1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "CGOpenCLRuntime.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/GlobalVariable.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 
33 void CodeGenFunction::EmitDecl(const Decl &D) {
34   switch (D.getKind()) {
35   case Decl::TranslationUnit:
36   case Decl::Namespace:
37   case Decl::UnresolvedUsingTypename:
38   case Decl::ClassTemplateSpecialization:
39   case Decl::ClassTemplatePartialSpecialization:
40   case Decl::TemplateTypeParm:
41   case Decl::UnresolvedUsingValue:
42   case Decl::NonTypeTemplateParm:
43   case Decl::CXXMethod:
44   case Decl::CXXConstructor:
45   case Decl::CXXDestructor:
46   case Decl::CXXConversion:
47   case Decl::Field:
48   case Decl::IndirectField:
49   case Decl::ObjCIvar:
50   case Decl::ObjCAtDefsField:
51   case Decl::ParmVar:
52   case Decl::ImplicitParam:
53   case Decl::ClassTemplate:
54   case Decl::FunctionTemplate:
55   case Decl::TypeAliasTemplate:
56   case Decl::TemplateTemplateParm:
57   case Decl::ObjCMethod:
58   case Decl::ObjCCategory:
59   case Decl::ObjCProtocol:
60   case Decl::ObjCInterface:
61   case Decl::ObjCCategoryImpl:
62   case Decl::ObjCImplementation:
63   case Decl::ObjCProperty:
64   case Decl::ObjCCompatibleAlias:
65   case Decl::AccessSpec:
66   case Decl::LinkageSpec:
67   case Decl::ObjCPropertyImpl:
68   case Decl::FileScopeAsm:
69   case Decl::Friend:
70   case Decl::FriendTemplate:
71   case Decl::Block:
72   case Decl::ClassScopeFunctionSpecialization:
73     llvm_unreachable("Declaration should not be in declstmts!");
74   case Decl::Function:  // void X();
75   case Decl::Record:    // struct/union/class X;
76   case Decl::Enum:      // enum X;
77   case Decl::EnumConstant: // enum ? { X = ? }
78   case Decl::CXXRecord: // struct/union/class X; [C++]
79   case Decl::Using:          // using X; [C++]
80   case Decl::UsingShadow:
81   case Decl::UsingDirective: // using namespace X; [C++]
82   case Decl::NamespaceAlias:
83   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84   case Decl::Label:        // __label__ x;
85   case Decl::Import:
86     // None of these decls require codegen support.
87     return;
88 
89   case Decl::Var: {
90     const VarDecl &VD = cast<VarDecl>(D);
91     assert(VD.isLocalVarDecl() &&
92            "Should not see file-scope variables inside a function!");
93     return EmitVarDecl(VD);
94   }
95 
96   case Decl::Typedef:      // typedef int X;
97   case Decl::TypeAlias: {  // using X = int; [C++0x]
98     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
99     QualType Ty = TD.getUnderlyingType();
100 
101     if (Ty->isVariablyModifiedType())
102       EmitVariablyModifiedType(Ty);
103   }
104   }
105 }
106 
107 /// EmitVarDecl - This method handles emission of any variable declaration
108 /// inside a function, including static vars etc.
109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
110   switch (D.getStorageClass()) {
111   case SC_None:
112   case SC_Auto:
113   case SC_Register:
114     return EmitAutoVarDecl(D);
115   case SC_Static: {
116     llvm::GlobalValue::LinkageTypes Linkage =
117       llvm::GlobalValue::InternalLinkage;
118 
119     // If the function definition has some sort of weak linkage, its
120     // static variables should also be weak so that they get properly
121     // uniqued.  We can't do this in C, though, because there's no
122     // standard way to agree on which variables are the same (i.e.
123     // there's no mangling).
124     if (getContext().getLangOptions().CPlusPlus)
125       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
126         Linkage = CurFn->getLinkage();
127 
128     return EmitStaticVarDecl(D, Linkage);
129   }
130   case SC_Extern:
131   case SC_PrivateExtern:
132     // Don't emit it now, allow it to be emitted lazily on its first use.
133     return;
134   case SC_OpenCLWorkGroupLocal:
135     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
136   }
137 
138   llvm_unreachable("Unknown storage class");
139 }
140 
141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
142                                      const char *Separator) {
143   CodeGenModule &CGM = CGF.CGM;
144   if (CGF.getContext().getLangOptions().CPlusPlus) {
145     StringRef Name = CGM.getMangledName(&D);
146     return Name.str();
147   }
148 
149   std::string ContextName;
150   if (!CGF.CurFuncDecl) {
151     // Better be in a block declared in global scope.
152     const NamedDecl *ND = cast<NamedDecl>(&D);
153     const DeclContext *DC = ND->getDeclContext();
154     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
155       MangleBuffer Name;
156       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
157       ContextName = Name.getString();
158     }
159     else
160       llvm_unreachable("Unknown context for block static var decl");
161   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
162     StringRef Name = CGM.getMangledName(FD);
163     ContextName = Name.str();
164   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
165     ContextName = CGF.CurFn->getName();
166   else
167     llvm_unreachable("Unknown context for static var decl");
168 
169   return ContextName + Separator + D.getNameAsString();
170 }
171 
172 llvm::GlobalVariable *
173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
174                                      const char *Separator,
175                                      llvm::GlobalValue::LinkageTypes Linkage) {
176   QualType Ty = D.getType();
177   assert(Ty->isConstantSizeType() && "VLAs can't be static");
178 
179   // Use the label if the variable is renamed with the asm-label extension.
180   std::string Name;
181   if (D.hasAttr<AsmLabelAttr>())
182     Name = CGM.getMangledName(&D);
183   else
184     Name = GetStaticDeclName(*this, D, Separator);
185 
186   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
187   llvm::GlobalVariable *GV =
188     new llvm::GlobalVariable(CGM.getModule(), LTy,
189                              Ty.isConstant(getContext()), Linkage,
190                              CGM.EmitNullConstant(D.getType()), Name, 0,
191                              D.isThreadSpecified(),
192                              CGM.getContext().getTargetAddressSpace(Ty));
193   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
194   if (Linkage != llvm::GlobalValue::InternalLinkage)
195     GV->setVisibility(CurFn->getVisibility());
196   return GV;
197 }
198 
199 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
200 /// global variable that has already been created for it.  If the initializer
201 /// has a different type than GV does, this may free GV and return a different
202 /// one.  Otherwise it just returns GV.
203 llvm::GlobalVariable *
204 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
205                                                llvm::GlobalVariable *GV) {
206   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
207 
208   // If constant emission failed, then this should be a C++ static
209   // initializer.
210   if (!Init) {
211     if (!getContext().getLangOptions().CPlusPlus)
212       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
213     else if (Builder.GetInsertBlock()) {
214       // Since we have a static initializer, this global variable can't
215       // be constant.
216       GV->setConstant(false);
217 
218       EmitCXXGuardedInit(D, GV);
219     }
220     return GV;
221   }
222 
223   // The initializer may differ in type from the global. Rewrite
224   // the global to match the initializer.  (We have to do this
225   // because some types, like unions, can't be completely represented
226   // in the LLVM type system.)
227   if (GV->getType()->getElementType() != Init->getType()) {
228     llvm::GlobalVariable *OldGV = GV;
229 
230     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
231                                   OldGV->isConstant(),
232                                   OldGV->getLinkage(), Init, "",
233                                   /*InsertBefore*/ OldGV,
234                                   D.isThreadSpecified(),
235                            CGM.getContext().getTargetAddressSpace(D.getType()));
236     GV->setVisibility(OldGV->getVisibility());
237 
238     // Steal the name of the old global
239     GV->takeName(OldGV);
240 
241     // Replace all uses of the old global with the new global
242     llvm::Constant *NewPtrForOldDecl =
243     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
244     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
245 
246     // Erase the old global, since it is no longer used.
247     OldGV->eraseFromParent();
248   }
249 
250   GV->setInitializer(Init);
251   return GV;
252 }
253 
254 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
255                                       llvm::GlobalValue::LinkageTypes Linkage) {
256   llvm::Value *&DMEntry = LocalDeclMap[&D];
257   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
258 
259   llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
260 
261   // Store into LocalDeclMap before generating initializer to handle
262   // circular references.
263   DMEntry = GV;
264 
265   // We can't have a VLA here, but we can have a pointer to a VLA,
266   // even though that doesn't really make any sense.
267   // Make sure to evaluate VLA bounds now so that we have them for later.
268   if (D.getType()->isVariablyModifiedType())
269     EmitVariablyModifiedType(D.getType());
270 
271   // Local static block variables must be treated as globals as they may be
272   // referenced in their RHS initializer block-literal expresion.
273   CGM.setStaticLocalDeclAddress(&D, GV);
274 
275   // If this value has an initializer, emit it.
276   if (D.getInit())
277     GV = AddInitializerToStaticVarDecl(D, GV);
278 
279   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
280 
281   if (D.hasAttr<AnnotateAttr>())
282     CGM.AddGlobalAnnotations(&D, GV);
283 
284   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
285     GV->setSection(SA->getName());
286 
287   if (D.hasAttr<UsedAttr>())
288     CGM.AddUsedGlobal(GV);
289 
290   // We may have to cast the constant because of the initializer
291   // mismatch above.
292   //
293   // FIXME: It is really dangerous to store this in the map; if anyone
294   // RAUW's the GV uses of this constant will be invalid.
295   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
296   llvm::Type *LPtrTy =
297     LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
298   DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
299 
300   // Emit global variable debug descriptor for static vars.
301   CGDebugInfo *DI = getDebugInfo();
302   if (DI) {
303     DI->setLocation(D.getLocation());
304     DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
305   }
306 }
307 
308 namespace {
309   struct DestroyObject : EHScopeStack::Cleanup {
310     DestroyObject(llvm::Value *addr, QualType type,
311                   CodeGenFunction::Destroyer *destroyer,
312                   bool useEHCleanupForArray)
313       : addr(addr), type(type), destroyer(destroyer),
314         useEHCleanupForArray(useEHCleanupForArray) {}
315 
316     llvm::Value *addr;
317     QualType type;
318     CodeGenFunction::Destroyer *destroyer;
319     bool useEHCleanupForArray;
320 
321     void Emit(CodeGenFunction &CGF, Flags flags) {
322       // Don't use an EH cleanup recursively from an EH cleanup.
323       bool useEHCleanupForArray =
324         flags.isForNormalCleanup() && this->useEHCleanupForArray;
325 
326       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
327     }
328   };
329 
330   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
331     DestroyNRVOVariable(llvm::Value *addr,
332                         const CXXDestructorDecl *Dtor,
333                         llvm::Value *NRVOFlag)
334       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
335 
336     const CXXDestructorDecl *Dtor;
337     llvm::Value *NRVOFlag;
338     llvm::Value *Loc;
339 
340     void Emit(CodeGenFunction &CGF, Flags flags) {
341       // Along the exceptions path we always execute the dtor.
342       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
343 
344       llvm::BasicBlock *SkipDtorBB = 0;
345       if (NRVO) {
346         // If we exited via NRVO, we skip the destructor call.
347         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
348         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
349         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
350         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
351         CGF.EmitBlock(RunDtorBB);
352       }
353 
354       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
355                                 /*ForVirtualBase=*/false, Loc);
356 
357       if (NRVO) CGF.EmitBlock(SkipDtorBB);
358     }
359   };
360 
361   struct CallStackRestore : EHScopeStack::Cleanup {
362     llvm::Value *Stack;
363     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
364     void Emit(CodeGenFunction &CGF, Flags flags) {
365       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
366       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
367       CGF.Builder.CreateCall(F, V);
368     }
369   };
370 
371   struct ExtendGCLifetime : EHScopeStack::Cleanup {
372     const VarDecl &Var;
373     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
374 
375     void Emit(CodeGenFunction &CGF, Flags flags) {
376       // Compute the address of the local variable, in case it's a
377       // byref or something.
378       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
379                       SourceLocation());
380       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
381       CGF.EmitExtendGCLifetime(value);
382     }
383   };
384 
385   struct CallCleanupFunction : EHScopeStack::Cleanup {
386     llvm::Constant *CleanupFn;
387     const CGFunctionInfo &FnInfo;
388     const VarDecl &Var;
389 
390     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
391                         const VarDecl *Var)
392       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
393 
394     void Emit(CodeGenFunction &CGF, Flags flags) {
395       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
396                       SourceLocation());
397       // Compute the address of the local variable, in case it's a byref
398       // or something.
399       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
400 
401       // In some cases, the type of the function argument will be different from
402       // the type of the pointer. An example of this is
403       // void f(void* arg);
404       // __attribute__((cleanup(f))) void *g;
405       //
406       // To fix this we insert a bitcast here.
407       QualType ArgTy = FnInfo.arg_begin()->type;
408       llvm::Value *Arg =
409         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
410 
411       CallArgList Args;
412       Args.add(RValue::get(Arg),
413                CGF.getContext().getPointerType(Var.getType()));
414       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
415     }
416   };
417 }
418 
419 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
420 /// variable with lifetime.
421 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
422                                     llvm::Value *addr,
423                                     Qualifiers::ObjCLifetime lifetime) {
424   switch (lifetime) {
425   case Qualifiers::OCL_None:
426     llvm_unreachable("present but none");
427 
428   case Qualifiers::OCL_ExplicitNone:
429     // nothing to do
430     break;
431 
432   case Qualifiers::OCL_Strong: {
433     CodeGenFunction::Destroyer *destroyer =
434       (var.hasAttr<ObjCPreciseLifetimeAttr>()
435        ? CodeGenFunction::destroyARCStrongPrecise
436        : CodeGenFunction::destroyARCStrongImprecise);
437 
438     CleanupKind cleanupKind = CGF.getARCCleanupKind();
439     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
440                     cleanupKind & EHCleanup);
441     break;
442   }
443   case Qualifiers::OCL_Autoreleasing:
444     // nothing to do
445     break;
446 
447   case Qualifiers::OCL_Weak:
448     // __weak objects always get EH cleanups; otherwise, exceptions
449     // could cause really nasty crashes instead of mere leaks.
450     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
451                     CodeGenFunction::destroyARCWeak,
452                     /*useEHCleanup*/ true);
453     break;
454   }
455 }
456 
457 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
458   if (const Expr *e = dyn_cast<Expr>(s)) {
459     // Skip the most common kinds of expressions that make
460     // hierarchy-walking expensive.
461     s = e = e->IgnoreParenCasts();
462 
463     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
464       return (ref->getDecl() == &var);
465   }
466 
467   for (Stmt::const_child_range children = s->children(); children; ++children)
468     // children might be null; as in missing decl or conditional of an if-stmt.
469     if ((*children) && isAccessedBy(var, *children))
470       return true;
471 
472   return false;
473 }
474 
475 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
476   if (!decl) return false;
477   if (!isa<VarDecl>(decl)) return false;
478   const VarDecl *var = cast<VarDecl>(decl);
479   return isAccessedBy(*var, e);
480 }
481 
482 static void drillIntoBlockVariable(CodeGenFunction &CGF,
483                                    LValue &lvalue,
484                                    const VarDecl *var) {
485   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
486 }
487 
488 void CodeGenFunction::EmitScalarInit(const Expr *init,
489                                      const ValueDecl *D,
490                                      LValue lvalue,
491                                      bool capturedByInit) {
492   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
493   if (!lifetime) {
494     llvm::Value *value = EmitScalarExpr(init);
495     if (capturedByInit)
496       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
497     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
498     return;
499   }
500 
501   // If we're emitting a value with lifetime, we have to do the
502   // initialization *before* we leave the cleanup scopes.
503   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
504     enterFullExpression(ewc);
505     init = ewc->getSubExpr();
506   }
507   CodeGenFunction::RunCleanupsScope Scope(*this);
508 
509   // We have to maintain the illusion that the variable is
510   // zero-initialized.  If the variable might be accessed in its
511   // initializer, zero-initialize before running the initializer, then
512   // actually perform the initialization with an assign.
513   bool accessedByInit = false;
514   if (lifetime != Qualifiers::OCL_ExplicitNone)
515     accessedByInit = (capturedByInit || isAccessedBy(D, init));
516   if (accessedByInit) {
517     LValue tempLV = lvalue;
518     // Drill down to the __block object if necessary.
519     if (capturedByInit) {
520       // We can use a simple GEP for this because it can't have been
521       // moved yet.
522       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
523                                    getByRefValueLLVMField(cast<VarDecl>(D))));
524     }
525 
526     llvm::PointerType *ty
527       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
528     ty = cast<llvm::PointerType>(ty->getElementType());
529 
530     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
531 
532     // If __weak, we want to use a barrier under certain conditions.
533     if (lifetime == Qualifiers::OCL_Weak)
534       EmitARCInitWeak(tempLV.getAddress(), zero);
535 
536     // Otherwise just do a simple store.
537     else
538       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
539   }
540 
541   // Emit the initializer.
542   llvm::Value *value = 0;
543 
544   switch (lifetime) {
545   case Qualifiers::OCL_None:
546     llvm_unreachable("present but none");
547 
548   case Qualifiers::OCL_ExplicitNone:
549     // nothing to do
550     value = EmitScalarExpr(init);
551     break;
552 
553   case Qualifiers::OCL_Strong: {
554     value = EmitARCRetainScalarExpr(init);
555     break;
556   }
557 
558   case Qualifiers::OCL_Weak: {
559     // No way to optimize a producing initializer into this.  It's not
560     // worth optimizing for, because the value will immediately
561     // disappear in the common case.
562     value = EmitScalarExpr(init);
563 
564     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
565     if (accessedByInit)
566       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
567     else
568       EmitARCInitWeak(lvalue.getAddress(), value);
569     return;
570   }
571 
572   case Qualifiers::OCL_Autoreleasing:
573     value = EmitARCRetainAutoreleaseScalarExpr(init);
574     break;
575   }
576 
577   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
578 
579   // If the variable might have been accessed by its initializer, we
580   // might have to initialize with a barrier.  We have to do this for
581   // both __weak and __strong, but __weak got filtered out above.
582   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
583     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
584     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
585     EmitARCRelease(oldValue, /*precise*/ false);
586     return;
587   }
588 
589   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
590 }
591 
592 /// EmitScalarInit - Initialize the given lvalue with the given object.
593 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
594   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
595   if (!lifetime)
596     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
597 
598   switch (lifetime) {
599   case Qualifiers::OCL_None:
600     llvm_unreachable("present but none");
601 
602   case Qualifiers::OCL_ExplicitNone:
603     // nothing to do
604     break;
605 
606   case Qualifiers::OCL_Strong:
607     init = EmitARCRetain(lvalue.getType(), init);
608     break;
609 
610   case Qualifiers::OCL_Weak:
611     // Initialize and then skip the primitive store.
612     EmitARCInitWeak(lvalue.getAddress(), init);
613     return;
614 
615   case Qualifiers::OCL_Autoreleasing:
616     init = EmitARCRetainAutorelease(lvalue.getType(), init);
617     break;
618   }
619 
620   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
621 }
622 
623 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
624 /// non-zero parts of the specified initializer with equal or fewer than
625 /// NumStores scalar stores.
626 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
627                                                 unsigned &NumStores) {
628   // Zero and Undef never requires any extra stores.
629   if (isa<llvm::ConstantAggregateZero>(Init) ||
630       isa<llvm::ConstantPointerNull>(Init) ||
631       isa<llvm::UndefValue>(Init))
632     return true;
633   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
634       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
635       isa<llvm::ConstantExpr>(Init))
636     return Init->isNullValue() || NumStores--;
637 
638   // See if we can emit each element.
639   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
640     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
641       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
642       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
643         return false;
644     }
645     return true;
646   }
647 
648   if (llvm::ConstantDataSequential *CDS =
649         dyn_cast<llvm::ConstantDataSequential>(Init)) {
650     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
651       llvm::Constant *Elt = CDS->getElementAsConstant(i);
652       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
653         return false;
654     }
655     return true;
656   }
657 
658   // Anything else is hard and scary.
659   return false;
660 }
661 
662 /// emitStoresForInitAfterMemset - For inits that
663 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
664 /// stores that would be required.
665 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
666                                          bool isVolatile, CGBuilderTy &Builder) {
667   // Zero doesn't require a store.
668   if (Init->isNullValue() || isa<llvm::UndefValue>(Init))
669     return;
670 
671   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
672       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
673       isa<llvm::ConstantExpr>(Init)) {
674     Builder.CreateStore(Init, Loc, isVolatile);
675     return;
676   }
677 
678   if (llvm::ConstantDataSequential *CDS =
679         dyn_cast<llvm::ConstantDataSequential>(Init)) {
680     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
681       llvm::Constant *Elt = CDS->getElementAsConstant(i);
682 
683       // Get a pointer to the element and emit it.
684       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
685                                    isVolatile, Builder);
686     }
687     return;
688   }
689 
690   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
691          "Unknown value type!");
692 
693   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
694     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
695     // Get a pointer to the element and emit it.
696     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
697                                  isVolatile, Builder);
698   }
699 }
700 
701 
702 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
703 /// plus some stores to initialize a local variable instead of using a memcpy
704 /// from a constant global.  It is beneficial to use memset if the global is all
705 /// zeros, or mostly zeros and large.
706 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
707                                                   uint64_t GlobalSize) {
708   // If a global is all zeros, always use a memset.
709   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
710 
711 
712   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
713   // do it if it will require 6 or fewer scalar stores.
714   // TODO: Should budget depends on the size?  Avoiding a large global warrants
715   // plopping in more stores.
716   unsigned StoreBudget = 6;
717   uint64_t SizeLimit = 32;
718 
719   return GlobalSize > SizeLimit &&
720          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
721 }
722 
723 
724 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
725 /// variable declaration with auto, register, or no storage class specifier.
726 /// These turn into simple stack objects, or GlobalValues depending on target.
727 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
728   AutoVarEmission emission = EmitAutoVarAlloca(D);
729   EmitAutoVarInit(emission);
730   EmitAutoVarCleanups(emission);
731 }
732 
733 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
734 /// local variable.  Does not emit initalization or destruction.
735 CodeGenFunction::AutoVarEmission
736 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
737   QualType Ty = D.getType();
738 
739   AutoVarEmission emission(D);
740 
741   bool isByRef = D.hasAttr<BlocksAttr>();
742   emission.IsByRef = isByRef;
743 
744   CharUnits alignment = getContext().getDeclAlign(&D);
745   emission.Alignment = alignment;
746 
747   // If the type is variably-modified, emit all the VLA sizes for it.
748   if (Ty->isVariablyModifiedType())
749     EmitVariablyModifiedType(Ty);
750 
751   llvm::Value *DeclPtr;
752   if (Ty->isConstantSizeType()) {
753     if (!Target.useGlobalsForAutomaticVariables()) {
754       bool NRVO = getContext().getLangOptions().ElideConstructors &&
755                   D.isNRVOVariable();
756 
757       // If this value is a POD array or struct with a statically
758       // determinable constant initializer, there are optimizations we can do.
759       //
760       // TODO: we should constant-evaluate any variable of literal type
761       // as long as it is initialized by a constant expression. Currently,
762       // isConstantInitializer produces wrong answers for structs with
763       // reference or bitfield members, and a few other cases, and checking
764       // for POD-ness protects us from some of these.
765       if (D.getInit() &&
766           (Ty->isArrayType() || Ty->isRecordType()) &&
767           (Ty.isPODType(getContext()) ||
768            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
769           D.getInit()->isConstantInitializer(getContext(), false)) {
770 
771         // If the variable's a const type, and it's neither an NRVO
772         // candidate nor a __block variable and has no mutable members,
773         // emit it as a global instead.
774         if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
775             !NRVO && !isByRef && Ty->isLiteralType()) {
776           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
777 
778           emission.Address = 0; // signal this condition to later callbacks
779           assert(emission.wasEmittedAsGlobal());
780           return emission;
781         }
782 
783         // Otherwise, tell the initialization code that we're in this case.
784         emission.IsConstantAggregate = true;
785       }
786 
787       // A normal fixed sized variable becomes an alloca in the entry block,
788       // unless it's an NRVO variable.
789       llvm::Type *LTy = ConvertTypeForMem(Ty);
790 
791       if (NRVO) {
792         // The named return value optimization: allocate this variable in the
793         // return slot, so that we can elide the copy when returning this
794         // variable (C++0x [class.copy]p34).
795         DeclPtr = ReturnValue;
796 
797         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
798           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
799             // Create a flag that is used to indicate when the NRVO was applied
800             // to this variable. Set it to zero to indicate that NRVO was not
801             // applied.
802             llvm::Value *Zero = Builder.getFalse();
803             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
804             EnsureInsertPoint();
805             Builder.CreateStore(Zero, NRVOFlag);
806 
807             // Record the NRVO flag for this variable.
808             NRVOFlags[&D] = NRVOFlag;
809             emission.NRVOFlag = NRVOFlag;
810           }
811         }
812       } else {
813         if (isByRef)
814           LTy = BuildByRefType(&D);
815 
816         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
817         Alloc->setName(D.getName());
818 
819         CharUnits allocaAlignment = alignment;
820         if (isByRef)
821           allocaAlignment = std::max(allocaAlignment,
822               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
823         Alloc->setAlignment(allocaAlignment.getQuantity());
824         DeclPtr = Alloc;
825       }
826     } else {
827       // Targets that don't support recursion emit locals as globals.
828       const char *Class =
829         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
830       DeclPtr = CreateStaticVarDecl(D, Class,
831                                     llvm::GlobalValue::InternalLinkage);
832     }
833   } else {
834     EnsureInsertPoint();
835 
836     if (!DidCallStackSave) {
837       // Save the stack.
838       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
839 
840       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
841       llvm::Value *V = Builder.CreateCall(F);
842 
843       Builder.CreateStore(V, Stack);
844 
845       DidCallStackSave = true;
846 
847       // Push a cleanup block and restore the stack there.
848       // FIXME: in general circumstances, this should be an EH cleanup.
849       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
850     }
851 
852     llvm::Value *elementCount;
853     QualType elementType;
854     llvm::tie(elementCount, elementType) = getVLASize(Ty);
855 
856     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
857 
858     // Allocate memory for the array.
859     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
860     vla->setAlignment(alignment.getQuantity());
861 
862     DeclPtr = vla;
863   }
864 
865   llvm::Value *&DMEntry = LocalDeclMap[&D];
866   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
867   DMEntry = DeclPtr;
868   emission.Address = DeclPtr;
869 
870   // Emit debug info for local var declaration.
871   if (HaveInsertPoint())
872     if (CGDebugInfo *DI = getDebugInfo()) {
873       DI->setLocation(D.getLocation());
874       if (Target.useGlobalsForAutomaticVariables()) {
875         DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
876       } else
877         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
878     }
879 
880   if (D.hasAttr<AnnotateAttr>())
881       EmitVarAnnotations(&D, emission.Address);
882 
883   return emission;
884 }
885 
886 /// Determines whether the given __block variable is potentially
887 /// captured by the given expression.
888 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
889   // Skip the most common kinds of expressions that make
890   // hierarchy-walking expensive.
891   e = e->IgnoreParenCasts();
892 
893   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
894     const BlockDecl *block = be->getBlockDecl();
895     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
896            e = block->capture_end(); i != e; ++i) {
897       if (i->getVariable() == &var)
898         return true;
899     }
900 
901     // No need to walk into the subexpressions.
902     return false;
903   }
904 
905   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
906     const CompoundStmt *CS = SE->getSubStmt();
907     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
908 	   BE = CS->body_end(); BI != BE; ++BI)
909       if (Expr *E = dyn_cast<Expr>((*BI))) {
910         if (isCapturedBy(var, E))
911             return true;
912       }
913       else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
914           // special case declarations
915           for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
916                I != E; ++I) {
917               if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
918                 Expr *Init = VD->getInit();
919                 if (Init && isCapturedBy(var, Init))
920                   return true;
921               }
922           }
923       }
924       else
925         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
926         // Later, provide code to poke into statements for capture analysis.
927         return true;
928     return false;
929   }
930 
931   for (Stmt::const_child_range children = e->children(); children; ++children)
932     if (isCapturedBy(var, cast<Expr>(*children)))
933       return true;
934 
935   return false;
936 }
937 
938 /// \brief Determine whether the given initializer is trivial in the sense
939 /// that it requires no code to be generated.
940 static bool isTrivialInitializer(const Expr *Init) {
941   if (!Init)
942     return true;
943 
944   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
945     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
946       if (Constructor->isTrivial() &&
947           Constructor->isDefaultConstructor() &&
948           !Construct->requiresZeroInitialization())
949         return true;
950 
951   return false;
952 }
953 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
954   assert(emission.Variable && "emission was not valid!");
955 
956   // If this was emitted as a global constant, we're done.
957   if (emission.wasEmittedAsGlobal()) return;
958 
959   const VarDecl &D = *emission.Variable;
960   QualType type = D.getType();
961 
962   // If this local has an initializer, emit it now.
963   const Expr *Init = D.getInit();
964 
965   // If we are at an unreachable point, we don't need to emit the initializer
966   // unless it contains a label.
967   if (!HaveInsertPoint()) {
968     if (!Init || !ContainsLabel(Init)) return;
969     EnsureInsertPoint();
970   }
971 
972   // Initialize the structure of a __block variable.
973   if (emission.IsByRef)
974     emitByrefStructureInit(emission);
975 
976   if (isTrivialInitializer(Init))
977     return;
978 
979   CharUnits alignment = emission.Alignment;
980 
981   // Check whether this is a byref variable that's potentially
982   // captured and moved by its own initializer.  If so, we'll need to
983   // emit the initializer first, then copy into the variable.
984   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
985 
986   llvm::Value *Loc =
987     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
988 
989   llvm::Constant *constant = 0;
990   if (emission.IsConstantAggregate) {
991     assert(!capturedByInit && "constant init contains a capturing block?");
992     constant = CGM.EmitConstantInit(D, this);
993   }
994 
995   if (!constant) {
996     LValue lv = MakeAddrLValue(Loc, type, alignment);
997     lv.setNonGC(true);
998     return EmitExprAsInit(Init, &D, lv, capturedByInit);
999   }
1000 
1001   // If this is a simple aggregate initialization, we can optimize it
1002   // in various ways.
1003   bool isVolatile = type.isVolatileQualified();
1004 
1005   llvm::Value *SizeVal =
1006     llvm::ConstantInt::get(IntPtrTy,
1007                            getContext().getTypeSizeInChars(type).getQuantity());
1008 
1009   llvm::Type *BP = Int8PtrTy;
1010   if (Loc->getType() != BP)
1011     Loc = Builder.CreateBitCast(Loc, BP);
1012 
1013   // If the initializer is all or mostly zeros, codegen with memset then do
1014   // a few stores afterward.
1015   if (shouldUseMemSetPlusStoresToInitialize(constant,
1016                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
1017     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1018                          alignment.getQuantity(), isVolatile);
1019     if (!constant->isNullValue()) {
1020       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1021       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1022     }
1023   } else {
1024     // Otherwise, create a temporary global with the initializer then
1025     // memcpy from the global to the alloca.
1026     std::string Name = GetStaticDeclName(*this, D, ".");
1027     llvm::GlobalVariable *GV =
1028       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1029                                llvm::GlobalValue::PrivateLinkage,
1030                                constant, Name, 0, false, 0);
1031     GV->setAlignment(alignment.getQuantity());
1032     GV->setUnnamedAddr(true);
1033 
1034     llvm::Value *SrcPtr = GV;
1035     if (SrcPtr->getType() != BP)
1036       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1037 
1038     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1039                          isVolatile);
1040   }
1041 }
1042 
1043 /// Emit an expression as an initializer for a variable at the given
1044 /// location.  The expression is not necessarily the normal
1045 /// initializer for the variable, and the address is not necessarily
1046 /// its normal location.
1047 ///
1048 /// \param init the initializing expression
1049 /// \param var the variable to act as if we're initializing
1050 /// \param loc the address to initialize; its type is a pointer
1051 ///   to the LLVM mapping of the variable's type
1052 /// \param alignment the alignment of the address
1053 /// \param capturedByInit true if the variable is a __block variable
1054 ///   whose address is potentially changed by the initializer
1055 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1056                                      const ValueDecl *D,
1057                                      LValue lvalue,
1058                                      bool capturedByInit) {
1059   QualType type = D->getType();
1060 
1061   if (type->isReferenceType()) {
1062     RValue rvalue = EmitReferenceBindingToExpr(init, D);
1063     if (capturedByInit)
1064       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1065     EmitStoreThroughLValue(rvalue, lvalue, true);
1066   } else if (!hasAggregateLLVMType(type)) {
1067     EmitScalarInit(init, D, lvalue, capturedByInit);
1068   } else if (type->isAnyComplexType()) {
1069     ComplexPairTy complex = EmitComplexExpr(init);
1070     if (capturedByInit)
1071       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1072     StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1073   } else {
1074     // TODO: how can we delay here if D is captured by its initializer?
1075     EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1076                                               AggValueSlot::IsDestructed,
1077                                          AggValueSlot::DoesNotNeedGCBarriers,
1078                                               AggValueSlot::IsNotAliased));
1079   }
1080 }
1081 
1082 /// Enter a destroy cleanup for the given local variable.
1083 void CodeGenFunction::emitAutoVarTypeCleanup(
1084                             const CodeGenFunction::AutoVarEmission &emission,
1085                             QualType::DestructionKind dtorKind) {
1086   assert(dtorKind != QualType::DK_none);
1087 
1088   // Note that for __block variables, we want to destroy the
1089   // original stack object, not the possibly forwarded object.
1090   llvm::Value *addr = emission.getObjectAddress(*this);
1091 
1092   const VarDecl *var = emission.Variable;
1093   QualType type = var->getType();
1094 
1095   CleanupKind cleanupKind = NormalAndEHCleanup;
1096   CodeGenFunction::Destroyer *destroyer = 0;
1097 
1098   switch (dtorKind) {
1099   case QualType::DK_none:
1100     llvm_unreachable("no cleanup for trivially-destructible variable");
1101 
1102   case QualType::DK_cxx_destructor:
1103     // If there's an NRVO flag on the emission, we need a different
1104     // cleanup.
1105     if (emission.NRVOFlag) {
1106       assert(!type->isArrayType());
1107       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1108       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1109                                                emission.NRVOFlag);
1110       return;
1111     }
1112     break;
1113 
1114   case QualType::DK_objc_strong_lifetime:
1115     // Suppress cleanups for pseudo-strong variables.
1116     if (var->isARCPseudoStrong()) return;
1117 
1118     // Otherwise, consider whether to use an EH cleanup or not.
1119     cleanupKind = getARCCleanupKind();
1120 
1121     // Use the imprecise destroyer by default.
1122     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1123       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1124     break;
1125 
1126   case QualType::DK_objc_weak_lifetime:
1127     break;
1128   }
1129 
1130   // If we haven't chosen a more specific destroyer, use the default.
1131   if (!destroyer) destroyer = getDestroyer(dtorKind);
1132 
1133   // Use an EH cleanup in array destructors iff the destructor itself
1134   // is being pushed as an EH cleanup.
1135   bool useEHCleanup = (cleanupKind & EHCleanup);
1136   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1137                                      useEHCleanup);
1138 }
1139 
1140 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1141   assert(emission.Variable && "emission was not valid!");
1142 
1143   // If this was emitted as a global constant, we're done.
1144   if (emission.wasEmittedAsGlobal()) return;
1145 
1146   const VarDecl &D = *emission.Variable;
1147 
1148   // Check the type for a cleanup.
1149   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1150     emitAutoVarTypeCleanup(emission, dtorKind);
1151 
1152   // In GC mode, honor objc_precise_lifetime.
1153   if (getLangOptions().getGC() != LangOptions::NonGC &&
1154       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1155     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1156   }
1157 
1158   // Handle the cleanup attribute.
1159   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1160     const FunctionDecl *FD = CA->getFunctionDecl();
1161 
1162     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1163     assert(F && "Could not find function!");
1164 
1165     const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
1166     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1167   }
1168 
1169   // If this is a block variable, call _Block_object_destroy
1170   // (on the unforwarded address).
1171   if (emission.IsByRef)
1172     enterByrefCleanup(emission);
1173 }
1174 
1175 CodeGenFunction::Destroyer *
1176 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1177   switch (kind) {
1178   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1179   case QualType::DK_cxx_destructor:
1180     return destroyCXXObject;
1181   case QualType::DK_objc_strong_lifetime:
1182     return destroyARCStrongPrecise;
1183   case QualType::DK_objc_weak_lifetime:
1184     return destroyARCWeak;
1185   }
1186   llvm_unreachable("Unknown DestructionKind");
1187 }
1188 
1189 /// pushDestroy - Push the standard destructor for the given type.
1190 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1191                                   llvm::Value *addr, QualType type) {
1192   assert(dtorKind && "cannot push destructor for trivial type");
1193 
1194   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1195   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1196               cleanupKind & EHCleanup);
1197 }
1198 
1199 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1200                                   QualType type, Destroyer *destroyer,
1201                                   bool useEHCleanupForArray) {
1202   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1203                                      destroyer, useEHCleanupForArray);
1204 }
1205 
1206 /// emitDestroy - Immediately perform the destruction of the given
1207 /// object.
1208 ///
1209 /// \param addr - the address of the object; a type*
1210 /// \param type - the type of the object; if an array type, all
1211 ///   objects are destroyed in reverse order
1212 /// \param destroyer - the function to call to destroy individual
1213 ///   elements
1214 /// \param useEHCleanupForArray - whether an EH cleanup should be
1215 ///   used when destroying array elements, in case one of the
1216 ///   destructions throws an exception
1217 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1218                                   Destroyer *destroyer,
1219                                   bool useEHCleanupForArray) {
1220   const ArrayType *arrayType = getContext().getAsArrayType(type);
1221   if (!arrayType)
1222     return destroyer(*this, addr, type);
1223 
1224   llvm::Value *begin = addr;
1225   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1226 
1227   // Normally we have to check whether the array is zero-length.
1228   bool checkZeroLength = true;
1229 
1230   // But if the array length is constant, we can suppress that.
1231   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1232     // ...and if it's constant zero, we can just skip the entire thing.
1233     if (constLength->isZero()) return;
1234     checkZeroLength = false;
1235   }
1236 
1237   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1238   emitArrayDestroy(begin, end, type, destroyer,
1239                    checkZeroLength, useEHCleanupForArray);
1240 }
1241 
1242 /// emitArrayDestroy - Destroys all the elements of the given array,
1243 /// beginning from last to first.  The array cannot be zero-length.
1244 ///
1245 /// \param begin - a type* denoting the first element of the array
1246 /// \param end - a type* denoting one past the end of the array
1247 /// \param type - the element type of the array
1248 /// \param destroyer - the function to call to destroy elements
1249 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1250 ///   the remaining elements in case the destruction of a single
1251 ///   element throws
1252 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1253                                        llvm::Value *end,
1254                                        QualType type,
1255                                        Destroyer *destroyer,
1256                                        bool checkZeroLength,
1257                                        bool useEHCleanup) {
1258   assert(!type->isArrayType());
1259 
1260   // The basic structure here is a do-while loop, because we don't
1261   // need to check for the zero-element case.
1262   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1263   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1264 
1265   if (checkZeroLength) {
1266     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1267                                                 "arraydestroy.isempty");
1268     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1269   }
1270 
1271   // Enter the loop body, making that address the current address.
1272   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1273   EmitBlock(bodyBB);
1274   llvm::PHINode *elementPast =
1275     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1276   elementPast->addIncoming(end, entryBB);
1277 
1278   // Shift the address back by one element.
1279   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1280   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1281                                                    "arraydestroy.element");
1282 
1283   if (useEHCleanup)
1284     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1285 
1286   // Perform the actual destruction there.
1287   destroyer(*this, element, type);
1288 
1289   if (useEHCleanup)
1290     PopCleanupBlock();
1291 
1292   // Check whether we've reached the end.
1293   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1294   Builder.CreateCondBr(done, doneBB, bodyBB);
1295   elementPast->addIncoming(element, Builder.GetInsertBlock());
1296 
1297   // Done.
1298   EmitBlock(doneBB);
1299 }
1300 
1301 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1302 /// emitArrayDestroy, the element type here may still be an array type.
1303 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1304                                     llvm::Value *begin, llvm::Value *end,
1305                                     QualType type,
1306                                     CodeGenFunction::Destroyer *destroyer) {
1307   // If the element type is itself an array, drill down.
1308   unsigned arrayDepth = 0;
1309   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1310     // VLAs don't require a GEP index to walk into.
1311     if (!isa<VariableArrayType>(arrayType))
1312       arrayDepth++;
1313     type = arrayType->getElementType();
1314   }
1315 
1316   if (arrayDepth) {
1317     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1318 
1319     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1320     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1321     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1322   }
1323 
1324   // Destroy the array.  We don't ever need an EH cleanup because we
1325   // assume that we're in an EH cleanup ourselves, so a throwing
1326   // destructor causes an immediate terminate.
1327   CGF.emitArrayDestroy(begin, end, type, destroyer,
1328                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1329 }
1330 
1331 namespace {
1332   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1333   /// array destroy where the end pointer is regularly determined and
1334   /// does not need to be loaded from a local.
1335   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1336     llvm::Value *ArrayBegin;
1337     llvm::Value *ArrayEnd;
1338     QualType ElementType;
1339     CodeGenFunction::Destroyer *Destroyer;
1340   public:
1341     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1342                                QualType elementType,
1343                                CodeGenFunction::Destroyer *destroyer)
1344       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1345         ElementType(elementType), Destroyer(destroyer) {}
1346 
1347     void Emit(CodeGenFunction &CGF, Flags flags) {
1348       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1349                               ElementType, Destroyer);
1350     }
1351   };
1352 
1353   /// IrregularPartialArrayDestroy - a cleanup which performs a
1354   /// partial array destroy where the end pointer is irregularly
1355   /// determined and must be loaded from a local.
1356   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1357     llvm::Value *ArrayBegin;
1358     llvm::Value *ArrayEndPointer;
1359     QualType ElementType;
1360     CodeGenFunction::Destroyer *Destroyer;
1361   public:
1362     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1363                                  llvm::Value *arrayEndPointer,
1364                                  QualType elementType,
1365                                  CodeGenFunction::Destroyer *destroyer)
1366       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1367         ElementType(elementType), Destroyer(destroyer) {}
1368 
1369     void Emit(CodeGenFunction &CGF, Flags flags) {
1370       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1371       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1372                               ElementType, Destroyer);
1373     }
1374   };
1375 }
1376 
1377 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1378 /// already-constructed elements of the given array.  The cleanup
1379 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1380 ///
1381 /// \param elementType - the immediate element type of the array;
1382 ///   possibly still an array type
1383 /// \param array - a value of type elementType*
1384 /// \param destructionKind - the kind of destruction required
1385 /// \param initializedElementCount - a value of type size_t* holding
1386 ///   the number of successfully-constructed elements
1387 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1388                                                  llvm::Value *arrayEndPointer,
1389                                                        QualType elementType,
1390                                                        Destroyer *destroyer) {
1391   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1392                                                     arrayBegin, arrayEndPointer,
1393                                                     elementType, destroyer);
1394 }
1395 
1396 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1397 /// already-constructed elements of the given array.  The cleanup
1398 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1399 ///
1400 /// \param elementType - the immediate element type of the array;
1401 ///   possibly still an array type
1402 /// \param array - a value of type elementType*
1403 /// \param destructionKind - the kind of destruction required
1404 /// \param initializedElementCount - a value of type size_t* holding
1405 ///   the number of successfully-constructed elements
1406 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1407                                                      llvm::Value *arrayEnd,
1408                                                      QualType elementType,
1409                                                      Destroyer *destroyer) {
1410   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1411                                                   arrayBegin, arrayEnd,
1412                                                   elementType, destroyer);
1413 }
1414 
1415 namespace {
1416   /// A cleanup to perform a release of an object at the end of a
1417   /// function.  This is used to balance out the incoming +1 of a
1418   /// ns_consumed argument when we can't reasonably do that just by
1419   /// not doing the initial retain for a __block argument.
1420   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1421     ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1422 
1423     llvm::Value *Param;
1424 
1425     void Emit(CodeGenFunction &CGF, Flags flags) {
1426       CGF.EmitARCRelease(Param, /*precise*/ false);
1427     }
1428   };
1429 }
1430 
1431 /// Emit an alloca (or GlobalValue depending on target)
1432 /// for the specified parameter and set up LocalDeclMap.
1433 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1434                                    unsigned ArgNo) {
1435   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1436   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1437          "Invalid argument to EmitParmDecl");
1438 
1439   Arg->setName(D.getName());
1440 
1441   // Use better IR generation for certain implicit parameters.
1442   if (isa<ImplicitParamDecl>(D)) {
1443     // The only implicit argument a block has is its literal.
1444     if (BlockInfo) {
1445       LocalDeclMap[&D] = Arg;
1446 
1447       if (CGDebugInfo *DI = getDebugInfo()) {
1448         DI->setLocation(D.getLocation());
1449         DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1450       }
1451 
1452       return;
1453     }
1454   }
1455 
1456   QualType Ty = D.getType();
1457 
1458   llvm::Value *DeclPtr;
1459   // If this is an aggregate or variable sized value, reuse the input pointer.
1460   if (!Ty->isConstantSizeType() ||
1461       CodeGenFunction::hasAggregateLLVMType(Ty)) {
1462     DeclPtr = Arg;
1463   } else {
1464     // Otherwise, create a temporary to hold the value.
1465     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1466                                                D.getName() + ".addr");
1467     Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1468     DeclPtr = Alloc;
1469 
1470     bool doStore = true;
1471 
1472     Qualifiers qs = Ty.getQualifiers();
1473 
1474     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1475       // We honor __attribute__((ns_consumed)) for types with lifetime.
1476       // For __strong, it's handled by just skipping the initial retain;
1477       // otherwise we have to balance out the initial +1 with an extra
1478       // cleanup to do the release at the end of the function.
1479       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1480 
1481       // 'self' is always formally __strong, but if this is not an
1482       // init method then we don't want to retain it.
1483       if (D.isARCPseudoStrong()) {
1484         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1485         assert(&D == method->getSelfDecl());
1486         assert(lt == Qualifiers::OCL_Strong);
1487         assert(qs.hasConst());
1488         assert(method->getMethodFamily() != OMF_init);
1489         (void) method;
1490         lt = Qualifiers::OCL_ExplicitNone;
1491       }
1492 
1493       if (lt == Qualifiers::OCL_Strong) {
1494         if (!isConsumed)
1495           // Don't use objc_retainBlock for block pointers, because we
1496           // don't want to Block_copy something just because we got it
1497           // as a parameter.
1498           Arg = EmitARCRetainNonBlock(Arg);
1499       } else {
1500         // Push the cleanup for a consumed parameter.
1501         if (isConsumed)
1502           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1503 
1504         if (lt == Qualifiers::OCL_Weak) {
1505           EmitARCInitWeak(DeclPtr, Arg);
1506           doStore = false; // The weak init is a store, no need to do two
1507         }
1508       }
1509 
1510       // Enter the cleanup scope.
1511       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1512     }
1513 
1514     // Store the initial value into the alloca.
1515     if (doStore) {
1516       LValue lv = MakeAddrLValue(DeclPtr, Ty,
1517                                  getContext().getDeclAlign(&D));
1518       EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1519     }
1520   }
1521 
1522   llvm::Value *&DMEntry = LocalDeclMap[&D];
1523   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1524   DMEntry = DeclPtr;
1525 
1526   // Emit debug info for param declaration.
1527   if (CGDebugInfo *DI = getDebugInfo())
1528     DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1529 
1530   if (D.hasAttr<AnnotateAttr>())
1531       EmitVarAnnotations(&D, DeclPtr);
1532 }
1533