1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40 
41 using namespace clang;
42 using namespace CodeGen;
43 
44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
45               "Clang max alignment greater than what LLVM supports?");
46 
47 void CodeGenFunction::EmitDecl(const Decl &D) {
48   switch (D.getKind()) {
49   case Decl::BuiltinTemplate:
50   case Decl::TranslationUnit:
51   case Decl::ExternCContext:
52   case Decl::Namespace:
53   case Decl::UnresolvedUsingTypename:
54   case Decl::ClassTemplateSpecialization:
55   case Decl::ClassTemplatePartialSpecialization:
56   case Decl::VarTemplateSpecialization:
57   case Decl::VarTemplatePartialSpecialization:
58   case Decl::TemplateTypeParm:
59   case Decl::UnresolvedUsingValue:
60   case Decl::NonTypeTemplateParm:
61   case Decl::CXXDeductionGuide:
62   case Decl::CXXMethod:
63   case Decl::CXXConstructor:
64   case Decl::CXXDestructor:
65   case Decl::CXXConversion:
66   case Decl::Field:
67   case Decl::MSProperty:
68   case Decl::IndirectField:
69   case Decl::ObjCIvar:
70   case Decl::ObjCAtDefsField:
71   case Decl::ParmVar:
72   case Decl::ImplicitParam:
73   case Decl::ClassTemplate:
74   case Decl::VarTemplate:
75   case Decl::FunctionTemplate:
76   case Decl::TypeAliasTemplate:
77   case Decl::TemplateTemplateParm:
78   case Decl::ObjCMethod:
79   case Decl::ObjCCategory:
80   case Decl::ObjCProtocol:
81   case Decl::ObjCInterface:
82   case Decl::ObjCCategoryImpl:
83   case Decl::ObjCImplementation:
84   case Decl::ObjCProperty:
85   case Decl::ObjCCompatibleAlias:
86   case Decl::PragmaComment:
87   case Decl::PragmaDetectMismatch:
88   case Decl::AccessSpec:
89   case Decl::LinkageSpec:
90   case Decl::Export:
91   case Decl::ObjCPropertyImpl:
92   case Decl::FileScopeAsm:
93   case Decl::Friend:
94   case Decl::FriendTemplate:
95   case Decl::Block:
96   case Decl::Captured:
97   case Decl::ClassScopeFunctionSpecialization:
98   case Decl::UsingShadow:
99   case Decl::ConstructorUsingShadow:
100   case Decl::ObjCTypeParam:
101   case Decl::Binding:
102     llvm_unreachable("Declaration should not be in declstmts!");
103   case Decl::Record:    // struct/union/class X;
104   case Decl::CXXRecord: // struct/union/class X; [C++]
105     if (CGDebugInfo *DI = getDebugInfo())
106       if (cast<RecordDecl>(D).getDefinition())
107         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
108     return;
109   case Decl::Enum:      // enum X;
110     if (CGDebugInfo *DI = getDebugInfo())
111       if (cast<EnumDecl>(D).getDefinition())
112         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
113     return;
114   case Decl::Function:     // void X();
115   case Decl::EnumConstant: // enum ? { X = ? }
116   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
117   case Decl::Label:        // __label__ x;
118   case Decl::Import:
119   case Decl::MSGuid:    // __declspec(uuid("..."))
120   case Decl::TemplateParamObject:
121   case Decl::OMPThreadPrivate:
122   case Decl::OMPAllocate:
123   case Decl::OMPCapturedExpr:
124   case Decl::OMPRequires:
125   case Decl::Empty:
126   case Decl::Concept:
127   case Decl::LifetimeExtendedTemporary:
128   case Decl::RequiresExprBody:
129     // None of these decls require codegen support.
130     return;
131 
132   case Decl::NamespaceAlias:
133     if (CGDebugInfo *DI = getDebugInfo())
134         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
135     return;
136   case Decl::Using:          // using X; [C++]
137     if (CGDebugInfo *DI = getDebugInfo())
138         DI->EmitUsingDecl(cast<UsingDecl>(D));
139     return;
140   case Decl::UsingPack:
141     for (auto *Using : cast<UsingPackDecl>(D).expansions())
142       EmitDecl(*Using);
143     return;
144   case Decl::UsingDirective: // using namespace X; [C++]
145     if (CGDebugInfo *DI = getDebugInfo())
146       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
147     return;
148   case Decl::Var:
149   case Decl::Decomposition: {
150     const VarDecl &VD = cast<VarDecl>(D);
151     assert(VD.isLocalVarDecl() &&
152            "Should not see file-scope variables inside a function!");
153     EmitVarDecl(VD);
154     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
155       for (auto *B : DD->bindings())
156         if (auto *HD = B->getHoldingVar())
157           EmitVarDecl(*HD);
158     return;
159   }
160 
161   case Decl::OMPDeclareReduction:
162     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
163 
164   case Decl::OMPDeclareMapper:
165     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
166 
167   case Decl::Typedef:      // typedef int X;
168   case Decl::TypeAlias: {  // using X = int; [C++0x]
169     QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
170     if (CGDebugInfo *DI = getDebugInfo())
171       DI->EmitAndRetainType(Ty);
172     if (Ty->isVariablyModifiedType())
173       EmitVariablyModifiedType(Ty);
174     return;
175   }
176   }
177 }
178 
179 /// EmitVarDecl - This method handles emission of any variable declaration
180 /// inside a function, including static vars etc.
181 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
182   if (D.hasExternalStorage())
183     // Don't emit it now, allow it to be emitted lazily on its first use.
184     return;
185 
186   // Some function-scope variable does not have static storage but still
187   // needs to be emitted like a static variable, e.g. a function-scope
188   // variable in constant address space in OpenCL.
189   if (D.getStorageDuration() != SD_Automatic) {
190     // Static sampler variables translated to function calls.
191     if (D.getType()->isSamplerT())
192       return;
193 
194     llvm::GlobalValue::LinkageTypes Linkage =
195         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
196 
197     // FIXME: We need to force the emission/use of a guard variable for
198     // some variables even if we can constant-evaluate them because
199     // we can't guarantee every translation unit will constant-evaluate them.
200 
201     return EmitStaticVarDecl(D, Linkage);
202   }
203 
204   if (D.getType().getAddressSpace() == LangAS::opencl_local)
205     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
206 
207   assert(D.hasLocalStorage());
208   return EmitAutoVarDecl(D);
209 }
210 
211 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
212   if (CGM.getLangOpts().CPlusPlus)
213     return CGM.getMangledName(&D).str();
214 
215   // If this isn't C++, we don't need a mangled name, just a pretty one.
216   assert(!D.isExternallyVisible() && "name shouldn't matter");
217   std::string ContextName;
218   const DeclContext *DC = D.getDeclContext();
219   if (auto *CD = dyn_cast<CapturedDecl>(DC))
220     DC = cast<DeclContext>(CD->getNonClosureContext());
221   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
222     ContextName = std::string(CGM.getMangledName(FD));
223   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
224     ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
225   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
226     ContextName = OMD->getSelector().getAsString();
227   else
228     llvm_unreachable("Unknown context for static var decl");
229 
230   ContextName += "." + D.getNameAsString();
231   return ContextName;
232 }
233 
234 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
235     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
236   // In general, we don't always emit static var decls once before we reference
237   // them. It is possible to reference them before emitting the function that
238   // contains them, and it is possible to emit the containing function multiple
239   // times.
240   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
241     return ExistingGV;
242 
243   QualType Ty = D.getType();
244   assert(Ty->isConstantSizeType() && "VLAs can't be static");
245 
246   // Use the label if the variable is renamed with the asm-label extension.
247   std::string Name;
248   if (D.hasAttr<AsmLabelAttr>())
249     Name = std::string(getMangledName(&D));
250   else
251     Name = getStaticDeclName(*this, D);
252 
253   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
254   LangAS AS = GetGlobalVarAddressSpace(&D);
255   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
256 
257   // OpenCL variables in local address space and CUDA shared
258   // variables cannot have an initializer.
259   llvm::Constant *Init = nullptr;
260   if (Ty.getAddressSpace() == LangAS::opencl_local ||
261       D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
262     Init = llvm::UndefValue::get(LTy);
263   else
264     Init = EmitNullConstant(Ty);
265 
266   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
267       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
268       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
269   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
270 
271   if (supportsCOMDAT() && GV->isWeakForLinker())
272     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
273 
274   if (D.getTLSKind())
275     setTLSMode(GV, D);
276 
277   setGVProperties(GV, &D);
278 
279   // Make sure the result is of the correct type.
280   LangAS ExpectedAS = Ty.getAddressSpace();
281   llvm::Constant *Addr = GV;
282   if (AS != ExpectedAS) {
283     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
284         *this, GV, AS, ExpectedAS,
285         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
286   }
287 
288   setStaticLocalDeclAddress(&D, Addr);
289 
290   // Ensure that the static local gets initialized by making sure the parent
291   // function gets emitted eventually.
292   const Decl *DC = cast<Decl>(D.getDeclContext());
293 
294   // We can't name blocks or captured statements directly, so try to emit their
295   // parents.
296   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
297     DC = DC->getNonClosureContext();
298     // FIXME: Ensure that global blocks get emitted.
299     if (!DC)
300       return Addr;
301   }
302 
303   GlobalDecl GD;
304   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
305     GD = GlobalDecl(CD, Ctor_Base);
306   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
307     GD = GlobalDecl(DD, Dtor_Base);
308   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
309     GD = GlobalDecl(FD);
310   else {
311     // Don't do anything for Obj-C method decls or global closures. We should
312     // never defer them.
313     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
314   }
315   if (GD.getDecl()) {
316     // Disable emission of the parent function for the OpenMP device codegen.
317     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
318     (void)GetAddrOfGlobal(GD);
319   }
320 
321   return Addr;
322 }
323 
324 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
325 /// global variable that has already been created for it.  If the initializer
326 /// has a different type than GV does, this may free GV and return a different
327 /// one.  Otherwise it just returns GV.
328 llvm::GlobalVariable *
329 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
330                                                llvm::GlobalVariable *GV) {
331   ConstantEmitter emitter(*this);
332   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
333 
334   // If constant emission failed, then this should be a C++ static
335   // initializer.
336   if (!Init) {
337     if (!getLangOpts().CPlusPlus)
338       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
339     else if (HaveInsertPoint()) {
340       // Since we have a static initializer, this global variable can't
341       // be constant.
342       GV->setConstant(false);
343 
344       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
345     }
346     return GV;
347   }
348 
349   // The initializer may differ in type from the global. Rewrite
350   // the global to match the initializer.  (We have to do this
351   // because some types, like unions, can't be completely represented
352   // in the LLVM type system.)
353   if (GV->getValueType() != Init->getType()) {
354     llvm::GlobalVariable *OldGV = GV;
355 
356     GV = new llvm::GlobalVariable(
357         CGM.getModule(), Init->getType(), OldGV->isConstant(),
358         OldGV->getLinkage(), Init, "",
359         /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(),
360         OldGV->getType()->getPointerAddressSpace());
361     GV->setVisibility(OldGV->getVisibility());
362     GV->setDSOLocal(OldGV->isDSOLocal());
363     GV->setComdat(OldGV->getComdat());
364 
365     // Steal the name of the old global
366     GV->takeName(OldGV);
367 
368     // Replace all uses of the old global with the new global
369     llvm::Constant *NewPtrForOldDecl =
370     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
371     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
372 
373     // Erase the old global, since it is no longer used.
374     OldGV->eraseFromParent();
375   }
376 
377   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
378   GV->setInitializer(Init);
379 
380   emitter.finalize(GV);
381 
382   if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
383       HaveInsertPoint()) {
384     // We have a constant initializer, but a nontrivial destructor. We still
385     // need to perform a guarded "initialization" in order to register the
386     // destructor.
387     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
388   }
389 
390   return GV;
391 }
392 
393 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
394                                       llvm::GlobalValue::LinkageTypes Linkage) {
395   // Check to see if we already have a global variable for this
396   // declaration.  This can happen when double-emitting function
397   // bodies, e.g. with complete and base constructors.
398   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
399   CharUnits alignment = getContext().getDeclAlign(&D);
400 
401   // Store into LocalDeclMap before generating initializer to handle
402   // circular references.
403   setAddrOfLocalVar(&D, Address(addr, alignment));
404 
405   // We can't have a VLA here, but we can have a pointer to a VLA,
406   // even though that doesn't really make any sense.
407   // Make sure to evaluate VLA bounds now so that we have them for later.
408   if (D.getType()->isVariablyModifiedType())
409     EmitVariablyModifiedType(D.getType());
410 
411   // Save the type in case adding the initializer forces a type change.
412   llvm::Type *expectedType = addr->getType();
413 
414   llvm::GlobalVariable *var =
415     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
416 
417   // CUDA's local and local static __shared__ variables should not
418   // have any non-empty initializers. This is ensured by Sema.
419   // Whatever initializer such variable may have when it gets here is
420   // a no-op and should not be emitted.
421   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
422                          D.hasAttr<CUDASharedAttr>();
423   // If this value has an initializer, emit it.
424   if (D.getInit() && !isCudaSharedVar)
425     var = AddInitializerToStaticVarDecl(D, var);
426 
427   var->setAlignment(alignment.getAsAlign());
428 
429   if (D.hasAttr<AnnotateAttr>())
430     CGM.AddGlobalAnnotations(&D, var);
431 
432   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
433     var->addAttribute("bss-section", SA->getName());
434   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
435     var->addAttribute("data-section", SA->getName());
436   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
437     var->addAttribute("rodata-section", SA->getName());
438   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
439     var->addAttribute("relro-section", SA->getName());
440 
441   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
442     var->setSection(SA->getName());
443 
444   if (D.hasAttr<RetainAttr>())
445     CGM.addUsedGlobal(var);
446   else if (D.hasAttr<UsedAttr>())
447     CGM.addUsedOrCompilerUsedGlobal(var);
448 
449   // We may have to cast the constant because of the initializer
450   // mismatch above.
451   //
452   // FIXME: It is really dangerous to store this in the map; if anyone
453   // RAUW's the GV uses of this constant will be invalid.
454   llvm::Constant *castedAddr =
455     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
456   if (var != castedAddr)
457     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
458   CGM.setStaticLocalDeclAddress(&D, castedAddr);
459 
460   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
461 
462   // Emit global variable debug descriptor for static vars.
463   CGDebugInfo *DI = getDebugInfo();
464   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
465     DI->setLocation(D.getLocation());
466     DI->EmitGlobalVariable(var, &D);
467   }
468 }
469 
470 namespace {
471   struct DestroyObject final : EHScopeStack::Cleanup {
472     DestroyObject(Address addr, QualType type,
473                   CodeGenFunction::Destroyer *destroyer,
474                   bool useEHCleanupForArray)
475       : addr(addr), type(type), destroyer(destroyer),
476         useEHCleanupForArray(useEHCleanupForArray) {}
477 
478     Address addr;
479     QualType type;
480     CodeGenFunction::Destroyer *destroyer;
481     bool useEHCleanupForArray;
482 
483     void Emit(CodeGenFunction &CGF, Flags flags) override {
484       // Don't use an EH cleanup recursively from an EH cleanup.
485       bool useEHCleanupForArray =
486         flags.isForNormalCleanup() && this->useEHCleanupForArray;
487 
488       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
489     }
490   };
491 
492   template <class Derived>
493   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
494     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
495         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
496 
497     llvm::Value *NRVOFlag;
498     Address Loc;
499     QualType Ty;
500 
501     void Emit(CodeGenFunction &CGF, Flags flags) override {
502       // Along the exceptions path we always execute the dtor.
503       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
504 
505       llvm::BasicBlock *SkipDtorBB = nullptr;
506       if (NRVO) {
507         // If we exited via NRVO, we skip the destructor call.
508         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
509         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
510         llvm::Value *DidNRVO =
511           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
512         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
513         CGF.EmitBlock(RunDtorBB);
514       }
515 
516       static_cast<Derived *>(this)->emitDestructorCall(CGF);
517 
518       if (NRVO) CGF.EmitBlock(SkipDtorBB);
519     }
520 
521     virtual ~DestroyNRVOVariable() = default;
522   };
523 
524   struct DestroyNRVOVariableCXX final
525       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
526     DestroyNRVOVariableCXX(Address addr, QualType type,
527                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
528         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
529           Dtor(Dtor) {}
530 
531     const CXXDestructorDecl *Dtor;
532 
533     void emitDestructorCall(CodeGenFunction &CGF) {
534       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
535                                 /*ForVirtualBase=*/false,
536                                 /*Delegating=*/false, Loc, Ty);
537     }
538   };
539 
540   struct DestroyNRVOVariableC final
541       : DestroyNRVOVariable<DestroyNRVOVariableC> {
542     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
543         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
544 
545     void emitDestructorCall(CodeGenFunction &CGF) {
546       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
547     }
548   };
549 
550   struct CallStackRestore final : EHScopeStack::Cleanup {
551     Address Stack;
552     CallStackRestore(Address Stack) : Stack(Stack) {}
553     void Emit(CodeGenFunction &CGF, Flags flags) override {
554       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
555       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
556       CGF.Builder.CreateCall(F, V);
557     }
558   };
559 
560   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
561     const VarDecl &Var;
562     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
563 
564     void Emit(CodeGenFunction &CGF, Flags flags) override {
565       // Compute the address of the local variable, in case it's a
566       // byref or something.
567       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
568                       Var.getType(), VK_LValue, SourceLocation());
569       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
570                                                 SourceLocation());
571       CGF.EmitExtendGCLifetime(value);
572     }
573   };
574 
575   struct CallCleanupFunction final : EHScopeStack::Cleanup {
576     llvm::Constant *CleanupFn;
577     const CGFunctionInfo &FnInfo;
578     const VarDecl &Var;
579 
580     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
581                         const VarDecl *Var)
582       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
583 
584     void Emit(CodeGenFunction &CGF, Flags flags) override {
585       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
586                       Var.getType(), VK_LValue, SourceLocation());
587       // Compute the address of the local variable, in case it's a byref
588       // or something.
589       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
590 
591       // In some cases, the type of the function argument will be different from
592       // the type of the pointer. An example of this is
593       // void f(void* arg);
594       // __attribute__((cleanup(f))) void *g;
595       //
596       // To fix this we insert a bitcast here.
597       QualType ArgTy = FnInfo.arg_begin()->type;
598       llvm::Value *Arg =
599         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
600 
601       CallArgList Args;
602       Args.add(RValue::get(Arg),
603                CGF.getContext().getPointerType(Var.getType()));
604       auto Callee = CGCallee::forDirect(CleanupFn);
605       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
606     }
607   };
608 } // end anonymous namespace
609 
610 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
611 /// variable with lifetime.
612 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
613                                     Address addr,
614                                     Qualifiers::ObjCLifetime lifetime) {
615   switch (lifetime) {
616   case Qualifiers::OCL_None:
617     llvm_unreachable("present but none");
618 
619   case Qualifiers::OCL_ExplicitNone:
620     // nothing to do
621     break;
622 
623   case Qualifiers::OCL_Strong: {
624     CodeGenFunction::Destroyer *destroyer =
625       (var.hasAttr<ObjCPreciseLifetimeAttr>()
626        ? CodeGenFunction::destroyARCStrongPrecise
627        : CodeGenFunction::destroyARCStrongImprecise);
628 
629     CleanupKind cleanupKind = CGF.getARCCleanupKind();
630     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
631                     cleanupKind & EHCleanup);
632     break;
633   }
634   case Qualifiers::OCL_Autoreleasing:
635     // nothing to do
636     break;
637 
638   case Qualifiers::OCL_Weak:
639     // __weak objects always get EH cleanups; otherwise, exceptions
640     // could cause really nasty crashes instead of mere leaks.
641     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
642                     CodeGenFunction::destroyARCWeak,
643                     /*useEHCleanup*/ true);
644     break;
645   }
646 }
647 
648 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
649   if (const Expr *e = dyn_cast<Expr>(s)) {
650     // Skip the most common kinds of expressions that make
651     // hierarchy-walking expensive.
652     s = e = e->IgnoreParenCasts();
653 
654     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
655       return (ref->getDecl() == &var);
656     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
657       const BlockDecl *block = be->getBlockDecl();
658       for (const auto &I : block->captures()) {
659         if (I.getVariable() == &var)
660           return true;
661       }
662     }
663   }
664 
665   for (const Stmt *SubStmt : s->children())
666     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
667     if (SubStmt && isAccessedBy(var, SubStmt))
668       return true;
669 
670   return false;
671 }
672 
673 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
674   if (!decl) return false;
675   if (!isa<VarDecl>(decl)) return false;
676   const VarDecl *var = cast<VarDecl>(decl);
677   return isAccessedBy(*var, e);
678 }
679 
680 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
681                                    const LValue &destLV, const Expr *init) {
682   bool needsCast = false;
683 
684   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
685     switch (castExpr->getCastKind()) {
686     // Look through casts that don't require representation changes.
687     case CK_NoOp:
688     case CK_BitCast:
689     case CK_BlockPointerToObjCPointerCast:
690       needsCast = true;
691       break;
692 
693     // If we find an l-value to r-value cast from a __weak variable,
694     // emit this operation as a copy or move.
695     case CK_LValueToRValue: {
696       const Expr *srcExpr = castExpr->getSubExpr();
697       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
698         return false;
699 
700       // Emit the source l-value.
701       LValue srcLV = CGF.EmitLValue(srcExpr);
702 
703       // Handle a formal type change to avoid asserting.
704       auto srcAddr = srcLV.getAddress(CGF);
705       if (needsCast) {
706         srcAddr = CGF.Builder.CreateElementBitCast(
707             srcAddr, destLV.getAddress(CGF).getElementType());
708       }
709 
710       // If it was an l-value, use objc_copyWeak.
711       if (srcExpr->getValueKind() == VK_LValue) {
712         CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
713       } else {
714         assert(srcExpr->getValueKind() == VK_XValue);
715         CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
716       }
717       return true;
718     }
719 
720     // Stop at anything else.
721     default:
722       return false;
723     }
724 
725     init = castExpr->getSubExpr();
726   }
727   return false;
728 }
729 
730 static void drillIntoBlockVariable(CodeGenFunction &CGF,
731                                    LValue &lvalue,
732                                    const VarDecl *var) {
733   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
734 }
735 
736 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
737                                            SourceLocation Loc) {
738   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
739     return;
740 
741   auto Nullability = LHS.getType()->getNullability(getContext());
742   if (!Nullability || *Nullability != NullabilityKind::NonNull)
743     return;
744 
745   // Check if the right hand side of the assignment is nonnull, if the left
746   // hand side must be nonnull.
747   SanitizerScope SanScope(this);
748   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
749   llvm::Constant *StaticData[] = {
750       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
751       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
752       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
753   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
754             SanitizerHandler::TypeMismatch, StaticData, RHS);
755 }
756 
757 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
758                                      LValue lvalue, bool capturedByInit) {
759   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
760   if (!lifetime) {
761     llvm::Value *value = EmitScalarExpr(init);
762     if (capturedByInit)
763       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
764     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
765     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
766     return;
767   }
768 
769   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
770     init = DIE->getExpr();
771 
772   // If we're emitting a value with lifetime, we have to do the
773   // initialization *before* we leave the cleanup scopes.
774   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(init))
775     init = EWC->getSubExpr();
776   CodeGenFunction::RunCleanupsScope Scope(*this);
777 
778   // We have to maintain the illusion that the variable is
779   // zero-initialized.  If the variable might be accessed in its
780   // initializer, zero-initialize before running the initializer, then
781   // actually perform the initialization with an assign.
782   bool accessedByInit = false;
783   if (lifetime != Qualifiers::OCL_ExplicitNone)
784     accessedByInit = (capturedByInit || isAccessedBy(D, init));
785   if (accessedByInit) {
786     LValue tempLV = lvalue;
787     // Drill down to the __block object if necessary.
788     if (capturedByInit) {
789       // We can use a simple GEP for this because it can't have been
790       // moved yet.
791       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
792                                               cast<VarDecl>(D),
793                                               /*follow*/ false));
794     }
795 
796     auto ty =
797         cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
798     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
799 
800     // If __weak, we want to use a barrier under certain conditions.
801     if (lifetime == Qualifiers::OCL_Weak)
802       EmitARCInitWeak(tempLV.getAddress(*this), zero);
803 
804     // Otherwise just do a simple store.
805     else
806       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
807   }
808 
809   // Emit the initializer.
810   llvm::Value *value = nullptr;
811 
812   switch (lifetime) {
813   case Qualifiers::OCL_None:
814     llvm_unreachable("present but none");
815 
816   case Qualifiers::OCL_Strong: {
817     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
818       value = EmitARCRetainScalarExpr(init);
819       break;
820     }
821     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
822     // that we omit the retain, and causes non-autoreleased return values to be
823     // immediately released.
824     LLVM_FALLTHROUGH;
825   }
826 
827   case Qualifiers::OCL_ExplicitNone:
828     value = EmitARCUnsafeUnretainedScalarExpr(init);
829     break;
830 
831   case Qualifiers::OCL_Weak: {
832     // If it's not accessed by the initializer, try to emit the
833     // initialization with a copy or move.
834     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
835       return;
836     }
837 
838     // No way to optimize a producing initializer into this.  It's not
839     // worth optimizing for, because the value will immediately
840     // disappear in the common case.
841     value = EmitScalarExpr(init);
842 
843     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
844     if (accessedByInit)
845       EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
846     else
847       EmitARCInitWeak(lvalue.getAddress(*this), value);
848     return;
849   }
850 
851   case Qualifiers::OCL_Autoreleasing:
852     value = EmitARCRetainAutoreleaseScalarExpr(init);
853     break;
854   }
855 
856   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
857 
858   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
859 
860   // If the variable might have been accessed by its initializer, we
861   // might have to initialize with a barrier.  We have to do this for
862   // both __weak and __strong, but __weak got filtered out above.
863   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
864     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
865     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
866     EmitARCRelease(oldValue, ARCImpreciseLifetime);
867     return;
868   }
869 
870   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
871 }
872 
873 /// Decide whether we can emit the non-zero parts of the specified initializer
874 /// with equal or fewer than NumStores scalar stores.
875 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
876                                                unsigned &NumStores) {
877   // Zero and Undef never requires any extra stores.
878   if (isa<llvm::ConstantAggregateZero>(Init) ||
879       isa<llvm::ConstantPointerNull>(Init) ||
880       isa<llvm::UndefValue>(Init))
881     return true;
882   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
883       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
884       isa<llvm::ConstantExpr>(Init))
885     return Init->isNullValue() || NumStores--;
886 
887   // See if we can emit each element.
888   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
889     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
890       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
891       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
892         return false;
893     }
894     return true;
895   }
896 
897   if (llvm::ConstantDataSequential *CDS =
898         dyn_cast<llvm::ConstantDataSequential>(Init)) {
899     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
900       llvm::Constant *Elt = CDS->getElementAsConstant(i);
901       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
902         return false;
903     }
904     return true;
905   }
906 
907   // Anything else is hard and scary.
908   return false;
909 }
910 
911 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
912 /// the scalar stores that would be required.
913 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
914                                         llvm::Constant *Init, Address Loc,
915                                         bool isVolatile, CGBuilderTy &Builder,
916                                         bool IsAutoInit) {
917   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
918          "called emitStoresForInitAfterBZero for zero or undef value.");
919 
920   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
921       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
922       isa<llvm::ConstantExpr>(Init)) {
923     auto *I = Builder.CreateStore(Init, Loc, isVolatile);
924     if (IsAutoInit)
925       I->addAnnotationMetadata("auto-init");
926     return;
927   }
928 
929   if (llvm::ConstantDataSequential *CDS =
930           dyn_cast<llvm::ConstantDataSequential>(Init)) {
931     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
932       llvm::Constant *Elt = CDS->getElementAsConstant(i);
933 
934       // If necessary, get a pointer to the element and emit it.
935       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
936         emitStoresForInitAfterBZero(
937             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
938             Builder, IsAutoInit);
939     }
940     return;
941   }
942 
943   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
944          "Unknown value type!");
945 
946   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
947     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
948 
949     // If necessary, get a pointer to the element and emit it.
950     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
951       emitStoresForInitAfterBZero(CGM, Elt,
952                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
953                                   isVolatile, Builder, IsAutoInit);
954   }
955 }
956 
957 /// Decide whether we should use bzero plus some stores to initialize a local
958 /// variable instead of using a memcpy from a constant global.  It is beneficial
959 /// to use bzero if the global is all zeros, or mostly zeros and large.
960 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
961                                                  uint64_t GlobalSize) {
962   // If a global is all zeros, always use a bzero.
963   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
964 
965   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
966   // do it if it will require 6 or fewer scalar stores.
967   // TODO: Should budget depends on the size?  Avoiding a large global warrants
968   // plopping in more stores.
969   unsigned StoreBudget = 6;
970   uint64_t SizeLimit = 32;
971 
972   return GlobalSize > SizeLimit &&
973          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
974 }
975 
976 /// Decide whether we should use memset to initialize a local variable instead
977 /// of using a memcpy from a constant global. Assumes we've already decided to
978 /// not user bzero.
979 /// FIXME We could be more clever, as we are for bzero above, and generate
980 ///       memset followed by stores. It's unclear that's worth the effort.
981 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
982                                                 uint64_t GlobalSize,
983                                                 const llvm::DataLayout &DL) {
984   uint64_t SizeLimit = 32;
985   if (GlobalSize <= SizeLimit)
986     return nullptr;
987   return llvm::isBytewiseValue(Init, DL);
988 }
989 
990 /// Decide whether we want to split a constant structure or array store into a
991 /// sequence of its fields' stores. This may cost us code size and compilation
992 /// speed, but plays better with store optimizations.
993 static bool shouldSplitConstantStore(CodeGenModule &CGM,
994                                      uint64_t GlobalByteSize) {
995   // Don't break things that occupy more than one cacheline.
996   uint64_t ByteSizeLimit = 64;
997   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
998     return false;
999   if (GlobalByteSize <= ByteSizeLimit)
1000     return true;
1001   return false;
1002 }
1003 
1004 enum class IsPattern { No, Yes };
1005 
1006 /// Generate a constant filled with either a pattern or zeroes.
1007 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1008                                         llvm::Type *Ty) {
1009   if (isPattern == IsPattern::Yes)
1010     return initializationPatternFor(CGM, Ty);
1011   else
1012     return llvm::Constant::getNullValue(Ty);
1013 }
1014 
1015 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1016                                         llvm::Constant *constant);
1017 
1018 /// Helper function for constWithPadding() to deal with padding in structures.
1019 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1020                                               IsPattern isPattern,
1021                                               llvm::StructType *STy,
1022                                               llvm::Constant *constant) {
1023   const llvm::DataLayout &DL = CGM.getDataLayout();
1024   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1025   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1026   unsigned SizeSoFar = 0;
1027   SmallVector<llvm::Constant *, 8> Values;
1028   bool NestedIntact = true;
1029   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1030     unsigned CurOff = Layout->getElementOffset(i);
1031     if (SizeSoFar < CurOff) {
1032       assert(!STy->isPacked());
1033       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1034       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1035     }
1036     llvm::Constant *CurOp;
1037     if (constant->isZeroValue())
1038       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1039     else
1040       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1041     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1042     if (CurOp != NewOp)
1043       NestedIntact = false;
1044     Values.push_back(NewOp);
1045     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1046   }
1047   unsigned TotalSize = Layout->getSizeInBytes();
1048   if (SizeSoFar < TotalSize) {
1049     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1050     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1051   }
1052   if (NestedIntact && Values.size() == STy->getNumElements())
1053     return constant;
1054   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1055 }
1056 
1057 /// Replace all padding bytes in a given constant with either a pattern byte or
1058 /// 0x00.
1059 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1060                                         llvm::Constant *constant) {
1061   llvm::Type *OrigTy = constant->getType();
1062   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1063     return constStructWithPadding(CGM, isPattern, STy, constant);
1064   if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1065     llvm::SmallVector<llvm::Constant *, 8> Values;
1066     uint64_t Size = ArrayTy->getNumElements();
1067     if (!Size)
1068       return constant;
1069     llvm::Type *ElemTy = ArrayTy->getElementType();
1070     bool ZeroInitializer = constant->isNullValue();
1071     llvm::Constant *OpValue, *PaddedOp;
1072     if (ZeroInitializer) {
1073       OpValue = llvm::Constant::getNullValue(ElemTy);
1074       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1075     }
1076     for (unsigned Op = 0; Op != Size; ++Op) {
1077       if (!ZeroInitializer) {
1078         OpValue = constant->getAggregateElement(Op);
1079         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1080       }
1081       Values.push_back(PaddedOp);
1082     }
1083     auto *NewElemTy = Values[0]->getType();
1084     if (NewElemTy == ElemTy)
1085       return constant;
1086     auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1087     return llvm::ConstantArray::get(NewArrayTy, Values);
1088   }
1089   // FIXME: Add handling for tail padding in vectors. Vectors don't
1090   // have padding between or inside elements, but the total amount of
1091   // data can be less than the allocated size.
1092   return constant;
1093 }
1094 
1095 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1096                                                llvm::Constant *Constant,
1097                                                CharUnits Align) {
1098   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1099     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1100       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1101         return CC->getNameAsString();
1102       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1103         return CD->getNameAsString();
1104       return std::string(getMangledName(FD));
1105     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1106       return OM->getNameAsString();
1107     } else if (isa<BlockDecl>(DC)) {
1108       return "<block>";
1109     } else if (isa<CapturedDecl>(DC)) {
1110       return "<captured>";
1111     } else {
1112       llvm_unreachable("expected a function or method");
1113     }
1114   };
1115 
1116   // Form a simple per-variable cache of these values in case we find we
1117   // want to reuse them.
1118   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1119   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1120     auto *Ty = Constant->getType();
1121     bool isConstant = true;
1122     llvm::GlobalVariable *InsertBefore = nullptr;
1123     unsigned AS =
1124         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1125     std::string Name;
1126     if (D.hasGlobalStorage())
1127       Name = getMangledName(&D).str() + ".const";
1128     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1129       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1130     else
1131       llvm_unreachable("local variable has no parent function or method");
1132     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1133         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1134         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1135     GV->setAlignment(Align.getAsAlign());
1136     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1137     CacheEntry = GV;
1138   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1139     CacheEntry->setAlignment(Align.getAsAlign());
1140   }
1141 
1142   return Address(CacheEntry, Align);
1143 }
1144 
1145 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1146                                                 const VarDecl &D,
1147                                                 CGBuilderTy &Builder,
1148                                                 llvm::Constant *Constant,
1149                                                 CharUnits Align) {
1150   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1151   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1152                                                    SrcPtr.getAddressSpace());
1153   if (SrcPtr.getType() != BP)
1154     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1155   return SrcPtr;
1156 }
1157 
1158 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1159                                   Address Loc, bool isVolatile,
1160                                   CGBuilderTy &Builder,
1161                                   llvm::Constant *constant, bool IsAutoInit) {
1162   auto *Ty = constant->getType();
1163   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1164   if (!ConstantSize)
1165     return;
1166 
1167   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1168                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1169   if (canDoSingleStore) {
1170     auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1171     if (IsAutoInit)
1172       I->addAnnotationMetadata("auto-init");
1173     return;
1174   }
1175 
1176   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1177 
1178   // If the initializer is all or mostly the same, codegen with bzero / memset
1179   // then do a few stores afterward.
1180   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1181     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1182                                    SizeVal, isVolatile);
1183     if (IsAutoInit)
1184       I->addAnnotationMetadata("auto-init");
1185 
1186     bool valueAlreadyCorrect =
1187         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1188     if (!valueAlreadyCorrect) {
1189       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1190       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1191                                   IsAutoInit);
1192     }
1193     return;
1194   }
1195 
1196   // If the initializer is a repeated byte pattern, use memset.
1197   llvm::Value *Pattern =
1198       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1199   if (Pattern) {
1200     uint64_t Value = 0x00;
1201     if (!isa<llvm::UndefValue>(Pattern)) {
1202       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1203       assert(AP.getBitWidth() <= 8);
1204       Value = AP.getLimitedValue();
1205     }
1206     auto *I = Builder.CreateMemSet(
1207         Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1208     if (IsAutoInit)
1209       I->addAnnotationMetadata("auto-init");
1210     return;
1211   }
1212 
1213   // If the initializer is small, use a handful of stores.
1214   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1215     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1216       // FIXME: handle the case when STy != Loc.getElementType().
1217       if (STy == Loc.getElementType()) {
1218         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1219           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1220           emitStoresForConstant(
1221               CGM, D, EltPtr, isVolatile, Builder,
1222               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1223               IsAutoInit);
1224         }
1225         return;
1226       }
1227     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1228       // FIXME: handle the case when ATy != Loc.getElementType().
1229       if (ATy == Loc.getElementType()) {
1230         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1231           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1232           emitStoresForConstant(
1233               CGM, D, EltPtr, isVolatile, Builder,
1234               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1235               IsAutoInit);
1236         }
1237         return;
1238       }
1239     }
1240   }
1241 
1242   // Copy from a global.
1243   auto *I =
1244       Builder.CreateMemCpy(Loc,
1245                            createUnnamedGlobalForMemcpyFrom(
1246                                CGM, D, Builder, constant, Loc.getAlignment()),
1247                            SizeVal, isVolatile);
1248   if (IsAutoInit)
1249     I->addAnnotationMetadata("auto-init");
1250 }
1251 
1252 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1253                                   Address Loc, bool isVolatile,
1254                                   CGBuilderTy &Builder) {
1255   llvm::Type *ElTy = Loc.getElementType();
1256   llvm::Constant *constant =
1257       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1258   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1259                         /*IsAutoInit=*/true);
1260 }
1261 
1262 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1263                                      Address Loc, bool isVolatile,
1264                                      CGBuilderTy &Builder) {
1265   llvm::Type *ElTy = Loc.getElementType();
1266   llvm::Constant *constant = constWithPadding(
1267       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1268   assert(!isa<llvm::UndefValue>(constant));
1269   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1270                         /*IsAutoInit=*/true);
1271 }
1272 
1273 static bool containsUndef(llvm::Constant *constant) {
1274   auto *Ty = constant->getType();
1275   if (isa<llvm::UndefValue>(constant))
1276     return true;
1277   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1278     for (llvm::Use &Op : constant->operands())
1279       if (containsUndef(cast<llvm::Constant>(Op)))
1280         return true;
1281   return false;
1282 }
1283 
1284 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1285                                     llvm::Constant *constant) {
1286   auto *Ty = constant->getType();
1287   if (isa<llvm::UndefValue>(constant))
1288     return patternOrZeroFor(CGM, isPattern, Ty);
1289   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1290     return constant;
1291   if (!containsUndef(constant))
1292     return constant;
1293   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1294   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1295     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1296     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1297   }
1298   if (Ty->isStructTy())
1299     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1300   if (Ty->isArrayTy())
1301     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1302   assert(Ty->isVectorTy());
1303   return llvm::ConstantVector::get(Values);
1304 }
1305 
1306 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1307 /// variable declaration with auto, register, or no storage class specifier.
1308 /// These turn into simple stack objects, or GlobalValues depending on target.
1309 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1310   AutoVarEmission emission = EmitAutoVarAlloca(D);
1311   EmitAutoVarInit(emission);
1312   EmitAutoVarCleanups(emission);
1313 }
1314 
1315 /// Emit a lifetime.begin marker if some criteria are satisfied.
1316 /// \return a pointer to the temporary size Value if a marker was emitted, null
1317 /// otherwise
1318 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1319                                                 llvm::Value *Addr) {
1320   if (!ShouldEmitLifetimeMarkers)
1321     return nullptr;
1322 
1323   assert(Addr->getType()->getPointerAddressSpace() ==
1324              CGM.getDataLayout().getAllocaAddrSpace() &&
1325          "Pointer should be in alloca address space");
1326   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1327   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1328   llvm::CallInst *C =
1329       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1330   C->setDoesNotThrow();
1331   return SizeV;
1332 }
1333 
1334 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1335   assert(Addr->getType()->getPointerAddressSpace() ==
1336              CGM.getDataLayout().getAllocaAddrSpace() &&
1337          "Pointer should be in alloca address space");
1338   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1339   llvm::CallInst *C =
1340       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1341   C->setDoesNotThrow();
1342 }
1343 
1344 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1345     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1346   // For each dimension stores its QualType and corresponding
1347   // size-expression Value.
1348   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1349   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1350 
1351   // Break down the array into individual dimensions.
1352   QualType Type1D = D.getType();
1353   while (getContext().getAsVariableArrayType(Type1D)) {
1354     auto VlaSize = getVLAElements1D(Type1D);
1355     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1356       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1357     else {
1358       // Generate a locally unique name for the size expression.
1359       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1360       SmallString<12> Buffer;
1361       StringRef NameRef = Name.toStringRef(Buffer);
1362       auto &Ident = getContext().Idents.getOwn(NameRef);
1363       VLAExprNames.push_back(&Ident);
1364       auto SizeExprAddr =
1365           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1366       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1367       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1368                               Type1D.getUnqualifiedType());
1369     }
1370     Type1D = VlaSize.Type;
1371   }
1372 
1373   if (!EmitDebugInfo)
1374     return;
1375 
1376   // Register each dimension's size-expression with a DILocalVariable,
1377   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1378   // to describe this array.
1379   unsigned NameIdx = 0;
1380   for (auto &VlaSize : Dimensions) {
1381     llvm::Metadata *MD;
1382     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1383       MD = llvm::ConstantAsMetadata::get(C);
1384     else {
1385       // Create an artificial VarDecl to generate debug info for.
1386       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1387       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1388       auto QT = getContext().getIntTypeForBitwidth(
1389           VlaExprTy->getScalarSizeInBits(), false);
1390       auto *ArtificialDecl = VarDecl::Create(
1391           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1392           D.getLocation(), D.getLocation(), NameIdent, QT,
1393           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1394       ArtificialDecl->setImplicit();
1395 
1396       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1397                                          Builder);
1398     }
1399     assert(MD && "No Size expression debug node created");
1400     DI->registerVLASizeExpression(VlaSize.Type, MD);
1401   }
1402 }
1403 
1404 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1405 /// local variable.  Does not emit initialization or destruction.
1406 CodeGenFunction::AutoVarEmission
1407 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1408   QualType Ty = D.getType();
1409   assert(
1410       Ty.getAddressSpace() == LangAS::Default ||
1411       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1412 
1413   AutoVarEmission emission(D);
1414 
1415   bool isEscapingByRef = D.isEscapingByref();
1416   emission.IsEscapingByRef = isEscapingByRef;
1417 
1418   CharUnits alignment = getContext().getDeclAlign(&D);
1419 
1420   // If the type is variably-modified, emit all the VLA sizes for it.
1421   if (Ty->isVariablyModifiedType())
1422     EmitVariablyModifiedType(Ty);
1423 
1424   auto *DI = getDebugInfo();
1425   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1426 
1427   Address address = Address::invalid();
1428   Address AllocaAddr = Address::invalid();
1429   Address OpenMPLocalAddr = Address::invalid();
1430   if (CGM.getLangOpts().OpenMPIRBuilder)
1431     OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1432   else
1433     OpenMPLocalAddr =
1434         getLangOpts().OpenMP
1435             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1436             : Address::invalid();
1437 
1438   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1439 
1440   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1441     address = OpenMPLocalAddr;
1442   } else if (Ty->isConstantSizeType()) {
1443     // If this value is an array or struct with a statically determinable
1444     // constant initializer, there are optimizations we can do.
1445     //
1446     // TODO: We should constant-evaluate the initializer of any variable,
1447     // as long as it is initialized by a constant expression. Currently,
1448     // isConstantInitializer produces wrong answers for structs with
1449     // reference or bitfield members, and a few other cases, and checking
1450     // for POD-ness protects us from some of these.
1451     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1452         (D.isConstexpr() ||
1453          ((Ty.isPODType(getContext()) ||
1454            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1455           D.getInit()->isConstantInitializer(getContext(), false)))) {
1456 
1457       // If the variable's a const type, and it's neither an NRVO
1458       // candidate nor a __block variable and has no mutable members,
1459       // emit it as a global instead.
1460       // Exception is if a variable is located in non-constant address space
1461       // in OpenCL.
1462       if ((!getLangOpts().OpenCL ||
1463            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1464           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1465            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1466         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1467 
1468         // Signal this condition to later callbacks.
1469         emission.Addr = Address::invalid();
1470         assert(emission.wasEmittedAsGlobal());
1471         return emission;
1472       }
1473 
1474       // Otherwise, tell the initialization code that we're in this case.
1475       emission.IsConstantAggregate = true;
1476     }
1477 
1478     // A normal fixed sized variable becomes an alloca in the entry block,
1479     // unless:
1480     // - it's an NRVO variable.
1481     // - we are compiling OpenMP and it's an OpenMP local variable.
1482     if (NRVO) {
1483       // The named return value optimization: allocate this variable in the
1484       // return slot, so that we can elide the copy when returning this
1485       // variable (C++0x [class.copy]p34).
1486       address = ReturnValue;
1487 
1488       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1489         const auto *RD = RecordTy->getDecl();
1490         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1491         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1492             RD->isNonTrivialToPrimitiveDestroy()) {
1493           // Create a flag that is used to indicate when the NRVO was applied
1494           // to this variable. Set it to zero to indicate that NRVO was not
1495           // applied.
1496           llvm::Value *Zero = Builder.getFalse();
1497           Address NRVOFlag =
1498             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1499           EnsureInsertPoint();
1500           Builder.CreateStore(Zero, NRVOFlag);
1501 
1502           // Record the NRVO flag for this variable.
1503           NRVOFlags[&D] = NRVOFlag.getPointer();
1504           emission.NRVOFlag = NRVOFlag.getPointer();
1505         }
1506       }
1507     } else {
1508       CharUnits allocaAlignment;
1509       llvm::Type *allocaTy;
1510       if (isEscapingByRef) {
1511         auto &byrefInfo = getBlockByrefInfo(&D);
1512         allocaTy = byrefInfo.Type;
1513         allocaAlignment = byrefInfo.ByrefAlignment;
1514       } else {
1515         allocaTy = ConvertTypeForMem(Ty);
1516         allocaAlignment = alignment;
1517       }
1518 
1519       // Create the alloca.  Note that we set the name separately from
1520       // building the instruction so that it's there even in no-asserts
1521       // builds.
1522       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1523                                  /*ArraySize=*/nullptr, &AllocaAddr);
1524 
1525       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1526       // the catch parameter starts in the catchpad instruction, and we can't
1527       // insert code in those basic blocks.
1528       bool IsMSCatchParam =
1529           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1530 
1531       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1532       // if we don't have a valid insertion point (?).
1533       if (HaveInsertPoint() && !IsMSCatchParam) {
1534         // If there's a jump into the lifetime of this variable, its lifetime
1535         // gets broken up into several regions in IR, which requires more work
1536         // to handle correctly. For now, just omit the intrinsics; this is a
1537         // rare case, and it's better to just be conservatively correct.
1538         // PR28267.
1539         //
1540         // We have to do this in all language modes if there's a jump past the
1541         // declaration. We also have to do it in C if there's a jump to an
1542         // earlier point in the current block because non-VLA lifetimes begin as
1543         // soon as the containing block is entered, not when its variables
1544         // actually come into scope; suppressing the lifetime annotations
1545         // completely in this case is unnecessarily pessimistic, but again, this
1546         // is rare.
1547         if (!Bypasses.IsBypassed(&D) &&
1548             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1549           llvm::TypeSize size =
1550               CGM.getDataLayout().getTypeAllocSize(allocaTy);
1551           emission.SizeForLifetimeMarkers =
1552               size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer())
1553                                 : EmitLifetimeStart(size.getFixedSize(),
1554                                                     AllocaAddr.getPointer());
1555         }
1556       } else {
1557         assert(!emission.useLifetimeMarkers());
1558       }
1559     }
1560   } else {
1561     EnsureInsertPoint();
1562 
1563     if (!DidCallStackSave) {
1564       // Save the stack.
1565       Address Stack =
1566         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1567 
1568       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1569       llvm::Value *V = Builder.CreateCall(F);
1570       Builder.CreateStore(V, Stack);
1571 
1572       DidCallStackSave = true;
1573 
1574       // Push a cleanup block and restore the stack there.
1575       // FIXME: in general circumstances, this should be an EH cleanup.
1576       pushStackRestore(NormalCleanup, Stack);
1577     }
1578 
1579     auto VlaSize = getVLASize(Ty);
1580     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1581 
1582     // Allocate memory for the array.
1583     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1584                                &AllocaAddr);
1585 
1586     // If we have debug info enabled, properly describe the VLA dimensions for
1587     // this type by registering the vla size expression for each of the
1588     // dimensions.
1589     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1590   }
1591 
1592   setAddrOfLocalVar(&D, address);
1593   emission.Addr = address;
1594   emission.AllocaAddr = AllocaAddr;
1595 
1596   // Emit debug info for local var declaration.
1597   if (EmitDebugInfo && HaveInsertPoint()) {
1598     Address DebugAddr = address;
1599     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1600     DI->setLocation(D.getLocation());
1601 
1602     // If NRVO, use a pointer to the return address.
1603     if (UsePointerValue)
1604       DebugAddr = ReturnValuePointer;
1605 
1606     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1607                                         UsePointerValue);
1608   }
1609 
1610   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1611     EmitVarAnnotations(&D, address.getPointer());
1612 
1613   // Make sure we call @llvm.lifetime.end.
1614   if (emission.useLifetimeMarkers())
1615     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1616                                          emission.getOriginalAllocatedAddress(),
1617                                          emission.getSizeForLifetimeMarkers());
1618 
1619   return emission;
1620 }
1621 
1622 static bool isCapturedBy(const VarDecl &, const Expr *);
1623 
1624 /// Determines whether the given __block variable is potentially
1625 /// captured by the given statement.
1626 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1627   if (const Expr *E = dyn_cast<Expr>(S))
1628     return isCapturedBy(Var, E);
1629   for (const Stmt *SubStmt : S->children())
1630     if (isCapturedBy(Var, SubStmt))
1631       return true;
1632   return false;
1633 }
1634 
1635 /// Determines whether the given __block variable is potentially
1636 /// captured by the given expression.
1637 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1638   // Skip the most common kinds of expressions that make
1639   // hierarchy-walking expensive.
1640   E = E->IgnoreParenCasts();
1641 
1642   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1643     const BlockDecl *Block = BE->getBlockDecl();
1644     for (const auto &I : Block->captures()) {
1645       if (I.getVariable() == &Var)
1646         return true;
1647     }
1648 
1649     // No need to walk into the subexpressions.
1650     return false;
1651   }
1652 
1653   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1654     const CompoundStmt *CS = SE->getSubStmt();
1655     for (const auto *BI : CS->body())
1656       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1657         if (isCapturedBy(Var, BIE))
1658           return true;
1659       }
1660       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1661           // special case declarations
1662           for (const auto *I : DS->decls()) {
1663               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1664                 const Expr *Init = VD->getInit();
1665                 if (Init && isCapturedBy(Var, Init))
1666                   return true;
1667               }
1668           }
1669       }
1670       else
1671         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1672         // Later, provide code to poke into statements for capture analysis.
1673         return true;
1674     return false;
1675   }
1676 
1677   for (const Stmt *SubStmt : E->children())
1678     if (isCapturedBy(Var, SubStmt))
1679       return true;
1680 
1681   return false;
1682 }
1683 
1684 /// Determine whether the given initializer is trivial in the sense
1685 /// that it requires no code to be generated.
1686 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1687   if (!Init)
1688     return true;
1689 
1690   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1691     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1692       if (Constructor->isTrivial() &&
1693           Constructor->isDefaultConstructor() &&
1694           !Construct->requiresZeroInitialization())
1695         return true;
1696 
1697   return false;
1698 }
1699 
1700 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1701                                                       const VarDecl &D,
1702                                                       Address Loc) {
1703   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1704   CharUnits Size = getContext().getTypeSizeInChars(type);
1705   bool isVolatile = type.isVolatileQualified();
1706   if (!Size.isZero()) {
1707     switch (trivialAutoVarInit) {
1708     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1709       llvm_unreachable("Uninitialized handled by caller");
1710     case LangOptions::TrivialAutoVarInitKind::Zero:
1711       if (CGM.stopAutoInit())
1712         return;
1713       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1714       break;
1715     case LangOptions::TrivialAutoVarInitKind::Pattern:
1716       if (CGM.stopAutoInit())
1717         return;
1718       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1719       break;
1720     }
1721     return;
1722   }
1723 
1724   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1725   // them, so emit a memcpy with the VLA size to initialize each element.
1726   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1727   // will catch that code, but there exists code which generates zero-sized
1728   // VLAs. Be nice and initialize whatever they requested.
1729   const auto *VlaType = getContext().getAsVariableArrayType(type);
1730   if (!VlaType)
1731     return;
1732   auto VlaSize = getVLASize(VlaType);
1733   auto SizeVal = VlaSize.NumElts;
1734   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1735   switch (trivialAutoVarInit) {
1736   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1737     llvm_unreachable("Uninitialized handled by caller");
1738 
1739   case LangOptions::TrivialAutoVarInitKind::Zero: {
1740     if (CGM.stopAutoInit())
1741       return;
1742     if (!EltSize.isOne())
1743       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1744     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1745                                    SizeVal, isVolatile);
1746     I->addAnnotationMetadata("auto-init");
1747     break;
1748   }
1749 
1750   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1751     if (CGM.stopAutoInit())
1752       return;
1753     llvm::Type *ElTy = Loc.getElementType();
1754     llvm::Constant *Constant = constWithPadding(
1755         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1756     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1757     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1758     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1759     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1760     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1761         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1762         "vla.iszerosized");
1763     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1764     EmitBlock(SetupBB);
1765     if (!EltSize.isOne())
1766       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1767     llvm::Value *BaseSizeInChars =
1768         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1769     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1770     llvm::Value *End = Builder.CreateInBoundsGEP(
1771         Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end");
1772     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1773     EmitBlock(LoopBB);
1774     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1775     Cur->addIncoming(Begin.getPointer(), OriginBB);
1776     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1777     auto *I =
1778         Builder.CreateMemCpy(Address(Cur, CurAlign),
1779                              createUnnamedGlobalForMemcpyFrom(
1780                                  CGM, D, Builder, Constant, ConstantAlign),
1781                              BaseSizeInChars, isVolatile);
1782     I->addAnnotationMetadata("auto-init");
1783     llvm::Value *Next =
1784         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1785     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1786     Builder.CreateCondBr(Done, ContBB, LoopBB);
1787     Cur->addIncoming(Next, LoopBB);
1788     EmitBlock(ContBB);
1789   } break;
1790   }
1791 }
1792 
1793 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1794   assert(emission.Variable && "emission was not valid!");
1795 
1796   // If this was emitted as a global constant, we're done.
1797   if (emission.wasEmittedAsGlobal()) return;
1798 
1799   const VarDecl &D = *emission.Variable;
1800   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1801   QualType type = D.getType();
1802 
1803   // If this local has an initializer, emit it now.
1804   const Expr *Init = D.getInit();
1805 
1806   // If we are at an unreachable point, we don't need to emit the initializer
1807   // unless it contains a label.
1808   if (!HaveInsertPoint()) {
1809     if (!Init || !ContainsLabel(Init)) return;
1810     EnsureInsertPoint();
1811   }
1812 
1813   // Initialize the structure of a __block variable.
1814   if (emission.IsEscapingByRef)
1815     emitByrefStructureInit(emission);
1816 
1817   // Initialize the variable here if it doesn't have a initializer and it is a
1818   // C struct that is non-trivial to initialize or an array containing such a
1819   // struct.
1820   if (!Init &&
1821       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1822           QualType::PDIK_Struct) {
1823     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1824     if (emission.IsEscapingByRef)
1825       drillIntoBlockVariable(*this, Dst, &D);
1826     defaultInitNonTrivialCStructVar(Dst);
1827     return;
1828   }
1829 
1830   // Check whether this is a byref variable that's potentially
1831   // captured and moved by its own initializer.  If so, we'll need to
1832   // emit the initializer first, then copy into the variable.
1833   bool capturedByInit =
1834       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1835 
1836   bool locIsByrefHeader = !capturedByInit;
1837   const Address Loc =
1838       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1839 
1840   // Note: constexpr already initializes everything correctly.
1841   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1842       (D.isConstexpr()
1843            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1844            : (D.getAttr<UninitializedAttr>()
1845                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1846                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1847 
1848   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1849     if (trivialAutoVarInit ==
1850         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1851       return;
1852 
1853     // Only initialize a __block's storage: we always initialize the header.
1854     if (emission.IsEscapingByRef && !locIsByrefHeader)
1855       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1856 
1857     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1858   };
1859 
1860   if (isTrivialInitializer(Init))
1861     return initializeWhatIsTechnicallyUninitialized(Loc);
1862 
1863   llvm::Constant *constant = nullptr;
1864   if (emission.IsConstantAggregate ||
1865       D.mightBeUsableInConstantExpressions(getContext())) {
1866     assert(!capturedByInit && "constant init contains a capturing block?");
1867     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1868     if (constant && !constant->isZeroValue() &&
1869         (trivialAutoVarInit !=
1870          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1871       IsPattern isPattern =
1872           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1873               ? IsPattern::Yes
1874               : IsPattern::No;
1875       // C guarantees that brace-init with fewer initializers than members in
1876       // the aggregate will initialize the rest of the aggregate as-if it were
1877       // static initialization. In turn static initialization guarantees that
1878       // padding is initialized to zero bits. We could instead pattern-init if D
1879       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1880       // behavior.
1881       constant = constWithPadding(CGM, IsPattern::No,
1882                                   replaceUndef(CGM, isPattern, constant));
1883     }
1884   }
1885 
1886   if (!constant) {
1887     initializeWhatIsTechnicallyUninitialized(Loc);
1888     LValue lv = MakeAddrLValue(Loc, type);
1889     lv.setNonGC(true);
1890     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1891   }
1892 
1893   if (!emission.IsConstantAggregate) {
1894     // For simple scalar/complex initialization, store the value directly.
1895     LValue lv = MakeAddrLValue(Loc, type);
1896     lv.setNonGC(true);
1897     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1898   }
1899 
1900   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1901   emitStoresForConstant(
1902       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1903       type.isVolatileQualified(), Builder, constant, /*IsAutoInit=*/false);
1904 }
1905 
1906 /// Emit an expression as an initializer for an object (variable, field, etc.)
1907 /// at the given location.  The expression is not necessarily the normal
1908 /// initializer for the object, and the address is not necessarily
1909 /// its normal location.
1910 ///
1911 /// \param init the initializing expression
1912 /// \param D the object to act as if we're initializing
1913 /// \param lvalue the lvalue to initialize
1914 /// \param capturedByInit true if \p D is a __block variable
1915 ///   whose address is potentially changed by the initializer
1916 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1917                                      LValue lvalue, bool capturedByInit) {
1918   QualType type = D->getType();
1919 
1920   if (type->isReferenceType()) {
1921     RValue rvalue = EmitReferenceBindingToExpr(init);
1922     if (capturedByInit)
1923       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1924     EmitStoreThroughLValue(rvalue, lvalue, true);
1925     return;
1926   }
1927   switch (getEvaluationKind(type)) {
1928   case TEK_Scalar:
1929     EmitScalarInit(init, D, lvalue, capturedByInit);
1930     return;
1931   case TEK_Complex: {
1932     ComplexPairTy complex = EmitComplexExpr(init);
1933     if (capturedByInit)
1934       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1935     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1936     return;
1937   }
1938   case TEK_Aggregate:
1939     if (type->isAtomicType()) {
1940       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1941     } else {
1942       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1943       if (isa<VarDecl>(D))
1944         Overlap = AggValueSlot::DoesNotOverlap;
1945       else if (auto *FD = dyn_cast<FieldDecl>(D))
1946         Overlap = getOverlapForFieldInit(FD);
1947       // TODO: how can we delay here if D is captured by its initializer?
1948       EmitAggExpr(init, AggValueSlot::forLValue(
1949                             lvalue, *this, AggValueSlot::IsDestructed,
1950                             AggValueSlot::DoesNotNeedGCBarriers,
1951                             AggValueSlot::IsNotAliased, Overlap));
1952     }
1953     return;
1954   }
1955   llvm_unreachable("bad evaluation kind");
1956 }
1957 
1958 /// Enter a destroy cleanup for the given local variable.
1959 void CodeGenFunction::emitAutoVarTypeCleanup(
1960                             const CodeGenFunction::AutoVarEmission &emission,
1961                             QualType::DestructionKind dtorKind) {
1962   assert(dtorKind != QualType::DK_none);
1963 
1964   // Note that for __block variables, we want to destroy the
1965   // original stack object, not the possibly forwarded object.
1966   Address addr = emission.getObjectAddress(*this);
1967 
1968   const VarDecl *var = emission.Variable;
1969   QualType type = var->getType();
1970 
1971   CleanupKind cleanupKind = NormalAndEHCleanup;
1972   CodeGenFunction::Destroyer *destroyer = nullptr;
1973 
1974   switch (dtorKind) {
1975   case QualType::DK_none:
1976     llvm_unreachable("no cleanup for trivially-destructible variable");
1977 
1978   case QualType::DK_cxx_destructor:
1979     // If there's an NRVO flag on the emission, we need a different
1980     // cleanup.
1981     if (emission.NRVOFlag) {
1982       assert(!type->isArrayType());
1983       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1984       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1985                                                   emission.NRVOFlag);
1986       return;
1987     }
1988     break;
1989 
1990   case QualType::DK_objc_strong_lifetime:
1991     // Suppress cleanups for pseudo-strong variables.
1992     if (var->isARCPseudoStrong()) return;
1993 
1994     // Otherwise, consider whether to use an EH cleanup or not.
1995     cleanupKind = getARCCleanupKind();
1996 
1997     // Use the imprecise destroyer by default.
1998     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1999       destroyer = CodeGenFunction::destroyARCStrongImprecise;
2000     break;
2001 
2002   case QualType::DK_objc_weak_lifetime:
2003     break;
2004 
2005   case QualType::DK_nontrivial_c_struct:
2006     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
2007     if (emission.NRVOFlag) {
2008       assert(!type->isArrayType());
2009       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2010                                                 emission.NRVOFlag, type);
2011       return;
2012     }
2013     break;
2014   }
2015 
2016   // If we haven't chosen a more specific destroyer, use the default.
2017   if (!destroyer) destroyer = getDestroyer(dtorKind);
2018 
2019   // Use an EH cleanup in array destructors iff the destructor itself
2020   // is being pushed as an EH cleanup.
2021   bool useEHCleanup = (cleanupKind & EHCleanup);
2022   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2023                                      useEHCleanup);
2024 }
2025 
2026 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2027   assert(emission.Variable && "emission was not valid!");
2028 
2029   // If this was emitted as a global constant, we're done.
2030   if (emission.wasEmittedAsGlobal()) return;
2031 
2032   // If we don't have an insertion point, we're done.  Sema prevents
2033   // us from jumping into any of these scopes anyway.
2034   if (!HaveInsertPoint()) return;
2035 
2036   const VarDecl &D = *emission.Variable;
2037 
2038   // Check the type for a cleanup.
2039   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2040     emitAutoVarTypeCleanup(emission, dtorKind);
2041 
2042   // In GC mode, honor objc_precise_lifetime.
2043   if (getLangOpts().getGC() != LangOptions::NonGC &&
2044       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2045     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2046   }
2047 
2048   // Handle the cleanup attribute.
2049   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2050     const FunctionDecl *FD = CA->getFunctionDecl();
2051 
2052     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2053     assert(F && "Could not find function!");
2054 
2055     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2056     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2057   }
2058 
2059   // If this is a block variable, call _Block_object_destroy
2060   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2061   // mode.
2062   if (emission.IsEscapingByRef &&
2063       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2064     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2065     if (emission.Variable->getType().isObjCGCWeak())
2066       Flags |= BLOCK_FIELD_IS_WEAK;
2067     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2068                       /*LoadBlockVarAddr*/ false,
2069                       cxxDestructorCanThrow(emission.Variable->getType()));
2070   }
2071 }
2072 
2073 CodeGenFunction::Destroyer *
2074 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2075   switch (kind) {
2076   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2077   case QualType::DK_cxx_destructor:
2078     return destroyCXXObject;
2079   case QualType::DK_objc_strong_lifetime:
2080     return destroyARCStrongPrecise;
2081   case QualType::DK_objc_weak_lifetime:
2082     return destroyARCWeak;
2083   case QualType::DK_nontrivial_c_struct:
2084     return destroyNonTrivialCStruct;
2085   }
2086   llvm_unreachable("Unknown DestructionKind");
2087 }
2088 
2089 /// pushEHDestroy - Push the standard destructor for the given type as
2090 /// an EH-only cleanup.
2091 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2092                                     Address addr, QualType type) {
2093   assert(dtorKind && "cannot push destructor for trivial type");
2094   assert(needsEHCleanup(dtorKind));
2095 
2096   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2097 }
2098 
2099 /// pushDestroy - Push the standard destructor for the given type as
2100 /// at least a normal cleanup.
2101 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2102                                   Address addr, QualType type) {
2103   assert(dtorKind && "cannot push destructor for trivial type");
2104 
2105   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2106   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2107               cleanupKind & EHCleanup);
2108 }
2109 
2110 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2111                                   QualType type, Destroyer *destroyer,
2112                                   bool useEHCleanupForArray) {
2113   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2114                                      destroyer, useEHCleanupForArray);
2115 }
2116 
2117 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2118   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2119 }
2120 
2121 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2122                                                   Address addr, QualType type,
2123                                                   Destroyer *destroyer,
2124                                                   bool useEHCleanupForArray) {
2125   // If we're not in a conditional branch, we don't need to bother generating a
2126   // conditional cleanup.
2127   if (!isInConditionalBranch()) {
2128     // Push an EH-only cleanup for the object now.
2129     // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2130     // around in case a temporary's destructor throws an exception.
2131     if (cleanupKind & EHCleanup)
2132       EHStack.pushCleanup<DestroyObject>(
2133           static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2134           destroyer, useEHCleanupForArray);
2135 
2136     return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2137         cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2138   }
2139 
2140   // Otherwise, we should only destroy the object if it's been initialized.
2141   // Re-use the active flag and saved address across both the EH and end of
2142   // scope cleanups.
2143 
2144   using SavedType = typename DominatingValue<Address>::saved_type;
2145   using ConditionalCleanupType =
2146       EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2147                                        Destroyer *, bool>;
2148 
2149   Address ActiveFlag = createCleanupActiveFlag();
2150   SavedType SavedAddr = saveValueInCond(addr);
2151 
2152   if (cleanupKind & EHCleanup) {
2153     EHStack.pushCleanup<ConditionalCleanupType>(
2154         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2155         destroyer, useEHCleanupForArray);
2156     initFullExprCleanupWithFlag(ActiveFlag);
2157   }
2158 
2159   pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2160       cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2161       useEHCleanupForArray);
2162 }
2163 
2164 /// emitDestroy - Immediately perform the destruction of the given
2165 /// object.
2166 ///
2167 /// \param addr - the address of the object; a type*
2168 /// \param type - the type of the object; if an array type, all
2169 ///   objects are destroyed in reverse order
2170 /// \param destroyer - the function to call to destroy individual
2171 ///   elements
2172 /// \param useEHCleanupForArray - whether an EH cleanup should be
2173 ///   used when destroying array elements, in case one of the
2174 ///   destructions throws an exception
2175 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2176                                   Destroyer *destroyer,
2177                                   bool useEHCleanupForArray) {
2178   const ArrayType *arrayType = getContext().getAsArrayType(type);
2179   if (!arrayType)
2180     return destroyer(*this, addr, type);
2181 
2182   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2183 
2184   CharUnits elementAlign =
2185     addr.getAlignment()
2186         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2187 
2188   // Normally we have to check whether the array is zero-length.
2189   bool checkZeroLength = true;
2190 
2191   // But if the array length is constant, we can suppress that.
2192   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2193     // ...and if it's constant zero, we can just skip the entire thing.
2194     if (constLength->isZero()) return;
2195     checkZeroLength = false;
2196   }
2197 
2198   llvm::Value *begin = addr.getPointer();
2199   llvm::Value *end =
2200       Builder.CreateInBoundsGEP(addr.getElementType(), begin, length);
2201   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2202                    checkZeroLength, useEHCleanupForArray);
2203 }
2204 
2205 /// emitArrayDestroy - Destroys all the elements of the given array,
2206 /// beginning from last to first.  The array cannot be zero-length.
2207 ///
2208 /// \param begin - a type* denoting the first element of the array
2209 /// \param end - a type* denoting one past the end of the array
2210 /// \param elementType - the element type of the array
2211 /// \param destroyer - the function to call to destroy elements
2212 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2213 ///   the remaining elements in case the destruction of a single
2214 ///   element throws
2215 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2216                                        llvm::Value *end,
2217                                        QualType elementType,
2218                                        CharUnits elementAlign,
2219                                        Destroyer *destroyer,
2220                                        bool checkZeroLength,
2221                                        bool useEHCleanup) {
2222   assert(!elementType->isArrayType());
2223 
2224   // The basic structure here is a do-while loop, because we don't
2225   // need to check for the zero-element case.
2226   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2227   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2228 
2229   if (checkZeroLength) {
2230     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2231                                                 "arraydestroy.isempty");
2232     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2233   }
2234 
2235   // Enter the loop body, making that address the current address.
2236   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2237   EmitBlock(bodyBB);
2238   llvm::PHINode *elementPast =
2239     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2240   elementPast->addIncoming(end, entryBB);
2241 
2242   // Shift the address back by one element.
2243   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2244   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2245                                                    "arraydestroy.element");
2246 
2247   if (useEHCleanup)
2248     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2249                                    destroyer);
2250 
2251   // Perform the actual destruction there.
2252   destroyer(*this, Address(element, elementAlign), elementType);
2253 
2254   if (useEHCleanup)
2255     PopCleanupBlock();
2256 
2257   // Check whether we've reached the end.
2258   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2259   Builder.CreateCondBr(done, doneBB, bodyBB);
2260   elementPast->addIncoming(element, Builder.GetInsertBlock());
2261 
2262   // Done.
2263   EmitBlock(doneBB);
2264 }
2265 
2266 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2267 /// emitArrayDestroy, the element type here may still be an array type.
2268 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2269                                     llvm::Value *begin, llvm::Value *end,
2270                                     QualType type, CharUnits elementAlign,
2271                                     CodeGenFunction::Destroyer *destroyer) {
2272   // If the element type is itself an array, drill down.
2273   unsigned arrayDepth = 0;
2274   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2275     // VLAs don't require a GEP index to walk into.
2276     if (!isa<VariableArrayType>(arrayType))
2277       arrayDepth++;
2278     type = arrayType->getElementType();
2279   }
2280 
2281   if (arrayDepth) {
2282     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2283 
2284     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2285     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2286     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2287   }
2288 
2289   // Destroy the array.  We don't ever need an EH cleanup because we
2290   // assume that we're in an EH cleanup ourselves, so a throwing
2291   // destructor causes an immediate terminate.
2292   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2293                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2294 }
2295 
2296 namespace {
2297   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2298   /// array destroy where the end pointer is regularly determined and
2299   /// does not need to be loaded from a local.
2300   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2301     llvm::Value *ArrayBegin;
2302     llvm::Value *ArrayEnd;
2303     QualType ElementType;
2304     CodeGenFunction::Destroyer *Destroyer;
2305     CharUnits ElementAlign;
2306   public:
2307     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2308                                QualType elementType, CharUnits elementAlign,
2309                                CodeGenFunction::Destroyer *destroyer)
2310       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2311         ElementType(elementType), Destroyer(destroyer),
2312         ElementAlign(elementAlign) {}
2313 
2314     void Emit(CodeGenFunction &CGF, Flags flags) override {
2315       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2316                               ElementType, ElementAlign, Destroyer);
2317     }
2318   };
2319 
2320   /// IrregularPartialArrayDestroy - a cleanup which performs a
2321   /// partial array destroy where the end pointer is irregularly
2322   /// determined and must be loaded from a local.
2323   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2324     llvm::Value *ArrayBegin;
2325     Address ArrayEndPointer;
2326     QualType ElementType;
2327     CodeGenFunction::Destroyer *Destroyer;
2328     CharUnits ElementAlign;
2329   public:
2330     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2331                                  Address arrayEndPointer,
2332                                  QualType elementType,
2333                                  CharUnits elementAlign,
2334                                  CodeGenFunction::Destroyer *destroyer)
2335       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2336         ElementType(elementType), Destroyer(destroyer),
2337         ElementAlign(elementAlign) {}
2338 
2339     void Emit(CodeGenFunction &CGF, Flags flags) override {
2340       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2341       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2342                               ElementType, ElementAlign, Destroyer);
2343     }
2344   };
2345 } // end anonymous namespace
2346 
2347 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2348 /// already-constructed elements of the given array.  The cleanup
2349 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2350 ///
2351 /// \param elementType - the immediate element type of the array;
2352 ///   possibly still an array type
2353 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2354                                                        Address arrayEndPointer,
2355                                                        QualType elementType,
2356                                                        CharUnits elementAlign,
2357                                                        Destroyer *destroyer) {
2358   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2359                                                     arrayBegin, arrayEndPointer,
2360                                                     elementType, elementAlign,
2361                                                     destroyer);
2362 }
2363 
2364 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2365 /// already-constructed elements of the given array.  The cleanup
2366 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2367 ///
2368 /// \param elementType - the immediate element type of the array;
2369 ///   possibly still an array type
2370 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2371                                                      llvm::Value *arrayEnd,
2372                                                      QualType elementType,
2373                                                      CharUnits elementAlign,
2374                                                      Destroyer *destroyer) {
2375   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2376                                                   arrayBegin, arrayEnd,
2377                                                   elementType, elementAlign,
2378                                                   destroyer);
2379 }
2380 
2381 /// Lazily declare the @llvm.lifetime.start intrinsic.
2382 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2383   if (LifetimeStartFn)
2384     return LifetimeStartFn;
2385   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2386     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2387   return LifetimeStartFn;
2388 }
2389 
2390 /// Lazily declare the @llvm.lifetime.end intrinsic.
2391 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2392   if (LifetimeEndFn)
2393     return LifetimeEndFn;
2394   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2395     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2396   return LifetimeEndFn;
2397 }
2398 
2399 namespace {
2400   /// A cleanup to perform a release of an object at the end of a
2401   /// function.  This is used to balance out the incoming +1 of a
2402   /// ns_consumed argument when we can't reasonably do that just by
2403   /// not doing the initial retain for a __block argument.
2404   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2405     ConsumeARCParameter(llvm::Value *param,
2406                         ARCPreciseLifetime_t precise)
2407       : Param(param), Precise(precise) {}
2408 
2409     llvm::Value *Param;
2410     ARCPreciseLifetime_t Precise;
2411 
2412     void Emit(CodeGenFunction &CGF, Flags flags) override {
2413       CGF.EmitARCRelease(Param, Precise);
2414     }
2415   };
2416 } // end anonymous namespace
2417 
2418 /// Emit an alloca (or GlobalValue depending on target)
2419 /// for the specified parameter and set up LocalDeclMap.
2420 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2421                                    unsigned ArgNo) {
2422   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2423   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2424          "Invalid argument to EmitParmDecl");
2425 
2426   Arg.getAnyValue()->setName(D.getName());
2427 
2428   QualType Ty = D.getType();
2429 
2430   // Use better IR generation for certain implicit parameters.
2431   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2432     // The only implicit argument a block has is its literal.
2433     // This may be passed as an inalloca'ed value on Windows x86.
2434     if (BlockInfo) {
2435       llvm::Value *V = Arg.isIndirect()
2436                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2437                            : Arg.getDirectValue();
2438       setBlockContextParameter(IPD, ArgNo, V);
2439       return;
2440     }
2441   }
2442 
2443   Address DeclPtr = Address::invalid();
2444   bool DoStore = false;
2445   bool IsScalar = hasScalarEvaluationKind(Ty);
2446   // If we already have a pointer to the argument, reuse the input pointer.
2447   if (Arg.isIndirect()) {
2448     DeclPtr = Arg.getIndirectAddress();
2449     // If we have a prettier pointer type at this point, bitcast to that.
2450     unsigned AS = DeclPtr.getType()->getAddressSpace();
2451     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2452     if (DeclPtr.getType() != IRTy)
2453       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2454     // Indirect argument is in alloca address space, which may be different
2455     // from the default address space.
2456     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2457     auto *V = DeclPtr.getPointer();
2458     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2459     auto DestLangAS =
2460         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2461     if (SrcLangAS != DestLangAS) {
2462       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2463              CGM.getDataLayout().getAllocaAddrSpace());
2464       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2465       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2466       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2467                             *this, V, SrcLangAS, DestLangAS, T, true),
2468                         DeclPtr.getAlignment());
2469     }
2470 
2471     // Push a destructor cleanup for this parameter if the ABI requires it.
2472     // Don't push a cleanup in a thunk for a method that will also emit a
2473     // cleanup.
2474     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2475         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2476       if (QualType::DestructionKind DtorKind =
2477               D.needsDestruction(getContext())) {
2478         assert((DtorKind == QualType::DK_cxx_destructor ||
2479                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2480                "unexpected destructor type");
2481         pushDestroy(DtorKind, DeclPtr, Ty);
2482         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2483             EHStack.stable_begin();
2484       }
2485     }
2486   } else {
2487     // Check if the parameter address is controlled by OpenMP runtime.
2488     Address OpenMPLocalAddr =
2489         getLangOpts().OpenMP
2490             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2491             : Address::invalid();
2492     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2493       DeclPtr = OpenMPLocalAddr;
2494     } else {
2495       // Otherwise, create a temporary to hold the value.
2496       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2497                               D.getName() + ".addr");
2498     }
2499     DoStore = true;
2500   }
2501 
2502   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2503 
2504   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2505   if (IsScalar) {
2506     Qualifiers qs = Ty.getQualifiers();
2507     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2508       // We honor __attribute__((ns_consumed)) for types with lifetime.
2509       // For __strong, it's handled by just skipping the initial retain;
2510       // otherwise we have to balance out the initial +1 with an extra
2511       // cleanup to do the release at the end of the function.
2512       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2513 
2514       // If a parameter is pseudo-strong then we can omit the implicit retain.
2515       if (D.isARCPseudoStrong()) {
2516         assert(lt == Qualifiers::OCL_Strong &&
2517                "pseudo-strong variable isn't strong?");
2518         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2519         lt = Qualifiers::OCL_ExplicitNone;
2520       }
2521 
2522       // Load objects passed indirectly.
2523       if (Arg.isIndirect() && !ArgVal)
2524         ArgVal = Builder.CreateLoad(DeclPtr);
2525 
2526       if (lt == Qualifiers::OCL_Strong) {
2527         if (!isConsumed) {
2528           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2529             // use objc_storeStrong(&dest, value) for retaining the
2530             // object. But first, store a null into 'dest' because
2531             // objc_storeStrong attempts to release its old value.
2532             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2533             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2534             EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2535             DoStore = false;
2536           }
2537           else
2538           // Don't use objc_retainBlock for block pointers, because we
2539           // don't want to Block_copy something just because we got it
2540           // as a parameter.
2541             ArgVal = EmitARCRetainNonBlock(ArgVal);
2542         }
2543       } else {
2544         // Push the cleanup for a consumed parameter.
2545         if (isConsumed) {
2546           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2547                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2548           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2549                                                    precise);
2550         }
2551 
2552         if (lt == Qualifiers::OCL_Weak) {
2553           EmitARCInitWeak(DeclPtr, ArgVal);
2554           DoStore = false; // The weak init is a store, no need to do two.
2555         }
2556       }
2557 
2558       // Enter the cleanup scope.
2559       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2560     }
2561   }
2562 
2563   // Store the initial value into the alloca.
2564   if (DoStore)
2565     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2566 
2567   setAddrOfLocalVar(&D, DeclPtr);
2568 
2569   // Emit debug info for param declarations in non-thunk functions.
2570   if (CGDebugInfo *DI = getDebugInfo()) {
2571     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
2572       llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable(
2573           &D, DeclPtr.getPointer(), ArgNo, Builder);
2574       if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D))
2575         DI->getParamDbgMappings().insert({Var, DILocalVar});
2576     }
2577   }
2578 
2579   if (D.hasAttr<AnnotateAttr>())
2580     EmitVarAnnotations(&D, DeclPtr.getPointer());
2581 
2582   // We can only check return value nullability if all arguments to the
2583   // function satisfy their nullability preconditions. This makes it necessary
2584   // to emit null checks for args in the function body itself.
2585   if (requiresReturnValueNullabilityCheck()) {
2586     auto Nullability = Ty->getNullability(getContext());
2587     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2588       SanitizerScope SanScope(this);
2589       RetValNullabilityPrecondition =
2590           Builder.CreateAnd(RetValNullabilityPrecondition,
2591                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2592     }
2593   }
2594 }
2595 
2596 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2597                                             CodeGenFunction *CGF) {
2598   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2599     return;
2600   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2601 }
2602 
2603 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2604                                          CodeGenFunction *CGF) {
2605   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2606       (!LangOpts.EmitAllDecls && !D->isUsed()))
2607     return;
2608   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2609 }
2610 
2611 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2612   getOpenMPRuntime().processRequiresDirective(D);
2613 }
2614