1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Type.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 33 void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::VarTemplateSpecialization: 41 case Decl::VarTemplatePartialSpecialization: 42 case Decl::TemplateTypeParm: 43 case Decl::UnresolvedUsingValue: 44 case Decl::NonTypeTemplateParm: 45 case Decl::CXXMethod: 46 case Decl::CXXConstructor: 47 case Decl::CXXDestructor: 48 case Decl::CXXConversion: 49 case Decl::Field: 50 case Decl::MSProperty: 51 case Decl::IndirectField: 52 case Decl::ObjCIvar: 53 case Decl::ObjCAtDefsField: 54 case Decl::ParmVar: 55 case Decl::ImplicitParam: 56 case Decl::ClassTemplate: 57 case Decl::VarTemplate: 58 case Decl::FunctionTemplate: 59 case Decl::TypeAliasTemplate: 60 case Decl::TemplateTemplateParm: 61 case Decl::ObjCMethod: 62 case Decl::ObjCCategory: 63 case Decl::ObjCProtocol: 64 case Decl::ObjCInterface: 65 case Decl::ObjCCategoryImpl: 66 case Decl::ObjCImplementation: 67 case Decl::ObjCProperty: 68 case Decl::ObjCCompatibleAlias: 69 case Decl::AccessSpec: 70 case Decl::LinkageSpec: 71 case Decl::ObjCPropertyImpl: 72 case Decl::FileScopeAsm: 73 case Decl::Friend: 74 case Decl::FriendTemplate: 75 case Decl::Block: 76 case Decl::Captured: 77 case Decl::ClassScopeFunctionSpecialization: 78 case Decl::UsingShadow: 79 llvm_unreachable("Declaration should not be in declstmts!"); 80 case Decl::Function: // void X(); 81 case Decl::Record: // struct/union/class X; 82 case Decl::Enum: // enum X; 83 case Decl::EnumConstant: // enum ? { X = ? } 84 case Decl::CXXRecord: // struct/union/class X; [C++] 85 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 86 case Decl::Label: // __label__ x; 87 case Decl::Import: 88 case Decl::OMPThreadPrivate: 89 case Decl::Empty: 90 // None of these decls require codegen support. 91 return; 92 93 case Decl::NamespaceAlias: 94 if (CGDebugInfo *DI = getDebugInfo()) 95 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 96 return; 97 case Decl::Using: // using X; [C++] 98 if (CGDebugInfo *DI = getDebugInfo()) 99 DI->EmitUsingDecl(cast<UsingDecl>(D)); 100 return; 101 case Decl::UsingDirective: // using namespace X; [C++] 102 if (CGDebugInfo *DI = getDebugInfo()) 103 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 104 return; 105 case Decl::Var: { 106 const VarDecl &VD = cast<VarDecl>(D); 107 assert(VD.isLocalVarDecl() && 108 "Should not see file-scope variables inside a function!"); 109 return EmitVarDecl(VD); 110 } 111 112 case Decl::Typedef: // typedef int X; 113 case Decl::TypeAlias: { // using X = int; [C++0x] 114 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 115 QualType Ty = TD.getUnderlyingType(); 116 117 if (Ty->isVariablyModifiedType()) 118 EmitVariablyModifiedType(Ty); 119 } 120 } 121 } 122 123 /// EmitVarDecl - This method handles emission of any variable declaration 124 /// inside a function, including static vars etc. 125 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 126 if (D.isStaticLocal()) { 127 llvm::GlobalValue::LinkageTypes Linkage = 128 llvm::GlobalValue::InternalLinkage; 129 130 // If the variable is externally visible, it must have weak linkage so it 131 // can be uniqued. 132 if (D.isExternallyVisible()) { 133 Linkage = llvm::GlobalValue::LinkOnceODRLinkage; 134 135 // FIXME: We need to force the emission/use of a guard variable for 136 // some variables even if we can constant-evaluate them because 137 // we can't guarantee every translation unit will constant-evaluate them. 138 } 139 140 return EmitStaticVarDecl(D, Linkage); 141 } 142 143 if (D.hasExternalStorage()) 144 // Don't emit it now, allow it to be emitted lazily on its first use. 145 return; 146 147 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 148 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 149 150 assert(D.hasLocalStorage()); 151 return EmitAutoVarDecl(D); 152 } 153 154 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 155 const char *Separator) { 156 CodeGenModule &CGM = CGF.CGM; 157 if (CGF.getLangOpts().CPlusPlus) { 158 StringRef Name = CGM.getMangledName(&D); 159 return Name.str(); 160 } 161 162 std::string ContextName; 163 if (!CGF.CurFuncDecl) { 164 // Better be in a block declared in global scope. 165 const NamedDecl *ND = cast<NamedDecl>(&D); 166 const DeclContext *DC = ND->getDeclContext(); 167 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 168 MangleBuffer Name; 169 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 170 ContextName = Name.getString(); 171 } 172 else 173 llvm_unreachable("Unknown context for block static var decl"); 174 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 175 StringRef Name = CGM.getMangledName(FD); 176 ContextName = Name.str(); 177 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 178 ContextName = CGF.CurFn->getName(); 179 else 180 llvm_unreachable("Unknown context for static var decl"); 181 182 return ContextName + Separator + D.getNameAsString(); 183 } 184 185 llvm::GlobalVariable * 186 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 187 const char *Separator, 188 llvm::GlobalValue::LinkageTypes Linkage) { 189 QualType Ty = D.getType(); 190 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 191 192 // Use the label if the variable is renamed with the asm-label extension. 193 std::string Name; 194 if (D.hasAttr<AsmLabelAttr>()) 195 Name = CGM.getMangledName(&D); 196 else 197 Name = GetStaticDeclName(*this, D, Separator); 198 199 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 200 unsigned AddrSpace = 201 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); 202 llvm::GlobalVariable *GV = 203 new llvm::GlobalVariable(CGM.getModule(), LTy, 204 Ty.isConstant(getContext()), Linkage, 205 CGM.EmitNullConstant(D.getType()), Name, 0, 206 llvm::GlobalVariable::NotThreadLocal, 207 AddrSpace); 208 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 209 CGM.setGlobalVisibility(GV, &D); 210 211 if (D.getTLSKind()) 212 CGM.setTLSMode(GV, D); 213 214 return GV; 215 } 216 217 /// hasNontrivialDestruction - Determine whether a type's destruction is 218 /// non-trivial. If so, and the variable uses static initialization, we must 219 /// register its destructor to run on exit. 220 static bool hasNontrivialDestruction(QualType T) { 221 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 222 return RD && !RD->hasTrivialDestructor(); 223 } 224 225 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 226 /// global variable that has already been created for it. If the initializer 227 /// has a different type than GV does, this may free GV and return a different 228 /// one. Otherwise it just returns GV. 229 llvm::GlobalVariable * 230 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 231 llvm::GlobalVariable *GV) { 232 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 233 234 // If constant emission failed, then this should be a C++ static 235 // initializer. 236 if (!Init) { 237 if (!getLangOpts().CPlusPlus) 238 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 239 else if (Builder.GetInsertBlock()) { 240 // Since we have a static initializer, this global variable can't 241 // be constant. 242 GV->setConstant(false); 243 244 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 245 } 246 return GV; 247 } 248 249 // The initializer may differ in type from the global. Rewrite 250 // the global to match the initializer. (We have to do this 251 // because some types, like unions, can't be completely represented 252 // in the LLVM type system.) 253 if (GV->getType()->getElementType() != Init->getType()) { 254 llvm::GlobalVariable *OldGV = GV; 255 256 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 257 OldGV->isConstant(), 258 OldGV->getLinkage(), Init, "", 259 /*InsertBefore*/ OldGV, 260 OldGV->getThreadLocalMode(), 261 CGM.getContext().getTargetAddressSpace(D.getType())); 262 GV->setVisibility(OldGV->getVisibility()); 263 264 // Steal the name of the old global 265 GV->takeName(OldGV); 266 267 // Replace all uses of the old global with the new global 268 llvm::Constant *NewPtrForOldDecl = 269 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 270 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 271 272 // Erase the old global, since it is no longer used. 273 OldGV->eraseFromParent(); 274 } 275 276 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 277 GV->setInitializer(Init); 278 279 if (hasNontrivialDestruction(D.getType())) { 280 // We have a constant initializer, but a nontrivial destructor. We still 281 // need to perform a guarded "initialization" in order to register the 282 // destructor. 283 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 284 } 285 286 return GV; 287 } 288 289 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 290 llvm::GlobalValue::LinkageTypes Linkage) { 291 llvm::Value *&DMEntry = LocalDeclMap[&D]; 292 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 293 294 // Check to see if we already have a global variable for this 295 // declaration. This can happen when double-emitting function 296 // bodies, e.g. with complete and base constructors. 297 llvm::Constant *addr = 298 CGM.getStaticLocalDeclAddress(&D); 299 300 llvm::GlobalVariable *var; 301 if (addr) { 302 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 303 } else { 304 addr = var = CreateStaticVarDecl(D, ".", Linkage); 305 } 306 307 // Store into LocalDeclMap before generating initializer to handle 308 // circular references. 309 DMEntry = addr; 310 CGM.setStaticLocalDeclAddress(&D, addr); 311 312 // We can't have a VLA here, but we can have a pointer to a VLA, 313 // even though that doesn't really make any sense. 314 // Make sure to evaluate VLA bounds now so that we have them for later. 315 if (D.getType()->isVariablyModifiedType()) 316 EmitVariablyModifiedType(D.getType()); 317 318 // Save the type in case adding the initializer forces a type change. 319 llvm::Type *expectedType = addr->getType(); 320 321 // If this value has an initializer, emit it. 322 if (D.getInit()) 323 var = AddInitializerToStaticVarDecl(D, var); 324 325 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 326 327 if (D.hasAttr<AnnotateAttr>()) 328 CGM.AddGlobalAnnotations(&D, var); 329 330 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 331 var->setSection(SA->getName()); 332 333 if (D.hasAttr<UsedAttr>()) 334 CGM.AddUsedGlobal(var); 335 336 // We may have to cast the constant because of the initializer 337 // mismatch above. 338 // 339 // FIXME: It is really dangerous to store this in the map; if anyone 340 // RAUW's the GV uses of this constant will be invalid. 341 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType); 342 DMEntry = castedAddr; 343 CGM.setStaticLocalDeclAddress(&D, castedAddr); 344 345 // Emit global variable debug descriptor for static vars. 346 CGDebugInfo *DI = getDebugInfo(); 347 if (DI && 348 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 349 DI->setLocation(D.getLocation()); 350 DI->EmitGlobalVariable(var, &D); 351 } 352 } 353 354 namespace { 355 struct DestroyObject : EHScopeStack::Cleanup { 356 DestroyObject(llvm::Value *addr, QualType type, 357 CodeGenFunction::Destroyer *destroyer, 358 bool useEHCleanupForArray) 359 : addr(addr), type(type), destroyer(destroyer), 360 useEHCleanupForArray(useEHCleanupForArray) {} 361 362 llvm::Value *addr; 363 QualType type; 364 CodeGenFunction::Destroyer *destroyer; 365 bool useEHCleanupForArray; 366 367 void Emit(CodeGenFunction &CGF, Flags flags) { 368 // Don't use an EH cleanup recursively from an EH cleanup. 369 bool useEHCleanupForArray = 370 flags.isForNormalCleanup() && this->useEHCleanupForArray; 371 372 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 373 } 374 }; 375 376 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 377 DestroyNRVOVariable(llvm::Value *addr, 378 const CXXDestructorDecl *Dtor, 379 llvm::Value *NRVOFlag) 380 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 381 382 const CXXDestructorDecl *Dtor; 383 llvm::Value *NRVOFlag; 384 llvm::Value *Loc; 385 386 void Emit(CodeGenFunction &CGF, Flags flags) { 387 // Along the exceptions path we always execute the dtor. 388 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 389 390 llvm::BasicBlock *SkipDtorBB = 0; 391 if (NRVO) { 392 // If we exited via NRVO, we skip the destructor call. 393 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 394 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 395 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 396 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 397 CGF.EmitBlock(RunDtorBB); 398 } 399 400 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 401 /*ForVirtualBase=*/false, 402 /*Delegating=*/false, 403 Loc); 404 405 if (NRVO) CGF.EmitBlock(SkipDtorBB); 406 } 407 }; 408 409 struct CallStackRestore : EHScopeStack::Cleanup { 410 llvm::Value *Stack; 411 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 412 void Emit(CodeGenFunction &CGF, Flags flags) { 413 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 414 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 415 CGF.Builder.CreateCall(F, V); 416 } 417 }; 418 419 struct ExtendGCLifetime : EHScopeStack::Cleanup { 420 const VarDecl &Var; 421 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 422 423 void Emit(CodeGenFunction &CGF, Flags flags) { 424 // Compute the address of the local variable, in case it's a 425 // byref or something. 426 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 427 Var.getType(), VK_LValue, SourceLocation()); 428 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 429 SourceLocation()); 430 CGF.EmitExtendGCLifetime(value); 431 } 432 }; 433 434 struct CallCleanupFunction : EHScopeStack::Cleanup { 435 llvm::Constant *CleanupFn; 436 const CGFunctionInfo &FnInfo; 437 const VarDecl &Var; 438 439 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 440 const VarDecl *Var) 441 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 442 443 void Emit(CodeGenFunction &CGF, Flags flags) { 444 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 445 Var.getType(), VK_LValue, SourceLocation()); 446 // Compute the address of the local variable, in case it's a byref 447 // or something. 448 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 449 450 // In some cases, the type of the function argument will be different from 451 // the type of the pointer. An example of this is 452 // void f(void* arg); 453 // __attribute__((cleanup(f))) void *g; 454 // 455 // To fix this we insert a bitcast here. 456 QualType ArgTy = FnInfo.arg_begin()->type; 457 llvm::Value *Arg = 458 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 459 460 CallArgList Args; 461 Args.add(RValue::get(Arg), 462 CGF.getContext().getPointerType(Var.getType())); 463 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 464 } 465 }; 466 467 /// A cleanup to call @llvm.lifetime.end. 468 class CallLifetimeEnd : public EHScopeStack::Cleanup { 469 llvm::Value *Addr; 470 llvm::Value *Size; 471 public: 472 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 473 : Addr(addr), Size(size) {} 474 475 void Emit(CodeGenFunction &CGF, Flags flags) { 476 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 477 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 478 Size, castAddr) 479 ->setDoesNotThrow(); 480 } 481 }; 482 } 483 484 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 485 /// variable with lifetime. 486 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 487 llvm::Value *addr, 488 Qualifiers::ObjCLifetime lifetime) { 489 switch (lifetime) { 490 case Qualifiers::OCL_None: 491 llvm_unreachable("present but none"); 492 493 case Qualifiers::OCL_ExplicitNone: 494 // nothing to do 495 break; 496 497 case Qualifiers::OCL_Strong: { 498 CodeGenFunction::Destroyer *destroyer = 499 (var.hasAttr<ObjCPreciseLifetimeAttr>() 500 ? CodeGenFunction::destroyARCStrongPrecise 501 : CodeGenFunction::destroyARCStrongImprecise); 502 503 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 504 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 505 cleanupKind & EHCleanup); 506 break; 507 } 508 case Qualifiers::OCL_Autoreleasing: 509 // nothing to do 510 break; 511 512 case Qualifiers::OCL_Weak: 513 // __weak objects always get EH cleanups; otherwise, exceptions 514 // could cause really nasty crashes instead of mere leaks. 515 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 516 CodeGenFunction::destroyARCWeak, 517 /*useEHCleanup*/ true); 518 break; 519 } 520 } 521 522 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 523 if (const Expr *e = dyn_cast<Expr>(s)) { 524 // Skip the most common kinds of expressions that make 525 // hierarchy-walking expensive. 526 s = e = e->IgnoreParenCasts(); 527 528 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 529 return (ref->getDecl() == &var); 530 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 531 const BlockDecl *block = be->getBlockDecl(); 532 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 533 e = block->capture_end(); i != e; ++i) { 534 if (i->getVariable() == &var) 535 return true; 536 } 537 } 538 } 539 540 for (Stmt::const_child_range children = s->children(); children; ++children) 541 // children might be null; as in missing decl or conditional of an if-stmt. 542 if ((*children) && isAccessedBy(var, *children)) 543 return true; 544 545 return false; 546 } 547 548 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 549 if (!decl) return false; 550 if (!isa<VarDecl>(decl)) return false; 551 const VarDecl *var = cast<VarDecl>(decl); 552 return isAccessedBy(*var, e); 553 } 554 555 static void drillIntoBlockVariable(CodeGenFunction &CGF, 556 LValue &lvalue, 557 const VarDecl *var) { 558 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 559 } 560 561 void CodeGenFunction::EmitScalarInit(const Expr *init, 562 const ValueDecl *D, 563 LValue lvalue, 564 bool capturedByInit) { 565 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 566 if (!lifetime) { 567 llvm::Value *value = EmitScalarExpr(init); 568 if (capturedByInit) 569 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 570 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 571 return; 572 } 573 574 // If we're emitting a value with lifetime, we have to do the 575 // initialization *before* we leave the cleanup scopes. 576 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 577 enterFullExpression(ewc); 578 init = ewc->getSubExpr(); 579 } 580 CodeGenFunction::RunCleanupsScope Scope(*this); 581 582 // We have to maintain the illusion that the variable is 583 // zero-initialized. If the variable might be accessed in its 584 // initializer, zero-initialize before running the initializer, then 585 // actually perform the initialization with an assign. 586 bool accessedByInit = false; 587 if (lifetime != Qualifiers::OCL_ExplicitNone) 588 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 589 if (accessedByInit) { 590 LValue tempLV = lvalue; 591 // Drill down to the __block object if necessary. 592 if (capturedByInit) { 593 // We can use a simple GEP for this because it can't have been 594 // moved yet. 595 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 596 getByRefValueLLVMField(cast<VarDecl>(D)))); 597 } 598 599 llvm::PointerType *ty 600 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 601 ty = cast<llvm::PointerType>(ty->getElementType()); 602 603 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 604 605 // If __weak, we want to use a barrier under certain conditions. 606 if (lifetime == Qualifiers::OCL_Weak) 607 EmitARCInitWeak(tempLV.getAddress(), zero); 608 609 // Otherwise just do a simple store. 610 else 611 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 612 } 613 614 // Emit the initializer. 615 llvm::Value *value = 0; 616 617 switch (lifetime) { 618 case Qualifiers::OCL_None: 619 llvm_unreachable("present but none"); 620 621 case Qualifiers::OCL_ExplicitNone: 622 // nothing to do 623 value = EmitScalarExpr(init); 624 break; 625 626 case Qualifiers::OCL_Strong: { 627 value = EmitARCRetainScalarExpr(init); 628 break; 629 } 630 631 case Qualifiers::OCL_Weak: { 632 // No way to optimize a producing initializer into this. It's not 633 // worth optimizing for, because the value will immediately 634 // disappear in the common case. 635 value = EmitScalarExpr(init); 636 637 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 638 if (accessedByInit) 639 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 640 else 641 EmitARCInitWeak(lvalue.getAddress(), value); 642 return; 643 } 644 645 case Qualifiers::OCL_Autoreleasing: 646 value = EmitARCRetainAutoreleaseScalarExpr(init); 647 break; 648 } 649 650 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 651 652 // If the variable might have been accessed by its initializer, we 653 // might have to initialize with a barrier. We have to do this for 654 // both __weak and __strong, but __weak got filtered out above. 655 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 656 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 657 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 658 EmitARCRelease(oldValue, ARCImpreciseLifetime); 659 return; 660 } 661 662 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 663 } 664 665 /// EmitScalarInit - Initialize the given lvalue with the given object. 666 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 667 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 668 if (!lifetime) 669 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 670 671 switch (lifetime) { 672 case Qualifiers::OCL_None: 673 llvm_unreachable("present but none"); 674 675 case Qualifiers::OCL_ExplicitNone: 676 // nothing to do 677 break; 678 679 case Qualifiers::OCL_Strong: 680 init = EmitARCRetain(lvalue.getType(), init); 681 break; 682 683 case Qualifiers::OCL_Weak: 684 // Initialize and then skip the primitive store. 685 EmitARCInitWeak(lvalue.getAddress(), init); 686 return; 687 688 case Qualifiers::OCL_Autoreleasing: 689 init = EmitARCRetainAutorelease(lvalue.getType(), init); 690 break; 691 } 692 693 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 694 } 695 696 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 697 /// non-zero parts of the specified initializer with equal or fewer than 698 /// NumStores scalar stores. 699 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 700 unsigned &NumStores) { 701 // Zero and Undef never requires any extra stores. 702 if (isa<llvm::ConstantAggregateZero>(Init) || 703 isa<llvm::ConstantPointerNull>(Init) || 704 isa<llvm::UndefValue>(Init)) 705 return true; 706 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 707 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 708 isa<llvm::ConstantExpr>(Init)) 709 return Init->isNullValue() || NumStores--; 710 711 // See if we can emit each element. 712 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 713 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 714 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 715 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 716 return false; 717 } 718 return true; 719 } 720 721 if (llvm::ConstantDataSequential *CDS = 722 dyn_cast<llvm::ConstantDataSequential>(Init)) { 723 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 724 llvm::Constant *Elt = CDS->getElementAsConstant(i); 725 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 726 return false; 727 } 728 return true; 729 } 730 731 // Anything else is hard and scary. 732 return false; 733 } 734 735 /// emitStoresForInitAfterMemset - For inits that 736 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 737 /// stores that would be required. 738 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 739 bool isVolatile, CGBuilderTy &Builder) { 740 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 741 "called emitStoresForInitAfterMemset for zero or undef value."); 742 743 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 744 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 745 isa<llvm::ConstantExpr>(Init)) { 746 Builder.CreateStore(Init, Loc, isVolatile); 747 return; 748 } 749 750 if (llvm::ConstantDataSequential *CDS = 751 dyn_cast<llvm::ConstantDataSequential>(Init)) { 752 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 753 llvm::Constant *Elt = CDS->getElementAsConstant(i); 754 755 // If necessary, get a pointer to the element and emit it. 756 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 757 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 758 isVolatile, Builder); 759 } 760 return; 761 } 762 763 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 764 "Unknown value type!"); 765 766 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 767 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 768 769 // If necessary, get a pointer to the element and emit it. 770 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 771 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 772 isVolatile, Builder); 773 } 774 } 775 776 777 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 778 /// plus some stores to initialize a local variable instead of using a memcpy 779 /// from a constant global. It is beneficial to use memset if the global is all 780 /// zeros, or mostly zeros and large. 781 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 782 uint64_t GlobalSize) { 783 // If a global is all zeros, always use a memset. 784 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 785 786 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 787 // do it if it will require 6 or fewer scalar stores. 788 // TODO: Should budget depends on the size? Avoiding a large global warrants 789 // plopping in more stores. 790 unsigned StoreBudget = 6; 791 uint64_t SizeLimit = 32; 792 793 return GlobalSize > SizeLimit && 794 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 795 } 796 797 /// Should we use the LLVM lifetime intrinsics for the given local variable? 798 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 799 unsigned Size) { 800 // Always emit lifetime markers in -fsanitize=use-after-scope mode. 801 if (CGF.getLangOpts().Sanitize.UseAfterScope) 802 return true; 803 // For now, only in optimized builds. 804 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 805 return false; 806 807 // Limit the size of marked objects to 32 bytes. We don't want to increase 808 // compile time by marking tiny objects. 809 unsigned SizeThreshold = 32; 810 811 return Size > SizeThreshold; 812 } 813 814 815 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 816 /// variable declaration with auto, register, or no storage class specifier. 817 /// These turn into simple stack objects, or GlobalValues depending on target. 818 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 819 AutoVarEmission emission = EmitAutoVarAlloca(D); 820 EmitAutoVarInit(emission); 821 EmitAutoVarCleanups(emission); 822 } 823 824 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 825 /// local variable. Does not emit initalization or destruction. 826 CodeGenFunction::AutoVarEmission 827 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 828 QualType Ty = D.getType(); 829 830 AutoVarEmission emission(D); 831 832 bool isByRef = D.hasAttr<BlocksAttr>(); 833 emission.IsByRef = isByRef; 834 835 CharUnits alignment = getContext().getDeclAlign(&D); 836 emission.Alignment = alignment; 837 838 // If the type is variably-modified, emit all the VLA sizes for it. 839 if (Ty->isVariablyModifiedType()) 840 EmitVariablyModifiedType(Ty); 841 842 llvm::Value *DeclPtr; 843 if (Ty->isConstantSizeType()) { 844 bool NRVO = getLangOpts().ElideConstructors && 845 D.isNRVOVariable(); 846 847 // If this value is an array or struct with a statically determinable 848 // constant initializer, there are optimizations we can do. 849 // 850 // TODO: We should constant-evaluate the initializer of any variable, 851 // as long as it is initialized by a constant expression. Currently, 852 // isConstantInitializer produces wrong answers for structs with 853 // reference or bitfield members, and a few other cases, and checking 854 // for POD-ness protects us from some of these. 855 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 856 (D.isConstexpr() || 857 ((Ty.isPODType(getContext()) || 858 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 859 D.getInit()->isConstantInitializer(getContext(), false)))) { 860 861 // If the variable's a const type, and it's neither an NRVO 862 // candidate nor a __block variable and has no mutable members, 863 // emit it as a global instead. 864 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 865 CGM.isTypeConstant(Ty, true)) { 866 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 867 868 emission.Address = 0; // signal this condition to later callbacks 869 assert(emission.wasEmittedAsGlobal()); 870 return emission; 871 } 872 873 // Otherwise, tell the initialization code that we're in this case. 874 emission.IsConstantAggregate = true; 875 } 876 877 // A normal fixed sized variable becomes an alloca in the entry block, 878 // unless it's an NRVO variable. 879 llvm::Type *LTy = ConvertTypeForMem(Ty); 880 881 if (NRVO) { 882 // The named return value optimization: allocate this variable in the 883 // return slot, so that we can elide the copy when returning this 884 // variable (C++0x [class.copy]p34). 885 DeclPtr = ReturnValue; 886 887 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 888 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 889 // Create a flag that is used to indicate when the NRVO was applied 890 // to this variable. Set it to zero to indicate that NRVO was not 891 // applied. 892 llvm::Value *Zero = Builder.getFalse(); 893 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 894 EnsureInsertPoint(); 895 Builder.CreateStore(Zero, NRVOFlag); 896 897 // Record the NRVO flag for this variable. 898 NRVOFlags[&D] = NRVOFlag; 899 emission.NRVOFlag = NRVOFlag; 900 } 901 } 902 } else { 903 if (isByRef) 904 LTy = BuildByRefType(&D); 905 906 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 907 Alloc->setName(D.getName()); 908 909 CharUnits allocaAlignment = alignment; 910 if (isByRef) 911 allocaAlignment = std::max(allocaAlignment, 912 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 913 Alloc->setAlignment(allocaAlignment.getQuantity()); 914 DeclPtr = Alloc; 915 916 // Emit a lifetime intrinsic if meaningful. There's no point 917 // in doing this if we don't have a valid insertion point (?). 918 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 919 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 920 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 921 922 emission.SizeForLifetimeMarkers = sizeV; 923 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 924 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 925 ->setDoesNotThrow(); 926 } else { 927 assert(!emission.useLifetimeMarkers()); 928 } 929 } 930 } else { 931 EnsureInsertPoint(); 932 933 if (!DidCallStackSave) { 934 // Save the stack. 935 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 936 937 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 938 llvm::Value *V = Builder.CreateCall(F); 939 940 Builder.CreateStore(V, Stack); 941 942 DidCallStackSave = true; 943 944 // Push a cleanup block and restore the stack there. 945 // FIXME: in general circumstances, this should be an EH cleanup. 946 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 947 } 948 949 llvm::Value *elementCount; 950 QualType elementType; 951 llvm::tie(elementCount, elementType) = getVLASize(Ty); 952 953 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 954 955 // Allocate memory for the array. 956 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 957 vla->setAlignment(alignment.getQuantity()); 958 959 DeclPtr = vla; 960 } 961 962 llvm::Value *&DMEntry = LocalDeclMap[&D]; 963 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 964 DMEntry = DeclPtr; 965 emission.Address = DeclPtr; 966 967 // Emit debug info for local var declaration. 968 if (HaveInsertPoint()) 969 if (CGDebugInfo *DI = getDebugInfo()) { 970 if (CGM.getCodeGenOpts().getDebugInfo() 971 >= CodeGenOptions::LimitedDebugInfo) { 972 DI->setLocation(D.getLocation()); 973 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 974 } 975 } 976 977 if (D.hasAttr<AnnotateAttr>()) 978 EmitVarAnnotations(&D, emission.Address); 979 980 return emission; 981 } 982 983 /// Determines whether the given __block variable is potentially 984 /// captured by the given expression. 985 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 986 // Skip the most common kinds of expressions that make 987 // hierarchy-walking expensive. 988 e = e->IgnoreParenCasts(); 989 990 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 991 const BlockDecl *block = be->getBlockDecl(); 992 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 993 e = block->capture_end(); i != e; ++i) { 994 if (i->getVariable() == &var) 995 return true; 996 } 997 998 // No need to walk into the subexpressions. 999 return false; 1000 } 1001 1002 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1003 const CompoundStmt *CS = SE->getSubStmt(); 1004 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 1005 BE = CS->body_end(); BI != BE; ++BI) 1006 if (Expr *E = dyn_cast<Expr>((*BI))) { 1007 if (isCapturedBy(var, E)) 1008 return true; 1009 } 1010 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 1011 // special case declarations 1012 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 1013 I != E; ++I) { 1014 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 1015 Expr *Init = VD->getInit(); 1016 if (Init && isCapturedBy(var, Init)) 1017 return true; 1018 } 1019 } 1020 } 1021 else 1022 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1023 // Later, provide code to poke into statements for capture analysis. 1024 return true; 1025 return false; 1026 } 1027 1028 for (Stmt::const_child_range children = e->children(); children; ++children) 1029 if (isCapturedBy(var, cast<Expr>(*children))) 1030 return true; 1031 1032 return false; 1033 } 1034 1035 /// \brief Determine whether the given initializer is trivial in the sense 1036 /// that it requires no code to be generated. 1037 static bool isTrivialInitializer(const Expr *Init) { 1038 if (!Init) 1039 return true; 1040 1041 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1042 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1043 if (Constructor->isTrivial() && 1044 Constructor->isDefaultConstructor() && 1045 !Construct->requiresZeroInitialization()) 1046 return true; 1047 1048 return false; 1049 } 1050 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1051 assert(emission.Variable && "emission was not valid!"); 1052 1053 // If this was emitted as a global constant, we're done. 1054 if (emission.wasEmittedAsGlobal()) return; 1055 1056 const VarDecl &D = *emission.Variable; 1057 QualType type = D.getType(); 1058 1059 // If this local has an initializer, emit it now. 1060 const Expr *Init = D.getInit(); 1061 1062 // If we are at an unreachable point, we don't need to emit the initializer 1063 // unless it contains a label. 1064 if (!HaveInsertPoint()) { 1065 if (!Init || !ContainsLabel(Init)) return; 1066 EnsureInsertPoint(); 1067 } 1068 1069 // Initialize the structure of a __block variable. 1070 if (emission.IsByRef) 1071 emitByrefStructureInit(emission); 1072 1073 if (isTrivialInitializer(Init)) 1074 return; 1075 1076 CharUnits alignment = emission.Alignment; 1077 1078 // Check whether this is a byref variable that's potentially 1079 // captured and moved by its own initializer. If so, we'll need to 1080 // emit the initializer first, then copy into the variable. 1081 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1082 1083 llvm::Value *Loc = 1084 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1085 1086 llvm::Constant *constant = 0; 1087 if (emission.IsConstantAggregate || D.isConstexpr()) { 1088 assert(!capturedByInit && "constant init contains a capturing block?"); 1089 constant = CGM.EmitConstantInit(D, this); 1090 } 1091 1092 if (!constant) { 1093 LValue lv = MakeAddrLValue(Loc, type, alignment); 1094 lv.setNonGC(true); 1095 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1096 } 1097 1098 if (!emission.IsConstantAggregate) { 1099 // For simple scalar/complex initialization, store the value directly. 1100 LValue lv = MakeAddrLValue(Loc, type, alignment); 1101 lv.setNonGC(true); 1102 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1103 } 1104 1105 // If this is a simple aggregate initialization, we can optimize it 1106 // in various ways. 1107 bool isVolatile = type.isVolatileQualified(); 1108 1109 llvm::Value *SizeVal = 1110 llvm::ConstantInt::get(IntPtrTy, 1111 getContext().getTypeSizeInChars(type).getQuantity()); 1112 1113 llvm::Type *BP = Int8PtrTy; 1114 if (Loc->getType() != BP) 1115 Loc = Builder.CreateBitCast(Loc, BP); 1116 1117 // If the initializer is all or mostly zeros, codegen with memset then do 1118 // a few stores afterward. 1119 if (shouldUseMemSetPlusStoresToInitialize(constant, 1120 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1121 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1122 alignment.getQuantity(), isVolatile); 1123 // Zero and undef don't require a stores. 1124 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1125 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1126 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1127 } 1128 } else { 1129 // Otherwise, create a temporary global with the initializer then 1130 // memcpy from the global to the alloca. 1131 std::string Name = GetStaticDeclName(*this, D, "."); 1132 llvm::GlobalVariable *GV = 1133 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1134 llvm::GlobalValue::PrivateLinkage, 1135 constant, Name); 1136 GV->setAlignment(alignment.getQuantity()); 1137 GV->setUnnamedAddr(true); 1138 1139 llvm::Value *SrcPtr = GV; 1140 if (SrcPtr->getType() != BP) 1141 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1142 1143 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1144 isVolatile); 1145 } 1146 } 1147 1148 /// Emit an expression as an initializer for a variable at the given 1149 /// location. The expression is not necessarily the normal 1150 /// initializer for the variable, and the address is not necessarily 1151 /// its normal location. 1152 /// 1153 /// \param init the initializing expression 1154 /// \param var the variable to act as if we're initializing 1155 /// \param loc the address to initialize; its type is a pointer 1156 /// to the LLVM mapping of the variable's type 1157 /// \param alignment the alignment of the address 1158 /// \param capturedByInit true if the variable is a __block variable 1159 /// whose address is potentially changed by the initializer 1160 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1161 const ValueDecl *D, 1162 LValue lvalue, 1163 bool capturedByInit) { 1164 QualType type = D->getType(); 1165 1166 if (type->isReferenceType()) { 1167 RValue rvalue = EmitReferenceBindingToExpr(init); 1168 if (capturedByInit) 1169 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1170 EmitStoreThroughLValue(rvalue, lvalue, true); 1171 return; 1172 } 1173 switch (getEvaluationKind(type)) { 1174 case TEK_Scalar: 1175 EmitScalarInit(init, D, lvalue, capturedByInit); 1176 return; 1177 case TEK_Complex: { 1178 ComplexPairTy complex = EmitComplexExpr(init); 1179 if (capturedByInit) 1180 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1181 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1182 return; 1183 } 1184 case TEK_Aggregate: 1185 if (type->isAtomicType()) { 1186 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1187 } else { 1188 // TODO: how can we delay here if D is captured by its initializer? 1189 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1190 AggValueSlot::IsDestructed, 1191 AggValueSlot::DoesNotNeedGCBarriers, 1192 AggValueSlot::IsNotAliased)); 1193 } 1194 return; 1195 } 1196 llvm_unreachable("bad evaluation kind"); 1197 } 1198 1199 /// Enter a destroy cleanup for the given local variable. 1200 void CodeGenFunction::emitAutoVarTypeCleanup( 1201 const CodeGenFunction::AutoVarEmission &emission, 1202 QualType::DestructionKind dtorKind) { 1203 assert(dtorKind != QualType::DK_none); 1204 1205 // Note that for __block variables, we want to destroy the 1206 // original stack object, not the possibly forwarded object. 1207 llvm::Value *addr = emission.getObjectAddress(*this); 1208 1209 const VarDecl *var = emission.Variable; 1210 QualType type = var->getType(); 1211 1212 CleanupKind cleanupKind = NormalAndEHCleanup; 1213 CodeGenFunction::Destroyer *destroyer = 0; 1214 1215 switch (dtorKind) { 1216 case QualType::DK_none: 1217 llvm_unreachable("no cleanup for trivially-destructible variable"); 1218 1219 case QualType::DK_cxx_destructor: 1220 // If there's an NRVO flag on the emission, we need a different 1221 // cleanup. 1222 if (emission.NRVOFlag) { 1223 assert(!type->isArrayType()); 1224 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1225 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1226 emission.NRVOFlag); 1227 return; 1228 } 1229 break; 1230 1231 case QualType::DK_objc_strong_lifetime: 1232 // Suppress cleanups for pseudo-strong variables. 1233 if (var->isARCPseudoStrong()) return; 1234 1235 // Otherwise, consider whether to use an EH cleanup or not. 1236 cleanupKind = getARCCleanupKind(); 1237 1238 // Use the imprecise destroyer by default. 1239 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1240 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1241 break; 1242 1243 case QualType::DK_objc_weak_lifetime: 1244 break; 1245 } 1246 1247 // If we haven't chosen a more specific destroyer, use the default. 1248 if (!destroyer) destroyer = getDestroyer(dtorKind); 1249 1250 // Use an EH cleanup in array destructors iff the destructor itself 1251 // is being pushed as an EH cleanup. 1252 bool useEHCleanup = (cleanupKind & EHCleanup); 1253 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1254 useEHCleanup); 1255 } 1256 1257 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1258 assert(emission.Variable && "emission was not valid!"); 1259 1260 // If this was emitted as a global constant, we're done. 1261 if (emission.wasEmittedAsGlobal()) return; 1262 1263 // If we don't have an insertion point, we're done. Sema prevents 1264 // us from jumping into any of these scopes anyway. 1265 if (!HaveInsertPoint()) return; 1266 1267 const VarDecl &D = *emission.Variable; 1268 1269 // Make sure we call @llvm.lifetime.end. This needs to happen 1270 // *last*, so the cleanup needs to be pushed *first*. 1271 if (emission.useLifetimeMarkers()) { 1272 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1273 emission.getAllocatedAddress(), 1274 emission.getSizeForLifetimeMarkers()); 1275 } 1276 1277 // Check the type for a cleanup. 1278 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1279 emitAutoVarTypeCleanup(emission, dtorKind); 1280 1281 // In GC mode, honor objc_precise_lifetime. 1282 if (getLangOpts().getGC() != LangOptions::NonGC && 1283 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1284 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1285 } 1286 1287 // Handle the cleanup attribute. 1288 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1289 const FunctionDecl *FD = CA->getFunctionDecl(); 1290 1291 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1292 assert(F && "Could not find function!"); 1293 1294 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1295 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1296 } 1297 1298 // If this is a block variable, call _Block_object_destroy 1299 // (on the unforwarded address). 1300 if (emission.IsByRef) 1301 enterByrefCleanup(emission); 1302 } 1303 1304 CodeGenFunction::Destroyer * 1305 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1306 switch (kind) { 1307 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1308 case QualType::DK_cxx_destructor: 1309 return destroyCXXObject; 1310 case QualType::DK_objc_strong_lifetime: 1311 return destroyARCStrongPrecise; 1312 case QualType::DK_objc_weak_lifetime: 1313 return destroyARCWeak; 1314 } 1315 llvm_unreachable("Unknown DestructionKind"); 1316 } 1317 1318 /// pushEHDestroy - Push the standard destructor for the given type as 1319 /// an EH-only cleanup. 1320 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1321 llvm::Value *addr, QualType type) { 1322 assert(dtorKind && "cannot push destructor for trivial type"); 1323 assert(needsEHCleanup(dtorKind)); 1324 1325 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1326 } 1327 1328 /// pushDestroy - Push the standard destructor for the given type as 1329 /// at least a normal cleanup. 1330 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1331 llvm::Value *addr, QualType type) { 1332 assert(dtorKind && "cannot push destructor for trivial type"); 1333 1334 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1335 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1336 cleanupKind & EHCleanup); 1337 } 1338 1339 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1340 QualType type, Destroyer *destroyer, 1341 bool useEHCleanupForArray) { 1342 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1343 destroyer, useEHCleanupForArray); 1344 } 1345 1346 void CodeGenFunction::pushLifetimeExtendedDestroy( 1347 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 1348 Destroyer *destroyer, bool useEHCleanupForArray) { 1349 assert(!isInConditionalBranch() && 1350 "performing lifetime extension from within conditional"); 1351 1352 // Push an EH-only cleanup for the object now. 1353 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1354 // around in case a temporary's destructor throws an exception. 1355 if (cleanupKind & EHCleanup) 1356 EHStack.pushCleanup<DestroyObject>( 1357 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1358 destroyer, useEHCleanupForArray); 1359 1360 // Remember that we need to push a full cleanup for the object at the 1361 // end of the full-expression. 1362 pushCleanupAfterFullExpr<DestroyObject>( 1363 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1364 } 1365 1366 /// emitDestroy - Immediately perform the destruction of the given 1367 /// object. 1368 /// 1369 /// \param addr - the address of the object; a type* 1370 /// \param type - the type of the object; if an array type, all 1371 /// objects are destroyed in reverse order 1372 /// \param destroyer - the function to call to destroy individual 1373 /// elements 1374 /// \param useEHCleanupForArray - whether an EH cleanup should be 1375 /// used when destroying array elements, in case one of the 1376 /// destructions throws an exception 1377 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1378 Destroyer *destroyer, 1379 bool useEHCleanupForArray) { 1380 const ArrayType *arrayType = getContext().getAsArrayType(type); 1381 if (!arrayType) 1382 return destroyer(*this, addr, type); 1383 1384 llvm::Value *begin = addr; 1385 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1386 1387 // Normally we have to check whether the array is zero-length. 1388 bool checkZeroLength = true; 1389 1390 // But if the array length is constant, we can suppress that. 1391 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1392 // ...and if it's constant zero, we can just skip the entire thing. 1393 if (constLength->isZero()) return; 1394 checkZeroLength = false; 1395 } 1396 1397 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1398 emitArrayDestroy(begin, end, type, destroyer, 1399 checkZeroLength, useEHCleanupForArray); 1400 } 1401 1402 /// emitArrayDestroy - Destroys all the elements of the given array, 1403 /// beginning from last to first. The array cannot be zero-length. 1404 /// 1405 /// \param begin - a type* denoting the first element of the array 1406 /// \param end - a type* denoting one past the end of the array 1407 /// \param type - the element type of the array 1408 /// \param destroyer - the function to call to destroy elements 1409 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1410 /// the remaining elements in case the destruction of a single 1411 /// element throws 1412 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1413 llvm::Value *end, 1414 QualType type, 1415 Destroyer *destroyer, 1416 bool checkZeroLength, 1417 bool useEHCleanup) { 1418 assert(!type->isArrayType()); 1419 1420 // The basic structure here is a do-while loop, because we don't 1421 // need to check for the zero-element case. 1422 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1423 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1424 1425 if (checkZeroLength) { 1426 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1427 "arraydestroy.isempty"); 1428 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1429 } 1430 1431 // Enter the loop body, making that address the current address. 1432 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1433 EmitBlock(bodyBB); 1434 llvm::PHINode *elementPast = 1435 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1436 elementPast->addIncoming(end, entryBB); 1437 1438 // Shift the address back by one element. 1439 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1440 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1441 "arraydestroy.element"); 1442 1443 if (useEHCleanup) 1444 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1445 1446 // Perform the actual destruction there. 1447 destroyer(*this, element, type); 1448 1449 if (useEHCleanup) 1450 PopCleanupBlock(); 1451 1452 // Check whether we've reached the end. 1453 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1454 Builder.CreateCondBr(done, doneBB, bodyBB); 1455 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1456 1457 // Done. 1458 EmitBlock(doneBB); 1459 } 1460 1461 /// Perform partial array destruction as if in an EH cleanup. Unlike 1462 /// emitArrayDestroy, the element type here may still be an array type. 1463 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1464 llvm::Value *begin, llvm::Value *end, 1465 QualType type, 1466 CodeGenFunction::Destroyer *destroyer) { 1467 // If the element type is itself an array, drill down. 1468 unsigned arrayDepth = 0; 1469 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1470 // VLAs don't require a GEP index to walk into. 1471 if (!isa<VariableArrayType>(arrayType)) 1472 arrayDepth++; 1473 type = arrayType->getElementType(); 1474 } 1475 1476 if (arrayDepth) { 1477 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1478 1479 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1480 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1481 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1482 } 1483 1484 // Destroy the array. We don't ever need an EH cleanup because we 1485 // assume that we're in an EH cleanup ourselves, so a throwing 1486 // destructor causes an immediate terminate. 1487 CGF.emitArrayDestroy(begin, end, type, destroyer, 1488 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1489 } 1490 1491 namespace { 1492 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1493 /// array destroy where the end pointer is regularly determined and 1494 /// does not need to be loaded from a local. 1495 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1496 llvm::Value *ArrayBegin; 1497 llvm::Value *ArrayEnd; 1498 QualType ElementType; 1499 CodeGenFunction::Destroyer *Destroyer; 1500 public: 1501 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1502 QualType elementType, 1503 CodeGenFunction::Destroyer *destroyer) 1504 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1505 ElementType(elementType), Destroyer(destroyer) {} 1506 1507 void Emit(CodeGenFunction &CGF, Flags flags) { 1508 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1509 ElementType, Destroyer); 1510 } 1511 }; 1512 1513 /// IrregularPartialArrayDestroy - a cleanup which performs a 1514 /// partial array destroy where the end pointer is irregularly 1515 /// determined and must be loaded from a local. 1516 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1517 llvm::Value *ArrayBegin; 1518 llvm::Value *ArrayEndPointer; 1519 QualType ElementType; 1520 CodeGenFunction::Destroyer *Destroyer; 1521 public: 1522 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1523 llvm::Value *arrayEndPointer, 1524 QualType elementType, 1525 CodeGenFunction::Destroyer *destroyer) 1526 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1527 ElementType(elementType), Destroyer(destroyer) {} 1528 1529 void Emit(CodeGenFunction &CGF, Flags flags) { 1530 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1531 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1532 ElementType, Destroyer); 1533 } 1534 }; 1535 } 1536 1537 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1538 /// already-constructed elements of the given array. The cleanup 1539 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1540 /// 1541 /// \param elementType - the immediate element type of the array; 1542 /// possibly still an array type 1543 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1544 llvm::Value *arrayEndPointer, 1545 QualType elementType, 1546 Destroyer *destroyer) { 1547 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1548 arrayBegin, arrayEndPointer, 1549 elementType, destroyer); 1550 } 1551 1552 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1553 /// already-constructed elements of the given array. The cleanup 1554 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1555 /// 1556 /// \param elementType - the immediate element type of the array; 1557 /// possibly still an array type 1558 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1559 llvm::Value *arrayEnd, 1560 QualType elementType, 1561 Destroyer *destroyer) { 1562 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1563 arrayBegin, arrayEnd, 1564 elementType, destroyer); 1565 } 1566 1567 /// Lazily declare the @llvm.lifetime.start intrinsic. 1568 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1569 if (LifetimeStartFn) return LifetimeStartFn; 1570 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1571 llvm::Intrinsic::lifetime_start); 1572 return LifetimeStartFn; 1573 } 1574 1575 /// Lazily declare the @llvm.lifetime.end intrinsic. 1576 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1577 if (LifetimeEndFn) return LifetimeEndFn; 1578 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1579 llvm::Intrinsic::lifetime_end); 1580 return LifetimeEndFn; 1581 } 1582 1583 namespace { 1584 /// A cleanup to perform a release of an object at the end of a 1585 /// function. This is used to balance out the incoming +1 of a 1586 /// ns_consumed argument when we can't reasonably do that just by 1587 /// not doing the initial retain for a __block argument. 1588 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1589 ConsumeARCParameter(llvm::Value *param, 1590 ARCPreciseLifetime_t precise) 1591 : Param(param), Precise(precise) {} 1592 1593 llvm::Value *Param; 1594 ARCPreciseLifetime_t Precise; 1595 1596 void Emit(CodeGenFunction &CGF, Flags flags) { 1597 CGF.EmitARCRelease(Param, Precise); 1598 } 1599 }; 1600 } 1601 1602 /// Emit an alloca (or GlobalValue depending on target) 1603 /// for the specified parameter and set up LocalDeclMap. 1604 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1605 unsigned ArgNo) { 1606 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1607 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1608 "Invalid argument to EmitParmDecl"); 1609 1610 Arg->setName(D.getName()); 1611 1612 QualType Ty = D.getType(); 1613 1614 // Use better IR generation for certain implicit parameters. 1615 if (isa<ImplicitParamDecl>(D)) { 1616 // The only implicit argument a block has is its literal. 1617 if (BlockInfo) { 1618 LocalDeclMap[&D] = Arg; 1619 llvm::Value *LocalAddr = 0; 1620 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1621 // Allocate a stack slot to let the debug info survive the RA. 1622 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1623 D.getName() + ".addr"); 1624 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1625 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1626 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1627 LocalAddr = Builder.CreateLoad(Alloc); 1628 } 1629 1630 if (CGDebugInfo *DI = getDebugInfo()) { 1631 if (CGM.getCodeGenOpts().getDebugInfo() 1632 >= CodeGenOptions::LimitedDebugInfo) { 1633 DI->setLocation(D.getLocation()); 1634 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); 1635 } 1636 } 1637 1638 return; 1639 } 1640 } 1641 1642 llvm::Value *DeclPtr; 1643 bool HasNonScalarEvalKind = !CodeGenFunction::hasScalarEvaluationKind(Ty); 1644 // If this is an aggregate or variable sized value, reuse the input pointer. 1645 if (HasNonScalarEvalKind || !Ty->isConstantSizeType()) { 1646 DeclPtr = Arg; 1647 // Push a destructor cleanup for this parameter if the ABI requires it. 1648 if (HasNonScalarEvalKind && 1649 getTarget().getCXXABI().isArgumentDestroyedByCallee()) { 1650 if (const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl()) { 1651 if (RD->hasNonTrivialDestructor()) 1652 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1653 } 1654 } 1655 } else { 1656 // Otherwise, create a temporary to hold the value. 1657 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1658 D.getName() + ".addr"); 1659 CharUnits Align = getContext().getDeclAlign(&D); 1660 Alloc->setAlignment(Align.getQuantity()); 1661 DeclPtr = Alloc; 1662 1663 bool doStore = true; 1664 1665 Qualifiers qs = Ty.getQualifiers(); 1666 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1667 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1668 // We honor __attribute__((ns_consumed)) for types with lifetime. 1669 // For __strong, it's handled by just skipping the initial retain; 1670 // otherwise we have to balance out the initial +1 with an extra 1671 // cleanup to do the release at the end of the function. 1672 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1673 1674 // 'self' is always formally __strong, but if this is not an 1675 // init method then we don't want to retain it. 1676 if (D.isARCPseudoStrong()) { 1677 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1678 assert(&D == method->getSelfDecl()); 1679 assert(lt == Qualifiers::OCL_Strong); 1680 assert(qs.hasConst()); 1681 assert(method->getMethodFamily() != OMF_init); 1682 (void) method; 1683 lt = Qualifiers::OCL_ExplicitNone; 1684 } 1685 1686 if (lt == Qualifiers::OCL_Strong) { 1687 if (!isConsumed) { 1688 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1689 // use objc_storeStrong(&dest, value) for retaining the 1690 // object. But first, store a null into 'dest' because 1691 // objc_storeStrong attempts to release its old value. 1692 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1693 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1694 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1695 doStore = false; 1696 } 1697 else 1698 // Don't use objc_retainBlock for block pointers, because we 1699 // don't want to Block_copy something just because we got it 1700 // as a parameter. 1701 Arg = EmitARCRetainNonBlock(Arg); 1702 } 1703 } else { 1704 // Push the cleanup for a consumed parameter. 1705 if (isConsumed) { 1706 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1707 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1708 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1709 precise); 1710 } 1711 1712 if (lt == Qualifiers::OCL_Weak) { 1713 EmitARCInitWeak(DeclPtr, Arg); 1714 doStore = false; // The weak init is a store, no need to do two. 1715 } 1716 } 1717 1718 // Enter the cleanup scope. 1719 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1720 } 1721 1722 // Store the initial value into the alloca. 1723 if (doStore) 1724 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1725 } 1726 1727 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1728 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1729 DMEntry = DeclPtr; 1730 1731 // Emit debug info for param declaration. 1732 if (CGDebugInfo *DI = getDebugInfo()) { 1733 if (CGM.getCodeGenOpts().getDebugInfo() 1734 >= CodeGenOptions::LimitedDebugInfo) { 1735 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1736 } 1737 } 1738 1739 if (D.hasAttr<AnnotateAttr>()) 1740 EmitVarAnnotations(&D, DeclPtr); 1741 } 1742