1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "CGOpenCLRuntime.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Type.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 33 void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::IndirectField: 49 case Decl::ObjCIvar: 50 case Decl::ObjCAtDefsField: 51 case Decl::ParmVar: 52 case Decl::ImplicitParam: 53 case Decl::ClassTemplate: 54 case Decl::FunctionTemplate: 55 case Decl::TypeAliasTemplate: 56 case Decl::TemplateTemplateParm: 57 case Decl::ObjCMethod: 58 case Decl::ObjCCategory: 59 case Decl::ObjCProtocol: 60 case Decl::ObjCInterface: 61 case Decl::ObjCCategoryImpl: 62 case Decl::ObjCImplementation: 63 case Decl::ObjCProperty: 64 case Decl::ObjCCompatibleAlias: 65 case Decl::AccessSpec: 66 case Decl::LinkageSpec: 67 case Decl::ObjCPropertyImpl: 68 case Decl::FileScopeAsm: 69 case Decl::Friend: 70 case Decl::FriendTemplate: 71 case Decl::Block: 72 case Decl::ClassScopeFunctionSpecialization: 73 llvm_unreachable("Declaration should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 case Decl::Import: 86 // None of these decls require codegen support. 87 return; 88 89 case Decl::Var: { 90 const VarDecl &VD = cast<VarDecl>(D); 91 assert(VD.isLocalVarDecl() && 92 "Should not see file-scope variables inside a function!"); 93 return EmitVarDecl(VD); 94 } 95 96 case Decl::Typedef: // typedef int X; 97 case Decl::TypeAlias: { // using X = int; [C++0x] 98 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 99 QualType Ty = TD.getUnderlyingType(); 100 101 if (Ty->isVariablyModifiedType()) 102 EmitVariablyModifiedType(Ty); 103 } 104 } 105 } 106 107 /// EmitVarDecl - This method handles emission of any variable declaration 108 /// inside a function, including static vars etc. 109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 110 switch (D.getStorageClass()) { 111 case SC_None: 112 case SC_Auto: 113 case SC_Register: 114 return EmitAutoVarDecl(D); 115 case SC_Static: { 116 llvm::GlobalValue::LinkageTypes Linkage = 117 llvm::GlobalValue::InternalLinkage; 118 119 // If the function definition has some sort of weak linkage, its 120 // static variables should also be weak so that they get properly 121 // uniqued. We can't do this in C, though, because there's no 122 // standard way to agree on which variables are the same (i.e. 123 // there's no mangling). 124 if (getContext().getLangOpts().CPlusPlus) 125 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 126 Linkage = CurFn->getLinkage(); 127 128 return EmitStaticVarDecl(D, Linkage); 129 } 130 case SC_Extern: 131 case SC_PrivateExtern: 132 // Don't emit it now, allow it to be emitted lazily on its first use. 133 return; 134 case SC_OpenCLWorkGroupLocal: 135 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 136 } 137 138 llvm_unreachable("Unknown storage class"); 139 } 140 141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 142 const char *Separator) { 143 CodeGenModule &CGM = CGF.CGM; 144 if (CGF.getContext().getLangOpts().CPlusPlus) { 145 StringRef Name = CGM.getMangledName(&D); 146 return Name.str(); 147 } 148 149 std::string ContextName; 150 if (!CGF.CurFuncDecl) { 151 // Better be in a block declared in global scope. 152 const NamedDecl *ND = cast<NamedDecl>(&D); 153 const DeclContext *DC = ND->getDeclContext(); 154 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 155 MangleBuffer Name; 156 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 157 ContextName = Name.getString(); 158 } 159 else 160 llvm_unreachable("Unknown context for block static var decl"); 161 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 162 StringRef Name = CGM.getMangledName(FD); 163 ContextName = Name.str(); 164 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 165 ContextName = CGF.CurFn->getName(); 166 else 167 llvm_unreachable("Unknown context for static var decl"); 168 169 return ContextName + Separator + D.getNameAsString(); 170 } 171 172 llvm::GlobalVariable * 173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 174 const char *Separator, 175 llvm::GlobalValue::LinkageTypes Linkage) { 176 QualType Ty = D.getType(); 177 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 178 179 // Use the label if the variable is renamed with the asm-label extension. 180 std::string Name; 181 if (D.hasAttr<AsmLabelAttr>()) 182 Name = CGM.getMangledName(&D); 183 else 184 Name = GetStaticDeclName(*this, D, Separator); 185 186 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 187 llvm::GlobalVariable *GV = 188 new llvm::GlobalVariable(CGM.getModule(), LTy, 189 Ty.isConstant(getContext()), Linkage, 190 CGM.EmitNullConstant(D.getType()), Name, 0, 191 llvm::GlobalVariable::NotThreadLocal, 192 CGM.getContext().getTargetAddressSpace(Ty)); 193 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 194 if (Linkage != llvm::GlobalValue::InternalLinkage) 195 GV->setVisibility(CurFn->getVisibility()); 196 197 if (D.isThreadSpecified()) 198 CGM.setTLSMode(GV, D); 199 200 return GV; 201 } 202 203 /// hasNontrivialDestruction - Determine whether a type's destruction is 204 /// non-trivial. If so, and the variable uses static initialization, we must 205 /// register its destructor to run on exit. 206 static bool hasNontrivialDestruction(QualType T) { 207 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 208 return RD && !RD->hasTrivialDestructor(); 209 } 210 211 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 212 /// global variable that has already been created for it. If the initializer 213 /// has a different type than GV does, this may free GV and return a different 214 /// one. Otherwise it just returns GV. 215 llvm::GlobalVariable * 216 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 217 llvm::GlobalVariable *GV) { 218 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 219 220 // If constant emission failed, then this should be a C++ static 221 // initializer. 222 if (!Init) { 223 if (!getContext().getLangOpts().CPlusPlus) 224 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 225 else if (Builder.GetInsertBlock()) { 226 // Since we have a static initializer, this global variable can't 227 // be constant. 228 GV->setConstant(false); 229 230 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 231 } 232 return GV; 233 } 234 235 // The initializer may differ in type from the global. Rewrite 236 // the global to match the initializer. (We have to do this 237 // because some types, like unions, can't be completely represented 238 // in the LLVM type system.) 239 if (GV->getType()->getElementType() != Init->getType()) { 240 llvm::GlobalVariable *OldGV = GV; 241 242 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 243 OldGV->isConstant(), 244 OldGV->getLinkage(), Init, "", 245 /*InsertBefore*/ OldGV, 246 OldGV->getThreadLocalMode(), 247 CGM.getContext().getTargetAddressSpace(D.getType())); 248 GV->setVisibility(OldGV->getVisibility()); 249 250 // Steal the name of the old global 251 GV->takeName(OldGV); 252 253 // Replace all uses of the old global with the new global 254 llvm::Constant *NewPtrForOldDecl = 255 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 256 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 257 258 // Erase the old global, since it is no longer used. 259 OldGV->eraseFromParent(); 260 } 261 262 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 263 GV->setInitializer(Init); 264 265 if (hasNontrivialDestruction(D.getType())) { 266 // We have a constant initializer, but a nontrivial destructor. We still 267 // need to perform a guarded "initialization" in order to register the 268 // destructor. 269 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 270 } 271 272 return GV; 273 } 274 275 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 276 llvm::GlobalValue::LinkageTypes Linkage) { 277 llvm::Value *&DMEntry = LocalDeclMap[&D]; 278 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 279 280 // Check to see if we already have a global variable for this 281 // declaration. This can happen when double-emitting function 282 // bodies, e.g. with complete and base constructors. 283 llvm::Constant *addr = 284 CGM.getStaticLocalDeclAddress(&D); 285 286 llvm::GlobalVariable *var; 287 if (addr) { 288 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 289 } else { 290 addr = var = CreateStaticVarDecl(D, ".", Linkage); 291 } 292 293 // Store into LocalDeclMap before generating initializer to handle 294 // circular references. 295 DMEntry = addr; 296 CGM.setStaticLocalDeclAddress(&D, addr); 297 298 // We can't have a VLA here, but we can have a pointer to a VLA, 299 // even though that doesn't really make any sense. 300 // Make sure to evaluate VLA bounds now so that we have them for later. 301 if (D.getType()->isVariablyModifiedType()) 302 EmitVariablyModifiedType(D.getType()); 303 304 // Save the type in case adding the initializer forces a type change. 305 llvm::Type *expectedType = addr->getType(); 306 307 // If this value has an initializer, emit it. 308 if (D.getInit()) 309 var = AddInitializerToStaticVarDecl(D, var); 310 311 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 312 313 if (D.hasAttr<AnnotateAttr>()) 314 CGM.AddGlobalAnnotations(&D, var); 315 316 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 317 var->setSection(SA->getName()); 318 319 if (D.hasAttr<UsedAttr>()) 320 CGM.AddUsedGlobal(var); 321 322 // We may have to cast the constant because of the initializer 323 // mismatch above. 324 // 325 // FIXME: It is really dangerous to store this in the map; if anyone 326 // RAUW's the GV uses of this constant will be invalid. 327 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType); 328 DMEntry = castedAddr; 329 CGM.setStaticLocalDeclAddress(&D, castedAddr); 330 331 // Emit global variable debug descriptor for static vars. 332 CGDebugInfo *DI = getDebugInfo(); 333 if (DI && 334 CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) { 335 DI->setLocation(D.getLocation()); 336 DI->EmitGlobalVariable(var, &D); 337 } 338 } 339 340 namespace { 341 struct DestroyObject : EHScopeStack::Cleanup { 342 DestroyObject(llvm::Value *addr, QualType type, 343 CodeGenFunction::Destroyer *destroyer, 344 bool useEHCleanupForArray) 345 : addr(addr), type(type), destroyer(destroyer), 346 useEHCleanupForArray(useEHCleanupForArray) {} 347 348 llvm::Value *addr; 349 QualType type; 350 CodeGenFunction::Destroyer *destroyer; 351 bool useEHCleanupForArray; 352 353 void Emit(CodeGenFunction &CGF, Flags flags) { 354 // Don't use an EH cleanup recursively from an EH cleanup. 355 bool useEHCleanupForArray = 356 flags.isForNormalCleanup() && this->useEHCleanupForArray; 357 358 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 359 } 360 }; 361 362 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 363 DestroyNRVOVariable(llvm::Value *addr, 364 const CXXDestructorDecl *Dtor, 365 llvm::Value *NRVOFlag) 366 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 367 368 const CXXDestructorDecl *Dtor; 369 llvm::Value *NRVOFlag; 370 llvm::Value *Loc; 371 372 void Emit(CodeGenFunction &CGF, Flags flags) { 373 // Along the exceptions path we always execute the dtor. 374 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 375 376 llvm::BasicBlock *SkipDtorBB = 0; 377 if (NRVO) { 378 // If we exited via NRVO, we skip the destructor call. 379 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 380 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 381 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 382 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 383 CGF.EmitBlock(RunDtorBB); 384 } 385 386 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 387 /*ForVirtualBase=*/false, Loc); 388 389 if (NRVO) CGF.EmitBlock(SkipDtorBB); 390 } 391 }; 392 393 struct CallStackRestore : EHScopeStack::Cleanup { 394 llvm::Value *Stack; 395 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 396 void Emit(CodeGenFunction &CGF, Flags flags) { 397 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 398 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 399 CGF.Builder.CreateCall(F, V); 400 } 401 }; 402 403 struct ExtendGCLifetime : EHScopeStack::Cleanup { 404 const VarDecl &Var; 405 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 406 407 void Emit(CodeGenFunction &CGF, Flags flags) { 408 // Compute the address of the local variable, in case it's a 409 // byref or something. 410 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 411 Var.getType(), VK_LValue, SourceLocation()); 412 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 413 CGF.EmitExtendGCLifetime(value); 414 } 415 }; 416 417 struct CallCleanupFunction : EHScopeStack::Cleanup { 418 llvm::Constant *CleanupFn; 419 const CGFunctionInfo &FnInfo; 420 const VarDecl &Var; 421 422 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 423 const VarDecl *Var) 424 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 425 426 void Emit(CodeGenFunction &CGF, Flags flags) { 427 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 428 Var.getType(), VK_LValue, SourceLocation()); 429 // Compute the address of the local variable, in case it's a byref 430 // or something. 431 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 432 433 // In some cases, the type of the function argument will be different from 434 // the type of the pointer. An example of this is 435 // void f(void* arg); 436 // __attribute__((cleanup(f))) void *g; 437 // 438 // To fix this we insert a bitcast here. 439 QualType ArgTy = FnInfo.arg_begin()->type; 440 llvm::Value *Arg = 441 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 442 443 CallArgList Args; 444 Args.add(RValue::get(Arg), 445 CGF.getContext().getPointerType(Var.getType())); 446 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 447 } 448 }; 449 } 450 451 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 452 /// variable with lifetime. 453 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 454 llvm::Value *addr, 455 Qualifiers::ObjCLifetime lifetime) { 456 switch (lifetime) { 457 case Qualifiers::OCL_None: 458 llvm_unreachable("present but none"); 459 460 case Qualifiers::OCL_ExplicitNone: 461 // nothing to do 462 break; 463 464 case Qualifiers::OCL_Strong: { 465 CodeGenFunction::Destroyer *destroyer = 466 (var.hasAttr<ObjCPreciseLifetimeAttr>() 467 ? CodeGenFunction::destroyARCStrongPrecise 468 : CodeGenFunction::destroyARCStrongImprecise); 469 470 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 471 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 472 cleanupKind & EHCleanup); 473 break; 474 } 475 case Qualifiers::OCL_Autoreleasing: 476 // nothing to do 477 break; 478 479 case Qualifiers::OCL_Weak: 480 // __weak objects always get EH cleanups; otherwise, exceptions 481 // could cause really nasty crashes instead of mere leaks. 482 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 483 CodeGenFunction::destroyARCWeak, 484 /*useEHCleanup*/ true); 485 break; 486 } 487 } 488 489 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 490 if (const Expr *e = dyn_cast<Expr>(s)) { 491 // Skip the most common kinds of expressions that make 492 // hierarchy-walking expensive. 493 s = e = e->IgnoreParenCasts(); 494 495 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 496 return (ref->getDecl() == &var); 497 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 498 const BlockDecl *block = be->getBlockDecl(); 499 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 500 e = block->capture_end(); i != e; ++i) { 501 if (i->getVariable() == &var) 502 return true; 503 } 504 } 505 } 506 507 for (Stmt::const_child_range children = s->children(); children; ++children) 508 // children might be null; as in missing decl or conditional of an if-stmt. 509 if ((*children) && isAccessedBy(var, *children)) 510 return true; 511 512 return false; 513 } 514 515 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 516 if (!decl) return false; 517 if (!isa<VarDecl>(decl)) return false; 518 const VarDecl *var = cast<VarDecl>(decl); 519 return isAccessedBy(*var, e); 520 } 521 522 static void drillIntoBlockVariable(CodeGenFunction &CGF, 523 LValue &lvalue, 524 const VarDecl *var) { 525 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 526 } 527 528 void CodeGenFunction::EmitScalarInit(const Expr *init, 529 const ValueDecl *D, 530 LValue lvalue, 531 bool capturedByInit) { 532 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 533 if (!lifetime) { 534 llvm::Value *value = EmitScalarExpr(init); 535 if (capturedByInit) 536 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 537 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 538 return; 539 } 540 541 // If we're emitting a value with lifetime, we have to do the 542 // initialization *before* we leave the cleanup scopes. 543 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 544 enterFullExpression(ewc); 545 init = ewc->getSubExpr(); 546 } 547 CodeGenFunction::RunCleanupsScope Scope(*this); 548 549 // We have to maintain the illusion that the variable is 550 // zero-initialized. If the variable might be accessed in its 551 // initializer, zero-initialize before running the initializer, then 552 // actually perform the initialization with an assign. 553 bool accessedByInit = false; 554 if (lifetime != Qualifiers::OCL_ExplicitNone) 555 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 556 if (accessedByInit) { 557 LValue tempLV = lvalue; 558 // Drill down to the __block object if necessary. 559 if (capturedByInit) { 560 // We can use a simple GEP for this because it can't have been 561 // moved yet. 562 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 563 getByRefValueLLVMField(cast<VarDecl>(D)))); 564 } 565 566 llvm::PointerType *ty 567 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 568 ty = cast<llvm::PointerType>(ty->getElementType()); 569 570 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 571 572 // If __weak, we want to use a barrier under certain conditions. 573 if (lifetime == Qualifiers::OCL_Weak) 574 EmitARCInitWeak(tempLV.getAddress(), zero); 575 576 // Otherwise just do a simple store. 577 else 578 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 579 } 580 581 // Emit the initializer. 582 llvm::Value *value = 0; 583 584 switch (lifetime) { 585 case Qualifiers::OCL_None: 586 llvm_unreachable("present but none"); 587 588 case Qualifiers::OCL_ExplicitNone: 589 // nothing to do 590 value = EmitScalarExpr(init); 591 break; 592 593 case Qualifiers::OCL_Strong: { 594 value = EmitARCRetainScalarExpr(init); 595 break; 596 } 597 598 case Qualifiers::OCL_Weak: { 599 // No way to optimize a producing initializer into this. It's not 600 // worth optimizing for, because the value will immediately 601 // disappear in the common case. 602 value = EmitScalarExpr(init); 603 604 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 605 if (accessedByInit) 606 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 607 else 608 EmitARCInitWeak(lvalue.getAddress(), value); 609 return; 610 } 611 612 case Qualifiers::OCL_Autoreleasing: 613 value = EmitARCRetainAutoreleaseScalarExpr(init); 614 break; 615 } 616 617 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 618 619 // If the variable might have been accessed by its initializer, we 620 // might have to initialize with a barrier. We have to do this for 621 // both __weak and __strong, but __weak got filtered out above. 622 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 623 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 624 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 625 EmitARCRelease(oldValue, /*precise*/ false); 626 return; 627 } 628 629 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 630 } 631 632 /// EmitScalarInit - Initialize the given lvalue with the given object. 633 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 634 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 635 if (!lifetime) 636 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 637 638 switch (lifetime) { 639 case Qualifiers::OCL_None: 640 llvm_unreachable("present but none"); 641 642 case Qualifiers::OCL_ExplicitNone: 643 // nothing to do 644 break; 645 646 case Qualifiers::OCL_Strong: 647 init = EmitARCRetain(lvalue.getType(), init); 648 break; 649 650 case Qualifiers::OCL_Weak: 651 // Initialize and then skip the primitive store. 652 EmitARCInitWeak(lvalue.getAddress(), init); 653 return; 654 655 case Qualifiers::OCL_Autoreleasing: 656 init = EmitARCRetainAutorelease(lvalue.getType(), init); 657 break; 658 } 659 660 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 661 } 662 663 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 664 /// non-zero parts of the specified initializer with equal or fewer than 665 /// NumStores scalar stores. 666 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 667 unsigned &NumStores) { 668 // Zero and Undef never requires any extra stores. 669 if (isa<llvm::ConstantAggregateZero>(Init) || 670 isa<llvm::ConstantPointerNull>(Init) || 671 isa<llvm::UndefValue>(Init)) 672 return true; 673 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 674 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 675 isa<llvm::ConstantExpr>(Init)) 676 return Init->isNullValue() || NumStores--; 677 678 // See if we can emit each element. 679 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 680 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 681 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 682 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 683 return false; 684 } 685 return true; 686 } 687 688 if (llvm::ConstantDataSequential *CDS = 689 dyn_cast<llvm::ConstantDataSequential>(Init)) { 690 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 691 llvm::Constant *Elt = CDS->getElementAsConstant(i); 692 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 693 return false; 694 } 695 return true; 696 } 697 698 // Anything else is hard and scary. 699 return false; 700 } 701 702 /// emitStoresForInitAfterMemset - For inits that 703 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 704 /// stores that would be required. 705 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 706 bool isVolatile, CGBuilderTy &Builder) { 707 // Zero doesn't require a store. 708 if (Init->isNullValue() || isa<llvm::UndefValue>(Init)) 709 return; 710 711 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 712 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 713 isa<llvm::ConstantExpr>(Init)) { 714 Builder.CreateStore(Init, Loc, isVolatile); 715 return; 716 } 717 718 if (llvm::ConstantDataSequential *CDS = 719 dyn_cast<llvm::ConstantDataSequential>(Init)) { 720 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 721 llvm::Constant *Elt = CDS->getElementAsConstant(i); 722 723 // Get a pointer to the element and emit it. 724 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 725 isVolatile, Builder); 726 } 727 return; 728 } 729 730 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 731 "Unknown value type!"); 732 733 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 734 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 735 // Get a pointer to the element and emit it. 736 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 737 isVolatile, Builder); 738 } 739 } 740 741 742 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 743 /// plus some stores to initialize a local variable instead of using a memcpy 744 /// from a constant global. It is beneficial to use memset if the global is all 745 /// zeros, or mostly zeros and large. 746 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 747 uint64_t GlobalSize) { 748 // If a global is all zeros, always use a memset. 749 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 750 751 752 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 753 // do it if it will require 6 or fewer scalar stores. 754 // TODO: Should budget depends on the size? Avoiding a large global warrants 755 // plopping in more stores. 756 unsigned StoreBudget = 6; 757 uint64_t SizeLimit = 32; 758 759 return GlobalSize > SizeLimit && 760 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 761 } 762 763 764 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 765 /// variable declaration with auto, register, or no storage class specifier. 766 /// These turn into simple stack objects, or GlobalValues depending on target. 767 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 768 AutoVarEmission emission = EmitAutoVarAlloca(D); 769 EmitAutoVarInit(emission); 770 EmitAutoVarCleanups(emission); 771 } 772 773 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 774 /// local variable. Does not emit initalization or destruction. 775 CodeGenFunction::AutoVarEmission 776 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 777 QualType Ty = D.getType(); 778 779 AutoVarEmission emission(D); 780 781 bool isByRef = D.hasAttr<BlocksAttr>(); 782 emission.IsByRef = isByRef; 783 784 CharUnits alignment = getContext().getDeclAlign(&D); 785 emission.Alignment = alignment; 786 787 // If the type is variably-modified, emit all the VLA sizes for it. 788 if (Ty->isVariablyModifiedType()) 789 EmitVariablyModifiedType(Ty); 790 791 llvm::Value *DeclPtr; 792 if (Ty->isConstantSizeType()) { 793 if (!Target.useGlobalsForAutomaticVariables()) { 794 bool NRVO = getContext().getLangOpts().ElideConstructors && 795 D.isNRVOVariable(); 796 797 // If this value is a POD array or struct with a statically 798 // determinable constant initializer, there are optimizations we can do. 799 // 800 // TODO: We should constant-evaluate the initializer of any variable, 801 // as long as it is initialized by a constant expression. Currently, 802 // isConstantInitializer produces wrong answers for structs with 803 // reference or bitfield members, and a few other cases, and checking 804 // for POD-ness protects us from some of these. 805 if (D.getInit() && 806 (Ty->isArrayType() || Ty->isRecordType()) && 807 (Ty.isPODType(getContext()) || 808 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 809 D.getInit()->isConstantInitializer(getContext(), false)) { 810 811 // If the variable's a const type, and it's neither an NRVO 812 // candidate nor a __block variable and has no mutable members, 813 // emit it as a global instead. 814 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 815 CGM.isTypeConstant(Ty, true)) { 816 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 817 818 emission.Address = 0; // signal this condition to later callbacks 819 assert(emission.wasEmittedAsGlobal()); 820 return emission; 821 } 822 823 // Otherwise, tell the initialization code that we're in this case. 824 emission.IsConstantAggregate = true; 825 } 826 827 // A normal fixed sized variable becomes an alloca in the entry block, 828 // unless it's an NRVO variable. 829 llvm::Type *LTy = ConvertTypeForMem(Ty); 830 831 if (NRVO) { 832 // The named return value optimization: allocate this variable in the 833 // return slot, so that we can elide the copy when returning this 834 // variable (C++0x [class.copy]p34). 835 DeclPtr = ReturnValue; 836 837 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 838 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 839 // Create a flag that is used to indicate when the NRVO was applied 840 // to this variable. Set it to zero to indicate that NRVO was not 841 // applied. 842 llvm::Value *Zero = Builder.getFalse(); 843 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 844 EnsureInsertPoint(); 845 Builder.CreateStore(Zero, NRVOFlag); 846 847 // Record the NRVO flag for this variable. 848 NRVOFlags[&D] = NRVOFlag; 849 emission.NRVOFlag = NRVOFlag; 850 } 851 } 852 } else { 853 if (isByRef) 854 LTy = BuildByRefType(&D); 855 856 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 857 Alloc->setName(D.getName()); 858 859 CharUnits allocaAlignment = alignment; 860 if (isByRef) 861 allocaAlignment = std::max(allocaAlignment, 862 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 863 Alloc->setAlignment(allocaAlignment.getQuantity()); 864 DeclPtr = Alloc; 865 } 866 } else { 867 // Targets that don't support recursion emit locals as globals. 868 const char *Class = 869 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 870 DeclPtr = CreateStaticVarDecl(D, Class, 871 llvm::GlobalValue::InternalLinkage); 872 } 873 } else { 874 EnsureInsertPoint(); 875 876 if (!DidCallStackSave) { 877 // Save the stack. 878 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 879 880 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 881 llvm::Value *V = Builder.CreateCall(F); 882 883 Builder.CreateStore(V, Stack); 884 885 DidCallStackSave = true; 886 887 // Push a cleanup block and restore the stack there. 888 // FIXME: in general circumstances, this should be an EH cleanup. 889 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 890 } 891 892 llvm::Value *elementCount; 893 QualType elementType; 894 llvm::tie(elementCount, elementType) = getVLASize(Ty); 895 896 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 897 898 // Allocate memory for the array. 899 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 900 vla->setAlignment(alignment.getQuantity()); 901 902 DeclPtr = vla; 903 } 904 905 llvm::Value *&DMEntry = LocalDeclMap[&D]; 906 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 907 DMEntry = DeclPtr; 908 emission.Address = DeclPtr; 909 910 // Emit debug info for local var declaration. 911 if (HaveInsertPoint()) 912 if (CGDebugInfo *DI = getDebugInfo()) { 913 if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) { 914 DI->setLocation(D.getLocation()); 915 if (Target.useGlobalsForAutomaticVariables()) { 916 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), 917 &D); 918 } else 919 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 920 } 921 } 922 923 if (D.hasAttr<AnnotateAttr>()) 924 EmitVarAnnotations(&D, emission.Address); 925 926 return emission; 927 } 928 929 /// Determines whether the given __block variable is potentially 930 /// captured by the given expression. 931 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 932 // Skip the most common kinds of expressions that make 933 // hierarchy-walking expensive. 934 e = e->IgnoreParenCasts(); 935 936 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 937 const BlockDecl *block = be->getBlockDecl(); 938 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 939 e = block->capture_end(); i != e; ++i) { 940 if (i->getVariable() == &var) 941 return true; 942 } 943 944 // No need to walk into the subexpressions. 945 return false; 946 } 947 948 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 949 const CompoundStmt *CS = SE->getSubStmt(); 950 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 951 BE = CS->body_end(); BI != BE; ++BI) 952 if (Expr *E = dyn_cast<Expr>((*BI))) { 953 if (isCapturedBy(var, E)) 954 return true; 955 } 956 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 957 // special case declarations 958 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 959 I != E; ++I) { 960 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 961 Expr *Init = VD->getInit(); 962 if (Init && isCapturedBy(var, Init)) 963 return true; 964 } 965 } 966 } 967 else 968 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 969 // Later, provide code to poke into statements for capture analysis. 970 return true; 971 return false; 972 } 973 974 for (Stmt::const_child_range children = e->children(); children; ++children) 975 if (isCapturedBy(var, cast<Expr>(*children))) 976 return true; 977 978 return false; 979 } 980 981 /// \brief Determine whether the given initializer is trivial in the sense 982 /// that it requires no code to be generated. 983 static bool isTrivialInitializer(const Expr *Init) { 984 if (!Init) 985 return true; 986 987 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 988 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 989 if (Constructor->isTrivial() && 990 Constructor->isDefaultConstructor() && 991 !Construct->requiresZeroInitialization()) 992 return true; 993 994 return false; 995 } 996 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 997 assert(emission.Variable && "emission was not valid!"); 998 999 // If this was emitted as a global constant, we're done. 1000 if (emission.wasEmittedAsGlobal()) return; 1001 1002 const VarDecl &D = *emission.Variable; 1003 QualType type = D.getType(); 1004 1005 // If this local has an initializer, emit it now. 1006 const Expr *Init = D.getInit(); 1007 1008 // If we are at an unreachable point, we don't need to emit the initializer 1009 // unless it contains a label. 1010 if (!HaveInsertPoint()) { 1011 if (!Init || !ContainsLabel(Init)) return; 1012 EnsureInsertPoint(); 1013 } 1014 1015 // Initialize the structure of a __block variable. 1016 if (emission.IsByRef) 1017 emitByrefStructureInit(emission); 1018 1019 if (isTrivialInitializer(Init)) 1020 return; 1021 1022 CharUnits alignment = emission.Alignment; 1023 1024 // Check whether this is a byref variable that's potentially 1025 // captured and moved by its own initializer. If so, we'll need to 1026 // emit the initializer first, then copy into the variable. 1027 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1028 1029 llvm::Value *Loc = 1030 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1031 1032 llvm::Constant *constant = 0; 1033 if (emission.IsConstantAggregate) { 1034 assert(!capturedByInit && "constant init contains a capturing block?"); 1035 constant = CGM.EmitConstantInit(D, this); 1036 } 1037 1038 if (!constant) { 1039 LValue lv = MakeAddrLValue(Loc, type, alignment); 1040 lv.setNonGC(true); 1041 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1042 } 1043 1044 // If this is a simple aggregate initialization, we can optimize it 1045 // in various ways. 1046 bool isVolatile = type.isVolatileQualified(); 1047 1048 llvm::Value *SizeVal = 1049 llvm::ConstantInt::get(IntPtrTy, 1050 getContext().getTypeSizeInChars(type).getQuantity()); 1051 1052 llvm::Type *BP = Int8PtrTy; 1053 if (Loc->getType() != BP) 1054 Loc = Builder.CreateBitCast(Loc, BP); 1055 1056 // If the initializer is all or mostly zeros, codegen with memset then do 1057 // a few stores afterward. 1058 if (shouldUseMemSetPlusStoresToInitialize(constant, 1059 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 1060 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1061 alignment.getQuantity(), isVolatile); 1062 if (!constant->isNullValue()) { 1063 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1064 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1065 } 1066 } else { 1067 // Otherwise, create a temporary global with the initializer then 1068 // memcpy from the global to the alloca. 1069 std::string Name = GetStaticDeclName(*this, D, "."); 1070 llvm::GlobalVariable *GV = 1071 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1072 llvm::GlobalValue::PrivateLinkage, 1073 constant, Name); 1074 GV->setAlignment(alignment.getQuantity()); 1075 GV->setUnnamedAddr(true); 1076 1077 llvm::Value *SrcPtr = GV; 1078 if (SrcPtr->getType() != BP) 1079 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1080 1081 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1082 isVolatile); 1083 } 1084 } 1085 1086 /// Emit an expression as an initializer for a variable at the given 1087 /// location. The expression is not necessarily the normal 1088 /// initializer for the variable, and the address is not necessarily 1089 /// its normal location. 1090 /// 1091 /// \param init the initializing expression 1092 /// \param var the variable to act as if we're initializing 1093 /// \param loc the address to initialize; its type is a pointer 1094 /// to the LLVM mapping of the variable's type 1095 /// \param alignment the alignment of the address 1096 /// \param capturedByInit true if the variable is a __block variable 1097 /// whose address is potentially changed by the initializer 1098 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1099 const ValueDecl *D, 1100 LValue lvalue, 1101 bool capturedByInit) { 1102 QualType type = D->getType(); 1103 1104 if (type->isReferenceType()) { 1105 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1106 if (capturedByInit) 1107 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1108 EmitStoreThroughLValue(rvalue, lvalue, true); 1109 } else if (!hasAggregateLLVMType(type)) { 1110 EmitScalarInit(init, D, lvalue, capturedByInit); 1111 } else if (type->isAnyComplexType()) { 1112 ComplexPairTy complex = EmitComplexExpr(init); 1113 if (capturedByInit) 1114 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1115 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile()); 1116 } else { 1117 // TODO: how can we delay here if D is captured by its initializer? 1118 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1119 AggValueSlot::IsDestructed, 1120 AggValueSlot::DoesNotNeedGCBarriers, 1121 AggValueSlot::IsNotAliased)); 1122 MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init); 1123 } 1124 } 1125 1126 /// Enter a destroy cleanup for the given local variable. 1127 void CodeGenFunction::emitAutoVarTypeCleanup( 1128 const CodeGenFunction::AutoVarEmission &emission, 1129 QualType::DestructionKind dtorKind) { 1130 assert(dtorKind != QualType::DK_none); 1131 1132 // Note that for __block variables, we want to destroy the 1133 // original stack object, not the possibly forwarded object. 1134 llvm::Value *addr = emission.getObjectAddress(*this); 1135 1136 const VarDecl *var = emission.Variable; 1137 QualType type = var->getType(); 1138 1139 CleanupKind cleanupKind = NormalAndEHCleanup; 1140 CodeGenFunction::Destroyer *destroyer = 0; 1141 1142 switch (dtorKind) { 1143 case QualType::DK_none: 1144 llvm_unreachable("no cleanup for trivially-destructible variable"); 1145 1146 case QualType::DK_cxx_destructor: 1147 // If there's an NRVO flag on the emission, we need a different 1148 // cleanup. 1149 if (emission.NRVOFlag) { 1150 assert(!type->isArrayType()); 1151 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1152 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1153 emission.NRVOFlag); 1154 return; 1155 } 1156 break; 1157 1158 case QualType::DK_objc_strong_lifetime: 1159 // Suppress cleanups for pseudo-strong variables. 1160 if (var->isARCPseudoStrong()) return; 1161 1162 // Otherwise, consider whether to use an EH cleanup or not. 1163 cleanupKind = getARCCleanupKind(); 1164 1165 // Use the imprecise destroyer by default. 1166 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1167 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1168 break; 1169 1170 case QualType::DK_objc_weak_lifetime: 1171 break; 1172 } 1173 1174 // If we haven't chosen a more specific destroyer, use the default. 1175 if (!destroyer) destroyer = getDestroyer(dtorKind); 1176 1177 // Use an EH cleanup in array destructors iff the destructor itself 1178 // is being pushed as an EH cleanup. 1179 bool useEHCleanup = (cleanupKind & EHCleanup); 1180 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1181 useEHCleanup); 1182 } 1183 1184 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1185 assert(emission.Variable && "emission was not valid!"); 1186 1187 // If this was emitted as a global constant, we're done. 1188 if (emission.wasEmittedAsGlobal()) return; 1189 1190 // If we don't have an insertion point, we're done. Sema prevents 1191 // us from jumping into any of these scopes anyway. 1192 if (!HaveInsertPoint()) return; 1193 1194 const VarDecl &D = *emission.Variable; 1195 1196 // Check the type for a cleanup. 1197 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1198 emitAutoVarTypeCleanup(emission, dtorKind); 1199 1200 // In GC mode, honor objc_precise_lifetime. 1201 if (getLangOpts().getGC() != LangOptions::NonGC && 1202 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1203 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1204 } 1205 1206 // Handle the cleanup attribute. 1207 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1208 const FunctionDecl *FD = CA->getFunctionDecl(); 1209 1210 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1211 assert(F && "Could not find function!"); 1212 1213 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1214 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1215 } 1216 1217 // If this is a block variable, call _Block_object_destroy 1218 // (on the unforwarded address). 1219 if (emission.IsByRef) 1220 enterByrefCleanup(emission); 1221 } 1222 1223 CodeGenFunction::Destroyer * 1224 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1225 switch (kind) { 1226 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1227 case QualType::DK_cxx_destructor: 1228 return destroyCXXObject; 1229 case QualType::DK_objc_strong_lifetime: 1230 return destroyARCStrongPrecise; 1231 case QualType::DK_objc_weak_lifetime: 1232 return destroyARCWeak; 1233 } 1234 llvm_unreachable("Unknown DestructionKind"); 1235 } 1236 1237 /// pushDestroy - Push the standard destructor for the given type. 1238 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1239 llvm::Value *addr, QualType type) { 1240 assert(dtorKind && "cannot push destructor for trivial type"); 1241 1242 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1243 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1244 cleanupKind & EHCleanup); 1245 } 1246 1247 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1248 QualType type, Destroyer *destroyer, 1249 bool useEHCleanupForArray) { 1250 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1251 destroyer, useEHCleanupForArray); 1252 } 1253 1254 /// emitDestroy - Immediately perform the destruction of the given 1255 /// object. 1256 /// 1257 /// \param addr - the address of the object; a type* 1258 /// \param type - the type of the object; if an array type, all 1259 /// objects are destroyed in reverse order 1260 /// \param destroyer - the function to call to destroy individual 1261 /// elements 1262 /// \param useEHCleanupForArray - whether an EH cleanup should be 1263 /// used when destroying array elements, in case one of the 1264 /// destructions throws an exception 1265 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1266 Destroyer *destroyer, 1267 bool useEHCleanupForArray) { 1268 const ArrayType *arrayType = getContext().getAsArrayType(type); 1269 if (!arrayType) 1270 return destroyer(*this, addr, type); 1271 1272 llvm::Value *begin = addr; 1273 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1274 1275 // Normally we have to check whether the array is zero-length. 1276 bool checkZeroLength = true; 1277 1278 // But if the array length is constant, we can suppress that. 1279 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1280 // ...and if it's constant zero, we can just skip the entire thing. 1281 if (constLength->isZero()) return; 1282 checkZeroLength = false; 1283 } 1284 1285 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1286 emitArrayDestroy(begin, end, type, destroyer, 1287 checkZeroLength, useEHCleanupForArray); 1288 } 1289 1290 /// emitArrayDestroy - Destroys all the elements of the given array, 1291 /// beginning from last to first. The array cannot be zero-length. 1292 /// 1293 /// \param begin - a type* denoting the first element of the array 1294 /// \param end - a type* denoting one past the end of the array 1295 /// \param type - the element type of the array 1296 /// \param destroyer - the function to call to destroy elements 1297 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1298 /// the remaining elements in case the destruction of a single 1299 /// element throws 1300 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1301 llvm::Value *end, 1302 QualType type, 1303 Destroyer *destroyer, 1304 bool checkZeroLength, 1305 bool useEHCleanup) { 1306 assert(!type->isArrayType()); 1307 1308 // The basic structure here is a do-while loop, because we don't 1309 // need to check for the zero-element case. 1310 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1311 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1312 1313 if (checkZeroLength) { 1314 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1315 "arraydestroy.isempty"); 1316 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1317 } 1318 1319 // Enter the loop body, making that address the current address. 1320 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1321 EmitBlock(bodyBB); 1322 llvm::PHINode *elementPast = 1323 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1324 elementPast->addIncoming(end, entryBB); 1325 1326 // Shift the address back by one element. 1327 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1328 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1329 "arraydestroy.element"); 1330 1331 if (useEHCleanup) 1332 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1333 1334 // Perform the actual destruction there. 1335 destroyer(*this, element, type); 1336 1337 if (useEHCleanup) 1338 PopCleanupBlock(); 1339 1340 // Check whether we've reached the end. 1341 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1342 Builder.CreateCondBr(done, doneBB, bodyBB); 1343 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1344 1345 // Done. 1346 EmitBlock(doneBB); 1347 } 1348 1349 /// Perform partial array destruction as if in an EH cleanup. Unlike 1350 /// emitArrayDestroy, the element type here may still be an array type. 1351 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1352 llvm::Value *begin, llvm::Value *end, 1353 QualType type, 1354 CodeGenFunction::Destroyer *destroyer) { 1355 // If the element type is itself an array, drill down. 1356 unsigned arrayDepth = 0; 1357 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1358 // VLAs don't require a GEP index to walk into. 1359 if (!isa<VariableArrayType>(arrayType)) 1360 arrayDepth++; 1361 type = arrayType->getElementType(); 1362 } 1363 1364 if (arrayDepth) { 1365 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1366 1367 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1368 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1369 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1370 } 1371 1372 // Destroy the array. We don't ever need an EH cleanup because we 1373 // assume that we're in an EH cleanup ourselves, so a throwing 1374 // destructor causes an immediate terminate. 1375 CGF.emitArrayDestroy(begin, end, type, destroyer, 1376 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1377 } 1378 1379 namespace { 1380 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1381 /// array destroy where the end pointer is regularly determined and 1382 /// does not need to be loaded from a local. 1383 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1384 llvm::Value *ArrayBegin; 1385 llvm::Value *ArrayEnd; 1386 QualType ElementType; 1387 CodeGenFunction::Destroyer *Destroyer; 1388 public: 1389 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1390 QualType elementType, 1391 CodeGenFunction::Destroyer *destroyer) 1392 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1393 ElementType(elementType), Destroyer(destroyer) {} 1394 1395 void Emit(CodeGenFunction &CGF, Flags flags) { 1396 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1397 ElementType, Destroyer); 1398 } 1399 }; 1400 1401 /// IrregularPartialArrayDestroy - a cleanup which performs a 1402 /// partial array destroy where the end pointer is irregularly 1403 /// determined and must be loaded from a local. 1404 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1405 llvm::Value *ArrayBegin; 1406 llvm::Value *ArrayEndPointer; 1407 QualType ElementType; 1408 CodeGenFunction::Destroyer *Destroyer; 1409 public: 1410 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1411 llvm::Value *arrayEndPointer, 1412 QualType elementType, 1413 CodeGenFunction::Destroyer *destroyer) 1414 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1415 ElementType(elementType), Destroyer(destroyer) {} 1416 1417 void Emit(CodeGenFunction &CGF, Flags flags) { 1418 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1419 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1420 ElementType, Destroyer); 1421 } 1422 }; 1423 } 1424 1425 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1426 /// already-constructed elements of the given array. The cleanup 1427 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1428 /// 1429 /// \param elementType - the immediate element type of the array; 1430 /// possibly still an array type 1431 /// \param array - a value of type elementType* 1432 /// \param destructionKind - the kind of destruction required 1433 /// \param initializedElementCount - a value of type size_t* holding 1434 /// the number of successfully-constructed elements 1435 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1436 llvm::Value *arrayEndPointer, 1437 QualType elementType, 1438 Destroyer *destroyer) { 1439 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1440 arrayBegin, arrayEndPointer, 1441 elementType, destroyer); 1442 } 1443 1444 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1445 /// already-constructed elements of the given array. The cleanup 1446 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1447 /// 1448 /// \param elementType - the immediate element type of the array; 1449 /// possibly still an array type 1450 /// \param array - a value of type elementType* 1451 /// \param destructionKind - the kind of destruction required 1452 /// \param initializedElementCount - a value of type size_t* holding 1453 /// the number of successfully-constructed elements 1454 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1455 llvm::Value *arrayEnd, 1456 QualType elementType, 1457 Destroyer *destroyer) { 1458 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1459 arrayBegin, arrayEnd, 1460 elementType, destroyer); 1461 } 1462 1463 namespace { 1464 /// A cleanup to perform a release of an object at the end of a 1465 /// function. This is used to balance out the incoming +1 of a 1466 /// ns_consumed argument when we can't reasonably do that just by 1467 /// not doing the initial retain for a __block argument. 1468 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1469 ConsumeARCParameter(llvm::Value *param) : Param(param) {} 1470 1471 llvm::Value *Param; 1472 1473 void Emit(CodeGenFunction &CGF, Flags flags) { 1474 CGF.EmitARCRelease(Param, /*precise*/ false); 1475 } 1476 }; 1477 } 1478 1479 /// Emit an alloca (or GlobalValue depending on target) 1480 /// for the specified parameter and set up LocalDeclMap. 1481 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1482 unsigned ArgNo) { 1483 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1484 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1485 "Invalid argument to EmitParmDecl"); 1486 1487 Arg->setName(D.getName()); 1488 1489 // Use better IR generation for certain implicit parameters. 1490 if (isa<ImplicitParamDecl>(D)) { 1491 // The only implicit argument a block has is its literal. 1492 if (BlockInfo) { 1493 LocalDeclMap[&D] = Arg; 1494 1495 if (CGDebugInfo *DI = getDebugInfo()) { 1496 if (CGM.getCodeGenOpts().DebugInfo >= 1497 CodeGenOptions::LimitedDebugInfo) { 1498 DI->setLocation(D.getLocation()); 1499 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 1500 } 1501 } 1502 1503 return; 1504 } 1505 } 1506 1507 QualType Ty = D.getType(); 1508 1509 llvm::Value *DeclPtr; 1510 // If this is an aggregate or variable sized value, reuse the input pointer. 1511 if (!Ty->isConstantSizeType() || 1512 CodeGenFunction::hasAggregateLLVMType(Ty)) { 1513 DeclPtr = Arg; 1514 } else { 1515 // Otherwise, create a temporary to hold the value. 1516 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1517 D.getName() + ".addr"); 1518 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1519 DeclPtr = Alloc; 1520 1521 bool doStore = true; 1522 1523 Qualifiers qs = Ty.getQualifiers(); 1524 1525 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1526 // We honor __attribute__((ns_consumed)) for types with lifetime. 1527 // For __strong, it's handled by just skipping the initial retain; 1528 // otherwise we have to balance out the initial +1 with an extra 1529 // cleanup to do the release at the end of the function. 1530 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1531 1532 // 'self' is always formally __strong, but if this is not an 1533 // init method then we don't want to retain it. 1534 if (D.isARCPseudoStrong()) { 1535 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1536 assert(&D == method->getSelfDecl()); 1537 assert(lt == Qualifiers::OCL_Strong); 1538 assert(qs.hasConst()); 1539 assert(method->getMethodFamily() != OMF_init); 1540 (void) method; 1541 lt = Qualifiers::OCL_ExplicitNone; 1542 } 1543 1544 if (lt == Qualifiers::OCL_Strong) { 1545 if (!isConsumed) 1546 // Don't use objc_retainBlock for block pointers, because we 1547 // don't want to Block_copy something just because we got it 1548 // as a parameter. 1549 Arg = EmitARCRetainNonBlock(Arg); 1550 } else { 1551 // Push the cleanup for a consumed parameter. 1552 if (isConsumed) 1553 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg); 1554 1555 if (lt == Qualifiers::OCL_Weak) { 1556 EmitARCInitWeak(DeclPtr, Arg); 1557 doStore = false; // The weak init is a store, no need to do two. 1558 } 1559 } 1560 1561 // Enter the cleanup scope. 1562 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1563 } 1564 1565 // Store the initial value into the alloca. 1566 if (doStore) { 1567 LValue lv = MakeAddrLValue(DeclPtr, Ty, 1568 getContext().getDeclAlign(&D)); 1569 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1570 } 1571 } 1572 1573 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1574 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1575 DMEntry = DeclPtr; 1576 1577 // Emit debug info for param declaration. 1578 if (CGDebugInfo *DI = getDebugInfo()) { 1579 if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) { 1580 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1581 } 1582 } 1583 1584 if (D.hasAttr<AnnotateAttr>()) 1585 EmitVarAnnotations(&D, DeclPtr); 1586 } 1587