 1029 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1030 } 1031 unsigned TotalSize = Layout->getSizeInBytes(); 1032 if (SizeSoFar < TotalSize) { 1033 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1034 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1035 } 1036 if (NestedIntact && Values.size() == STy->getNumElements()) 1037 return constant; 1038 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1039 } 1040 1041 /// Replace all padding bytes in a given constant with either a pattern byte or 1042 /// 0x00. 1043 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1044 llvm::Constant *constant) { 1045 llvm::Type *OrigTy = constant->getType(); 1046 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1047 return constStructWithPadding(CGM, isPattern, STy, constant); 1048 if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) { 1049 llvm::SmallVector<llvm::Constant *, 8> Values; 1050 unsigned Size = STy->getNumElements(); 1051 if (!Size) 1052 return constant; 1053 llvm::Type *ElemTy = STy->getElementType(); 1054 bool ZeroInitializer = constant->isZeroValue(); 1055 llvm::Constant *OpValue, *PaddedOp; 1056 if (ZeroInitializer) { 1057 OpValue = llvm::Constant::getNullValue(ElemTy); 1058 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1059 } 1060 for (unsigned Op = 0; Op != Size; ++Op) { 1061 if (!ZeroInitializer) { 1062 OpValue = constant->getAggregateElement(Op); 1063 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1064 } 1065 Values.push_back(PaddedOp); 1066 } 1067 auto *NewElemTy = Values[0]->getType(); 1068 if (NewElemTy == ElemTy) 1069 return constant; 1070 if (OrigTy->isArrayTy()) { 1071 auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1072 return llvm::ConstantArray::get(ArrayTy, Values); 1073 } else { 1074 return llvm::ConstantVector::get(Values); 1075 } 1076 } 1077 return constant; 1078 } 1079 1080 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1081 llvm::Constant *Constant, 1082 CharUnits Align) { 1083 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1084 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1085 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1086 return CC->getNameAsString(); 1087 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1088 return CD->getNameAsString(); 1089 return getMangledName(FD); 1090 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1091 return OM->getNameAsString(); 1092 } else if (isa<BlockDecl>(DC)) { 1093 return "<block>"; 1094 } else if (isa<CapturedDecl>(DC)) { 1095 return "<captured>"; 1096 } else { 1097 llvm_unreachable("expected a function or method"); 1098 } 1099 }; 1100 1101 // Form a simple per-variable cache of these values in case we find we 1102 // want to reuse them. 1103 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1104 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1105 auto *Ty = Constant->getType(); 1106 bool isConstant = true; 1107 llvm::GlobalVariable *InsertBefore = nullptr; 1108 unsigned AS = 1109 getContext().getTargetAddressSpace(getStringLiteralAddressSpace()); 1110 std::string Name; 1111 if (D.hasGlobalStorage()) 1112 Name = getMangledName(&D).str() + ".const"; 1113 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1114 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1115 else 1116 llvm_unreachable("local variable has no parent function or method"); 1117 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1118 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1119 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1120 GV->setAlignment(Align.getAsAlign()); 1121 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1122 CacheEntry = GV; 1123 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1124 CacheEntry->setAlignment(Align.getAsAlign()); 1125 } 1126 1127 return Address(CacheEntry, Align); 1128 } 1129 1130 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1131 const VarDecl &D, 1132 CGBuilderTy &Builder, 1133 llvm::Constant *Constant, 1134 CharUnits Align) { 1135 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1136 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1137 SrcPtr.getAddressSpace()); 1138 if (SrcPtr.getType() != BP) 1139 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1140 return SrcPtr; 1141 } 1142 1143 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1144 Address Loc, bool isVolatile, 1145 CGBuilderTy &Builder, 1146 llvm::Constant *constant) { 1147 auto *Ty = constant->getType(); 1148 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1149 if (!ConstantSize) 1150 return; 1151 1152 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1153 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1154 if (canDoSingleStore) { 1155 Builder.CreateStore(constant, Loc, isVolatile); 1156 return; 1157 } 1158 1159 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1160 1161 // If the initializer is all or mostly the same, codegen with bzero / memset 1162 // then do a few stores afterward. 1163 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1164 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal, 1165 isVolatile); 1166 1167 bool valueAlreadyCorrect = 1168 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1169 if (!valueAlreadyCorrect) { 1170 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1171 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1172 } 1173 return; 1174 } 1175 1176 // If the initializer is a repeated byte pattern, use memset. 1177 llvm::Value *Pattern = 1178 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1179 if (Pattern) { 1180 uint64_t Value = 0x00; 1181 if (!isa<llvm::UndefValue>(Pattern)) { 1182 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1183 assert(AP.getBitWidth() <= 8); 1184 Value = AP.getLimitedValue(); 1185 } 1186 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, 1187 isVolatile); 1188 return; 1189 } 1190 1191 // If the initializer is small, use a handful of stores. 1192 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1193 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1194 // FIXME: handle the case when STy != Loc.getElementType(). 1195 if (STy == Loc.getElementType()) { 1196 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1197 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1198 emitStoresForConstant( 1199 CGM, D, EltPtr, isVolatile, Builder, 1200 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1201 } 1202 return; 1203 } 1204 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1205 // FIXME: handle the case when ATy != Loc.getElementType(). 1206 if (ATy == Loc.getElementType()) { 1207 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1208 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1209 emitStoresForConstant( 1210 CGM, D, EltPtr, isVolatile, Builder, 1211 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1212 } 1213 return; 1214 } 1215 } 1216 } 1217 1218 // Copy from a global. 1219 Builder.CreateMemCpy(Loc, 1220 createUnnamedGlobalForMemcpyFrom( 1221 CGM, D, Builder, constant, Loc.getAlignment()), 1222 SizeVal, isVolatile); 1223 } 1224 1225 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1226 Address Loc, bool isVolatile, 1227 CGBuilderTy &Builder) { 1228 llvm::Type *ElTy = Loc.getElementType(); 1229 llvm::Constant *constant = 1230 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1231 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1232 } 1233 1234 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1235 Address Loc, bool isVolatile, 1236 CGBuilderTy &Builder) { 1237 llvm::Type *ElTy = Loc.getElementType(); 1238 llvm::Constant *constant = constWithPadding( 1239 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1240 assert(!isa<llvm::UndefValue>(constant)); 1241 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1242 } 1243 1244 static bool containsUndef(llvm::Constant *constant) { 1245 auto *Ty = constant->getType(); 1246 if (isa<llvm::UndefValue>(constant)) 1247 return true; 1248 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1249 for (llvm::Use &Op : constant->operands()) 1250 if (containsUndef(cast<llvm::Constant>(Op))) 1251 return true; 1252 return false; 1253 } 1254 1255 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1256 llvm::Constant *constant) { 1257 auto *Ty = constant->getType(); 1258 if (isa<llvm::UndefValue>(constant)) 1259 return patternOrZeroFor(CGM, isPattern, Ty); 1260 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1261 return constant; 1262 if (!containsUndef(constant)) 1263 return constant; 1264 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1265 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1266 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1267 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1268 } 1269 if (Ty->isStructTy()) 1270 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1271 if (Ty->isArrayTy()) 1272 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1273 assert(Ty->isVectorTy()); 1274 return llvm::ConstantVector::get(Values); 1275 } 1276 1277 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1278 /// variable declaration with auto, register, or no storage class specifier. 1279 /// These turn into simple stack objects, or GlobalValues depending on target. 1280 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1281 AutoVarEmission emission = EmitAutoVarAlloca(D); 1282 EmitAutoVarInit(emission); 1283 EmitAutoVarCleanups(emission); 1284 } 1285 1286 /// Emit a lifetime.begin marker if some criteria are satisfied. 1287 /// \return a pointer to the temporary size Value if a marker was emitted, null 1288 /// otherwise 1289 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1290 llvm::Value *Addr) { 1291 if (!ShouldEmitLifetimeMarkers) 1292 return nullptr; 1293 1294 assert(Addr->getType()->getPointerAddressSpace() == 1295 CGM.getDataLayout().getAllocaAddrSpace() && 1296 "Pointer should be in alloca address space"); 1297 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1298 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1299 llvm::CallInst *C = 1300 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1301 C->setDoesNotThrow(); 1302 return SizeV; 1303 } 1304 1305 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1306 assert(Addr->getType()->getPointerAddressSpace() == 1307 CGM.getDataLayout().getAllocaAddrSpace() && 1308 "Pointer should be in alloca address space"); 1309 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1310 llvm::CallInst *C = 1311 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1312 C->setDoesNotThrow(); 1313 } 1314 1315 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1316 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1317 // For each dimension stores its QualType and corresponding 1318 // size-expression Value. 1319 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1320 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1321 1322 // Break down the array into individual dimensions. 1323 QualType Type1D = D.getType(); 1324 while (getContext().getAsVariableArrayType(Type1D)) { 1325 auto VlaSize = getVLAElements1D(Type1D); 1326 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1327 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1328 else { 1329 // Generate a locally unique name for the size expression. 1330 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1331 SmallString<12> Buffer; 1332 StringRef NameRef = Name.toStringRef(Buffer); 1333 auto &Ident = getContext().Idents.getOwn(NameRef); 1334 VLAExprNames.push_back(&Ident); 1335 auto SizeExprAddr = 1336 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1337 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1338 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1339 Type1D.getUnqualifiedType()); 1340 } 1341 Type1D = VlaSize.Type; 1342 } 1343 1344 if (!EmitDebugInfo) 1345 return; 1346 1347 // Register each dimension's size-expression with a DILocalVariable, 1348 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1349 // to describe this array. 1350 unsigned NameIdx = 0; 1351 for (auto &VlaSize : Dimensions) { 1352 llvm::Metadata *MD; 1353 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1354 MD = llvm::ConstantAsMetadata::get(C); 1355 else { 1356 // Create an artificial VarDecl to generate debug info for. 1357 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1358 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1359 auto QT = getContext().getIntTypeForBitwidth( 1360 VlaExprTy->getScalarSizeInBits(), false); 1361 auto *ArtificialDecl = VarDecl::Create( 1362 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1363 D.getLocation(), D.getLocation(), NameIdent, QT, 1364 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1365 ArtificialDecl->setImplicit(); 1366 1367 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1368 Builder); 1369 } 1370 assert(MD && "No Size expression debug node created"); 1371 DI->registerVLASizeExpression(VlaSize.Type, MD); 1372 } 1373 } 1374 1375 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1376 /// local variable. Does not emit initialization or destruction. 1377 CodeGenFunction::AutoVarEmission 1378 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1379 QualType Ty = D.getType(); 1380 assert( 1381 Ty.getAddressSpace() == LangAS::Default || 1382 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1383 1384 AutoVarEmission emission(D); 1385 1386 bool isEscapingByRef = D.isEscapingByref(); 1387 emission.IsEscapingByRef = isEscapingByRef; 1388 1389 CharUnits alignment = getContext().getDeclAlign(&D); 1390 1391 // If the type is variably-modified, emit all the VLA sizes for it. 1392 if (Ty->isVariablyModifiedType()) 1393 EmitVariablyModifiedType(Ty); 1394 1395 auto *DI = getDebugInfo(); 1396 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1397 1398 Address address = Address::invalid(); 1399 Address AllocaAddr = Address::invalid(); 1400 Address OpenMPLocalAddr = 1401 getLangOpts().OpenMP 1402 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1403 : Address::invalid(); 1404 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1405 1406 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1407 address = OpenMPLocalAddr; 1408 } else if (Ty->isConstantSizeType()) { 1409 // If this value is an array or struct with a statically determinable 1410 // constant initializer, there are optimizations we can do. 1411 // 1412 // TODO: We should constant-evaluate the initializer of any variable, 1413 // as long as it is initialized by a constant expression. Currently, 1414 // isConstantInitializer produces wrong answers for structs with 1415 // reference or bitfield members, and a few other cases, and checking 1416 // for POD-ness protects us from some of these. 1417 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1418 (D.isConstexpr() || 1419 ((Ty.isPODType(getContext()) || 1420 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1421 D.getInit()->isConstantInitializer(getContext(), false)))) { 1422 1423 // If the variable's a const type, and it's neither an NRVO 1424 // candidate nor a __block variable and has no mutable members, 1425 // emit it as a global instead. 1426 // Exception is if a variable is located in non-constant address space 1427 // in OpenCL. 1428 if ((!getLangOpts().OpenCL || 1429 Ty.getAddressSpace() == LangAS::opencl_constant) && 1430 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1431 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1432 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1433 1434 // Signal this condition to later callbacks. 1435 emission.Addr = Address::invalid(); 1436 assert(emission.wasEmittedAsGlobal()); 1437 return emission; 1438 } 1439 1440 // Otherwise, tell the initialization code that we're in this case. 1441 emission.IsConstantAggregate = true; 1442 } 1443 1444 // A normal fixed sized variable becomes an alloca in the entry block, 1445 // unless: 1446 // - it's an NRVO variable. 1447 // - we are compiling OpenMP and it's an OpenMP local variable. 1448 if (NRVO) { 1449 // The named return value optimization: allocate this variable in the 1450 // return slot, so that we can elide the copy when returning this 1451 // variable (C++0x [class.copy]p34). 1452 address = ReturnValue; 1453 1454 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1455 const auto *RD = RecordTy->getDecl(); 1456 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1457 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1458 RD->isNonTrivialToPrimitiveDestroy()) { 1459 // Create a flag that is used to indicate when the NRVO was applied 1460 // to this variable. Set it to zero to indicate that NRVO was not 1461 // applied. 1462 llvm::Value *Zero = Builder.getFalse(); 1463 Address NRVOFlag = 1464 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1465 EnsureInsertPoint(); 1466 Builder.CreateStore(Zero, NRVOFlag); 1467 1468 // Record the NRVO flag for this variable. 1469 NRVOFlags[&D] = NRVOFlag.getPointer(); 1470 emission.NRVOFlag = NRVOFlag.getPointer(); 1471 } 1472 } 1473 } else { 1474 CharUnits allocaAlignment; 1475 llvm::Type *allocaTy; 1476 if (isEscapingByRef) { 1477 auto &byrefInfo = getBlockByrefInfo(&D); 1478 allocaTy = byrefInfo.Type; 1479 allocaAlignment = byrefInfo.ByrefAlignment; 1480 } else { 1481 allocaTy = ConvertTypeForMem(Ty); 1482 allocaAlignment = alignment; 1483 } 1484 1485 // Create the alloca. Note that we set the name separately from 1486 // building the instruction so that it's there even in no-asserts 1487 // builds. 1488 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1489 /*ArraySize=*/nullptr, &AllocaAddr); 1490 1491 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1492 // the catch parameter starts in the catchpad instruction, and we can't 1493 // insert code in those basic blocks. 1494 bool IsMSCatchParam = 1495 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1496 1497 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1498 // if we don't have a valid insertion point (?). 1499 if (HaveInsertPoint() && !IsMSCatchParam) { 1500 // If there's a jump into the lifetime of this variable, its lifetime 1501 // gets broken up into several regions in IR, which requires more work 1502 // to handle correctly. For now, just omit the intrinsics; this is a 1503 // rare case, and it's better to just be conservatively correct. 1504 // PR28267. 1505 // 1506 // We have to do this in all language modes if there's a jump past the 1507 // declaration. We also have to do it in C if there's a jump to an 1508 // earlier point in the current block because non-VLA lifetimes begin as 1509 // soon as the containing block is entered, not when its variables 1510 // actually come into scope; suppressing the lifetime annotations 1511 // completely in this case is unnecessarily pessimistic, but again, this 1512 // is rare. 1513 if (!Bypasses.IsBypassed(&D) && 1514 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1515 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1516 emission.SizeForLifetimeMarkers = 1517 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1518 } 1519 } else { 1520 assert(!emission.useLifetimeMarkers()); 1521 } 1522 } 1523 } else { 1524 EnsureInsertPoint(); 1525 1526 if (!DidCallStackSave) { 1527 // Save the stack. 1528 Address Stack = 1529 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1530 1531 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1532 llvm::Value *V = Builder.CreateCall(F); 1533 Builder.CreateStore(V, Stack); 1534 1535 DidCallStackSave = true; 1536 1537 // Push a cleanup block and restore the stack there. 1538 // FIXME: in general circumstances, this should be an EH cleanup. 1539 pushStackRestore(NormalCleanup, Stack); 1540 } 1541 1542 auto VlaSize = getVLASize(Ty); 1543 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1544 1545 // Allocate memory for the array. 1546 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1547 &AllocaAddr); 1548 1549 // If we have debug info enabled, properly describe the VLA dimensions for 1550 // this type by registering the vla size expression for each of the 1551 // dimensions. 1552 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1553 } 1554 1555 setAddrOfLocalVar(&D, address); 1556 emission.Addr = address; 1557 emission.AllocaAddr = AllocaAddr; 1558 1559 // Emit debug info for local var declaration. 1560 if (EmitDebugInfo && HaveInsertPoint()) { 1561 Address DebugAddr = address; 1562 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1563 DI->setLocation(D.getLocation()); 1564 1565 // If NRVO, use a pointer to the return address. 1566 if (UsePointerValue) 1567 DebugAddr = ReturnValuePointer; 1568 1569 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1570 UsePointerValue); 1571 } 1572 1573 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1574 EmitVarAnnotations(&D, address.getPointer()); 1575 1576 // Make sure we call @llvm.lifetime.end. 1577 if (emission.useLifetimeMarkers()) 1578 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1579 emission.getOriginalAllocatedAddress(), 1580 emission.getSizeForLifetimeMarkers()); 1581 1582 return emission; 1583 } 1584 1585 static bool isCapturedBy(const VarDecl &, const Expr *); 1586 1587 /// Determines whether the given __block variable is potentially 1588 /// captured by the given statement. 1589 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1590 if (const Expr *E = dyn_cast<Expr>(S)) 1591 return isCapturedBy(Var, E); 1592 for (const Stmt *SubStmt : S->children()) 1593 if (isCapturedBy(Var, SubStmt)) 1594 return true; 1595 return false; 1596 } 1597 1598 /// Determines whether the given __block variable is potentially 1599 /// captured by the given expression. 1600 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1601 // Skip the most common kinds of expressions that make 1602 // hierarchy-walking expensive. 1603 E = E->IgnoreParenCasts(); 1604 1605 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1606 const BlockDecl *Block = BE->getBlockDecl(); 1607 for (const auto &I : Block->captures()) { 1608 if (I.getVariable() == &Var) 1609 return true; 1610 } 1611 1612 // No need to walk into the subexpressions. 1613 return false; 1614 } 1615 1616 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1617 const CompoundStmt *CS = SE->getSubStmt(); 1618 for (const auto *BI : CS->body()) 1619 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1620 if (isCapturedBy(Var, BIE)) 1621 return true; 1622 } 1623 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1624 // special case declarations 1625 for (const auto *I : DS->decls()) { 1626 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1627 const Expr *Init = VD->getInit(); 1628 if (Init && isCapturedBy(Var, Init)) 1629 return true; 1630 } 1631 } 1632 } 1633 else 1634 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1635 // Later, provide code to poke into statements for capture analysis. 1636 return true; 1637 return false; 1638 } 1639 1640 for (const Stmt *SubStmt : E->children()) 1641 if (isCapturedBy(Var, SubStmt)) 1642 return true; 1643 1644 return false; 1645 } 1646 1647 /// Determine whether the given initializer is trivial in the sense 1648 /// that it requires no code to be generated. 1649 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1650 if (!Init) 1651 return true; 1652 1653 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1654 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1655 if (Constructor->isTrivial() && 1656 Constructor->isDefaultConstructor() && 1657 !Construct->requiresZeroInitialization()) 1658 return true; 1659 1660 return false; 1661 } 1662 1663 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1664 const VarDecl &D, 1665 Address Loc) { 1666 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1667 CharUnits Size = getContext().getTypeSizeInChars(type); 1668 bool isVolatile = type.isVolatileQualified(); 1669 if (!Size.isZero()) { 1670 switch (trivialAutoVarInit) { 1671 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1672 llvm_unreachable("Uninitialized handled by caller"); 1673 case LangOptions::TrivialAutoVarInitKind::Zero: 1674 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1675 break; 1676 case LangOptions::TrivialAutoVarInitKind::Pattern: 1677 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1678 break; 1679 } 1680 return; 1681 } 1682 1683 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1684 // them, so emit a memcpy with the VLA size to initialize each element. 1685 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1686 // will catch that code, but there exists code which generates zero-sized 1687 // VLAs. Be nice and initialize whatever they requested. 1688 const auto *VlaType = getContext().getAsVariableArrayType(type); 1689 if (!VlaType) 1690 return; 1691 auto VlaSize = getVLASize(VlaType); 1692 auto SizeVal = VlaSize.NumElts; 1693 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1694 switch (trivialAutoVarInit) { 1695 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1696 llvm_unreachable("Uninitialized handled by caller"); 1697 1698 case LangOptions::TrivialAutoVarInitKind::Zero: 1699 if (!EltSize.isOne()) 1700 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1701 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1702 isVolatile); 1703 break; 1704 1705 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1706 llvm::Type *ElTy = Loc.getElementType(); 1707 llvm::Constant *Constant = constWithPadding( 1708 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1709 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1710 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1711 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1712 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1713 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1714 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1715 "vla.iszerosized"); 1716 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1717 EmitBlock(SetupBB); 1718 if (!EltSize.isOne()) 1719 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1720 llvm::Value *BaseSizeInChars = 1721 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1722 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1723 llvm::Value *End = 1724 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1725 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1726 EmitBlock(LoopBB); 1727 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1728 Cur->addIncoming(Begin.getPointer(), OriginBB); 1729 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1730 Builder.CreateMemCpy(Address(Cur, CurAlign), 1731 createUnnamedGlobalForMemcpyFrom( 1732 CGM, D, Builder, Constant, ConstantAlign), 1733 BaseSizeInChars, isVolatile); 1734 llvm::Value *Next = 1735 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1736 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1737 Builder.CreateCondBr(Done, ContBB, LoopBB); 1738 Cur->addIncoming(Next, LoopBB); 1739 EmitBlock(ContBB); 1740 } break; 1741 } 1742 } 1743 1744 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1745 assert(emission.Variable && "emission was not valid!"); 1746 1747 // If this was emitted as a global constant, we're done. 1748 if (emission.wasEmittedAsGlobal()) return; 1749 1750 const VarDecl &D = *emission.Variable; 1751 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1752 QualType type = D.getType(); 1753 1754 // If this local has an initializer, emit it now. 1755 const Expr *Init = D.getInit(); 1756 1757 // If we are at an unreachable point, we don't need to emit the initializer 1758 // unless it contains a label. 1759 if (!HaveInsertPoint()) { 1760 if (!Init || !ContainsLabel(Init)) return; 1761 EnsureInsertPoint(); 1762 } 1763 1764 // Initialize the structure of a __block variable. 1765 if (emission.IsEscapingByRef) 1766 emitByrefStructureInit(emission); 1767 1768 // Initialize the variable here if it doesn't have a initializer and it is a 1769 // C struct that is non-trivial to initialize or an array containing such a 1770 // struct. 1771 if (!Init && 1772 type.isNonTrivialToPrimitiveDefaultInitialize() == 1773 QualType::PDIK_Struct) { 1774 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1775 if (emission.IsEscapingByRef) 1776 drillIntoBlockVariable(*this, Dst, &D); 1777 defaultInitNonTrivialCStructVar(Dst); 1778 return; 1779 } 1780 1781 // Check whether this is a byref variable that's potentially 1782 // captured and moved by its own initializer. If so, we'll need to 1783 // emit the initializer first, then copy into the variable. 1784 bool capturedByInit = 1785 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1786 1787 bool locIsByrefHeader = !capturedByInit; 1788 const Address Loc = 1789 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1790 1791 // Note: constexpr already initializes everything correctly. 1792 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1793 (D.isConstexpr() 1794 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1795 : (D.getAttr<UninitializedAttr>() 1796 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1797 : getContext().getLangOpts().getTrivialAutoVarInit())); 1798 1799 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1800 if (trivialAutoVarInit == 1801 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1802 return; 1803 1804 // Only initialize a __block's storage: we always initialize the header. 1805 if (emission.IsEscapingByRef && !locIsByrefHeader) 1806 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1807 1808 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1809 }; 1810 1811 if (isTrivialInitializer(Init)) 1812 return initializeWhatIsTechnicallyUninitialized(Loc); 1813 1814 llvm::Constant *constant = nullptr; 1815 if (emission.IsConstantAggregate || 1816 D.mightBeUsableInConstantExpressions(getContext())) { 1817 assert(!capturedByInit && "constant init contains a capturing block?"); 1818 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1819 if (constant && !constant->isZeroValue() && 1820 (trivialAutoVarInit != 1821 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1822 IsPattern isPattern = 1823 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1824 ? IsPattern::Yes 1825 : IsPattern::No; 1826 // C guarantees that brace-init with fewer initializers than members in 1827 // the aggregate will initialize the rest of the aggregate as-if it were 1828 // static initialization. In turn static initialization guarantees that 1829 // padding is initialized to zero bits. We could instead pattern-init if D 1830 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1831 // behavior. 1832 constant = constWithPadding(CGM, IsPattern::No, 1833 replaceUndef(CGM, isPattern, constant)); 1834 } 1835 } 1836 1837 if (!constant) { 1838 initializeWhatIsTechnicallyUninitialized(Loc); 1839 LValue lv = MakeAddrLValue(Loc, type); 1840 lv.setNonGC(true); 1841 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1842 } 1843 1844 if (!emission.IsConstantAggregate) { 1845 // For simple scalar/complex initialization, store the value directly. 1846 LValue lv = MakeAddrLValue(Loc, type); 1847 lv.setNonGC(true); 1848 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1849 } 1850 1851 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1852 emitStoresForConstant( 1853 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1854 type.isVolatileQualified(), Builder, constant); 1855 } 1856 1857 /// Emit an expression as an initializer for an object (variable, field, etc.) 1858 /// at the given location. The expression is not necessarily the normal 1859 /// initializer for the object, and the address is not necessarily 1860 /// its normal location. 1861 /// 1862 /// \param init the initializing expression 1863 /// \param D the object to act as if we're initializing 1864 /// \param loc the address to initialize; its type is a pointer 1865 /// to the LLVM mapping of the object's type 1866 /// \param alignment the alignment of the address 1867 /// \param capturedByInit true if \p D is a __block variable 1868 /// whose address is potentially changed by the initializer 1869 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1870 LValue lvalue, bool capturedByInit) { 1871 QualType type = D->getType(); 1872 1873 if (type->isReferenceType()) { 1874 RValue rvalue = EmitReferenceBindingToExpr(init); 1875 if (capturedByInit) 1876 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1877 EmitStoreThroughLValue(rvalue, lvalue, true); 1878 return; 1879 } 1880 switch (getEvaluationKind(type)) { 1881 case TEK_Scalar: 1882 EmitScalarInit(init, D, lvalue, capturedByInit); 1883 return; 1884 case TEK_Complex: { 1885 ComplexPairTy complex = EmitComplexExpr(init); 1886 if (capturedByInit) 1887 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1888 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1889 return; 1890 } 1891 case TEK_Aggregate: 1892 if (type->isAtomicType()) { 1893 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1894 } else { 1895 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1896 if (isa<VarDecl>(D)) 1897 Overlap = AggValueSlot::DoesNotOverlap; 1898 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1899 Overlap = getOverlapForFieldInit(FD); 1900 // TODO: how can we delay here if D is captured by its initializer? 1901 EmitAggExpr(init, AggValueSlot::forLValue( 1902 lvalue, *this, AggValueSlot::IsDestructed, 1903 AggValueSlot::DoesNotNeedGCBarriers, 1904 AggValueSlot::IsNotAliased, Overlap)); 1905 } 1906 return; 1907 } 1908 llvm_unreachable("bad evaluation kind"); 1909 } 1910 1911 /// Enter a destroy cleanup for the given local variable. 1912 void CodeGenFunction::emitAutoVarTypeCleanup( 1913 const CodeGenFunction::AutoVarEmission &emission, 1914 QualType::DestructionKind dtorKind) { 1915 assert(dtorKind != QualType::DK_none); 1916 1917 // Note that for __block variables, we want to destroy the 1918 // original stack object, not the possibly forwarded object. 1919 Address addr = emission.getObjectAddress(*this); 1920 1921 const VarDecl *var = emission.Variable; 1922 QualType type = var->getType(); 1923 1924 CleanupKind cleanupKind = NormalAndEHCleanup; 1925 CodeGenFunction::Destroyer *destroyer = nullptr; 1926 1927 switch (dtorKind) { 1928 case QualType::DK_none: 1929 llvm_unreachable("no cleanup for trivially-destructible variable"); 1930 1931 case QualType::DK_cxx_destructor: 1932 // If there's an NRVO flag on the emission, we need a different 1933 // cleanup. 1934 if (emission.NRVOFlag) { 1935 assert(!type->isArrayType()); 1936 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1937 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1938 emission.NRVOFlag); 1939 return; 1940 } 1941 break; 1942 1943 case QualType::DK_objc_strong_lifetime: 1944 // Suppress cleanups for pseudo-strong variables. 1945 if (var->isARCPseudoStrong()) return; 1946 1947 // Otherwise, consider whether to use an EH cleanup or not. 1948 cleanupKind = getARCCleanupKind(); 1949 1950 // Use the imprecise destroyer by default. 1951 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1952 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1953 break; 1954 1955 case QualType::DK_objc_weak_lifetime: 1956 break; 1957 1958 case QualType::DK_nontrivial_c_struct: 1959 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1960 if (emission.NRVOFlag) { 1961 assert(!type->isArrayType()); 1962 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1963 emission.NRVOFlag, type); 1964 return; 1965 } 1966 break; 1967 } 1968 1969 // If we haven't chosen a more specific destroyer, use the default. 1970 if (!destroyer) destroyer = getDestroyer(dtorKind); 1971 1972 // Use an EH cleanup in array destructors iff the destructor itself 1973 // is being pushed as an EH cleanup. 1974 bool useEHCleanup = (cleanupKind & EHCleanup); 1975 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1976 useEHCleanup); 1977 } 1978 1979 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1980 assert(emission.Variable && "emission was not valid!"); 1981 1982 // If this was emitted as a global constant, we're done. 1983 if (emission.wasEmittedAsGlobal()) return; 1984 1985 // If we don't have an insertion point, we're done. Sema prevents 1986 // us from jumping into any of these scopes anyway. 1987 if (!HaveInsertPoint()) return; 1988 1989 const VarDecl &D = *emission.Variable; 1990 1991 // Check the type for a cleanup. 1992 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 1993 emitAutoVarTypeCleanup(emission, dtorKind); 1994 1995 // In GC mode, honor objc_precise_lifetime. 1996 if (getLangOpts().getGC() != LangOptions::NonGC && 1997 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1998 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1999 } 2000 2001 // Handle the cleanup attribute. 2002 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2003 const FunctionDecl *FD = CA->getFunctionDecl(); 2004 2005 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2006 assert(F && "Could not find function!"); 2007 2008 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2009 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2010 } 2011 2012 // If this is a block variable, call _Block_object_destroy 2013 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2014 // mode. 2015 if (emission.IsEscapingByRef && 2016 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2017 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2018 if (emission.Variable->getType().isObjCGCWeak()) 2019 Flags |= BLOCK_FIELD_IS_WEAK; 2020 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2021 /*LoadBlockVarAddr*/ false, 2022 cxxDestructorCanThrow(emission.Variable->getType())); 2023 } 2024 } 2025 2026 CodeGenFunction::Destroyer * 2027 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2028 switch (kind) { 2029 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2030 case QualType::DK_cxx_destructor: 2031 return destroyCXXObject; 2032 case QualType::DK_objc_strong_lifetime: 2033 return destroyARCStrongPrecise; 2034 case QualType::DK_objc_weak_lifetime: 2035 return destroyARCWeak; 2036 case QualType::DK_nontrivial_c_struct: 2037 return destroyNonTrivialCStruct; 2038 } 2039 llvm_unreachable("Unknown DestructionKind"); 2040 } 2041 2042 /// pushEHDestroy - Push the standard destructor for the given type as 2043 /// an EH-only cleanup. 2044 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2045 Address addr, QualType type) { 2046 assert(dtorKind && "cannot push destructor for trivial type"); 2047 assert(needsEHCleanup(dtorKind)); 2048 2049 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2050 } 2051 2052 /// pushDestroy - Push the standard destructor for the given type as 2053 /// at least a normal cleanup. 2054 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2055 Address addr, QualType type) { 2056 assert(dtorKind && "cannot push destructor for trivial type"); 2057 2058 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2059 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2060 cleanupKind & EHCleanup); 2061 } 2062 2063 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2064 QualType type, Destroyer *destroyer, 2065 bool useEHCleanupForArray) { 2066 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2067 destroyer, useEHCleanupForArray); 2068 } 2069 2070 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2071 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2072 } 2073 2074 void CodeGenFunction::pushLifetimeExtendedDestroy( 2075 CleanupKind cleanupKind, Address addr, QualType type, 2076 Destroyer *destroyer, bool useEHCleanupForArray) { 2077 // Push an EH-only cleanup for the object now. 2078 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2079 // around in case a temporary's destructor throws an exception. 2080 if (cleanupKind & EHCleanup) 2081 EHStack.pushCleanup<DestroyObject>( 2082 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2083 destroyer, useEHCleanupForArray); 2084 2085 // Remember that we need to push a full cleanup for the object at the 2086 // end of the full-expression. 2087 pushCleanupAfterFullExpr<DestroyObject>( 2088 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2089 } 2090 2091 /// emitDestroy - Immediately perform the destruction of the given 2092 /// object. 2093 /// 2094 /// \param addr - the address of the object; a type* 2095 /// \param type - the type of the object; if an array type, all 2096 /// objects are destroyed in reverse order 2097 /// \param destroyer - the function to call to destroy individual 2098 /// elements 2099 /// \param useEHCleanupForArray - whether an EH cleanup should be 2100 /// used when destroying array elements, in case one of the 2101 /// destructions throws an exception 2102 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2103 Destroyer *destroyer, 2104 bool useEHCleanupForArray) { 2105 const ArrayType *arrayType = getContext().getAsArrayType(type); 2106 if (!arrayType) 2107 return destroyer(*this, addr, type); 2108 2109 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2110 2111 CharUnits elementAlign = 2112 addr.getAlignment() 2113 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2114 2115 // Normally we have to check whether the array is zero-length. 2116 bool checkZeroLength = true; 2117 2118 // But if the array length is constant, we can suppress that. 2119 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2120 // ...and if it's constant zero, we can just skip the entire thing. 2121 if (constLength->isZero()) return; 2122 checkZeroLength = false; 2123 } 2124 2125 llvm::Value *begin = addr.getPointer(); 2126 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2127 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2128 checkZeroLength, useEHCleanupForArray); 2129 } 2130 2131 /// emitArrayDestroy - Destroys all the elements of the given array, 2132 /// beginning from last to first. The array cannot be zero-length. 2133 /// 2134 /// \param begin - a type* denoting the first element of the array 2135 /// \param end - a type* denoting one past the end of the array 2136 /// \param elementType - the element type of the array 2137 /// \param destroyer - the function to call to destroy elements 2138 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2139 /// the remaining elements in case the destruction of a single 2140 /// element throws 2141 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2142 llvm::Value *end, 2143 QualType elementType, 2144 CharUnits elementAlign, 2145 Destroyer *destroyer, 2146 bool checkZeroLength, 2147 bool useEHCleanup) { 2148 assert(!elementType->isArrayType()); 2149 2150 // The basic structure here is a do-while loop, because we don't 2151 // need to check for the zero-element case. 2152 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2153 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2154 2155 if (checkZeroLength) { 2156 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2157 "arraydestroy.isempty"); 2158 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2159 } 2160 2161 // Enter the loop body, making that address the current address. 2162 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2163 EmitBlock(bodyBB); 2164 llvm::PHINode *elementPast = 2165 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2166 elementPast->addIncoming(end, entryBB); 2167 2168 // Shift the address back by one element. 2169 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2170 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2171 "arraydestroy.element"); 2172 2173 if (useEHCleanup) 2174 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2175 destroyer); 2176 2177 // Perform the actual destruction there. 2178 destroyer(*this, Address(element, elementAlign), elementType); 2179 2180 if (useEHCleanup) 2181 PopCleanupBlock(); 2182 2183 // Check whether we've reached the end. 2184 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2185 Builder.CreateCondBr(done, doneBB, bodyBB); 2186 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2187 2188 // Done. 2189 EmitBlock(doneBB); 2190 } 2191 2192 /// Perform partial array destruction as if in an EH cleanup. Unlike 2193 /// emitArrayDestroy, the element type here may still be an array type. 2194 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2195 llvm::Value *begin, llvm::Value *end, 2196 QualType type, CharUnits elementAlign, 2197 CodeGenFunction::Destroyer *destroyer) { 2198 // If the element type is itself an array, drill down. 2199 unsigned arrayDepth = 0; 2200 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2201 // VLAs don't require a GEP index to walk into. 2202 if (!isa<VariableArrayType>(arrayType)) 2203 arrayDepth++; 2204 type = arrayType->getElementType(); 2205 } 2206 2207 if (arrayDepth) { 2208 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2209 2210 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2211 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2212 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2213 } 2214 2215 // Destroy the array. We don't ever need an EH cleanup because we 2216 // assume that we're in an EH cleanup ourselves, so a throwing 2217 // destructor causes an immediate terminate. 2218 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2219 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2220 } 2221 2222 namespace { 2223 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2224 /// array destroy where the end pointer is regularly determined and 2225 /// does not need to be loaded from a local. 2226 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2227 llvm::Value *ArrayBegin; 2228 llvm::Value *ArrayEnd; 2229 QualType ElementType; 2230 CodeGenFunction::Destroyer *Destroyer; 2231 CharUnits ElementAlign; 2232 public: 2233 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2234 QualType elementType, CharUnits elementAlign, 2235 CodeGenFunction::Destroyer *destroyer) 2236 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2237 ElementType(elementType), Destroyer(destroyer), 2238 ElementAlign(elementAlign) {} 2239 2240 void Emit(CodeGenFunction &CGF, Flags flags) override { 2241 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2242 ElementType, ElementAlign, Destroyer); 2243 } 2244 }; 2245 2246 /// IrregularPartialArrayDestroy - a cleanup which performs a 2247 /// partial array destroy where the end pointer is irregularly 2248 /// determined and must be loaded from a local. 2249 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2250 llvm::Value *ArrayBegin; 2251 Address ArrayEndPointer; 2252 QualType ElementType; 2253 CodeGenFunction::Destroyer *Destroyer; 2254 CharUnits ElementAlign; 2255 public: 2256 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2257 Address arrayEndPointer, 2258 QualType elementType, 2259 CharUnits elementAlign, 2260 CodeGenFunction::Destroyer *destroyer) 2261 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2262 ElementType(elementType), Destroyer(destroyer), 2263 ElementAlign(elementAlign) {} 2264 2265 void Emit(CodeGenFunction &CGF, Flags flags) override { 2266 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2267 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2268 ElementType, ElementAlign, Destroyer); 2269 } 2270 }; 2271 } // end anonymous namespace 2272 2273 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2274 /// already-constructed elements of the given array. The cleanup 2275 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2276 /// 2277 /// \param elementType - the immediate element type of the array; 2278 /// possibly still an array type 2279 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2280 Address arrayEndPointer, 2281 QualType elementType, 2282 CharUnits elementAlign, 2283 Destroyer *destroyer) { 2284 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2285 arrayBegin, arrayEndPointer, 2286 elementType, elementAlign, 2287 destroyer); 2288 } 2289 2290 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2291 /// already-constructed elements of the given array. The cleanup 2292 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2293 /// 2294 /// \param elementType - the immediate element type of the array; 2295 /// possibly still an array type 2296 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2297 llvm::Value *arrayEnd, 2298 QualType elementType, 2299 CharUnits elementAlign, 2300 Destroyer *destroyer) { 2301 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2302 arrayBegin, arrayEnd, 2303 elementType, elementAlign, 2304 destroyer); 2305 } 2306 2307 /// Lazily declare the @llvm.lifetime.start intrinsic. 2308 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2309 if (LifetimeStartFn) 2310 return LifetimeStartFn; 2311 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2312 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2313 return LifetimeStartFn; 2314 } 2315 2316 /// Lazily declare the @llvm.lifetime.end intrinsic. 2317 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2318 if (LifetimeEndFn) 2319 return LifetimeEndFn; 2320 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2321 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2322 return LifetimeEndFn; 2323 } 2324 2325 namespace { 2326 /// A cleanup to perform a release of an object at the end of a 2327 /// function. This is used to balance out the incoming +1 of a 2328 /// ns_consumed argument when we can't reasonably do that just by 2329 /// not doing the initial retain for a __block argument. 2330 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2331 ConsumeARCParameter(llvm::Value *param, 2332 ARCPreciseLifetime_t precise) 2333 : Param(param), Precise(precise) {} 2334 2335 llvm::Value *Param; 2336 ARCPreciseLifetime_t Precise; 2337 2338 void Emit(CodeGenFunction &CGF, Flags flags) override { 2339 CGF.EmitARCRelease(Param, Precise); 2340 } 2341 }; 2342 } // end anonymous namespace 2343 2344 /// Emit an alloca (or GlobalValue depending on target) 2345 /// for the specified parameter and set up LocalDeclMap. 2346 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2347 unsigned ArgNo) { 2348 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2349 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2350 "Invalid argument to EmitParmDecl"); 2351 2352 Arg.getAnyValue()->setName(D.getName()); 2353 2354 QualType Ty = D.getType(); 2355 2356 // Use better IR generation for certain implicit parameters. 2357 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2358 // The only implicit argument a block has is its literal. 2359 // This may be passed as an inalloca'ed value on Windows x86. 2360 if (BlockInfo) { 2361 llvm::Value *V = Arg.isIndirect() 2362 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2363 : Arg.getDirectValue(); 2364 setBlockContextParameter(IPD, ArgNo, V); 2365 return; 2366 } 2367 } 2368 2369 Address DeclPtr = Address::invalid(); 2370 bool DoStore = false; 2371 bool IsScalar = hasScalarEvaluationKind(Ty); 2372 // If we already have a pointer to the argument, reuse the input pointer. 2373 if (Arg.isIndirect()) { 2374 DeclPtr = Arg.getIndirectAddress(); 2375 // If we have a prettier pointer type at this point, bitcast to that. 2376 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2377 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2378 if (DeclPtr.getType() != IRTy) 2379 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2380 // Indirect argument is in alloca address space, which may be different 2381 // from the default address space. 2382 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2383 auto *V = DeclPtr.getPointer(); 2384 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2385 auto DestLangAS = 2386 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2387 if (SrcLangAS != DestLangAS) { 2388 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2389 CGM.getDataLayout().getAllocaAddrSpace()); 2390 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2391 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2392 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2393 *this, V, SrcLangAS, DestLangAS, T, true), 2394 DeclPtr.getAlignment()); 2395 } 2396 2397 // Push a destructor cleanup for this parameter if the ABI requires it. 2398 // Don't push a cleanup in a thunk for a method that will also emit a 2399 // cleanup. 2400 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2401 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2402 if (QualType::DestructionKind DtorKind = 2403 D.needsDestruction(getContext())) { 2404 assert((DtorKind == QualType::DK_cxx_destructor || 2405 DtorKind == QualType::DK_nontrivial_c_struct) && 2406 "unexpected destructor type"); 2407 pushDestroy(DtorKind, DeclPtr, Ty); 2408 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2409 EHStack.stable_begin(); 2410 } 2411 } 2412 } else { 2413 // Check if the parameter address is controlled by OpenMP runtime. 2414 Address OpenMPLocalAddr = 2415 getLangOpts().OpenMP 2416 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2417 : Address::invalid(); 2418 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2419 DeclPtr = OpenMPLocalAddr; 2420 } else { 2421 // Otherwise, create a temporary to hold the value. 2422 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2423 D.getName() + ".addr"); 2424 } 2425 DoStore = true; 2426 } 2427 2428 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2429 2430 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2431 if (IsScalar) { 2432 Qualifiers qs = Ty.getQualifiers(); 2433 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2434 // We honor __attribute__((ns_consumed)) for types with lifetime. 2435 // For __strong, it's handled by just skipping the initial retain; 2436 // otherwise we have to balance out the initial +1 with an extra 2437 // cleanup to do the release at the end of the function. 2438 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2439 2440 // If a parameter is pseudo-strong then we can omit the implicit retain. 2441 if (D.isARCPseudoStrong()) { 2442 assert(lt == Qualifiers::OCL_Strong && 2443 "pseudo-strong variable isn't strong?"); 2444 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2445 lt = Qualifiers::OCL_ExplicitNone; 2446 } 2447 2448 // Load objects passed indirectly. 2449 if (Arg.isIndirect() && !ArgVal) 2450 ArgVal = Builder.CreateLoad(DeclPtr); 2451 2452 if (lt == Qualifiers::OCL_Strong) { 2453 if (!isConsumed) { 2454 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2455 // use objc_storeStrong(&dest, value) for retaining the 2456 // object. But first, store a null into 'dest' because 2457 // objc_storeStrong attempts to release its old value. 2458 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2459 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2460 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2461 DoStore = false; 2462 } 2463 else 2464 // Don't use objc_retainBlock for block pointers, because we 2465 // don't want to Block_copy something just because we got it 2466 // as a parameter. 2467 ArgVal = EmitARCRetainNonBlock(ArgVal); 2468 } 2469 } else { 2470 // Push the cleanup for a consumed parameter. 2471 if (isConsumed) { 2472 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2473 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2474 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2475 precise); 2476 } 2477 2478 if (lt == Qualifiers::OCL_Weak) { 2479 EmitARCInitWeak(DeclPtr, ArgVal); 2480 DoStore = false; // The weak init is a store, no need to do two. 2481 } 2482 } 2483 2484 // Enter the cleanup scope. 2485 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2486 } 2487 } 2488 2489 // Store the initial value into the alloca. 2490 if (DoStore) 2491 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2492 2493 setAddrOfLocalVar(&D, DeclPtr); 2494 2495 // Emit debug info for param declarations in non-thunk functions. 2496 if (CGDebugInfo *DI = getDebugInfo()) { 2497 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) { 2498 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2499 } 2500 } 2501 2502 if (D.hasAttr<AnnotateAttr>()) 2503 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2504 2505 // We can only check return value nullability if all arguments to the 2506 // function satisfy their nullability preconditions. This makes it necessary 2507 // to emit null checks for args in the function body itself. 2508 if (requiresReturnValueNullabilityCheck()) { 2509 auto Nullability = Ty->getNullability(getContext()); 2510 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2511 SanitizerScope SanScope(this); 2512 RetValNullabilityPrecondition = 2513 Builder.CreateAnd(RetValNullabilityPrecondition, 2514 Builder.CreateIsNotNull(Arg.getAnyValue())); 2515 } 2516 } 2517 } 2518 2519 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2520 CodeGenFunction *CGF) { 2521 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2522 return; 2523 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2524 } 2525 2526 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2527 CodeGenFunction *CGF) { 2528 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2529 (!LangOpts.EmitAllDecls && !D->isUsed())) 2530 return; 2531 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2532 } 2533 2534 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2535 getOpenMPRuntime().checkArchForUnifiedAddressing(D); 2536 } 2537