1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenCLRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Type.h"
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 void CodeGenFunction::EmitDecl(const Decl &D) {
43   switch (D.getKind()) {
44   case Decl::BuiltinTemplate:
45   case Decl::TranslationUnit:
46   case Decl::ExternCContext:
47   case Decl::Namespace:
48   case Decl::UnresolvedUsingTypename:
49   case Decl::ClassTemplateSpecialization:
50   case Decl::ClassTemplatePartialSpecialization:
51   case Decl::VarTemplateSpecialization:
52   case Decl::VarTemplatePartialSpecialization:
53   case Decl::TemplateTypeParm:
54   case Decl::UnresolvedUsingValue:
55   case Decl::NonTypeTemplateParm:
56   case Decl::CXXDeductionGuide:
57   case Decl::CXXMethod:
58   case Decl::CXXConstructor:
59   case Decl::CXXDestructor:
60   case Decl::CXXConversion:
61   case Decl::Field:
62   case Decl::MSProperty:
63   case Decl::IndirectField:
64   case Decl::ObjCIvar:
65   case Decl::ObjCAtDefsField:
66   case Decl::ParmVar:
67   case Decl::ImplicitParam:
68   case Decl::ClassTemplate:
69   case Decl::VarTemplate:
70   case Decl::FunctionTemplate:
71   case Decl::TypeAliasTemplate:
72   case Decl::TemplateTemplateParm:
73   case Decl::ObjCMethod:
74   case Decl::ObjCCategory:
75   case Decl::ObjCProtocol:
76   case Decl::ObjCInterface:
77   case Decl::ObjCCategoryImpl:
78   case Decl::ObjCImplementation:
79   case Decl::ObjCProperty:
80   case Decl::ObjCCompatibleAlias:
81   case Decl::PragmaComment:
82   case Decl::PragmaDetectMismatch:
83   case Decl::AccessSpec:
84   case Decl::LinkageSpec:
85   case Decl::Export:
86   case Decl::ObjCPropertyImpl:
87   case Decl::FileScopeAsm:
88   case Decl::Friend:
89   case Decl::FriendTemplate:
90   case Decl::Block:
91   case Decl::Captured:
92   case Decl::ClassScopeFunctionSpecialization:
93   case Decl::UsingShadow:
94   case Decl::ConstructorUsingShadow:
95   case Decl::ObjCTypeParam:
96   case Decl::Binding:
97     llvm_unreachable("Declaration should not be in declstmts!");
98   case Decl::Function:  // void X();
99   case Decl::Record:    // struct/union/class X;
100   case Decl::Enum:      // enum X;
101   case Decl::EnumConstant: // enum ? { X = ? }
102   case Decl::CXXRecord: // struct/union/class X; [C++]
103   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
104   case Decl::Label:        // __label__ x;
105   case Decl::Import:
106   case Decl::OMPThreadPrivate:
107   case Decl::OMPCapturedExpr:
108   case Decl::OMPRequires:
109   case Decl::Empty:
110     // None of these decls require codegen support.
111     return;
112 
113   case Decl::NamespaceAlias:
114     if (CGDebugInfo *DI = getDebugInfo())
115         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
116     return;
117   case Decl::Using:          // using X; [C++]
118     if (CGDebugInfo *DI = getDebugInfo())
119         DI->EmitUsingDecl(cast<UsingDecl>(D));
120     return;
121   case Decl::UsingPack:
122     for (auto *Using : cast<UsingPackDecl>(D).expansions())
123       EmitDecl(*Using);
124     return;
125   case Decl::UsingDirective: // using namespace X; [C++]
126     if (CGDebugInfo *DI = getDebugInfo())
127       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
128     return;
129   case Decl::Var:
130   case Decl::Decomposition: {
131     const VarDecl &VD = cast<VarDecl>(D);
132     assert(VD.isLocalVarDecl() &&
133            "Should not see file-scope variables inside a function!");
134     EmitVarDecl(VD);
135     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
136       for (auto *B : DD->bindings())
137         if (auto *HD = B->getHoldingVar())
138           EmitVarDecl(*HD);
139     return;
140   }
141 
142   case Decl::OMPDeclareReduction:
143     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
144 
145   case Decl::Typedef:      // typedef int X;
146   case Decl::TypeAlias: {  // using X = int; [C++0x]
147     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
148     QualType Ty = TD.getUnderlyingType();
149 
150     if (Ty->isVariablyModifiedType())
151       EmitVariablyModifiedType(Ty);
152   }
153   }
154 }
155 
156 /// EmitVarDecl - This method handles emission of any variable declaration
157 /// inside a function, including static vars etc.
158 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
159   if (D.hasExternalStorage())
160     // Don't emit it now, allow it to be emitted lazily on its first use.
161     return;
162 
163   // Some function-scope variable does not have static storage but still
164   // needs to be emitted like a static variable, e.g. a function-scope
165   // variable in constant address space in OpenCL.
166   if (D.getStorageDuration() != SD_Automatic) {
167     // Static sampler variables translated to function calls.
168     if (D.getType()->isSamplerT())
169       return;
170 
171     llvm::GlobalValue::LinkageTypes Linkage =
172         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
173 
174     // FIXME: We need to force the emission/use of a guard variable for
175     // some variables even if we can constant-evaluate them because
176     // we can't guarantee every translation unit will constant-evaluate them.
177 
178     return EmitStaticVarDecl(D, Linkage);
179   }
180 
181   if (D.getType().getAddressSpace() == LangAS::opencl_local)
182     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
183 
184   assert(D.hasLocalStorage());
185   return EmitAutoVarDecl(D);
186 }
187 
188 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
189   if (CGM.getLangOpts().CPlusPlus)
190     return CGM.getMangledName(&D).str();
191 
192   // If this isn't C++, we don't need a mangled name, just a pretty one.
193   assert(!D.isExternallyVisible() && "name shouldn't matter");
194   std::string ContextName;
195   const DeclContext *DC = D.getDeclContext();
196   if (auto *CD = dyn_cast<CapturedDecl>(DC))
197     DC = cast<DeclContext>(CD->getNonClosureContext());
198   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
199     ContextName = CGM.getMangledName(FD);
200   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
201     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
202   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
203     ContextName = OMD->getSelector().getAsString();
204   else
205     llvm_unreachable("Unknown context for static var decl");
206 
207   ContextName += "." + D.getNameAsString();
208   return ContextName;
209 }
210 
211 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
212     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
213   // In general, we don't always emit static var decls once before we reference
214   // them. It is possible to reference them before emitting the function that
215   // contains them, and it is possible to emit the containing function multiple
216   // times.
217   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
218     return ExistingGV;
219 
220   QualType Ty = D.getType();
221   assert(Ty->isConstantSizeType() && "VLAs can't be static");
222 
223   // Use the label if the variable is renamed with the asm-label extension.
224   std::string Name;
225   if (D.hasAttr<AsmLabelAttr>())
226     Name = getMangledName(&D);
227   else
228     Name = getStaticDeclName(*this, D);
229 
230   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
231   LangAS AS = GetGlobalVarAddressSpace(&D);
232   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
233 
234   // OpenCL variables in local address space and CUDA shared
235   // variables cannot have an initializer.
236   llvm::Constant *Init = nullptr;
237   if (Ty.getAddressSpace() == LangAS::opencl_local ||
238       D.hasAttr<CUDASharedAttr>())
239     Init = llvm::UndefValue::get(LTy);
240   else
241     Init = EmitNullConstant(Ty);
242 
243   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
244       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
245       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
246   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
247 
248   if (supportsCOMDAT() && GV->isWeakForLinker())
249     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
250 
251   if (D.getTLSKind())
252     setTLSMode(GV, D);
253 
254   setGVProperties(GV, &D);
255 
256   // Make sure the result is of the correct type.
257   LangAS ExpectedAS = Ty.getAddressSpace();
258   llvm::Constant *Addr = GV;
259   if (AS != ExpectedAS) {
260     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
261         *this, GV, AS, ExpectedAS,
262         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
263   }
264 
265   setStaticLocalDeclAddress(&D, Addr);
266 
267   // Ensure that the static local gets initialized by making sure the parent
268   // function gets emitted eventually.
269   const Decl *DC = cast<Decl>(D.getDeclContext());
270 
271   // We can't name blocks or captured statements directly, so try to emit their
272   // parents.
273   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
274     DC = DC->getNonClosureContext();
275     // FIXME: Ensure that global blocks get emitted.
276     if (!DC)
277       return Addr;
278   }
279 
280   GlobalDecl GD;
281   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
282     GD = GlobalDecl(CD, Ctor_Base);
283   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
284     GD = GlobalDecl(DD, Dtor_Base);
285   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
286     GD = GlobalDecl(FD);
287   else {
288     // Don't do anything for Obj-C method decls or global closures. We should
289     // never defer them.
290     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
291   }
292   if (GD.getDecl()) {
293     // Disable emission of the parent function for the OpenMP device codegen.
294     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
295     (void)GetAddrOfGlobal(GD);
296   }
297 
298   return Addr;
299 }
300 
301 /// hasNontrivialDestruction - Determine whether a type's destruction is
302 /// non-trivial. If so, and the variable uses static initialization, we must
303 /// register its destructor to run on exit.
304 static bool hasNontrivialDestruction(QualType T) {
305   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
306   return RD && !RD->hasTrivialDestructor();
307 }
308 
309 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
310 /// global variable that has already been created for it.  If the initializer
311 /// has a different type than GV does, this may free GV and return a different
312 /// one.  Otherwise it just returns GV.
313 llvm::GlobalVariable *
314 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
315                                                llvm::GlobalVariable *GV) {
316   ConstantEmitter emitter(*this);
317   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
318 
319   // If constant emission failed, then this should be a C++ static
320   // initializer.
321   if (!Init) {
322     if (!getLangOpts().CPlusPlus)
323       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
324     else if (HaveInsertPoint()) {
325       // Since we have a static initializer, this global variable can't
326       // be constant.
327       GV->setConstant(false);
328 
329       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
330     }
331     return GV;
332   }
333 
334   // The initializer may differ in type from the global. Rewrite
335   // the global to match the initializer.  (We have to do this
336   // because some types, like unions, can't be completely represented
337   // in the LLVM type system.)
338   if (GV->getType()->getElementType() != Init->getType()) {
339     llvm::GlobalVariable *OldGV = GV;
340 
341     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
342                                   OldGV->isConstant(),
343                                   OldGV->getLinkage(), Init, "",
344                                   /*InsertBefore*/ OldGV,
345                                   OldGV->getThreadLocalMode(),
346                            CGM.getContext().getTargetAddressSpace(D.getType()));
347     GV->setVisibility(OldGV->getVisibility());
348     GV->setDSOLocal(OldGV->isDSOLocal());
349     GV->setComdat(OldGV->getComdat());
350 
351     // Steal the name of the old global
352     GV->takeName(OldGV);
353 
354     // Replace all uses of the old global with the new global
355     llvm::Constant *NewPtrForOldDecl =
356     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
357     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
358 
359     // Erase the old global, since it is no longer used.
360     OldGV->eraseFromParent();
361   }
362 
363   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
364   GV->setInitializer(Init);
365 
366   emitter.finalize(GV);
367 
368   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
369     // We have a constant initializer, but a nontrivial destructor. We still
370     // need to perform a guarded "initialization" in order to register the
371     // destructor.
372     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
373   }
374 
375   return GV;
376 }
377 
378 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
379                                       llvm::GlobalValue::LinkageTypes Linkage) {
380   // Check to see if we already have a global variable for this
381   // declaration.  This can happen when double-emitting function
382   // bodies, e.g. with complete and base constructors.
383   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
384   CharUnits alignment = getContext().getDeclAlign(&D);
385 
386   // Store into LocalDeclMap before generating initializer to handle
387   // circular references.
388   setAddrOfLocalVar(&D, Address(addr, alignment));
389 
390   // We can't have a VLA here, but we can have a pointer to a VLA,
391   // even though that doesn't really make any sense.
392   // Make sure to evaluate VLA bounds now so that we have them for later.
393   if (D.getType()->isVariablyModifiedType())
394     EmitVariablyModifiedType(D.getType());
395 
396   // Save the type in case adding the initializer forces a type change.
397   llvm::Type *expectedType = addr->getType();
398 
399   llvm::GlobalVariable *var =
400     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
401 
402   // CUDA's local and local static __shared__ variables should not
403   // have any non-empty initializers. This is ensured by Sema.
404   // Whatever initializer such variable may have when it gets here is
405   // a no-op and should not be emitted.
406   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
407                          D.hasAttr<CUDASharedAttr>();
408   // If this value has an initializer, emit it.
409   if (D.getInit() && !isCudaSharedVar)
410     var = AddInitializerToStaticVarDecl(D, var);
411 
412   var->setAlignment(alignment.getQuantity());
413 
414   if (D.hasAttr<AnnotateAttr>())
415     CGM.AddGlobalAnnotations(&D, var);
416 
417   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
418     var->addAttribute("bss-section", SA->getName());
419   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
420     var->addAttribute("data-section", SA->getName());
421   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
422     var->addAttribute("rodata-section", SA->getName());
423 
424   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
425     var->setSection(SA->getName());
426 
427   if (D.hasAttr<UsedAttr>())
428     CGM.addUsedGlobal(var);
429 
430   // We may have to cast the constant because of the initializer
431   // mismatch above.
432   //
433   // FIXME: It is really dangerous to store this in the map; if anyone
434   // RAUW's the GV uses of this constant will be invalid.
435   llvm::Constant *castedAddr =
436     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
437   if (var != castedAddr)
438     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
439   CGM.setStaticLocalDeclAddress(&D, castedAddr);
440 
441   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
442 
443   // Emit global variable debug descriptor for static vars.
444   CGDebugInfo *DI = getDebugInfo();
445   if (DI &&
446       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
447     DI->setLocation(D.getLocation());
448     DI->EmitGlobalVariable(var, &D);
449   }
450 }
451 
452 namespace {
453   struct DestroyObject final : EHScopeStack::Cleanup {
454     DestroyObject(Address addr, QualType type,
455                   CodeGenFunction::Destroyer *destroyer,
456                   bool useEHCleanupForArray)
457       : addr(addr), type(type), destroyer(destroyer),
458         useEHCleanupForArray(useEHCleanupForArray) {}
459 
460     Address addr;
461     QualType type;
462     CodeGenFunction::Destroyer *destroyer;
463     bool useEHCleanupForArray;
464 
465     void Emit(CodeGenFunction &CGF, Flags flags) override {
466       // Don't use an EH cleanup recursively from an EH cleanup.
467       bool useEHCleanupForArray =
468         flags.isForNormalCleanup() && this->useEHCleanupForArray;
469 
470       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
471     }
472   };
473 
474   template <class Derived>
475   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
476     DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag)
477         : NRVOFlag(NRVOFlag), Loc(addr) {}
478 
479     llvm::Value *NRVOFlag;
480     Address Loc;
481 
482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       // Along the exceptions path we always execute the dtor.
484       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
485 
486       llvm::BasicBlock *SkipDtorBB = nullptr;
487       if (NRVO) {
488         // If we exited via NRVO, we skip the destructor call.
489         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
490         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
491         llvm::Value *DidNRVO =
492           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
493         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
494         CGF.EmitBlock(RunDtorBB);
495       }
496 
497       static_cast<Derived *>(this)->emitDestructorCall(CGF);
498 
499       if (NRVO) CGF.EmitBlock(SkipDtorBB);
500     }
501 
502     virtual ~DestroyNRVOVariable() = default;
503   };
504 
505   struct DestroyNRVOVariableCXX final
506       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
507     DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor,
508                            llvm::Value *NRVOFlag)
509       : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag),
510         Dtor(Dtor) {}
511 
512     const CXXDestructorDecl *Dtor;
513 
514     void emitDestructorCall(CodeGenFunction &CGF) {
515       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
516                                 /*ForVirtualBase=*/false,
517                                 /*Delegating=*/false, Loc);
518     }
519   };
520 
521   struct DestroyNRVOVariableC final
522       : DestroyNRVOVariable<DestroyNRVOVariableC> {
523     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
524         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {}
525 
526     QualType Ty;
527 
528     void emitDestructorCall(CodeGenFunction &CGF) {
529       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
530     }
531   };
532 
533   struct CallStackRestore final : EHScopeStack::Cleanup {
534     Address Stack;
535     CallStackRestore(Address Stack) : Stack(Stack) {}
536     void Emit(CodeGenFunction &CGF, Flags flags) override {
537       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
538       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
539       CGF.Builder.CreateCall(F, V);
540     }
541   };
542 
543   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
544     const VarDecl &Var;
545     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
546 
547     void Emit(CodeGenFunction &CGF, Flags flags) override {
548       // Compute the address of the local variable, in case it's a
549       // byref or something.
550       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
551                       Var.getType(), VK_LValue, SourceLocation());
552       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
553                                                 SourceLocation());
554       CGF.EmitExtendGCLifetime(value);
555     }
556   };
557 
558   struct CallCleanupFunction final : EHScopeStack::Cleanup {
559     llvm::Constant *CleanupFn;
560     const CGFunctionInfo &FnInfo;
561     const VarDecl &Var;
562 
563     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
564                         const VarDecl *Var)
565       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
566 
567     void Emit(CodeGenFunction &CGF, Flags flags) override {
568       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
569                       Var.getType(), VK_LValue, SourceLocation());
570       // Compute the address of the local variable, in case it's a byref
571       // or something.
572       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
573 
574       // In some cases, the type of the function argument will be different from
575       // the type of the pointer. An example of this is
576       // void f(void* arg);
577       // __attribute__((cleanup(f))) void *g;
578       //
579       // To fix this we insert a bitcast here.
580       QualType ArgTy = FnInfo.arg_begin()->type;
581       llvm::Value *Arg =
582         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
583 
584       CallArgList Args;
585       Args.add(RValue::get(Arg),
586                CGF.getContext().getPointerType(Var.getType()));
587       auto Callee = CGCallee::forDirect(CleanupFn);
588       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
589     }
590   };
591 } // end anonymous namespace
592 
593 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
594 /// variable with lifetime.
595 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
596                                     Address addr,
597                                     Qualifiers::ObjCLifetime lifetime) {
598   switch (lifetime) {
599   case Qualifiers::OCL_None:
600     llvm_unreachable("present but none");
601 
602   case Qualifiers::OCL_ExplicitNone:
603     // nothing to do
604     break;
605 
606   case Qualifiers::OCL_Strong: {
607     CodeGenFunction::Destroyer *destroyer =
608       (var.hasAttr<ObjCPreciseLifetimeAttr>()
609        ? CodeGenFunction::destroyARCStrongPrecise
610        : CodeGenFunction::destroyARCStrongImprecise);
611 
612     CleanupKind cleanupKind = CGF.getARCCleanupKind();
613     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
614                     cleanupKind & EHCleanup);
615     break;
616   }
617   case Qualifiers::OCL_Autoreleasing:
618     // nothing to do
619     break;
620 
621   case Qualifiers::OCL_Weak:
622     // __weak objects always get EH cleanups; otherwise, exceptions
623     // could cause really nasty crashes instead of mere leaks.
624     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
625                     CodeGenFunction::destroyARCWeak,
626                     /*useEHCleanup*/ true);
627     break;
628   }
629 }
630 
631 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
632   if (const Expr *e = dyn_cast<Expr>(s)) {
633     // Skip the most common kinds of expressions that make
634     // hierarchy-walking expensive.
635     s = e = e->IgnoreParenCasts();
636 
637     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
638       return (ref->getDecl() == &var);
639     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
640       const BlockDecl *block = be->getBlockDecl();
641       for (const auto &I : block->captures()) {
642         if (I.getVariable() == &var)
643           return true;
644       }
645     }
646   }
647 
648   for (const Stmt *SubStmt : s->children())
649     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
650     if (SubStmt && isAccessedBy(var, SubStmt))
651       return true;
652 
653   return false;
654 }
655 
656 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
657   if (!decl) return false;
658   if (!isa<VarDecl>(decl)) return false;
659   const VarDecl *var = cast<VarDecl>(decl);
660   return isAccessedBy(*var, e);
661 }
662 
663 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
664                                    const LValue &destLV, const Expr *init) {
665   bool needsCast = false;
666 
667   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
668     switch (castExpr->getCastKind()) {
669     // Look through casts that don't require representation changes.
670     case CK_NoOp:
671     case CK_BitCast:
672     case CK_BlockPointerToObjCPointerCast:
673       needsCast = true;
674       break;
675 
676     // If we find an l-value to r-value cast from a __weak variable,
677     // emit this operation as a copy or move.
678     case CK_LValueToRValue: {
679       const Expr *srcExpr = castExpr->getSubExpr();
680       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
681         return false;
682 
683       // Emit the source l-value.
684       LValue srcLV = CGF.EmitLValue(srcExpr);
685 
686       // Handle a formal type change to avoid asserting.
687       auto srcAddr = srcLV.getAddress();
688       if (needsCast) {
689         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
690                                          destLV.getAddress().getElementType());
691       }
692 
693       // If it was an l-value, use objc_copyWeak.
694       if (srcExpr->getValueKind() == VK_LValue) {
695         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
696       } else {
697         assert(srcExpr->getValueKind() == VK_XValue);
698         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
699       }
700       return true;
701     }
702 
703     // Stop at anything else.
704     default:
705       return false;
706     }
707 
708     init = castExpr->getSubExpr();
709   }
710   return false;
711 }
712 
713 static void drillIntoBlockVariable(CodeGenFunction &CGF,
714                                    LValue &lvalue,
715                                    const VarDecl *var) {
716   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
717 }
718 
719 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
720                                            SourceLocation Loc) {
721   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
722     return;
723 
724   auto Nullability = LHS.getType()->getNullability(getContext());
725   if (!Nullability || *Nullability != NullabilityKind::NonNull)
726     return;
727 
728   // Check if the right hand side of the assignment is nonnull, if the left
729   // hand side must be nonnull.
730   SanitizerScope SanScope(this);
731   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
732   llvm::Constant *StaticData[] = {
733       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
734       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
735       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
736   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
737             SanitizerHandler::TypeMismatch, StaticData, RHS);
738 }
739 
740 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
741                                      LValue lvalue, bool capturedByInit) {
742   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
743   if (!lifetime) {
744     llvm::Value *value = EmitScalarExpr(init);
745     if (capturedByInit)
746       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
747     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
748     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
749     return;
750   }
751 
752   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
753     init = DIE->getExpr();
754 
755   // If we're emitting a value with lifetime, we have to do the
756   // initialization *before* we leave the cleanup scopes.
757   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
758     enterFullExpression(fe);
759     init = fe->getSubExpr();
760   }
761   CodeGenFunction::RunCleanupsScope Scope(*this);
762 
763   // We have to maintain the illusion that the variable is
764   // zero-initialized.  If the variable might be accessed in its
765   // initializer, zero-initialize before running the initializer, then
766   // actually perform the initialization with an assign.
767   bool accessedByInit = false;
768   if (lifetime != Qualifiers::OCL_ExplicitNone)
769     accessedByInit = (capturedByInit || isAccessedBy(D, init));
770   if (accessedByInit) {
771     LValue tempLV = lvalue;
772     // Drill down to the __block object if necessary.
773     if (capturedByInit) {
774       // We can use a simple GEP for this because it can't have been
775       // moved yet.
776       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
777                                               cast<VarDecl>(D),
778                                               /*follow*/ false));
779     }
780 
781     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
782     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
783 
784     // If __weak, we want to use a barrier under certain conditions.
785     if (lifetime == Qualifiers::OCL_Weak)
786       EmitARCInitWeak(tempLV.getAddress(), zero);
787 
788     // Otherwise just do a simple store.
789     else
790       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
791   }
792 
793   // Emit the initializer.
794   llvm::Value *value = nullptr;
795 
796   switch (lifetime) {
797   case Qualifiers::OCL_None:
798     llvm_unreachable("present but none");
799 
800   case Qualifiers::OCL_Strong: {
801     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
802       value = EmitARCRetainScalarExpr(init);
803       break;
804     }
805     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
806     // that we omit the retain, and causes non-autoreleased return values to be
807     // immediately released.
808     LLVM_FALLTHROUGH;
809   }
810 
811   case Qualifiers::OCL_ExplicitNone:
812     value = EmitARCUnsafeUnretainedScalarExpr(init);
813     break;
814 
815   case Qualifiers::OCL_Weak: {
816     // If it's not accessed by the initializer, try to emit the
817     // initialization with a copy or move.
818     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
819       return;
820     }
821 
822     // No way to optimize a producing initializer into this.  It's not
823     // worth optimizing for, because the value will immediately
824     // disappear in the common case.
825     value = EmitScalarExpr(init);
826 
827     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
828     if (accessedByInit)
829       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
830     else
831       EmitARCInitWeak(lvalue.getAddress(), value);
832     return;
833   }
834 
835   case Qualifiers::OCL_Autoreleasing:
836     value = EmitARCRetainAutoreleaseScalarExpr(init);
837     break;
838   }
839 
840   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
841 
842   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
843 
844   // If the variable might have been accessed by its initializer, we
845   // might have to initialize with a barrier.  We have to do this for
846   // both __weak and __strong, but __weak got filtered out above.
847   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
848     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
849     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
850     EmitARCRelease(oldValue, ARCImpreciseLifetime);
851     return;
852   }
853 
854   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
855 }
856 
857 /// Decide whether we can emit the non-zero parts of the specified initializer
858 /// with equal or fewer than NumStores scalar stores.
859 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
860                                                unsigned &NumStores) {
861   // Zero and Undef never requires any extra stores.
862   if (isa<llvm::ConstantAggregateZero>(Init) ||
863       isa<llvm::ConstantPointerNull>(Init) ||
864       isa<llvm::UndefValue>(Init))
865     return true;
866   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
867       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
868       isa<llvm::ConstantExpr>(Init))
869     return Init->isNullValue() || NumStores--;
870 
871   // See if we can emit each element.
872   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
873     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
874       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
875       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
876         return false;
877     }
878     return true;
879   }
880 
881   if (llvm::ConstantDataSequential *CDS =
882         dyn_cast<llvm::ConstantDataSequential>(Init)) {
883     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
884       llvm::Constant *Elt = CDS->getElementAsConstant(i);
885       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
886         return false;
887     }
888     return true;
889   }
890 
891   // Anything else is hard and scary.
892   return false;
893 }
894 
895 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
896 /// the scalar stores that would be required.
897 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
898                                         llvm::Constant *Init, Address Loc,
899                                         bool isVolatile, CGBuilderTy &Builder) {
900   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
901          "called emitStoresForInitAfterBZero for zero or undef value.");
902 
903   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
904       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
905       isa<llvm::ConstantExpr>(Init)) {
906     Builder.CreateStore(Init, Loc, isVolatile);
907     return;
908   }
909 
910   if (llvm::ConstantDataSequential *CDS =
911           dyn_cast<llvm::ConstantDataSequential>(Init)) {
912     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
913       llvm::Constant *Elt = CDS->getElementAsConstant(i);
914 
915       // If necessary, get a pointer to the element and emit it.
916       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
917         emitStoresForInitAfterBZero(
918             CGM, Elt,
919             Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
920             isVolatile, Builder);
921     }
922     return;
923   }
924 
925   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
926          "Unknown value type!");
927 
928   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
929     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
930 
931     // If necessary, get a pointer to the element and emit it.
932     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
933       emitStoresForInitAfterBZero(
934           CGM, Elt,
935           Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
936           isVolatile, Builder);
937   }
938 }
939 
940 /// Decide whether we should use bzero plus some stores to initialize a local
941 /// variable instead of using a memcpy from a constant global.  It is beneficial
942 /// to use bzero if the global is all zeros, or mostly zeros and large.
943 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
944                                                  uint64_t GlobalSize) {
945   // If a global is all zeros, always use a bzero.
946   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
947 
948   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
949   // do it if it will require 6 or fewer scalar stores.
950   // TODO: Should budget depends on the size?  Avoiding a large global warrants
951   // plopping in more stores.
952   unsigned StoreBudget = 6;
953   uint64_t SizeLimit = 32;
954 
955   return GlobalSize > SizeLimit &&
956          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
957 }
958 
959 /// Decide whether we should use memset to initialize a local variable instead
960 /// of using a memcpy from a constant global. Assumes we've already decided to
961 /// not user bzero.
962 /// FIXME We could be more clever, as we are for bzero above, and generate
963 ///       memset followed by stores. It's unclear that's worth the effort.
964 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
965                                                 uint64_t GlobalSize) {
966   uint64_t SizeLimit = 32;
967   if (GlobalSize <= SizeLimit)
968     return nullptr;
969   return llvm::isBytewiseValue(Init);
970 }
971 
972 static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) {
973   // The following value is a guaranteed unmappable pointer value and has a
974   // repeated byte-pattern which makes it easier to synthesize. We use it for
975   // pointers as well as integers so that aggregates are likely to be
976   // initialized with this repeated value.
977   constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull;
978   // For 32-bit platforms it's a bit trickier because, across systems, only the
979   // zero page can reasonably be expected to be unmapped, and even then we need
980   // a very low address. We use a smaller value, and that value sadly doesn't
981   // have a repeated byte-pattern. We don't use it for integers.
982   constexpr uint32_t SmallValue = 0x000000AA;
983   // Floating-point values are initialized as NaNs because they propagate. Using
984   // a repeated byte pattern means that it will be easier to initialize
985   // all-floating-point aggregates and arrays with memset. Further, aggregates
986   // which mix integral and a few floats might also initialize with memset
987   // followed by a handful of stores for the floats. Using fairly unique NaNs
988   // also means they'll be easier to distinguish in a crash.
989   constexpr bool NegativeNaN = true;
990   constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull;
991   if (Ty->isIntOrIntVectorTy()) {
992     unsigned BitWidth = cast<llvm::IntegerType>(
993                             Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
994                             ->getBitWidth();
995     if (BitWidth <= 64)
996       return llvm::ConstantInt::get(Ty, LargeValue);
997     return llvm::ConstantInt::get(
998         Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue)));
999   }
1000   if (Ty->isPtrOrPtrVectorTy()) {
1001     auto *PtrTy = cast<llvm::PointerType>(
1002         Ty->isVectorTy() ? Ty->getVectorElementType() : Ty);
1003     unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth(
1004         PtrTy->getAddressSpace());
1005     llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth);
1006     uint64_t IntValue;
1007     switch (PtrWidth) {
1008     default:
1009       llvm_unreachable("pattern initialization of unsupported pointer width");
1010     case 64:
1011       IntValue = LargeValue;
1012       break;
1013     case 32:
1014       IntValue = SmallValue;
1015       break;
1016     }
1017     auto *Int = llvm::ConstantInt::get(IntTy, IntValue);
1018     return llvm::ConstantExpr::getIntToPtr(Int, PtrTy);
1019   }
1020   if (Ty->isFPOrFPVectorTy()) {
1021     unsigned BitWidth = llvm::APFloat::semanticsSizeInBits(
1022         (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
1023             ->getFltSemantics());
1024     llvm::APInt Payload(64, NaNPayload);
1025     if (BitWidth >= 64)
1026       Payload = llvm::APInt::getSplat(BitWidth, Payload);
1027     return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload);
1028   }
1029   if (Ty->isArrayTy()) {
1030     // Note: this doesn't touch tail padding (at the end of an object, before
1031     // the next array object). It is instead handled by replaceUndef.
1032     auto *ArrTy = cast<llvm::ArrayType>(Ty);
1033     llvm::SmallVector<llvm::Constant *, 8> Element(
1034         ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType()));
1035     return llvm::ConstantArray::get(ArrTy, Element);
1036   }
1037 
1038   // Note: this doesn't touch struct padding. It will initialize as much union
1039   // padding as is required for the largest type in the union. Padding is
1040   // instead handled by replaceUndef. Stores to structs with volatile members
1041   // don't have a volatile qualifier when initialized according to C++. This is
1042   // fine because stack-based volatiles don't really have volatile semantics
1043   // anyways, and the initialization shouldn't be observable.
1044   auto *StructTy = cast<llvm::StructType>(Ty);
1045   llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements());
1046   for (unsigned El = 0; El != Struct.size(); ++El)
1047     Struct[El] = patternFor(CGM, StructTy->getElementType(El));
1048   return llvm::ConstantStruct::get(StructTy, Struct);
1049 }
1050 
1051 static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D,
1052                                        CGBuilderTy &Builder,
1053                                        llvm::Constant *Constant,
1054                                        CharUnits Align) {
1055   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1056     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1057       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1058         return CC->getNameAsString();
1059       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1060         return CD->getNameAsString();
1061       return CGM.getMangledName(FD);
1062     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1063       return OM->getNameAsString();
1064     } else if (isa<BlockDecl>(DC)) {
1065       return "<block>";
1066     } else if (isa<CapturedDecl>(DC)) {
1067       return "<captured>";
1068     } else {
1069       llvm::llvm_unreachable_internal("expected a function or method");
1070     }
1071   };
1072 
1073   auto *Ty = Constant->getType();
1074   bool isConstant = true;
1075   llvm::GlobalVariable *InsertBefore = nullptr;
1076   unsigned AS = CGM.getContext().getTargetAddressSpace(
1077       CGM.getStringLiteralAddressSpace());
1078   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1079       CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1080       Constant,
1081       "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." +
1082           D.getName(),
1083       InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1084   GV->setAlignment(Align.getQuantity());
1085   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1086 
1087   Address SrcPtr = Address(GV, Align);
1088   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS);
1089   if (SrcPtr.getType() != BP)
1090     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1091   return SrcPtr;
1092 }
1093 
1094 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1095                                   Address Loc, bool isVolatile,
1096                                   CGBuilderTy &Builder,
1097                                   llvm::Constant *constant) {
1098   auto *Ty = constant->getType();
1099   bool isScalar = Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy() ||
1100                   Ty->isFPOrFPVectorTy();
1101   if (isScalar) {
1102     Builder.CreateStore(constant, Loc, isVolatile);
1103     return;
1104   }
1105 
1106   auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1107   auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext());
1108 
1109   // If the initializer is all or mostly the same, codegen with bzero / memset
1110   // then do a few stores afterward.
1111   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1112   auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize);
1113   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1114     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1115                          isVolatile);
1116 
1117     bool valueAlreadyCorrect =
1118         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1119     if (!valueAlreadyCorrect) {
1120       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1121       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1122     }
1123     return;
1124   }
1125 
1126   llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize);
1127   if (Pattern) {
1128     uint64_t Value = 0x00;
1129     if (!isa<llvm::UndefValue>(Pattern)) {
1130       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1131       assert(AP.getBitWidth() <= 8);
1132       Value = AP.getLimitedValue();
1133     }
1134     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal,
1135                          isVolatile);
1136     return;
1137   }
1138 
1139   Builder.CreateMemCpy(
1140       Loc,
1141       createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()),
1142       SizeVal, isVolatile);
1143 }
1144 
1145 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1146                                   Address Loc, bool isVolatile,
1147                                   CGBuilderTy &Builder) {
1148   llvm::Type *ElTy = Loc.getElementType();
1149   llvm::Constant *constant = llvm::Constant::getNullValue(ElTy);
1150   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1151 }
1152 
1153 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1154                                      Address Loc, bool isVolatile,
1155                                      CGBuilderTy &Builder) {
1156   llvm::Type *ElTy = Loc.getElementType();
1157   llvm::Constant *constant = patternFor(CGM, ElTy);
1158   assert(!isa<llvm::UndefValue>(constant));
1159   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1160 }
1161 
1162 static bool containsUndef(llvm::Constant *constant) {
1163   auto *Ty = constant->getType();
1164   if (isa<llvm::UndefValue>(constant))
1165     return true;
1166   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1167     for (llvm::Use &Op : constant->operands())
1168       if (containsUndef(cast<llvm::Constant>(Op)))
1169         return true;
1170   return false;
1171 }
1172 
1173 static llvm::Constant *replaceUndef(llvm::Constant *constant) {
1174   // FIXME: when doing pattern initialization, replace undef with 0xAA instead.
1175   // FIXME: also replace padding between values by creating a new struct type
1176   //        which has no padding.
1177   auto *Ty = constant->getType();
1178   if (isa<llvm::UndefValue>(constant))
1179     return llvm::Constant::getNullValue(Ty);
1180   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1181     return constant;
1182   if (!containsUndef(constant))
1183     return constant;
1184   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1185   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1186     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1187     Values[Op] = replaceUndef(OpValue);
1188   }
1189   if (Ty->isStructTy())
1190     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1191   if (Ty->isArrayTy())
1192     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1193   assert(Ty->isVectorTy());
1194   return llvm::ConstantVector::get(Values);
1195 }
1196 
1197 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1198 /// variable declaration with auto, register, or no storage class specifier.
1199 /// These turn into simple stack objects, or GlobalValues depending on target.
1200 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1201   AutoVarEmission emission = EmitAutoVarAlloca(D);
1202   EmitAutoVarInit(emission);
1203   EmitAutoVarCleanups(emission);
1204 }
1205 
1206 /// Emit a lifetime.begin marker if some criteria are satisfied.
1207 /// \return a pointer to the temporary size Value if a marker was emitted, null
1208 /// otherwise
1209 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1210                                                 llvm::Value *Addr) {
1211   if (!ShouldEmitLifetimeMarkers)
1212     return nullptr;
1213 
1214   assert(Addr->getType()->getPointerAddressSpace() ==
1215              CGM.getDataLayout().getAllocaAddrSpace() &&
1216          "Pointer should be in alloca address space");
1217   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1218   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1219   llvm::CallInst *C =
1220       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1221   C->setDoesNotThrow();
1222   return SizeV;
1223 }
1224 
1225 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1226   assert(Addr->getType()->getPointerAddressSpace() ==
1227              CGM.getDataLayout().getAllocaAddrSpace() &&
1228          "Pointer should be in alloca address space");
1229   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1230   llvm::CallInst *C =
1231       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1232   C->setDoesNotThrow();
1233 }
1234 
1235 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1236     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1237   // For each dimension stores its QualType and corresponding
1238   // size-expression Value.
1239   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1240   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1241 
1242   // Break down the array into individual dimensions.
1243   QualType Type1D = D.getType();
1244   while (getContext().getAsVariableArrayType(Type1D)) {
1245     auto VlaSize = getVLAElements1D(Type1D);
1246     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1247       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1248     else {
1249       // Generate a locally unique name for the size expression.
1250       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1251       SmallString<12> Buffer;
1252       StringRef NameRef = Name.toStringRef(Buffer);
1253       auto &Ident = getContext().Idents.getOwn(NameRef);
1254       VLAExprNames.push_back(&Ident);
1255       auto SizeExprAddr =
1256           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1257       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1258       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1259                               Type1D.getUnqualifiedType());
1260     }
1261     Type1D = VlaSize.Type;
1262   }
1263 
1264   if (!EmitDebugInfo)
1265     return;
1266 
1267   // Register each dimension's size-expression with a DILocalVariable,
1268   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1269   // to describe this array.
1270   unsigned NameIdx = 0;
1271   for (auto &VlaSize : Dimensions) {
1272     llvm::Metadata *MD;
1273     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1274       MD = llvm::ConstantAsMetadata::get(C);
1275     else {
1276       // Create an artificial VarDecl to generate debug info for.
1277       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1278       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1279       auto QT = getContext().getIntTypeForBitwidth(
1280           VlaExprTy->getScalarSizeInBits(), false);
1281       auto *ArtificialDecl = VarDecl::Create(
1282           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1283           D.getLocation(), D.getLocation(), NameIdent, QT,
1284           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1285       ArtificialDecl->setImplicit();
1286 
1287       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1288                                          Builder);
1289     }
1290     assert(MD && "No Size expression debug node created");
1291     DI->registerVLASizeExpression(VlaSize.Type, MD);
1292   }
1293 }
1294 
1295 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1296 /// local variable.  Does not emit initialization or destruction.
1297 CodeGenFunction::AutoVarEmission
1298 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1299   QualType Ty = D.getType();
1300   assert(
1301       Ty.getAddressSpace() == LangAS::Default ||
1302       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1303 
1304   AutoVarEmission emission(D);
1305 
1306   bool isEscapingByRef = D.isEscapingByref();
1307   emission.IsEscapingByRef = isEscapingByRef;
1308 
1309   CharUnits alignment = getContext().getDeclAlign(&D);
1310 
1311   // If the type is variably-modified, emit all the VLA sizes for it.
1312   if (Ty->isVariablyModifiedType())
1313     EmitVariablyModifiedType(Ty);
1314 
1315   auto *DI = getDebugInfo();
1316   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1317                                  codegenoptions::LimitedDebugInfo;
1318 
1319   Address address = Address::invalid();
1320   Address AllocaAddr = Address::invalid();
1321   if (Ty->isConstantSizeType()) {
1322     bool NRVO = getLangOpts().ElideConstructors &&
1323       D.isNRVOVariable();
1324 
1325     // If this value is an array or struct with a statically determinable
1326     // constant initializer, there are optimizations we can do.
1327     //
1328     // TODO: We should constant-evaluate the initializer of any variable,
1329     // as long as it is initialized by a constant expression. Currently,
1330     // isConstantInitializer produces wrong answers for structs with
1331     // reference or bitfield members, and a few other cases, and checking
1332     // for POD-ness protects us from some of these.
1333     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1334         (D.isConstexpr() ||
1335          ((Ty.isPODType(getContext()) ||
1336            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1337           D.getInit()->isConstantInitializer(getContext(), false)))) {
1338 
1339       // If the variable's a const type, and it's neither an NRVO
1340       // candidate nor a __block variable and has no mutable members,
1341       // emit it as a global instead.
1342       // Exception is if a variable is located in non-constant address space
1343       // in OpenCL.
1344       if ((!getLangOpts().OpenCL ||
1345            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1346           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1347            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1348         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1349 
1350         // Signal this condition to later callbacks.
1351         emission.Addr = Address::invalid();
1352         assert(emission.wasEmittedAsGlobal());
1353         return emission;
1354       }
1355 
1356       // Otherwise, tell the initialization code that we're in this case.
1357       emission.IsConstantAggregate = true;
1358     }
1359 
1360     // A normal fixed sized variable becomes an alloca in the entry block,
1361     // unless:
1362     // - it's an NRVO variable.
1363     // - we are compiling OpenMP and it's an OpenMP local variable.
1364 
1365     Address OpenMPLocalAddr =
1366         getLangOpts().OpenMP
1367             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1368             : Address::invalid();
1369     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1370       address = OpenMPLocalAddr;
1371     } else if (NRVO) {
1372       // The named return value optimization: allocate this variable in the
1373       // return slot, so that we can elide the copy when returning this
1374       // variable (C++0x [class.copy]p34).
1375       address = ReturnValue;
1376 
1377       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1378         const auto *RD = RecordTy->getDecl();
1379         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1380         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1381             RD->isNonTrivialToPrimitiveDestroy()) {
1382           // Create a flag that is used to indicate when the NRVO was applied
1383           // to this variable. Set it to zero to indicate that NRVO was not
1384           // applied.
1385           llvm::Value *Zero = Builder.getFalse();
1386           Address NRVOFlag =
1387             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1388           EnsureInsertPoint();
1389           Builder.CreateStore(Zero, NRVOFlag);
1390 
1391           // Record the NRVO flag for this variable.
1392           NRVOFlags[&D] = NRVOFlag.getPointer();
1393           emission.NRVOFlag = NRVOFlag.getPointer();
1394         }
1395       }
1396     } else {
1397       CharUnits allocaAlignment;
1398       llvm::Type *allocaTy;
1399       if (isEscapingByRef) {
1400         auto &byrefInfo = getBlockByrefInfo(&D);
1401         allocaTy = byrefInfo.Type;
1402         allocaAlignment = byrefInfo.ByrefAlignment;
1403       } else {
1404         allocaTy = ConvertTypeForMem(Ty);
1405         allocaAlignment = alignment;
1406       }
1407 
1408       // Create the alloca.  Note that we set the name separately from
1409       // building the instruction so that it's there even in no-asserts
1410       // builds.
1411       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1412                                  /*ArraySize=*/nullptr, &AllocaAddr);
1413 
1414       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1415       // the catch parameter starts in the catchpad instruction, and we can't
1416       // insert code in those basic blocks.
1417       bool IsMSCatchParam =
1418           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1419 
1420       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1421       // if we don't have a valid insertion point (?).
1422       if (HaveInsertPoint() && !IsMSCatchParam) {
1423         // If there's a jump into the lifetime of this variable, its lifetime
1424         // gets broken up into several regions in IR, which requires more work
1425         // to handle correctly. For now, just omit the intrinsics; this is a
1426         // rare case, and it's better to just be conservatively correct.
1427         // PR28267.
1428         //
1429         // We have to do this in all language modes if there's a jump past the
1430         // declaration. We also have to do it in C if there's a jump to an
1431         // earlier point in the current block because non-VLA lifetimes begin as
1432         // soon as the containing block is entered, not when its variables
1433         // actually come into scope; suppressing the lifetime annotations
1434         // completely in this case is unnecessarily pessimistic, but again, this
1435         // is rare.
1436         if (!Bypasses.IsBypassed(&D) &&
1437             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1438           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1439           emission.SizeForLifetimeMarkers =
1440               EmitLifetimeStart(size, AllocaAddr.getPointer());
1441         }
1442       } else {
1443         assert(!emission.useLifetimeMarkers());
1444       }
1445     }
1446   } else {
1447     EnsureInsertPoint();
1448 
1449     if (!DidCallStackSave) {
1450       // Save the stack.
1451       Address Stack =
1452         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1453 
1454       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1455       llvm::Value *V = Builder.CreateCall(F);
1456       Builder.CreateStore(V, Stack);
1457 
1458       DidCallStackSave = true;
1459 
1460       // Push a cleanup block and restore the stack there.
1461       // FIXME: in general circumstances, this should be an EH cleanup.
1462       pushStackRestore(NormalCleanup, Stack);
1463     }
1464 
1465     auto VlaSize = getVLASize(Ty);
1466     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1467 
1468     // Allocate memory for the array.
1469     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1470                                &AllocaAddr);
1471 
1472     // If we have debug info enabled, properly describe the VLA dimensions for
1473     // this type by registering the vla size expression for each of the
1474     // dimensions.
1475     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1476   }
1477 
1478   setAddrOfLocalVar(&D, address);
1479   emission.Addr = address;
1480   emission.AllocaAddr = AllocaAddr;
1481 
1482   // Emit debug info for local var declaration.
1483   if (EmitDebugInfo && HaveInsertPoint()) {
1484     DI->setLocation(D.getLocation());
1485     (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1486   }
1487 
1488   if (D.hasAttr<AnnotateAttr>())
1489     EmitVarAnnotations(&D, address.getPointer());
1490 
1491   // Make sure we call @llvm.lifetime.end.
1492   if (emission.useLifetimeMarkers())
1493     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1494                                          emission.getOriginalAllocatedAddress(),
1495                                          emission.getSizeForLifetimeMarkers());
1496 
1497   return emission;
1498 }
1499 
1500 static bool isCapturedBy(const VarDecl &, const Expr *);
1501 
1502 /// Determines whether the given __block variable is potentially
1503 /// captured by the given statement.
1504 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1505   if (const Expr *E = dyn_cast<Expr>(S))
1506     return isCapturedBy(Var, E);
1507   for (const Stmt *SubStmt : S->children())
1508     if (isCapturedBy(Var, SubStmt))
1509       return true;
1510   return false;
1511 }
1512 
1513 /// Determines whether the given __block variable is potentially
1514 /// captured by the given expression.
1515 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1516   // Skip the most common kinds of expressions that make
1517   // hierarchy-walking expensive.
1518   E = E->IgnoreParenCasts();
1519 
1520   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1521     const BlockDecl *Block = BE->getBlockDecl();
1522     for (const auto &I : Block->captures()) {
1523       if (I.getVariable() == &Var)
1524         return true;
1525     }
1526 
1527     // No need to walk into the subexpressions.
1528     return false;
1529   }
1530 
1531   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1532     const CompoundStmt *CS = SE->getSubStmt();
1533     for (const auto *BI : CS->body())
1534       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1535         if (isCapturedBy(Var, BIE))
1536           return true;
1537       }
1538       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1539           // special case declarations
1540           for (const auto *I : DS->decls()) {
1541               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1542                 const Expr *Init = VD->getInit();
1543                 if (Init && isCapturedBy(Var, Init))
1544                   return true;
1545               }
1546           }
1547       }
1548       else
1549         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1550         // Later, provide code to poke into statements for capture analysis.
1551         return true;
1552     return false;
1553   }
1554 
1555   for (const Stmt *SubStmt : E->children())
1556     if (isCapturedBy(Var, SubStmt))
1557       return true;
1558 
1559   return false;
1560 }
1561 
1562 /// Determine whether the given initializer is trivial in the sense
1563 /// that it requires no code to be generated.
1564 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1565   if (!Init)
1566     return true;
1567 
1568   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1569     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1570       if (Constructor->isTrivial() &&
1571           Constructor->isDefaultConstructor() &&
1572           !Construct->requiresZeroInitialization())
1573         return true;
1574 
1575   return false;
1576 }
1577 
1578 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1579   assert(emission.Variable && "emission was not valid!");
1580 
1581   // If this was emitted as a global constant, we're done.
1582   if (emission.wasEmittedAsGlobal()) return;
1583 
1584   const VarDecl &D = *emission.Variable;
1585   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1586   QualType type = D.getType();
1587 
1588   bool isVolatile = type.isVolatileQualified();
1589 
1590   // If this local has an initializer, emit it now.
1591   const Expr *Init = D.getInit();
1592 
1593   // If we are at an unreachable point, we don't need to emit the initializer
1594   // unless it contains a label.
1595   if (!HaveInsertPoint()) {
1596     if (!Init || !ContainsLabel(Init)) return;
1597     EnsureInsertPoint();
1598   }
1599 
1600   // Initialize the structure of a __block variable.
1601   if (emission.IsEscapingByRef)
1602     emitByrefStructureInit(emission);
1603 
1604   // Initialize the variable here if it doesn't have a initializer and it is a
1605   // C struct that is non-trivial to initialize or an array containing such a
1606   // struct.
1607   if (!Init &&
1608       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1609           QualType::PDIK_Struct) {
1610     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1611     if (emission.IsEscapingByRef)
1612       drillIntoBlockVariable(*this, Dst, &D);
1613     defaultInitNonTrivialCStructVar(Dst);
1614     return;
1615   }
1616 
1617   // Check whether this is a byref variable that's potentially
1618   // captured and moved by its own initializer.  If so, we'll need to
1619   // emit the initializer first, then copy into the variable.
1620   bool capturedByInit =
1621       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1622 
1623   Address Loc =
1624       capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1625 
1626   // Note: constexpr already initializes everything correctly.
1627   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1628       (D.isConstexpr()
1629            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1630            : (D.getAttr<UninitializedAttr>()
1631                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1632                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1633 
1634   auto initializeWhatIsTechnicallyUninitialized = [&]() {
1635     if (trivialAutoVarInit ==
1636         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1637       return;
1638 
1639     CharUnits Size = getContext().getTypeSizeInChars(type);
1640     if (!Size.isZero()) {
1641       switch (trivialAutoVarInit) {
1642       case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1643         llvm_unreachable("Uninitialized handled above");
1644       case LangOptions::TrivialAutoVarInitKind::Zero:
1645         emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1646         break;
1647       case LangOptions::TrivialAutoVarInitKind::Pattern:
1648         emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1649         break;
1650       }
1651       return;
1652     }
1653 
1654     // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1655     // them, so emit a memcpy with the VLA size to initialize each element.
1656     // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1657     // will catch that code, but there exists code which generates zero-sized
1658     // VLAs. Be nice and initialize whatever they requested.
1659     const VariableArrayType *VlaType =
1660         dyn_cast_or_null<VariableArrayType>(getContext().getAsArrayType(type));
1661     if (!VlaType)
1662       return;
1663     auto VlaSize = getVLASize(VlaType);
1664     auto SizeVal = VlaSize.NumElts;
1665     CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1666     switch (trivialAutoVarInit) {
1667     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1668       llvm_unreachable("Uninitialized handled above");
1669 
1670     case LangOptions::TrivialAutoVarInitKind::Zero:
1671       if (!EltSize.isOne())
1672         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1673       Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1674                            isVolatile);
1675       break;
1676 
1677     case LangOptions::TrivialAutoVarInitKind::Pattern: {
1678       llvm::Type *ElTy = Loc.getElementType();
1679       llvm::Constant *Constant = patternFor(CGM, ElTy);
1680       CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1681       llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1682       llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1683       llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1684       llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1685           SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1686           "vla.iszerosized");
1687       Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1688       EmitBlock(SetupBB);
1689       if (!EltSize.isOne())
1690         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1691       llvm::Value *BaseSizeInChars =
1692           llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1693       Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1694       llvm::Value *End =
1695           Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1696       llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1697       EmitBlock(LoopBB);
1698       llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1699       Cur->addIncoming(Begin.getPointer(), OriginBB);
1700       CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1701       Builder.CreateMemCpy(
1702           Address(Cur, CurAlign),
1703           createUnnamedGlobalFrom(CGM, D, Builder, Constant, ConstantAlign),
1704           BaseSizeInChars, isVolatile);
1705       llvm::Value *Next =
1706           Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1707       llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1708       Builder.CreateCondBr(Done, ContBB, LoopBB);
1709       Cur->addIncoming(Next, LoopBB);
1710       EmitBlock(ContBB);
1711     } break;
1712     }
1713   };
1714 
1715   if (isTrivialInitializer(Init)) {
1716     initializeWhatIsTechnicallyUninitialized();
1717     return;
1718   }
1719 
1720   llvm::Constant *constant = nullptr;
1721   if (emission.IsConstantAggregate || D.isConstexpr()) {
1722     assert(!capturedByInit && "constant init contains a capturing block?");
1723     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1724     if (constant && trivialAutoVarInit !=
1725                         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1726       constant = replaceUndef(constant);
1727   }
1728 
1729   if (!constant) {
1730     initializeWhatIsTechnicallyUninitialized();
1731     LValue lv = MakeAddrLValue(Loc, type);
1732     lv.setNonGC(true);
1733     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1734   }
1735 
1736   if (!emission.IsConstantAggregate) {
1737     // For simple scalar/complex initialization, store the value directly.
1738     LValue lv = MakeAddrLValue(Loc, type);
1739     lv.setNonGC(true);
1740     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1741   }
1742 
1743   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1744   if (Loc.getType() != BP)
1745     Loc = Builder.CreateBitCast(Loc, BP);
1746 
1747   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1748 }
1749 
1750 /// Emit an expression as an initializer for an object (variable, field, etc.)
1751 /// at the given location.  The expression is not necessarily the normal
1752 /// initializer for the object, and the address is not necessarily
1753 /// its normal location.
1754 ///
1755 /// \param init the initializing expression
1756 /// \param D the object to act as if we're initializing
1757 /// \param loc the address to initialize; its type is a pointer
1758 ///   to the LLVM mapping of the object's type
1759 /// \param alignment the alignment of the address
1760 /// \param capturedByInit true if \p D is a __block variable
1761 ///   whose address is potentially changed by the initializer
1762 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1763                                      LValue lvalue, bool capturedByInit) {
1764   QualType type = D->getType();
1765 
1766   if (type->isReferenceType()) {
1767     RValue rvalue = EmitReferenceBindingToExpr(init);
1768     if (capturedByInit)
1769       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1770     EmitStoreThroughLValue(rvalue, lvalue, true);
1771     return;
1772   }
1773   switch (getEvaluationKind(type)) {
1774   case TEK_Scalar:
1775     EmitScalarInit(init, D, lvalue, capturedByInit);
1776     return;
1777   case TEK_Complex: {
1778     ComplexPairTy complex = EmitComplexExpr(init);
1779     if (capturedByInit)
1780       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1781     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1782     return;
1783   }
1784   case TEK_Aggregate:
1785     if (type->isAtomicType()) {
1786       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1787     } else {
1788       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1789       if (isa<VarDecl>(D))
1790         Overlap = AggValueSlot::DoesNotOverlap;
1791       else if (auto *FD = dyn_cast<FieldDecl>(D))
1792         Overlap = overlapForFieldInit(FD);
1793       // TODO: how can we delay here if D is captured by its initializer?
1794       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1795                                               AggValueSlot::IsDestructed,
1796                                          AggValueSlot::DoesNotNeedGCBarriers,
1797                                               AggValueSlot::IsNotAliased,
1798                                               Overlap));
1799     }
1800     return;
1801   }
1802   llvm_unreachable("bad evaluation kind");
1803 }
1804 
1805 /// Enter a destroy cleanup for the given local variable.
1806 void CodeGenFunction::emitAutoVarTypeCleanup(
1807                             const CodeGenFunction::AutoVarEmission &emission,
1808                             QualType::DestructionKind dtorKind) {
1809   assert(dtorKind != QualType::DK_none);
1810 
1811   // Note that for __block variables, we want to destroy the
1812   // original stack object, not the possibly forwarded object.
1813   Address addr = emission.getObjectAddress(*this);
1814 
1815   const VarDecl *var = emission.Variable;
1816   QualType type = var->getType();
1817 
1818   CleanupKind cleanupKind = NormalAndEHCleanup;
1819   CodeGenFunction::Destroyer *destroyer = nullptr;
1820 
1821   switch (dtorKind) {
1822   case QualType::DK_none:
1823     llvm_unreachable("no cleanup for trivially-destructible variable");
1824 
1825   case QualType::DK_cxx_destructor:
1826     // If there's an NRVO flag on the emission, we need a different
1827     // cleanup.
1828     if (emission.NRVOFlag) {
1829       assert(!type->isArrayType());
1830       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1831       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor,
1832                                                   emission.NRVOFlag);
1833       return;
1834     }
1835     break;
1836 
1837   case QualType::DK_objc_strong_lifetime:
1838     // Suppress cleanups for pseudo-strong variables.
1839     if (var->isARCPseudoStrong()) return;
1840 
1841     // Otherwise, consider whether to use an EH cleanup or not.
1842     cleanupKind = getARCCleanupKind();
1843 
1844     // Use the imprecise destroyer by default.
1845     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1846       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1847     break;
1848 
1849   case QualType::DK_objc_weak_lifetime:
1850     break;
1851 
1852   case QualType::DK_nontrivial_c_struct:
1853     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1854     if (emission.NRVOFlag) {
1855       assert(!type->isArrayType());
1856       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1857                                                 emission.NRVOFlag, type);
1858       return;
1859     }
1860     break;
1861   }
1862 
1863   // If we haven't chosen a more specific destroyer, use the default.
1864   if (!destroyer) destroyer = getDestroyer(dtorKind);
1865 
1866   // Use an EH cleanup in array destructors iff the destructor itself
1867   // is being pushed as an EH cleanup.
1868   bool useEHCleanup = (cleanupKind & EHCleanup);
1869   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1870                                      useEHCleanup);
1871 }
1872 
1873 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1874   assert(emission.Variable && "emission was not valid!");
1875 
1876   // If this was emitted as a global constant, we're done.
1877   if (emission.wasEmittedAsGlobal()) return;
1878 
1879   // If we don't have an insertion point, we're done.  Sema prevents
1880   // us from jumping into any of these scopes anyway.
1881   if (!HaveInsertPoint()) return;
1882 
1883   const VarDecl &D = *emission.Variable;
1884 
1885   // Check the type for a cleanup.
1886   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1887     emitAutoVarTypeCleanup(emission, dtorKind);
1888 
1889   // In GC mode, honor objc_precise_lifetime.
1890   if (getLangOpts().getGC() != LangOptions::NonGC &&
1891       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1892     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1893   }
1894 
1895   // Handle the cleanup attribute.
1896   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1897     const FunctionDecl *FD = CA->getFunctionDecl();
1898 
1899     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1900     assert(F && "Could not find function!");
1901 
1902     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1903     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1904   }
1905 
1906   // If this is a block variable, call _Block_object_destroy
1907   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
1908   // mode.
1909   if (emission.IsEscapingByRef &&
1910       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
1911     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
1912     if (emission.Variable->getType().isObjCGCWeak())
1913       Flags |= BLOCK_FIELD_IS_WEAK;
1914     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
1915                       /*LoadBlockVarAddr*/ false,
1916                       cxxDestructorCanThrow(emission.Variable->getType()));
1917   }
1918 }
1919 
1920 CodeGenFunction::Destroyer *
1921 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1922   switch (kind) {
1923   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1924   case QualType::DK_cxx_destructor:
1925     return destroyCXXObject;
1926   case QualType::DK_objc_strong_lifetime:
1927     return destroyARCStrongPrecise;
1928   case QualType::DK_objc_weak_lifetime:
1929     return destroyARCWeak;
1930   case QualType::DK_nontrivial_c_struct:
1931     return destroyNonTrivialCStruct;
1932   }
1933   llvm_unreachable("Unknown DestructionKind");
1934 }
1935 
1936 /// pushEHDestroy - Push the standard destructor for the given type as
1937 /// an EH-only cleanup.
1938 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1939                                     Address addr, QualType type) {
1940   assert(dtorKind && "cannot push destructor for trivial type");
1941   assert(needsEHCleanup(dtorKind));
1942 
1943   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1944 }
1945 
1946 /// pushDestroy - Push the standard destructor for the given type as
1947 /// at least a normal cleanup.
1948 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1949                                   Address addr, QualType type) {
1950   assert(dtorKind && "cannot push destructor for trivial type");
1951 
1952   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1953   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1954               cleanupKind & EHCleanup);
1955 }
1956 
1957 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1958                                   QualType type, Destroyer *destroyer,
1959                                   bool useEHCleanupForArray) {
1960   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1961                                      destroyer, useEHCleanupForArray);
1962 }
1963 
1964 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1965   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1966 }
1967 
1968 void CodeGenFunction::pushLifetimeExtendedDestroy(
1969     CleanupKind cleanupKind, Address addr, QualType type,
1970     Destroyer *destroyer, bool useEHCleanupForArray) {
1971   // Push an EH-only cleanup for the object now.
1972   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1973   // around in case a temporary's destructor throws an exception.
1974   if (cleanupKind & EHCleanup)
1975     EHStack.pushCleanup<DestroyObject>(
1976         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1977         destroyer, useEHCleanupForArray);
1978 
1979   // Remember that we need to push a full cleanup for the object at the
1980   // end of the full-expression.
1981   pushCleanupAfterFullExpr<DestroyObject>(
1982       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1983 }
1984 
1985 /// emitDestroy - Immediately perform the destruction of the given
1986 /// object.
1987 ///
1988 /// \param addr - the address of the object; a type*
1989 /// \param type - the type of the object; if an array type, all
1990 ///   objects are destroyed in reverse order
1991 /// \param destroyer - the function to call to destroy individual
1992 ///   elements
1993 /// \param useEHCleanupForArray - whether an EH cleanup should be
1994 ///   used when destroying array elements, in case one of the
1995 ///   destructions throws an exception
1996 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1997                                   Destroyer *destroyer,
1998                                   bool useEHCleanupForArray) {
1999   const ArrayType *arrayType = getContext().getAsArrayType(type);
2000   if (!arrayType)
2001     return destroyer(*this, addr, type);
2002 
2003   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2004 
2005   CharUnits elementAlign =
2006     addr.getAlignment()
2007         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2008 
2009   // Normally we have to check whether the array is zero-length.
2010   bool checkZeroLength = true;
2011 
2012   // But if the array length is constant, we can suppress that.
2013   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2014     // ...and if it's constant zero, we can just skip the entire thing.
2015     if (constLength->isZero()) return;
2016     checkZeroLength = false;
2017   }
2018 
2019   llvm::Value *begin = addr.getPointer();
2020   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2021   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2022                    checkZeroLength, useEHCleanupForArray);
2023 }
2024 
2025 /// emitArrayDestroy - Destroys all the elements of the given array,
2026 /// beginning from last to first.  The array cannot be zero-length.
2027 ///
2028 /// \param begin - a type* denoting the first element of the array
2029 /// \param end - a type* denoting one past the end of the array
2030 /// \param elementType - the element type of the array
2031 /// \param destroyer - the function to call to destroy elements
2032 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2033 ///   the remaining elements in case the destruction of a single
2034 ///   element throws
2035 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2036                                        llvm::Value *end,
2037                                        QualType elementType,
2038                                        CharUnits elementAlign,
2039                                        Destroyer *destroyer,
2040                                        bool checkZeroLength,
2041                                        bool useEHCleanup) {
2042   assert(!elementType->isArrayType());
2043 
2044   // The basic structure here is a do-while loop, because we don't
2045   // need to check for the zero-element case.
2046   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2047   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2048 
2049   if (checkZeroLength) {
2050     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2051                                                 "arraydestroy.isempty");
2052     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2053   }
2054 
2055   // Enter the loop body, making that address the current address.
2056   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2057   EmitBlock(bodyBB);
2058   llvm::PHINode *elementPast =
2059     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2060   elementPast->addIncoming(end, entryBB);
2061 
2062   // Shift the address back by one element.
2063   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2064   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2065                                                    "arraydestroy.element");
2066 
2067   if (useEHCleanup)
2068     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2069                                    destroyer);
2070 
2071   // Perform the actual destruction there.
2072   destroyer(*this, Address(element, elementAlign), elementType);
2073 
2074   if (useEHCleanup)
2075     PopCleanupBlock();
2076 
2077   // Check whether we've reached the end.
2078   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2079   Builder.CreateCondBr(done, doneBB, bodyBB);
2080   elementPast->addIncoming(element, Builder.GetInsertBlock());
2081 
2082   // Done.
2083   EmitBlock(doneBB);
2084 }
2085 
2086 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2087 /// emitArrayDestroy, the element type here may still be an array type.
2088 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2089                                     llvm::Value *begin, llvm::Value *end,
2090                                     QualType type, CharUnits elementAlign,
2091                                     CodeGenFunction::Destroyer *destroyer) {
2092   // If the element type is itself an array, drill down.
2093   unsigned arrayDepth = 0;
2094   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2095     // VLAs don't require a GEP index to walk into.
2096     if (!isa<VariableArrayType>(arrayType))
2097       arrayDepth++;
2098     type = arrayType->getElementType();
2099   }
2100 
2101   if (arrayDepth) {
2102     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2103 
2104     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2105     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2106     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2107   }
2108 
2109   // Destroy the array.  We don't ever need an EH cleanup because we
2110   // assume that we're in an EH cleanup ourselves, so a throwing
2111   // destructor causes an immediate terminate.
2112   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2113                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2114 }
2115 
2116 namespace {
2117   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2118   /// array destroy where the end pointer is regularly determined and
2119   /// does not need to be loaded from a local.
2120   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2121     llvm::Value *ArrayBegin;
2122     llvm::Value *ArrayEnd;
2123     QualType ElementType;
2124     CodeGenFunction::Destroyer *Destroyer;
2125     CharUnits ElementAlign;
2126   public:
2127     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2128                                QualType elementType, CharUnits elementAlign,
2129                                CodeGenFunction::Destroyer *destroyer)
2130       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2131         ElementType(elementType), Destroyer(destroyer),
2132         ElementAlign(elementAlign) {}
2133 
2134     void Emit(CodeGenFunction &CGF, Flags flags) override {
2135       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2136                               ElementType, ElementAlign, Destroyer);
2137     }
2138   };
2139 
2140   /// IrregularPartialArrayDestroy - a cleanup which performs a
2141   /// partial array destroy where the end pointer is irregularly
2142   /// determined and must be loaded from a local.
2143   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2144     llvm::Value *ArrayBegin;
2145     Address ArrayEndPointer;
2146     QualType ElementType;
2147     CodeGenFunction::Destroyer *Destroyer;
2148     CharUnits ElementAlign;
2149   public:
2150     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2151                                  Address arrayEndPointer,
2152                                  QualType elementType,
2153                                  CharUnits elementAlign,
2154                                  CodeGenFunction::Destroyer *destroyer)
2155       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2156         ElementType(elementType), Destroyer(destroyer),
2157         ElementAlign(elementAlign) {}
2158 
2159     void Emit(CodeGenFunction &CGF, Flags flags) override {
2160       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2161       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2162                               ElementType, ElementAlign, Destroyer);
2163     }
2164   };
2165 } // end anonymous namespace
2166 
2167 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2168 /// already-constructed elements of the given array.  The cleanup
2169 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2170 ///
2171 /// \param elementType - the immediate element type of the array;
2172 ///   possibly still an array type
2173 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2174                                                        Address arrayEndPointer,
2175                                                        QualType elementType,
2176                                                        CharUnits elementAlign,
2177                                                        Destroyer *destroyer) {
2178   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2179                                                     arrayBegin, arrayEndPointer,
2180                                                     elementType, elementAlign,
2181                                                     destroyer);
2182 }
2183 
2184 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2185 /// already-constructed elements of the given array.  The cleanup
2186 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2187 ///
2188 /// \param elementType - the immediate element type of the array;
2189 ///   possibly still an array type
2190 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2191                                                      llvm::Value *arrayEnd,
2192                                                      QualType elementType,
2193                                                      CharUnits elementAlign,
2194                                                      Destroyer *destroyer) {
2195   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2196                                                   arrayBegin, arrayEnd,
2197                                                   elementType, elementAlign,
2198                                                   destroyer);
2199 }
2200 
2201 /// Lazily declare the @llvm.lifetime.start intrinsic.
2202 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
2203   if (LifetimeStartFn)
2204     return LifetimeStartFn;
2205   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2206     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2207   return LifetimeStartFn;
2208 }
2209 
2210 /// Lazily declare the @llvm.lifetime.end intrinsic.
2211 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
2212   if (LifetimeEndFn)
2213     return LifetimeEndFn;
2214   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2215     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2216   return LifetimeEndFn;
2217 }
2218 
2219 namespace {
2220   /// A cleanup to perform a release of an object at the end of a
2221   /// function.  This is used to balance out the incoming +1 of a
2222   /// ns_consumed argument when we can't reasonably do that just by
2223   /// not doing the initial retain for a __block argument.
2224   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2225     ConsumeARCParameter(llvm::Value *param,
2226                         ARCPreciseLifetime_t precise)
2227       : Param(param), Precise(precise) {}
2228 
2229     llvm::Value *Param;
2230     ARCPreciseLifetime_t Precise;
2231 
2232     void Emit(CodeGenFunction &CGF, Flags flags) override {
2233       CGF.EmitARCRelease(Param, Precise);
2234     }
2235   };
2236 } // end anonymous namespace
2237 
2238 /// Emit an alloca (or GlobalValue depending on target)
2239 /// for the specified parameter and set up LocalDeclMap.
2240 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2241                                    unsigned ArgNo) {
2242   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2243   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2244          "Invalid argument to EmitParmDecl");
2245 
2246   Arg.getAnyValue()->setName(D.getName());
2247 
2248   QualType Ty = D.getType();
2249 
2250   // Use better IR generation for certain implicit parameters.
2251   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2252     // The only implicit argument a block has is its literal.
2253     // This may be passed as an inalloca'ed value on Windows x86.
2254     if (BlockInfo) {
2255       llvm::Value *V = Arg.isIndirect()
2256                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2257                            : Arg.getDirectValue();
2258       setBlockContextParameter(IPD, ArgNo, V);
2259       return;
2260     }
2261   }
2262 
2263   Address DeclPtr = Address::invalid();
2264   bool DoStore = false;
2265   bool IsScalar = hasScalarEvaluationKind(Ty);
2266   // If we already have a pointer to the argument, reuse the input pointer.
2267   if (Arg.isIndirect()) {
2268     DeclPtr = Arg.getIndirectAddress();
2269     // If we have a prettier pointer type at this point, bitcast to that.
2270     unsigned AS = DeclPtr.getType()->getAddressSpace();
2271     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2272     if (DeclPtr.getType() != IRTy)
2273       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2274     // Indirect argument is in alloca address space, which may be different
2275     // from the default address space.
2276     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2277     auto *V = DeclPtr.getPointer();
2278     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2279     auto DestLangAS =
2280         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2281     if (SrcLangAS != DestLangAS) {
2282       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2283              CGM.getDataLayout().getAllocaAddrSpace());
2284       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2285       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2286       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2287                             *this, V, SrcLangAS, DestLangAS, T, true),
2288                         DeclPtr.getAlignment());
2289     }
2290 
2291     // Push a destructor cleanup for this parameter if the ABI requires it.
2292     // Don't push a cleanup in a thunk for a method that will also emit a
2293     // cleanup.
2294     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2295         Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2296       if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
2297         assert((DtorKind == QualType::DK_cxx_destructor ||
2298                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2299                "unexpected destructor type");
2300         pushDestroy(DtorKind, DeclPtr, Ty);
2301         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2302             EHStack.stable_begin();
2303       }
2304     }
2305   } else {
2306     // Check if the parameter address is controlled by OpenMP runtime.
2307     Address OpenMPLocalAddr =
2308         getLangOpts().OpenMP
2309             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2310             : Address::invalid();
2311     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2312       DeclPtr = OpenMPLocalAddr;
2313     } else {
2314       // Otherwise, create a temporary to hold the value.
2315       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2316                               D.getName() + ".addr");
2317     }
2318     DoStore = true;
2319   }
2320 
2321   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2322 
2323   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2324   if (IsScalar) {
2325     Qualifiers qs = Ty.getQualifiers();
2326     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2327       // We honor __attribute__((ns_consumed)) for types with lifetime.
2328       // For __strong, it's handled by just skipping the initial retain;
2329       // otherwise we have to balance out the initial +1 with an extra
2330       // cleanup to do the release at the end of the function.
2331       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2332 
2333       // If a parameter is pseudo-strong then we can omit the implicit retain.
2334       if (D.isARCPseudoStrong()) {
2335         assert(lt == Qualifiers::OCL_Strong &&
2336                "pseudo-strong variable isn't strong?");
2337         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2338         lt = Qualifiers::OCL_ExplicitNone;
2339       }
2340 
2341       // Load objects passed indirectly.
2342       if (Arg.isIndirect() && !ArgVal)
2343         ArgVal = Builder.CreateLoad(DeclPtr);
2344 
2345       if (lt == Qualifiers::OCL_Strong) {
2346         if (!isConsumed) {
2347           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2348             // use objc_storeStrong(&dest, value) for retaining the
2349             // object. But first, store a null into 'dest' because
2350             // objc_storeStrong attempts to release its old value.
2351             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2352             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2353             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2354             DoStore = false;
2355           }
2356           else
2357           // Don't use objc_retainBlock for block pointers, because we
2358           // don't want to Block_copy something just because we got it
2359           // as a parameter.
2360             ArgVal = EmitARCRetainNonBlock(ArgVal);
2361         }
2362       } else {
2363         // Push the cleanup for a consumed parameter.
2364         if (isConsumed) {
2365           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2366                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2367           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2368                                                    precise);
2369         }
2370 
2371         if (lt == Qualifiers::OCL_Weak) {
2372           EmitARCInitWeak(DeclPtr, ArgVal);
2373           DoStore = false; // The weak init is a store, no need to do two.
2374         }
2375       }
2376 
2377       // Enter the cleanup scope.
2378       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2379     }
2380   }
2381 
2382   // Store the initial value into the alloca.
2383   if (DoStore)
2384     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2385 
2386   setAddrOfLocalVar(&D, DeclPtr);
2387 
2388   // Emit debug info for param declaration.
2389   if (CGDebugInfo *DI = getDebugInfo()) {
2390     if (CGM.getCodeGenOpts().getDebugInfo() >=
2391         codegenoptions::LimitedDebugInfo) {
2392       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2393     }
2394   }
2395 
2396   if (D.hasAttr<AnnotateAttr>())
2397     EmitVarAnnotations(&D, DeclPtr.getPointer());
2398 
2399   // We can only check return value nullability if all arguments to the
2400   // function satisfy their nullability preconditions. This makes it necessary
2401   // to emit null checks for args in the function body itself.
2402   if (requiresReturnValueNullabilityCheck()) {
2403     auto Nullability = Ty->getNullability(getContext());
2404     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2405       SanitizerScope SanScope(this);
2406       RetValNullabilityPrecondition =
2407           Builder.CreateAnd(RetValNullabilityPrecondition,
2408                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2409     }
2410   }
2411 }
2412 
2413 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2414                                             CodeGenFunction *CGF) {
2415   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2416     return;
2417   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2418 }
2419 
2420 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2421   getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D);
2422 }
2423