1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenCLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclOpenMP.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Type.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 void CodeGenFunction::EmitDecl(const Decl &D) {
40   switch (D.getKind()) {
41   case Decl::BuiltinTemplate:
42   case Decl::TranslationUnit:
43   case Decl::ExternCContext:
44   case Decl::Namespace:
45   case Decl::UnresolvedUsingTypename:
46   case Decl::ClassTemplateSpecialization:
47   case Decl::ClassTemplatePartialSpecialization:
48   case Decl::VarTemplateSpecialization:
49   case Decl::VarTemplatePartialSpecialization:
50   case Decl::TemplateTypeParm:
51   case Decl::UnresolvedUsingValue:
52   case Decl::NonTypeTemplateParm:
53   case Decl::CXXMethod:
54   case Decl::CXXConstructor:
55   case Decl::CXXDestructor:
56   case Decl::CXXConversion:
57   case Decl::Field:
58   case Decl::MSProperty:
59   case Decl::IndirectField:
60   case Decl::ObjCIvar:
61   case Decl::ObjCAtDefsField:
62   case Decl::ParmVar:
63   case Decl::ImplicitParam:
64   case Decl::ClassTemplate:
65   case Decl::VarTemplate:
66   case Decl::FunctionTemplate:
67   case Decl::TypeAliasTemplate:
68   case Decl::TemplateTemplateParm:
69   case Decl::ObjCMethod:
70   case Decl::ObjCCategory:
71   case Decl::ObjCProtocol:
72   case Decl::ObjCInterface:
73   case Decl::ObjCCategoryImpl:
74   case Decl::ObjCImplementation:
75   case Decl::ObjCProperty:
76   case Decl::ObjCCompatibleAlias:
77   case Decl::PragmaComment:
78   case Decl::PragmaDetectMismatch:
79   case Decl::AccessSpec:
80   case Decl::LinkageSpec:
81   case Decl::Export:
82   case Decl::ObjCPropertyImpl:
83   case Decl::FileScopeAsm:
84   case Decl::Friend:
85   case Decl::FriendTemplate:
86   case Decl::Block:
87   case Decl::Captured:
88   case Decl::ClassScopeFunctionSpecialization:
89   case Decl::UsingShadow:
90   case Decl::ConstructorUsingShadow:
91   case Decl::ObjCTypeParam:
92   case Decl::Binding:
93     llvm_unreachable("Declaration should not be in declstmts!");
94   case Decl::Function:  // void X();
95   case Decl::Record:    // struct/union/class X;
96   case Decl::Enum:      // enum X;
97   case Decl::EnumConstant: // enum ? { X = ? }
98   case Decl::CXXRecord: // struct/union/class X; [C++]
99   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
100   case Decl::Label:        // __label__ x;
101   case Decl::Import:
102   case Decl::OMPThreadPrivate:
103   case Decl::OMPCapturedExpr:
104   case Decl::Empty:
105     // None of these decls require codegen support.
106     return;
107 
108   case Decl::NamespaceAlias:
109     if (CGDebugInfo *DI = getDebugInfo())
110         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
111     return;
112   case Decl::Using:          // using X; [C++]
113     if (CGDebugInfo *DI = getDebugInfo())
114         DI->EmitUsingDecl(cast<UsingDecl>(D));
115     return;
116   case Decl::UsingDirective: // using namespace X; [C++]
117     if (CGDebugInfo *DI = getDebugInfo())
118       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
119     return;
120   case Decl::Var:
121   case Decl::Decomposition: {
122     const VarDecl &VD = cast<VarDecl>(D);
123     assert(VD.isLocalVarDecl() &&
124            "Should not see file-scope variables inside a function!");
125     EmitVarDecl(VD);
126     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
127       for (auto *B : DD->bindings())
128         if (auto *HD = B->getHoldingVar())
129           EmitVarDecl(*HD);
130     return;
131   }
132 
133   case Decl::OMPDeclareReduction:
134     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
135 
136   case Decl::Typedef:      // typedef int X;
137   case Decl::TypeAlias: {  // using X = int; [C++0x]
138     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
139     QualType Ty = TD.getUnderlyingType();
140 
141     if (Ty->isVariablyModifiedType())
142       EmitVariablyModifiedType(Ty);
143   }
144   }
145 }
146 
147 /// EmitVarDecl - This method handles emission of any variable declaration
148 /// inside a function, including static vars etc.
149 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
150   if (D.isStaticLocal()) {
151     llvm::GlobalValue::LinkageTypes Linkage =
152         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
153 
154     // FIXME: We need to force the emission/use of a guard variable for
155     // some variables even if we can constant-evaluate them because
156     // we can't guarantee every translation unit will constant-evaluate them.
157 
158     return EmitStaticVarDecl(D, Linkage);
159   }
160 
161   if (D.hasExternalStorage())
162     // Don't emit it now, allow it to be emitted lazily on its first use.
163     return;
164 
165   if (D.getType().getAddressSpace() == LangAS::opencl_local)
166     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
167 
168   assert(D.hasLocalStorage());
169   return EmitAutoVarDecl(D);
170 }
171 
172 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
173   if (CGM.getLangOpts().CPlusPlus)
174     return CGM.getMangledName(&D).str();
175 
176   // If this isn't C++, we don't need a mangled name, just a pretty one.
177   assert(!D.isExternallyVisible() && "name shouldn't matter");
178   std::string ContextName;
179   const DeclContext *DC = D.getDeclContext();
180   if (auto *CD = dyn_cast<CapturedDecl>(DC))
181     DC = cast<DeclContext>(CD->getNonClosureContext());
182   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
183     ContextName = CGM.getMangledName(FD);
184   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
185     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
186   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
187     ContextName = OMD->getSelector().getAsString();
188   else
189     llvm_unreachable("Unknown context for static var decl");
190 
191   ContextName += "." + D.getNameAsString();
192   return ContextName;
193 }
194 
195 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
196     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
197   // In general, we don't always emit static var decls once before we reference
198   // them. It is possible to reference them before emitting the function that
199   // contains them, and it is possible to emit the containing function multiple
200   // times.
201   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
202     return ExistingGV;
203 
204   QualType Ty = D.getType();
205   assert(Ty->isConstantSizeType() && "VLAs can't be static");
206 
207   // Use the label if the variable is renamed with the asm-label extension.
208   std::string Name;
209   if (D.hasAttr<AsmLabelAttr>())
210     Name = getMangledName(&D);
211   else
212     Name = getStaticDeclName(*this, D);
213 
214   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
215   unsigned AddrSpace =
216       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
217 
218   // Local address space cannot have an initializer.
219   llvm::Constant *Init = nullptr;
220   if (Ty.getAddressSpace() != LangAS::opencl_local)
221     Init = EmitNullConstant(Ty);
222   else
223     Init = llvm::UndefValue::get(LTy);
224 
225   llvm::GlobalVariable *GV =
226     new llvm::GlobalVariable(getModule(), LTy,
227                              Ty.isConstant(getContext()), Linkage,
228                              Init, Name, nullptr,
229                              llvm::GlobalVariable::NotThreadLocal,
230                              AddrSpace);
231   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
232   setGlobalVisibility(GV, &D);
233 
234   if (supportsCOMDAT() && GV->isWeakForLinker())
235     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
236 
237   if (D.getTLSKind())
238     setTLSMode(GV, D);
239 
240   if (D.isExternallyVisible()) {
241     if (D.hasAttr<DLLImportAttr>())
242       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
243     else if (D.hasAttr<DLLExportAttr>())
244       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
245   }
246 
247   // Make sure the result is of the correct type.
248   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
249   llvm::Constant *Addr = GV;
250   if (AddrSpace != ExpectedAddrSpace) {
251     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
252     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
253   }
254 
255   setStaticLocalDeclAddress(&D, Addr);
256 
257   // Ensure that the static local gets initialized by making sure the parent
258   // function gets emitted eventually.
259   const Decl *DC = cast<Decl>(D.getDeclContext());
260 
261   // We can't name blocks or captured statements directly, so try to emit their
262   // parents.
263   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
264     DC = DC->getNonClosureContext();
265     // FIXME: Ensure that global blocks get emitted.
266     if (!DC)
267       return Addr;
268   }
269 
270   GlobalDecl GD;
271   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
272     GD = GlobalDecl(CD, Ctor_Base);
273   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
274     GD = GlobalDecl(DD, Dtor_Base);
275   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
276     GD = GlobalDecl(FD);
277   else {
278     // Don't do anything for Obj-C method decls or global closures. We should
279     // never defer them.
280     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
281   }
282   if (GD.getDecl())
283     (void)GetAddrOfGlobal(GD);
284 
285   return Addr;
286 }
287 
288 /// hasNontrivialDestruction - Determine whether a type's destruction is
289 /// non-trivial. If so, and the variable uses static initialization, we must
290 /// register its destructor to run on exit.
291 static bool hasNontrivialDestruction(QualType T) {
292   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
293   return RD && !RD->hasTrivialDestructor();
294 }
295 
296 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
297 /// global variable that has already been created for it.  If the initializer
298 /// has a different type than GV does, this may free GV and return a different
299 /// one.  Otherwise it just returns GV.
300 llvm::GlobalVariable *
301 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
302                                                llvm::GlobalVariable *GV) {
303   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
304 
305   // If constant emission failed, then this should be a C++ static
306   // initializer.
307   if (!Init) {
308     if (!getLangOpts().CPlusPlus)
309       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
310     else if (Builder.GetInsertBlock()) {
311       // Since we have a static initializer, this global variable can't
312       // be constant.
313       GV->setConstant(false);
314 
315       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
316     }
317     return GV;
318   }
319 
320   // The initializer may differ in type from the global. Rewrite
321   // the global to match the initializer.  (We have to do this
322   // because some types, like unions, can't be completely represented
323   // in the LLVM type system.)
324   if (GV->getType()->getElementType() != Init->getType()) {
325     llvm::GlobalVariable *OldGV = GV;
326 
327     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
328                                   OldGV->isConstant(),
329                                   OldGV->getLinkage(), Init, "",
330                                   /*InsertBefore*/ OldGV,
331                                   OldGV->getThreadLocalMode(),
332                            CGM.getContext().getTargetAddressSpace(D.getType()));
333     GV->setVisibility(OldGV->getVisibility());
334     GV->setComdat(OldGV->getComdat());
335 
336     // Steal the name of the old global
337     GV->takeName(OldGV);
338 
339     // Replace all uses of the old global with the new global
340     llvm::Constant *NewPtrForOldDecl =
341     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
342     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
343 
344     // Erase the old global, since it is no longer used.
345     OldGV->eraseFromParent();
346   }
347 
348   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
349   GV->setInitializer(Init);
350 
351   if (hasNontrivialDestruction(D.getType())) {
352     // We have a constant initializer, but a nontrivial destructor. We still
353     // need to perform a guarded "initialization" in order to register the
354     // destructor.
355     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
356   }
357 
358   return GV;
359 }
360 
361 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
362                                       llvm::GlobalValue::LinkageTypes Linkage) {
363   // Check to see if we already have a global variable for this
364   // declaration.  This can happen when double-emitting function
365   // bodies, e.g. with complete and base constructors.
366   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
367   CharUnits alignment = getContext().getDeclAlign(&D);
368 
369   // Store into LocalDeclMap before generating initializer to handle
370   // circular references.
371   setAddrOfLocalVar(&D, Address(addr, alignment));
372 
373   // We can't have a VLA here, but we can have a pointer to a VLA,
374   // even though that doesn't really make any sense.
375   // Make sure to evaluate VLA bounds now so that we have them for later.
376   if (D.getType()->isVariablyModifiedType())
377     EmitVariablyModifiedType(D.getType());
378 
379   // Save the type in case adding the initializer forces a type change.
380   llvm::Type *expectedType = addr->getType();
381 
382   llvm::GlobalVariable *var =
383     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
384 
385   // CUDA's local and local static __shared__ variables should not
386   // have any non-empty initializers. This is ensured by Sema.
387   // Whatever initializer such variable may have when it gets here is
388   // a no-op and should not be emitted.
389   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
390                          D.hasAttr<CUDASharedAttr>();
391   // If this value has an initializer, emit it.
392   if (D.getInit() && !isCudaSharedVar)
393     var = AddInitializerToStaticVarDecl(D, var);
394 
395   var->setAlignment(alignment.getQuantity());
396 
397   if (D.hasAttr<AnnotateAttr>())
398     CGM.AddGlobalAnnotations(&D, var);
399 
400   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
401     var->setSection(SA->getName());
402 
403   if (D.hasAttr<UsedAttr>())
404     CGM.addUsedGlobal(var);
405 
406   // We may have to cast the constant because of the initializer
407   // mismatch above.
408   //
409   // FIXME: It is really dangerous to store this in the map; if anyone
410   // RAUW's the GV uses of this constant will be invalid.
411   llvm::Constant *castedAddr =
412     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
413   if (var != castedAddr)
414     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
415   CGM.setStaticLocalDeclAddress(&D, castedAddr);
416 
417   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
418 
419   // Emit global variable debug descriptor for static vars.
420   CGDebugInfo *DI = getDebugInfo();
421   if (DI &&
422       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
423     DI->setLocation(D.getLocation());
424     DI->EmitGlobalVariable(var, &D);
425   }
426 }
427 
428 namespace {
429   struct DestroyObject final : EHScopeStack::Cleanup {
430     DestroyObject(Address addr, QualType type,
431                   CodeGenFunction::Destroyer *destroyer,
432                   bool useEHCleanupForArray)
433       : addr(addr), type(type), destroyer(destroyer),
434         useEHCleanupForArray(useEHCleanupForArray) {}
435 
436     Address addr;
437     QualType type;
438     CodeGenFunction::Destroyer *destroyer;
439     bool useEHCleanupForArray;
440 
441     void Emit(CodeGenFunction &CGF, Flags flags) override {
442       // Don't use an EH cleanup recursively from an EH cleanup.
443       bool useEHCleanupForArray =
444         flags.isForNormalCleanup() && this->useEHCleanupForArray;
445 
446       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
447     }
448   };
449 
450   struct DestroyNRVOVariable final : EHScopeStack::Cleanup {
451     DestroyNRVOVariable(Address addr,
452                         const CXXDestructorDecl *Dtor,
453                         llvm::Value *NRVOFlag)
454       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
455 
456     const CXXDestructorDecl *Dtor;
457     llvm::Value *NRVOFlag;
458     Address Loc;
459 
460     void Emit(CodeGenFunction &CGF, Flags flags) override {
461       // Along the exceptions path we always execute the dtor.
462       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
463 
464       llvm::BasicBlock *SkipDtorBB = nullptr;
465       if (NRVO) {
466         // If we exited via NRVO, we skip the destructor call.
467         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
468         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
469         llvm::Value *DidNRVO =
470           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
471         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
472         CGF.EmitBlock(RunDtorBB);
473       }
474 
475       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
476                                 /*ForVirtualBase=*/false,
477                                 /*Delegating=*/false,
478                                 Loc);
479 
480       if (NRVO) CGF.EmitBlock(SkipDtorBB);
481     }
482   };
483 
484   struct CallStackRestore final : EHScopeStack::Cleanup {
485     Address Stack;
486     CallStackRestore(Address Stack) : Stack(Stack) {}
487     void Emit(CodeGenFunction &CGF, Flags flags) override {
488       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
489       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
490       CGF.Builder.CreateCall(F, V);
491     }
492   };
493 
494   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
495     const VarDecl &Var;
496     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
497 
498     void Emit(CodeGenFunction &CGF, Flags flags) override {
499       // Compute the address of the local variable, in case it's a
500       // byref or something.
501       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
502                       Var.getType(), VK_LValue, SourceLocation());
503       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
504                                                 SourceLocation());
505       CGF.EmitExtendGCLifetime(value);
506     }
507   };
508 
509   struct CallCleanupFunction final : EHScopeStack::Cleanup {
510     llvm::Constant *CleanupFn;
511     const CGFunctionInfo &FnInfo;
512     const VarDecl &Var;
513 
514     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
515                         const VarDecl *Var)
516       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
517 
518     void Emit(CodeGenFunction &CGF, Flags flags) override {
519       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
520                       Var.getType(), VK_LValue, SourceLocation());
521       // Compute the address of the local variable, in case it's a byref
522       // or something.
523       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
524 
525       // In some cases, the type of the function argument will be different from
526       // the type of the pointer. An example of this is
527       // void f(void* arg);
528       // __attribute__((cleanup(f))) void *g;
529       //
530       // To fix this we insert a bitcast here.
531       QualType ArgTy = FnInfo.arg_begin()->type;
532       llvm::Value *Arg =
533         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
534 
535       CallArgList Args;
536       Args.add(RValue::get(Arg),
537                CGF.getContext().getPointerType(Var.getType()));
538       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
539     }
540   };
541 } // end anonymous namespace
542 
543 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
544 /// variable with lifetime.
545 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
546                                     Address addr,
547                                     Qualifiers::ObjCLifetime lifetime) {
548   switch (lifetime) {
549   case Qualifiers::OCL_None:
550     llvm_unreachable("present but none");
551 
552   case Qualifiers::OCL_ExplicitNone:
553     // nothing to do
554     break;
555 
556   case Qualifiers::OCL_Strong: {
557     CodeGenFunction::Destroyer *destroyer =
558       (var.hasAttr<ObjCPreciseLifetimeAttr>()
559        ? CodeGenFunction::destroyARCStrongPrecise
560        : CodeGenFunction::destroyARCStrongImprecise);
561 
562     CleanupKind cleanupKind = CGF.getARCCleanupKind();
563     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
564                     cleanupKind & EHCleanup);
565     break;
566   }
567   case Qualifiers::OCL_Autoreleasing:
568     // nothing to do
569     break;
570 
571   case Qualifiers::OCL_Weak:
572     // __weak objects always get EH cleanups; otherwise, exceptions
573     // could cause really nasty crashes instead of mere leaks.
574     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
575                     CodeGenFunction::destroyARCWeak,
576                     /*useEHCleanup*/ true);
577     break;
578   }
579 }
580 
581 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
582   if (const Expr *e = dyn_cast<Expr>(s)) {
583     // Skip the most common kinds of expressions that make
584     // hierarchy-walking expensive.
585     s = e = e->IgnoreParenCasts();
586 
587     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
588       return (ref->getDecl() == &var);
589     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
590       const BlockDecl *block = be->getBlockDecl();
591       for (const auto &I : block->captures()) {
592         if (I.getVariable() == &var)
593           return true;
594       }
595     }
596   }
597 
598   for (const Stmt *SubStmt : s->children())
599     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
600     if (SubStmt && isAccessedBy(var, SubStmt))
601       return true;
602 
603   return false;
604 }
605 
606 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
607   if (!decl) return false;
608   if (!isa<VarDecl>(decl)) return false;
609   const VarDecl *var = cast<VarDecl>(decl);
610   return isAccessedBy(*var, e);
611 }
612 
613 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
614                                    const LValue &destLV, const Expr *init) {
615   bool needsCast = false;
616 
617   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
618     switch (castExpr->getCastKind()) {
619     // Look through casts that don't require representation changes.
620     case CK_NoOp:
621     case CK_BitCast:
622     case CK_BlockPointerToObjCPointerCast:
623       needsCast = true;
624       break;
625 
626     // If we find an l-value to r-value cast from a __weak variable,
627     // emit this operation as a copy or move.
628     case CK_LValueToRValue: {
629       const Expr *srcExpr = castExpr->getSubExpr();
630       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
631         return false;
632 
633       // Emit the source l-value.
634       LValue srcLV = CGF.EmitLValue(srcExpr);
635 
636       // Handle a formal type change to avoid asserting.
637       auto srcAddr = srcLV.getAddress();
638       if (needsCast) {
639         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
640                                          destLV.getAddress().getElementType());
641       }
642 
643       // If it was an l-value, use objc_copyWeak.
644       if (srcExpr->getValueKind() == VK_LValue) {
645         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
646       } else {
647         assert(srcExpr->getValueKind() == VK_XValue);
648         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
649       }
650       return true;
651     }
652 
653     // Stop at anything else.
654     default:
655       return false;
656     }
657 
658     init = castExpr->getSubExpr();
659   }
660   return false;
661 }
662 
663 static void drillIntoBlockVariable(CodeGenFunction &CGF,
664                                    LValue &lvalue,
665                                    const VarDecl *var) {
666   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
667 }
668 
669 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
670                                      LValue lvalue, bool capturedByInit) {
671   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
672   if (!lifetime) {
673     llvm::Value *value = EmitScalarExpr(init);
674     if (capturedByInit)
675       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
676     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
677     return;
678   }
679 
680   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
681     init = DIE->getExpr();
682 
683   // If we're emitting a value with lifetime, we have to do the
684   // initialization *before* we leave the cleanup scopes.
685   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
686     enterFullExpression(ewc);
687     init = ewc->getSubExpr();
688   }
689   CodeGenFunction::RunCleanupsScope Scope(*this);
690 
691   // We have to maintain the illusion that the variable is
692   // zero-initialized.  If the variable might be accessed in its
693   // initializer, zero-initialize before running the initializer, then
694   // actually perform the initialization with an assign.
695   bool accessedByInit = false;
696   if (lifetime != Qualifiers::OCL_ExplicitNone)
697     accessedByInit = (capturedByInit || isAccessedBy(D, init));
698   if (accessedByInit) {
699     LValue tempLV = lvalue;
700     // Drill down to the __block object if necessary.
701     if (capturedByInit) {
702       // We can use a simple GEP for this because it can't have been
703       // moved yet.
704       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
705                                               cast<VarDecl>(D),
706                                               /*follow*/ false));
707     }
708 
709     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
710     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
711 
712     // If __weak, we want to use a barrier under certain conditions.
713     if (lifetime == Qualifiers::OCL_Weak)
714       EmitARCInitWeak(tempLV.getAddress(), zero);
715 
716     // Otherwise just do a simple store.
717     else
718       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
719   }
720 
721   // Emit the initializer.
722   llvm::Value *value = nullptr;
723 
724   switch (lifetime) {
725   case Qualifiers::OCL_None:
726     llvm_unreachable("present but none");
727 
728   case Qualifiers::OCL_ExplicitNone:
729     value = EmitARCUnsafeUnretainedScalarExpr(init);
730     break;
731 
732   case Qualifiers::OCL_Strong: {
733     value = EmitARCRetainScalarExpr(init);
734     break;
735   }
736 
737   case Qualifiers::OCL_Weak: {
738     // If it's not accessed by the initializer, try to emit the
739     // initialization with a copy or move.
740     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
741       return;
742     }
743 
744     // No way to optimize a producing initializer into this.  It's not
745     // worth optimizing for, because the value will immediately
746     // disappear in the common case.
747     value = EmitScalarExpr(init);
748 
749     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
750     if (accessedByInit)
751       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
752     else
753       EmitARCInitWeak(lvalue.getAddress(), value);
754     return;
755   }
756 
757   case Qualifiers::OCL_Autoreleasing:
758     value = EmitARCRetainAutoreleaseScalarExpr(init);
759     break;
760   }
761 
762   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
763 
764   // If the variable might have been accessed by its initializer, we
765   // might have to initialize with a barrier.  We have to do this for
766   // both __weak and __strong, but __weak got filtered out above.
767   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
768     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
769     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
770     EmitARCRelease(oldValue, ARCImpreciseLifetime);
771     return;
772   }
773 
774   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
775 }
776 
777 /// EmitScalarInit - Initialize the given lvalue with the given object.
778 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
779   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
780   if (!lifetime)
781     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
782 
783   switch (lifetime) {
784   case Qualifiers::OCL_None:
785     llvm_unreachable("present but none");
786 
787   case Qualifiers::OCL_ExplicitNone:
788     // nothing to do
789     break;
790 
791   case Qualifiers::OCL_Strong:
792     init = EmitARCRetain(lvalue.getType(), init);
793     break;
794 
795   case Qualifiers::OCL_Weak:
796     // Initialize and then skip the primitive store.
797     EmitARCInitWeak(lvalue.getAddress(), init);
798     return;
799 
800   case Qualifiers::OCL_Autoreleasing:
801     init = EmitARCRetainAutorelease(lvalue.getType(), init);
802     break;
803   }
804 
805   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
806 }
807 
808 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
809 /// non-zero parts of the specified initializer with equal or fewer than
810 /// NumStores scalar stores.
811 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
812                                                 unsigned &NumStores) {
813   // Zero and Undef never requires any extra stores.
814   if (isa<llvm::ConstantAggregateZero>(Init) ||
815       isa<llvm::ConstantPointerNull>(Init) ||
816       isa<llvm::UndefValue>(Init))
817     return true;
818   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
819       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
820       isa<llvm::ConstantExpr>(Init))
821     return Init->isNullValue() || NumStores--;
822 
823   // See if we can emit each element.
824   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
825     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
826       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
827       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
828         return false;
829     }
830     return true;
831   }
832 
833   if (llvm::ConstantDataSequential *CDS =
834         dyn_cast<llvm::ConstantDataSequential>(Init)) {
835     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
836       llvm::Constant *Elt = CDS->getElementAsConstant(i);
837       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
838         return false;
839     }
840     return true;
841   }
842 
843   // Anything else is hard and scary.
844   return false;
845 }
846 
847 /// emitStoresForInitAfterMemset - For inits that
848 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
849 /// stores that would be required.
850 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
851                                          bool isVolatile, CGBuilderTy &Builder) {
852   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
853          "called emitStoresForInitAfterMemset for zero or undef value.");
854 
855   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
856       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
857       isa<llvm::ConstantExpr>(Init)) {
858     Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile);
859     return;
860   }
861 
862   if (llvm::ConstantDataSequential *CDS =
863           dyn_cast<llvm::ConstantDataSequential>(Init)) {
864     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
865       llvm::Constant *Elt = CDS->getElementAsConstant(i);
866 
867       // If necessary, get a pointer to the element and emit it.
868       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
869         emitStoresForInitAfterMemset(
870             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
871             isVolatile, Builder);
872     }
873     return;
874   }
875 
876   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
877          "Unknown value type!");
878 
879   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
880     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
881 
882     // If necessary, get a pointer to the element and emit it.
883     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
884       emitStoresForInitAfterMemset(
885           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
886           isVolatile, Builder);
887   }
888 }
889 
890 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
891 /// plus some stores to initialize a local variable instead of using a memcpy
892 /// from a constant global.  It is beneficial to use memset if the global is all
893 /// zeros, or mostly zeros and large.
894 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
895                                                   uint64_t GlobalSize) {
896   // If a global is all zeros, always use a memset.
897   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
898 
899   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
900   // do it if it will require 6 or fewer scalar stores.
901   // TODO: Should budget depends on the size?  Avoiding a large global warrants
902   // plopping in more stores.
903   unsigned StoreBudget = 6;
904   uint64_t SizeLimit = 32;
905 
906   return GlobalSize > SizeLimit &&
907          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
908 }
909 
910 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
911 /// variable declaration with auto, register, or no storage class specifier.
912 /// These turn into simple stack objects, or GlobalValues depending on target.
913 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
914   AutoVarEmission emission = EmitAutoVarAlloca(D);
915   EmitAutoVarInit(emission);
916   EmitAutoVarCleanups(emission);
917 }
918 
919 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
920 /// markers.
921 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
922                                       const LangOptions &LangOpts) {
923   // Asan uses markers for use-after-scope checks.
924   if (CGOpts.SanitizeAddressUseAfterScope)
925     return true;
926 
927   // Disable lifetime markers in msan builds.
928   // FIXME: Remove this when msan works with lifetime markers.
929   if (LangOpts.Sanitize.has(SanitizerKind::Memory))
930     return false;
931 
932   // For now, only in optimized builds.
933   return CGOpts.OptimizationLevel != 0;
934 }
935 
936 /// Emit a lifetime.begin marker if some criteria are satisfied.
937 /// \return a pointer to the temporary size Value if a marker was emitted, null
938 /// otherwise
939 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
940                                                 llvm::Value *Addr) {
941   if (!shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), getLangOpts()))
942     return nullptr;
943 
944   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
945   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
946   llvm::CallInst *C =
947       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
948   C->setDoesNotThrow();
949   return SizeV;
950 }
951 
952 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
953   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
954   llvm::CallInst *C =
955       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
956   C->setDoesNotThrow();
957 }
958 
959 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
960 /// local variable.  Does not emit initialization or destruction.
961 CodeGenFunction::AutoVarEmission
962 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
963   QualType Ty = D.getType();
964 
965   AutoVarEmission emission(D);
966 
967   bool isByRef = D.hasAttr<BlocksAttr>();
968   emission.IsByRef = isByRef;
969 
970   CharUnits alignment = getContext().getDeclAlign(&D);
971 
972   // If the type is variably-modified, emit all the VLA sizes for it.
973   if (Ty->isVariablyModifiedType())
974     EmitVariablyModifiedType(Ty);
975 
976   Address address = Address::invalid();
977   if (Ty->isConstantSizeType()) {
978     bool NRVO = getLangOpts().ElideConstructors &&
979       D.isNRVOVariable();
980 
981     // If this value is an array or struct with a statically determinable
982     // constant initializer, there are optimizations we can do.
983     //
984     // TODO: We should constant-evaluate the initializer of any variable,
985     // as long as it is initialized by a constant expression. Currently,
986     // isConstantInitializer produces wrong answers for structs with
987     // reference or bitfield members, and a few other cases, and checking
988     // for POD-ness protects us from some of these.
989     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
990         (D.isConstexpr() ||
991          ((Ty.isPODType(getContext()) ||
992            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
993           D.getInit()->isConstantInitializer(getContext(), false)))) {
994 
995       // If the variable's a const type, and it's neither an NRVO
996       // candidate nor a __block variable and has no mutable members,
997       // emit it as a global instead.
998       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
999           CGM.isTypeConstant(Ty, true)) {
1000         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1001 
1002         // Signal this condition to later callbacks.
1003         emission.Addr = Address::invalid();
1004         assert(emission.wasEmittedAsGlobal());
1005         return emission;
1006       }
1007 
1008       // Otherwise, tell the initialization code that we're in this case.
1009       emission.IsConstantAggregate = true;
1010     }
1011 
1012     // A normal fixed sized variable becomes an alloca in the entry block,
1013     // unless it's an NRVO variable.
1014 
1015     if (NRVO) {
1016       // The named return value optimization: allocate this variable in the
1017       // return slot, so that we can elide the copy when returning this
1018       // variable (C++0x [class.copy]p34).
1019       address = ReturnValue;
1020 
1021       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1022         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
1023           // Create a flag that is used to indicate when the NRVO was applied
1024           // to this variable. Set it to zero to indicate that NRVO was not
1025           // applied.
1026           llvm::Value *Zero = Builder.getFalse();
1027           Address NRVOFlag =
1028             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1029           EnsureInsertPoint();
1030           Builder.CreateStore(Zero, NRVOFlag);
1031 
1032           // Record the NRVO flag for this variable.
1033           NRVOFlags[&D] = NRVOFlag.getPointer();
1034           emission.NRVOFlag = NRVOFlag.getPointer();
1035         }
1036       }
1037     } else {
1038       CharUnits allocaAlignment;
1039       llvm::Type *allocaTy;
1040       if (isByRef) {
1041         auto &byrefInfo = getBlockByrefInfo(&D);
1042         allocaTy = byrefInfo.Type;
1043         allocaAlignment = byrefInfo.ByrefAlignment;
1044       } else {
1045         allocaTy = ConvertTypeForMem(Ty);
1046         allocaAlignment = alignment;
1047       }
1048 
1049       // Create the alloca.  Note that we set the name separately from
1050       // building the instruction so that it's there even in no-asserts
1051       // builds.
1052       address = CreateTempAlloca(allocaTy, allocaAlignment);
1053       address.getPointer()->setName(D.getName());
1054 
1055       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1056       // the catch parameter starts in the catchpad instruction, and we can't
1057       // insert code in those basic blocks.
1058       bool IsMSCatchParam =
1059           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1060 
1061       // Emit a lifetime intrinsic if meaningful.  There's no point
1062       // in doing this if we don't have a valid insertion point (?).
1063       if (HaveInsertPoint() && !IsMSCatchParam) {
1064         uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1065         emission.SizeForLifetimeMarkers =
1066           EmitLifetimeStart(size, address.getPointer());
1067       } else {
1068         assert(!emission.useLifetimeMarkers());
1069       }
1070     }
1071   } else {
1072     EnsureInsertPoint();
1073 
1074     if (!DidCallStackSave) {
1075       // Save the stack.
1076       Address Stack =
1077         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1078 
1079       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1080       llvm::Value *V = Builder.CreateCall(F);
1081       Builder.CreateStore(V, Stack);
1082 
1083       DidCallStackSave = true;
1084 
1085       // Push a cleanup block and restore the stack there.
1086       // FIXME: in general circumstances, this should be an EH cleanup.
1087       pushStackRestore(NormalCleanup, Stack);
1088     }
1089 
1090     llvm::Value *elementCount;
1091     QualType elementType;
1092     std::tie(elementCount, elementType) = getVLASize(Ty);
1093 
1094     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
1095 
1096     // Allocate memory for the array.
1097     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1098     vla->setAlignment(alignment.getQuantity());
1099 
1100     address = Address(vla, alignment);
1101   }
1102 
1103   setAddrOfLocalVar(&D, address);
1104   emission.Addr = address;
1105 
1106   // Emit debug info for local var declaration.
1107   if (HaveInsertPoint())
1108     if (CGDebugInfo *DI = getDebugInfo()) {
1109       if (CGM.getCodeGenOpts().getDebugInfo() >=
1110           codegenoptions::LimitedDebugInfo) {
1111         DI->setLocation(D.getLocation());
1112         DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1113       }
1114     }
1115 
1116   if (D.hasAttr<AnnotateAttr>())
1117     EmitVarAnnotations(&D, address.getPointer());
1118 
1119   return emission;
1120 }
1121 
1122 /// Determines whether the given __block variable is potentially
1123 /// captured by the given expression.
1124 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1125   // Skip the most common kinds of expressions that make
1126   // hierarchy-walking expensive.
1127   e = e->IgnoreParenCasts();
1128 
1129   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1130     const BlockDecl *block = be->getBlockDecl();
1131     for (const auto &I : block->captures()) {
1132       if (I.getVariable() == &var)
1133         return true;
1134     }
1135 
1136     // No need to walk into the subexpressions.
1137     return false;
1138   }
1139 
1140   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1141     const CompoundStmt *CS = SE->getSubStmt();
1142     for (const auto *BI : CS->body())
1143       if (const auto *E = dyn_cast<Expr>(BI)) {
1144         if (isCapturedBy(var, E))
1145             return true;
1146       }
1147       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1148           // special case declarations
1149           for (const auto *I : DS->decls()) {
1150               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1151                 const Expr *Init = VD->getInit();
1152                 if (Init && isCapturedBy(var, Init))
1153                   return true;
1154               }
1155           }
1156       }
1157       else
1158         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1159         // Later, provide code to poke into statements for capture analysis.
1160         return true;
1161     return false;
1162   }
1163 
1164   for (const Stmt *SubStmt : e->children())
1165     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1166       return true;
1167 
1168   return false;
1169 }
1170 
1171 /// \brief Determine whether the given initializer is trivial in the sense
1172 /// that it requires no code to be generated.
1173 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1174   if (!Init)
1175     return true;
1176 
1177   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1178     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1179       if (Constructor->isTrivial() &&
1180           Constructor->isDefaultConstructor() &&
1181           !Construct->requiresZeroInitialization())
1182         return true;
1183 
1184   return false;
1185 }
1186 
1187 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1188   assert(emission.Variable && "emission was not valid!");
1189 
1190   // If this was emitted as a global constant, we're done.
1191   if (emission.wasEmittedAsGlobal()) return;
1192 
1193   const VarDecl &D = *emission.Variable;
1194   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1195   QualType type = D.getType();
1196 
1197   // If this local has an initializer, emit it now.
1198   const Expr *Init = D.getInit();
1199 
1200   // If we are at an unreachable point, we don't need to emit the initializer
1201   // unless it contains a label.
1202   if (!HaveInsertPoint()) {
1203     if (!Init || !ContainsLabel(Init)) return;
1204     EnsureInsertPoint();
1205   }
1206 
1207   // Initialize the structure of a __block variable.
1208   if (emission.IsByRef)
1209     emitByrefStructureInit(emission);
1210 
1211   if (isTrivialInitializer(Init))
1212     return;
1213 
1214   // Check whether this is a byref variable that's potentially
1215   // captured and moved by its own initializer.  If so, we'll need to
1216   // emit the initializer first, then copy into the variable.
1217   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1218 
1219   Address Loc =
1220     capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1221 
1222   llvm::Constant *constant = nullptr;
1223   if (emission.IsConstantAggregate || D.isConstexpr()) {
1224     assert(!capturedByInit && "constant init contains a capturing block?");
1225     constant = CGM.EmitConstantInit(D, this);
1226   }
1227 
1228   if (!constant) {
1229     LValue lv = MakeAddrLValue(Loc, type);
1230     lv.setNonGC(true);
1231     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1232   }
1233 
1234   if (!emission.IsConstantAggregate) {
1235     // For simple scalar/complex initialization, store the value directly.
1236     LValue lv = MakeAddrLValue(Loc, type);
1237     lv.setNonGC(true);
1238     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1239   }
1240 
1241   // If this is a simple aggregate initialization, we can optimize it
1242   // in various ways.
1243   bool isVolatile = type.isVolatileQualified();
1244 
1245   llvm::Value *SizeVal =
1246     llvm::ConstantInt::get(IntPtrTy,
1247                            getContext().getTypeSizeInChars(type).getQuantity());
1248 
1249   llvm::Type *BP = Int8PtrTy;
1250   if (Loc.getType() != BP)
1251     Loc = Builder.CreateBitCast(Loc, BP);
1252 
1253   // If the initializer is all or mostly zeros, codegen with memset then do
1254   // a few stores afterward.
1255   if (shouldUseMemSetPlusStoresToInitialize(constant,
1256                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1257     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1258                          isVolatile);
1259     // Zero and undef don't require a stores.
1260     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1261       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1262       emitStoresForInitAfterMemset(constant, Loc.getPointer(),
1263                                    isVolatile, Builder);
1264     }
1265   } else {
1266     // Otherwise, create a temporary global with the initializer then
1267     // memcpy from the global to the alloca.
1268     std::string Name = getStaticDeclName(CGM, D);
1269     llvm::GlobalVariable *GV =
1270       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1271                                llvm::GlobalValue::PrivateLinkage,
1272                                constant, Name);
1273     GV->setAlignment(Loc.getAlignment().getQuantity());
1274     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1275 
1276     Address SrcPtr = Address(GV, Loc.getAlignment());
1277     if (SrcPtr.getType() != BP)
1278       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1279 
1280     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile);
1281   }
1282 }
1283 
1284 /// Emit an expression as an initializer for a variable at the given
1285 /// location.  The expression is not necessarily the normal
1286 /// initializer for the variable, and the address is not necessarily
1287 /// its normal location.
1288 ///
1289 /// \param init the initializing expression
1290 /// \param var the variable to act as if we're initializing
1291 /// \param loc the address to initialize; its type is a pointer
1292 ///   to the LLVM mapping of the variable's type
1293 /// \param alignment the alignment of the address
1294 /// \param capturedByInit true if the variable is a __block variable
1295 ///   whose address is potentially changed by the initializer
1296 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1297                                      LValue lvalue, bool capturedByInit) {
1298   QualType type = D->getType();
1299 
1300   if (type->isReferenceType()) {
1301     RValue rvalue = EmitReferenceBindingToExpr(init);
1302     if (capturedByInit)
1303       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1304     EmitStoreThroughLValue(rvalue, lvalue, true);
1305     return;
1306   }
1307   switch (getEvaluationKind(type)) {
1308   case TEK_Scalar:
1309     EmitScalarInit(init, D, lvalue, capturedByInit);
1310     return;
1311   case TEK_Complex: {
1312     ComplexPairTy complex = EmitComplexExpr(init);
1313     if (capturedByInit)
1314       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1315     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1316     return;
1317   }
1318   case TEK_Aggregate:
1319     if (type->isAtomicType()) {
1320       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1321     } else {
1322       // TODO: how can we delay here if D is captured by its initializer?
1323       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1324                                               AggValueSlot::IsDestructed,
1325                                          AggValueSlot::DoesNotNeedGCBarriers,
1326                                               AggValueSlot::IsNotAliased));
1327     }
1328     return;
1329   }
1330   llvm_unreachable("bad evaluation kind");
1331 }
1332 
1333 /// Enter a destroy cleanup for the given local variable.
1334 void CodeGenFunction::emitAutoVarTypeCleanup(
1335                             const CodeGenFunction::AutoVarEmission &emission,
1336                             QualType::DestructionKind dtorKind) {
1337   assert(dtorKind != QualType::DK_none);
1338 
1339   // Note that for __block variables, we want to destroy the
1340   // original stack object, not the possibly forwarded object.
1341   Address addr = emission.getObjectAddress(*this);
1342 
1343   const VarDecl *var = emission.Variable;
1344   QualType type = var->getType();
1345 
1346   CleanupKind cleanupKind = NormalAndEHCleanup;
1347   CodeGenFunction::Destroyer *destroyer = nullptr;
1348 
1349   switch (dtorKind) {
1350   case QualType::DK_none:
1351     llvm_unreachable("no cleanup for trivially-destructible variable");
1352 
1353   case QualType::DK_cxx_destructor:
1354     // If there's an NRVO flag on the emission, we need a different
1355     // cleanup.
1356     if (emission.NRVOFlag) {
1357       assert(!type->isArrayType());
1358       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1359       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr,
1360                                                dtor, emission.NRVOFlag);
1361       return;
1362     }
1363     break;
1364 
1365   case QualType::DK_objc_strong_lifetime:
1366     // Suppress cleanups for pseudo-strong variables.
1367     if (var->isARCPseudoStrong()) return;
1368 
1369     // Otherwise, consider whether to use an EH cleanup or not.
1370     cleanupKind = getARCCleanupKind();
1371 
1372     // Use the imprecise destroyer by default.
1373     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1374       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1375     break;
1376 
1377   case QualType::DK_objc_weak_lifetime:
1378     break;
1379   }
1380 
1381   // If we haven't chosen a more specific destroyer, use the default.
1382   if (!destroyer) destroyer = getDestroyer(dtorKind);
1383 
1384   // Use an EH cleanup in array destructors iff the destructor itself
1385   // is being pushed as an EH cleanup.
1386   bool useEHCleanup = (cleanupKind & EHCleanup);
1387   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1388                                      useEHCleanup);
1389 }
1390 
1391 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1392   assert(emission.Variable && "emission was not valid!");
1393 
1394   // If this was emitted as a global constant, we're done.
1395   if (emission.wasEmittedAsGlobal()) return;
1396 
1397   // If we don't have an insertion point, we're done.  Sema prevents
1398   // us from jumping into any of these scopes anyway.
1399   if (!HaveInsertPoint()) return;
1400 
1401   const VarDecl &D = *emission.Variable;
1402 
1403   // Make sure we call @llvm.lifetime.end.  This needs to happen
1404   // *last*, so the cleanup needs to be pushed *first*.
1405   if (emission.useLifetimeMarkers())
1406     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1407                                          emission.getAllocatedAddress(),
1408                                          emission.getSizeForLifetimeMarkers());
1409 
1410   // Check the type for a cleanup.
1411   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1412     emitAutoVarTypeCleanup(emission, dtorKind);
1413 
1414   // In GC mode, honor objc_precise_lifetime.
1415   if (getLangOpts().getGC() != LangOptions::NonGC &&
1416       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1417     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1418   }
1419 
1420   // Handle the cleanup attribute.
1421   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1422     const FunctionDecl *FD = CA->getFunctionDecl();
1423 
1424     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1425     assert(F && "Could not find function!");
1426 
1427     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1428     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1429   }
1430 
1431   // If this is a block variable, call _Block_object_destroy
1432   // (on the unforwarded address).
1433   if (emission.IsByRef)
1434     enterByrefCleanup(emission);
1435 }
1436 
1437 CodeGenFunction::Destroyer *
1438 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1439   switch (kind) {
1440   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1441   case QualType::DK_cxx_destructor:
1442     return destroyCXXObject;
1443   case QualType::DK_objc_strong_lifetime:
1444     return destroyARCStrongPrecise;
1445   case QualType::DK_objc_weak_lifetime:
1446     return destroyARCWeak;
1447   }
1448   llvm_unreachable("Unknown DestructionKind");
1449 }
1450 
1451 /// pushEHDestroy - Push the standard destructor for the given type as
1452 /// an EH-only cleanup.
1453 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1454                                     Address addr, QualType type) {
1455   assert(dtorKind && "cannot push destructor for trivial type");
1456   assert(needsEHCleanup(dtorKind));
1457 
1458   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1459 }
1460 
1461 /// pushDestroy - Push the standard destructor for the given type as
1462 /// at least a normal cleanup.
1463 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1464                                   Address addr, QualType type) {
1465   assert(dtorKind && "cannot push destructor for trivial type");
1466 
1467   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1468   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1469               cleanupKind & EHCleanup);
1470 }
1471 
1472 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1473                                   QualType type, Destroyer *destroyer,
1474                                   bool useEHCleanupForArray) {
1475   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1476                                      destroyer, useEHCleanupForArray);
1477 }
1478 
1479 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1480   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1481 }
1482 
1483 void CodeGenFunction::pushLifetimeExtendedDestroy(
1484     CleanupKind cleanupKind, Address addr, QualType type,
1485     Destroyer *destroyer, bool useEHCleanupForArray) {
1486   assert(!isInConditionalBranch() &&
1487          "performing lifetime extension from within conditional");
1488 
1489   // Push an EH-only cleanup for the object now.
1490   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1491   // around in case a temporary's destructor throws an exception.
1492   if (cleanupKind & EHCleanup)
1493     EHStack.pushCleanup<DestroyObject>(
1494         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1495         destroyer, useEHCleanupForArray);
1496 
1497   // Remember that we need to push a full cleanup for the object at the
1498   // end of the full-expression.
1499   pushCleanupAfterFullExpr<DestroyObject>(
1500       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1501 }
1502 
1503 /// emitDestroy - Immediately perform the destruction of the given
1504 /// object.
1505 ///
1506 /// \param addr - the address of the object; a type*
1507 /// \param type - the type of the object; if an array type, all
1508 ///   objects are destroyed in reverse order
1509 /// \param destroyer - the function to call to destroy individual
1510 ///   elements
1511 /// \param useEHCleanupForArray - whether an EH cleanup should be
1512 ///   used when destroying array elements, in case one of the
1513 ///   destructions throws an exception
1514 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1515                                   Destroyer *destroyer,
1516                                   bool useEHCleanupForArray) {
1517   const ArrayType *arrayType = getContext().getAsArrayType(type);
1518   if (!arrayType)
1519     return destroyer(*this, addr, type);
1520 
1521   llvm::Value *length = emitArrayLength(arrayType, type, addr);
1522 
1523   CharUnits elementAlign =
1524     addr.getAlignment()
1525         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1526 
1527   // Normally we have to check whether the array is zero-length.
1528   bool checkZeroLength = true;
1529 
1530   // But if the array length is constant, we can suppress that.
1531   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1532     // ...and if it's constant zero, we can just skip the entire thing.
1533     if (constLength->isZero()) return;
1534     checkZeroLength = false;
1535   }
1536 
1537   llvm::Value *begin = addr.getPointer();
1538   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1539   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1540                    checkZeroLength, useEHCleanupForArray);
1541 }
1542 
1543 /// emitArrayDestroy - Destroys all the elements of the given array,
1544 /// beginning from last to first.  The array cannot be zero-length.
1545 ///
1546 /// \param begin - a type* denoting the first element of the array
1547 /// \param end - a type* denoting one past the end of the array
1548 /// \param elementType - the element type of the array
1549 /// \param destroyer - the function to call to destroy elements
1550 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1551 ///   the remaining elements in case the destruction of a single
1552 ///   element throws
1553 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1554                                        llvm::Value *end,
1555                                        QualType elementType,
1556                                        CharUnits elementAlign,
1557                                        Destroyer *destroyer,
1558                                        bool checkZeroLength,
1559                                        bool useEHCleanup) {
1560   assert(!elementType->isArrayType());
1561 
1562   // The basic structure here is a do-while loop, because we don't
1563   // need to check for the zero-element case.
1564   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1565   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1566 
1567   if (checkZeroLength) {
1568     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1569                                                 "arraydestroy.isempty");
1570     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1571   }
1572 
1573   // Enter the loop body, making that address the current address.
1574   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1575   EmitBlock(bodyBB);
1576   llvm::PHINode *elementPast =
1577     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1578   elementPast->addIncoming(end, entryBB);
1579 
1580   // Shift the address back by one element.
1581   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1582   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1583                                                    "arraydestroy.element");
1584 
1585   if (useEHCleanup)
1586     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
1587                                    destroyer);
1588 
1589   // Perform the actual destruction there.
1590   destroyer(*this, Address(element, elementAlign), elementType);
1591 
1592   if (useEHCleanup)
1593     PopCleanupBlock();
1594 
1595   // Check whether we've reached the end.
1596   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1597   Builder.CreateCondBr(done, doneBB, bodyBB);
1598   elementPast->addIncoming(element, Builder.GetInsertBlock());
1599 
1600   // Done.
1601   EmitBlock(doneBB);
1602 }
1603 
1604 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1605 /// emitArrayDestroy, the element type here may still be an array type.
1606 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1607                                     llvm::Value *begin, llvm::Value *end,
1608                                     QualType type, CharUnits elementAlign,
1609                                     CodeGenFunction::Destroyer *destroyer) {
1610   // If the element type is itself an array, drill down.
1611   unsigned arrayDepth = 0;
1612   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1613     // VLAs don't require a GEP index to walk into.
1614     if (!isa<VariableArrayType>(arrayType))
1615       arrayDepth++;
1616     type = arrayType->getElementType();
1617   }
1618 
1619   if (arrayDepth) {
1620     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1621 
1622     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
1623     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1624     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1625   }
1626 
1627   // Destroy the array.  We don't ever need an EH cleanup because we
1628   // assume that we're in an EH cleanup ourselves, so a throwing
1629   // destructor causes an immediate terminate.
1630   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
1631                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1632 }
1633 
1634 namespace {
1635   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1636   /// array destroy where the end pointer is regularly determined and
1637   /// does not need to be loaded from a local.
1638   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1639     llvm::Value *ArrayBegin;
1640     llvm::Value *ArrayEnd;
1641     QualType ElementType;
1642     CodeGenFunction::Destroyer *Destroyer;
1643     CharUnits ElementAlign;
1644   public:
1645     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1646                                QualType elementType, CharUnits elementAlign,
1647                                CodeGenFunction::Destroyer *destroyer)
1648       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1649         ElementType(elementType), Destroyer(destroyer),
1650         ElementAlign(elementAlign) {}
1651 
1652     void Emit(CodeGenFunction &CGF, Flags flags) override {
1653       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1654                               ElementType, ElementAlign, Destroyer);
1655     }
1656   };
1657 
1658   /// IrregularPartialArrayDestroy - a cleanup which performs a
1659   /// partial array destroy where the end pointer is irregularly
1660   /// determined and must be loaded from a local.
1661   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
1662     llvm::Value *ArrayBegin;
1663     Address ArrayEndPointer;
1664     QualType ElementType;
1665     CodeGenFunction::Destroyer *Destroyer;
1666     CharUnits ElementAlign;
1667   public:
1668     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1669                                  Address arrayEndPointer,
1670                                  QualType elementType,
1671                                  CharUnits elementAlign,
1672                                  CodeGenFunction::Destroyer *destroyer)
1673       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1674         ElementType(elementType), Destroyer(destroyer),
1675         ElementAlign(elementAlign) {}
1676 
1677     void Emit(CodeGenFunction &CGF, Flags flags) override {
1678       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1679       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1680                               ElementType, ElementAlign, Destroyer);
1681     }
1682   };
1683 } // end anonymous namespace
1684 
1685 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1686 /// already-constructed elements of the given array.  The cleanup
1687 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1688 ///
1689 /// \param elementType - the immediate element type of the array;
1690 ///   possibly still an array type
1691 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1692                                                        Address arrayEndPointer,
1693                                                        QualType elementType,
1694                                                        CharUnits elementAlign,
1695                                                        Destroyer *destroyer) {
1696   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1697                                                     arrayBegin, arrayEndPointer,
1698                                                     elementType, elementAlign,
1699                                                     destroyer);
1700 }
1701 
1702 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1703 /// already-constructed elements of the given array.  The cleanup
1704 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1705 ///
1706 /// \param elementType - the immediate element type of the array;
1707 ///   possibly still an array type
1708 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1709                                                      llvm::Value *arrayEnd,
1710                                                      QualType elementType,
1711                                                      CharUnits elementAlign,
1712                                                      Destroyer *destroyer) {
1713   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1714                                                   arrayBegin, arrayEnd,
1715                                                   elementType, elementAlign,
1716                                                   destroyer);
1717 }
1718 
1719 /// Lazily declare the @llvm.lifetime.start intrinsic.
1720 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1721   if (LifetimeStartFn) return LifetimeStartFn;
1722   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1723                                             llvm::Intrinsic::lifetime_start);
1724   return LifetimeStartFn;
1725 }
1726 
1727 /// Lazily declare the @llvm.lifetime.end intrinsic.
1728 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1729   if (LifetimeEndFn) return LifetimeEndFn;
1730   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1731                                               llvm::Intrinsic::lifetime_end);
1732   return LifetimeEndFn;
1733 }
1734 
1735 namespace {
1736   /// A cleanup to perform a release of an object at the end of a
1737   /// function.  This is used to balance out the incoming +1 of a
1738   /// ns_consumed argument when we can't reasonably do that just by
1739   /// not doing the initial retain for a __block argument.
1740   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
1741     ConsumeARCParameter(llvm::Value *param,
1742                         ARCPreciseLifetime_t precise)
1743       : Param(param), Precise(precise) {}
1744 
1745     llvm::Value *Param;
1746     ARCPreciseLifetime_t Precise;
1747 
1748     void Emit(CodeGenFunction &CGF, Flags flags) override {
1749       CGF.EmitARCRelease(Param, Precise);
1750     }
1751   };
1752 } // end anonymous namespace
1753 
1754 /// Emit an alloca (or GlobalValue depending on target)
1755 /// for the specified parameter and set up LocalDeclMap.
1756 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
1757                                    unsigned ArgNo) {
1758   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1759   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1760          "Invalid argument to EmitParmDecl");
1761 
1762   Arg.getAnyValue()->setName(D.getName());
1763 
1764   QualType Ty = D.getType();
1765 
1766   // Use better IR generation for certain implicit parameters.
1767   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
1768     // The only implicit argument a block has is its literal.
1769     // We assume this is always passed directly.
1770     if (BlockInfo) {
1771       setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue());
1772       return;
1773     }
1774 
1775     // Apply any prologue 'this' adjustments required by the ABI. Be careful to
1776     // handle the case where 'this' is passed indirectly as part of an inalloca
1777     // struct.
1778     if (const CXXMethodDecl *MD =
1779             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1780       if (MD->isVirtual() && IPD == CXXABIThisDecl) {
1781         llvm::Value *This = Arg.isIndirect()
1782                                 ? Builder.CreateLoad(Arg.getIndirectAddress())
1783                                 : Arg.getDirectValue();
1784         This = CGM.getCXXABI().adjustThisParameterInVirtualFunctionPrologue(
1785             *this, CurGD, This);
1786         if (Arg.isIndirect())
1787           Builder.CreateStore(This, Arg.getIndirectAddress());
1788         else
1789           Arg = ParamValue::forDirect(This);
1790       }
1791     }
1792   }
1793 
1794   Address DeclPtr = Address::invalid();
1795   bool DoStore = false;
1796   bool IsScalar = hasScalarEvaluationKind(Ty);
1797   // If we already have a pointer to the argument, reuse the input pointer.
1798   if (Arg.isIndirect()) {
1799     DeclPtr = Arg.getIndirectAddress();
1800     // If we have a prettier pointer type at this point, bitcast to that.
1801     unsigned AS = DeclPtr.getType()->getAddressSpace();
1802     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1803     if (DeclPtr.getType() != IRTy)
1804       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
1805 
1806     // Push a destructor cleanup for this parameter if the ABI requires it.
1807     // Don't push a cleanup in a thunk for a method that will also emit a
1808     // cleanup.
1809     if (!IsScalar && !CurFuncIsThunk &&
1810         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1811       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1812       if (RD && RD->hasNonTrivialDestructor())
1813         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1814     }
1815   } else {
1816     // Otherwise, create a temporary to hold the value.
1817     DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
1818                             D.getName() + ".addr");
1819     DoStore = true;
1820   }
1821 
1822   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
1823 
1824   LValue lv = MakeAddrLValue(DeclPtr, Ty);
1825   if (IsScalar) {
1826     Qualifiers qs = Ty.getQualifiers();
1827     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1828       // We honor __attribute__((ns_consumed)) for types with lifetime.
1829       // For __strong, it's handled by just skipping the initial retain;
1830       // otherwise we have to balance out the initial +1 with an extra
1831       // cleanup to do the release at the end of the function.
1832       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1833 
1834       // 'self' is always formally __strong, but if this is not an
1835       // init method then we don't want to retain it.
1836       if (D.isARCPseudoStrong()) {
1837         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1838         assert(&D == method->getSelfDecl());
1839         assert(lt == Qualifiers::OCL_Strong);
1840         assert(qs.hasConst());
1841         assert(method->getMethodFamily() != OMF_init);
1842         (void) method;
1843         lt = Qualifiers::OCL_ExplicitNone;
1844       }
1845 
1846       if (lt == Qualifiers::OCL_Strong) {
1847         if (!isConsumed) {
1848           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1849             // use objc_storeStrong(&dest, value) for retaining the
1850             // object. But first, store a null into 'dest' because
1851             // objc_storeStrong attempts to release its old value.
1852             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1853             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1854             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
1855             DoStore = false;
1856           }
1857           else
1858           // Don't use objc_retainBlock for block pointers, because we
1859           // don't want to Block_copy something just because we got it
1860           // as a parameter.
1861             ArgVal = EmitARCRetainNonBlock(ArgVal);
1862         }
1863       } else {
1864         // Push the cleanup for a consumed parameter.
1865         if (isConsumed) {
1866           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1867                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1868           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
1869                                                    precise);
1870         }
1871 
1872         if (lt == Qualifiers::OCL_Weak) {
1873           EmitARCInitWeak(DeclPtr, ArgVal);
1874           DoStore = false; // The weak init is a store, no need to do two.
1875         }
1876       }
1877 
1878       // Enter the cleanup scope.
1879       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1880     }
1881   }
1882 
1883   // Store the initial value into the alloca.
1884   if (DoStore)
1885     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
1886 
1887   setAddrOfLocalVar(&D, DeclPtr);
1888 
1889   // Emit debug info for param declaration.
1890   if (CGDebugInfo *DI = getDebugInfo()) {
1891     if (CGM.getCodeGenOpts().getDebugInfo() >=
1892         codegenoptions::LimitedDebugInfo) {
1893       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
1894     }
1895   }
1896 
1897   if (D.hasAttr<AnnotateAttr>())
1898     EmitVarAnnotations(&D, DeclPtr.getPointer());
1899 }
1900 
1901 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
1902                                             CodeGenFunction *CGF) {
1903   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
1904     return;
1905   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
1906 }
1907