1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Type.h" 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 void CodeGenFunction::EmitDecl(const Decl &D) { 43 switch (D.getKind()) { 44 case Decl::BuiltinTemplate: 45 case Decl::TranslationUnit: 46 case Decl::ExternCContext: 47 case Decl::Namespace: 48 case Decl::UnresolvedUsingTypename: 49 case Decl::ClassTemplateSpecialization: 50 case Decl::ClassTemplatePartialSpecialization: 51 case Decl::VarTemplateSpecialization: 52 case Decl::VarTemplatePartialSpecialization: 53 case Decl::TemplateTypeParm: 54 case Decl::UnresolvedUsingValue: 55 case Decl::NonTypeTemplateParm: 56 case Decl::CXXDeductionGuide: 57 case Decl::CXXMethod: 58 case Decl::CXXConstructor: 59 case Decl::CXXDestructor: 60 case Decl::CXXConversion: 61 case Decl::Field: 62 case Decl::MSProperty: 63 case Decl::IndirectField: 64 case Decl::ObjCIvar: 65 case Decl::ObjCAtDefsField: 66 case Decl::ParmVar: 67 case Decl::ImplicitParam: 68 case Decl::ClassTemplate: 69 case Decl::VarTemplate: 70 case Decl::FunctionTemplate: 71 case Decl::TypeAliasTemplate: 72 case Decl::TemplateTemplateParm: 73 case Decl::ObjCMethod: 74 case Decl::ObjCCategory: 75 case Decl::ObjCProtocol: 76 case Decl::ObjCInterface: 77 case Decl::ObjCCategoryImpl: 78 case Decl::ObjCImplementation: 79 case Decl::ObjCProperty: 80 case Decl::ObjCCompatibleAlias: 81 case Decl::PragmaComment: 82 case Decl::PragmaDetectMismatch: 83 case Decl::AccessSpec: 84 case Decl::LinkageSpec: 85 case Decl::Export: 86 case Decl::ObjCPropertyImpl: 87 case Decl::FileScopeAsm: 88 case Decl::Friend: 89 case Decl::FriendTemplate: 90 case Decl::Block: 91 case Decl::Captured: 92 case Decl::ClassScopeFunctionSpecialization: 93 case Decl::UsingShadow: 94 case Decl::ConstructorUsingShadow: 95 case Decl::ObjCTypeParam: 96 case Decl::Binding: 97 llvm_unreachable("Declaration should not be in declstmts!"); 98 case Decl::Function: // void X(); 99 case Decl::Record: // struct/union/class X; 100 case Decl::Enum: // enum X; 101 case Decl::EnumConstant: // enum ? { X = ? } 102 case Decl::CXXRecord: // struct/union/class X; [C++] 103 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 104 case Decl::Label: // __label__ x; 105 case Decl::Import: 106 case Decl::OMPThreadPrivate: 107 case Decl::OMPAllocate: 108 case Decl::OMPCapturedExpr: 109 case Decl::OMPRequires: 110 case Decl::Empty: 111 // None of these decls require codegen support. 112 return; 113 114 case Decl::NamespaceAlias: 115 if (CGDebugInfo *DI = getDebugInfo()) 116 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 117 return; 118 case Decl::Using: // using X; [C++] 119 if (CGDebugInfo *DI = getDebugInfo()) 120 DI->EmitUsingDecl(cast<UsingDecl>(D)); 121 return; 122 case Decl::UsingPack: 123 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 124 EmitDecl(*Using); 125 return; 126 case Decl::UsingDirective: // using namespace X; [C++] 127 if (CGDebugInfo *DI = getDebugInfo()) 128 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 129 return; 130 case Decl::Var: 131 case Decl::Decomposition: { 132 const VarDecl &VD = cast<VarDecl>(D); 133 assert(VD.isLocalVarDecl() && 134 "Should not see file-scope variables inside a function!"); 135 EmitVarDecl(VD); 136 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 137 for (auto *B : DD->bindings()) 138 if (auto *HD = B->getHoldingVar()) 139 EmitVarDecl(*HD); 140 return; 141 } 142 143 case Decl::OMPDeclareReduction: 144 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 145 146 case Decl::OMPDeclareMapper: 147 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 148 149 case Decl::Typedef: // typedef int X; 150 case Decl::TypeAlias: { // using X = int; [C++0x] 151 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 152 QualType Ty = TD.getUnderlyingType(); 153 154 if (Ty->isVariablyModifiedType()) 155 EmitVariablyModifiedType(Ty); 156 } 157 } 158 } 159 160 /// EmitVarDecl - This method handles emission of any variable declaration 161 /// inside a function, including static vars etc. 162 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 163 if (D.hasExternalStorage()) 164 // Don't emit it now, allow it to be emitted lazily on its first use. 165 return; 166 167 // Some function-scope variable does not have static storage but still 168 // needs to be emitted like a static variable, e.g. a function-scope 169 // variable in constant address space in OpenCL. 170 if (D.getStorageDuration() != SD_Automatic) { 171 // Static sampler variables translated to function calls. 172 if (D.getType()->isSamplerT()) 173 return; 174 175 llvm::GlobalValue::LinkageTypes Linkage = 176 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 177 178 // FIXME: We need to force the emission/use of a guard variable for 179 // some variables even if we can constant-evaluate them because 180 // we can't guarantee every translation unit will constant-evaluate them. 181 182 return EmitStaticVarDecl(D, Linkage); 183 } 184 185 if (D.getType().getAddressSpace() == LangAS::opencl_local) 186 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 187 188 assert(D.hasLocalStorage()); 189 return EmitAutoVarDecl(D); 190 } 191 192 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 193 if (CGM.getLangOpts().CPlusPlus) 194 return CGM.getMangledName(&D).str(); 195 196 // If this isn't C++, we don't need a mangled name, just a pretty one. 197 assert(!D.isExternallyVisible() && "name shouldn't matter"); 198 std::string ContextName; 199 const DeclContext *DC = D.getDeclContext(); 200 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 201 DC = cast<DeclContext>(CD->getNonClosureContext()); 202 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 203 ContextName = CGM.getMangledName(FD); 204 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 205 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 206 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 207 ContextName = OMD->getSelector().getAsString(); 208 else 209 llvm_unreachable("Unknown context for static var decl"); 210 211 ContextName += "." + D.getNameAsString(); 212 return ContextName; 213 } 214 215 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 216 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 217 // In general, we don't always emit static var decls once before we reference 218 // them. It is possible to reference them before emitting the function that 219 // contains them, and it is possible to emit the containing function multiple 220 // times. 221 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 222 return ExistingGV; 223 224 QualType Ty = D.getType(); 225 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 226 227 // Use the label if the variable is renamed with the asm-label extension. 228 std::string Name; 229 if (D.hasAttr<AsmLabelAttr>()) 230 Name = getMangledName(&D); 231 else 232 Name = getStaticDeclName(*this, D); 233 234 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 235 LangAS AS = GetGlobalVarAddressSpace(&D); 236 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 237 238 // OpenCL variables in local address space and CUDA shared 239 // variables cannot have an initializer. 240 llvm::Constant *Init = nullptr; 241 if (Ty.getAddressSpace() == LangAS::opencl_local || 242 D.hasAttr<CUDASharedAttr>()) 243 Init = llvm::UndefValue::get(LTy); 244 else 245 Init = EmitNullConstant(Ty); 246 247 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 248 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 249 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 250 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 251 252 if (supportsCOMDAT() && GV->isWeakForLinker()) 253 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 254 255 if (D.getTLSKind()) 256 setTLSMode(GV, D); 257 258 setGVProperties(GV, &D); 259 260 // Make sure the result is of the correct type. 261 LangAS ExpectedAS = Ty.getAddressSpace(); 262 llvm::Constant *Addr = GV; 263 if (AS != ExpectedAS) { 264 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 265 *this, GV, AS, ExpectedAS, 266 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 267 } 268 269 setStaticLocalDeclAddress(&D, Addr); 270 271 // Ensure that the static local gets initialized by making sure the parent 272 // function gets emitted eventually. 273 const Decl *DC = cast<Decl>(D.getDeclContext()); 274 275 // We can't name blocks or captured statements directly, so try to emit their 276 // parents. 277 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 278 DC = DC->getNonClosureContext(); 279 // FIXME: Ensure that global blocks get emitted. 280 if (!DC) 281 return Addr; 282 } 283 284 GlobalDecl GD; 285 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 286 GD = GlobalDecl(CD, Ctor_Base); 287 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 288 GD = GlobalDecl(DD, Dtor_Base); 289 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 290 GD = GlobalDecl(FD); 291 else { 292 // Don't do anything for Obj-C method decls or global closures. We should 293 // never defer them. 294 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 295 } 296 if (GD.getDecl()) { 297 // Disable emission of the parent function for the OpenMP device codegen. 298 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 299 (void)GetAddrOfGlobal(GD); 300 } 301 302 return Addr; 303 } 304 305 /// hasNontrivialDestruction - Determine whether a type's destruction is 306 /// non-trivial. If so, and the variable uses static initialization, we must 307 /// register its destructor to run on exit. 308 static bool hasNontrivialDestruction(QualType T) { 309 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 310 return RD && !RD->hasTrivialDestructor(); 311 } 312 313 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 314 /// global variable that has already been created for it. If the initializer 315 /// has a different type than GV does, this may free GV and return a different 316 /// one. Otherwise it just returns GV. 317 llvm::GlobalVariable * 318 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 319 llvm::GlobalVariable *GV) { 320 ConstantEmitter emitter(*this); 321 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 322 323 // If constant emission failed, then this should be a C++ static 324 // initializer. 325 if (!Init) { 326 if (!getLangOpts().CPlusPlus) 327 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 328 else if (HaveInsertPoint()) { 329 // Since we have a static initializer, this global variable can't 330 // be constant. 331 GV->setConstant(false); 332 333 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 334 } 335 return GV; 336 } 337 338 // The initializer may differ in type from the global. Rewrite 339 // the global to match the initializer. (We have to do this 340 // because some types, like unions, can't be completely represented 341 // in the LLVM type system.) 342 if (GV->getType()->getElementType() != Init->getType()) { 343 llvm::GlobalVariable *OldGV = GV; 344 345 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 346 OldGV->isConstant(), 347 OldGV->getLinkage(), Init, "", 348 /*InsertBefore*/ OldGV, 349 OldGV->getThreadLocalMode(), 350 CGM.getContext().getTargetAddressSpace(D.getType())); 351 GV->setVisibility(OldGV->getVisibility()); 352 GV->setDSOLocal(OldGV->isDSOLocal()); 353 GV->setComdat(OldGV->getComdat()); 354 355 // Steal the name of the old global 356 GV->takeName(OldGV); 357 358 // Replace all uses of the old global with the new global 359 llvm::Constant *NewPtrForOldDecl = 360 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 361 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 362 363 // Erase the old global, since it is no longer used. 364 OldGV->eraseFromParent(); 365 } 366 367 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 368 GV->setInitializer(Init); 369 370 emitter.finalize(GV); 371 372 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 373 // We have a constant initializer, but a nontrivial destructor. We still 374 // need to perform a guarded "initialization" in order to register the 375 // destructor. 376 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 377 } 378 379 return GV; 380 } 381 382 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 383 llvm::GlobalValue::LinkageTypes Linkage) { 384 // Check to see if we already have a global variable for this 385 // declaration. This can happen when double-emitting function 386 // bodies, e.g. with complete and base constructors. 387 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 388 CharUnits alignment = getContext().getDeclAlign(&D); 389 390 // Store into LocalDeclMap before generating initializer to handle 391 // circular references. 392 setAddrOfLocalVar(&D, Address(addr, alignment)); 393 394 // We can't have a VLA here, but we can have a pointer to a VLA, 395 // even though that doesn't really make any sense. 396 // Make sure to evaluate VLA bounds now so that we have them for later. 397 if (D.getType()->isVariablyModifiedType()) 398 EmitVariablyModifiedType(D.getType()); 399 400 // Save the type in case adding the initializer forces a type change. 401 llvm::Type *expectedType = addr->getType(); 402 403 llvm::GlobalVariable *var = 404 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 405 406 // CUDA's local and local static __shared__ variables should not 407 // have any non-empty initializers. This is ensured by Sema. 408 // Whatever initializer such variable may have when it gets here is 409 // a no-op and should not be emitted. 410 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 411 D.hasAttr<CUDASharedAttr>(); 412 // If this value has an initializer, emit it. 413 if (D.getInit() && !isCudaSharedVar) 414 var = AddInitializerToStaticVarDecl(D, var); 415 416 var->setAlignment(alignment.getQuantity()); 417 418 if (D.hasAttr<AnnotateAttr>()) 419 CGM.AddGlobalAnnotations(&D, var); 420 421 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 422 var->addAttribute("bss-section", SA->getName()); 423 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 424 var->addAttribute("data-section", SA->getName()); 425 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 426 var->addAttribute("rodata-section", SA->getName()); 427 428 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 429 var->setSection(SA->getName()); 430 431 if (D.hasAttr<UsedAttr>()) 432 CGM.addUsedGlobal(var); 433 434 // We may have to cast the constant because of the initializer 435 // mismatch above. 436 // 437 // FIXME: It is really dangerous to store this in the map; if anyone 438 // RAUW's the GV uses of this constant will be invalid. 439 llvm::Constant *castedAddr = 440 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 441 if (var != castedAddr) 442 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 443 CGM.setStaticLocalDeclAddress(&D, castedAddr); 444 445 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 446 447 // Emit global variable debug descriptor for static vars. 448 CGDebugInfo *DI = getDebugInfo(); 449 if (DI && 450 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 451 DI->setLocation(D.getLocation()); 452 DI->EmitGlobalVariable(var, &D); 453 } 454 } 455 456 namespace { 457 struct DestroyObject final : EHScopeStack::Cleanup { 458 DestroyObject(Address addr, QualType type, 459 CodeGenFunction::Destroyer *destroyer, 460 bool useEHCleanupForArray) 461 : addr(addr), type(type), destroyer(destroyer), 462 useEHCleanupForArray(useEHCleanupForArray) {} 463 464 Address addr; 465 QualType type; 466 CodeGenFunction::Destroyer *destroyer; 467 bool useEHCleanupForArray; 468 469 void Emit(CodeGenFunction &CGF, Flags flags) override { 470 // Don't use an EH cleanup recursively from an EH cleanup. 471 bool useEHCleanupForArray = 472 flags.isForNormalCleanup() && this->useEHCleanupForArray; 473 474 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 475 } 476 }; 477 478 template <class Derived> 479 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 480 DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) 481 : NRVOFlag(NRVOFlag), Loc(addr) {} 482 483 llvm::Value *NRVOFlag; 484 Address Loc; 485 486 void Emit(CodeGenFunction &CGF, Flags flags) override { 487 // Along the exceptions path we always execute the dtor. 488 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 489 490 llvm::BasicBlock *SkipDtorBB = nullptr; 491 if (NRVO) { 492 // If we exited via NRVO, we skip the destructor call. 493 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 494 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 495 llvm::Value *DidNRVO = 496 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 497 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 498 CGF.EmitBlock(RunDtorBB); 499 } 500 501 static_cast<Derived *>(this)->emitDestructorCall(CGF); 502 503 if (NRVO) CGF.EmitBlock(SkipDtorBB); 504 } 505 506 virtual ~DestroyNRVOVariable() = default; 507 }; 508 509 struct DestroyNRVOVariableCXX final 510 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 511 DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, 512 llvm::Value *NRVOFlag) 513 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), 514 Dtor(Dtor) {} 515 516 const CXXDestructorDecl *Dtor; 517 518 void emitDestructorCall(CodeGenFunction &CGF) { 519 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 520 /*ForVirtualBase=*/false, 521 /*Delegating=*/false, Loc); 522 } 523 }; 524 525 struct DestroyNRVOVariableC final 526 : DestroyNRVOVariable<DestroyNRVOVariableC> { 527 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 528 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} 529 530 QualType Ty; 531 532 void emitDestructorCall(CodeGenFunction &CGF) { 533 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 534 } 535 }; 536 537 struct CallStackRestore final : EHScopeStack::Cleanup { 538 Address Stack; 539 CallStackRestore(Address Stack) : Stack(Stack) {} 540 void Emit(CodeGenFunction &CGF, Flags flags) override { 541 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 542 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 543 CGF.Builder.CreateCall(F, V); 544 } 545 }; 546 547 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 548 const VarDecl &Var; 549 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 550 551 void Emit(CodeGenFunction &CGF, Flags flags) override { 552 // Compute the address of the local variable, in case it's a 553 // byref or something. 554 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 555 Var.getType(), VK_LValue, SourceLocation()); 556 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 557 SourceLocation()); 558 CGF.EmitExtendGCLifetime(value); 559 } 560 }; 561 562 struct CallCleanupFunction final : EHScopeStack::Cleanup { 563 llvm::Constant *CleanupFn; 564 const CGFunctionInfo &FnInfo; 565 const VarDecl &Var; 566 567 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 568 const VarDecl *Var) 569 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 570 571 void Emit(CodeGenFunction &CGF, Flags flags) override { 572 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 573 Var.getType(), VK_LValue, SourceLocation()); 574 // Compute the address of the local variable, in case it's a byref 575 // or something. 576 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 577 578 // In some cases, the type of the function argument will be different from 579 // the type of the pointer. An example of this is 580 // void f(void* arg); 581 // __attribute__((cleanup(f))) void *g; 582 // 583 // To fix this we insert a bitcast here. 584 QualType ArgTy = FnInfo.arg_begin()->type; 585 llvm::Value *Arg = 586 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 587 588 CallArgList Args; 589 Args.add(RValue::get(Arg), 590 CGF.getContext().getPointerType(Var.getType())); 591 auto Callee = CGCallee::forDirect(CleanupFn); 592 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 593 } 594 }; 595 } // end anonymous namespace 596 597 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 598 /// variable with lifetime. 599 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 600 Address addr, 601 Qualifiers::ObjCLifetime lifetime) { 602 switch (lifetime) { 603 case Qualifiers::OCL_None: 604 llvm_unreachable("present but none"); 605 606 case Qualifiers::OCL_ExplicitNone: 607 // nothing to do 608 break; 609 610 case Qualifiers::OCL_Strong: { 611 CodeGenFunction::Destroyer *destroyer = 612 (var.hasAttr<ObjCPreciseLifetimeAttr>() 613 ? CodeGenFunction::destroyARCStrongPrecise 614 : CodeGenFunction::destroyARCStrongImprecise); 615 616 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 617 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 618 cleanupKind & EHCleanup); 619 break; 620 } 621 case Qualifiers::OCL_Autoreleasing: 622 // nothing to do 623 break; 624 625 case Qualifiers::OCL_Weak: 626 // __weak objects always get EH cleanups; otherwise, exceptions 627 // could cause really nasty crashes instead of mere leaks. 628 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 629 CodeGenFunction::destroyARCWeak, 630 /*useEHCleanup*/ true); 631 break; 632 } 633 } 634 635 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 636 if (const Expr *e = dyn_cast<Expr>(s)) { 637 // Skip the most common kinds of expressions that make 638 // hierarchy-walking expensive. 639 s = e = e->IgnoreParenCasts(); 640 641 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 642 return (ref->getDecl() == &var); 643 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 644 const BlockDecl *block = be->getBlockDecl(); 645 for (const auto &I : block->captures()) { 646 if (I.getVariable() == &var) 647 return true; 648 } 649 } 650 } 651 652 for (const Stmt *SubStmt : s->children()) 653 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 654 if (SubStmt && isAccessedBy(var, SubStmt)) 655 return true; 656 657 return false; 658 } 659 660 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 661 if (!decl) return false; 662 if (!isa<VarDecl>(decl)) return false; 663 const VarDecl *var = cast<VarDecl>(decl); 664 return isAccessedBy(*var, e); 665 } 666 667 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 668 const LValue &destLV, const Expr *init) { 669 bool needsCast = false; 670 671 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 672 switch (castExpr->getCastKind()) { 673 // Look through casts that don't require representation changes. 674 case CK_NoOp: 675 case CK_BitCast: 676 case CK_BlockPointerToObjCPointerCast: 677 needsCast = true; 678 break; 679 680 // If we find an l-value to r-value cast from a __weak variable, 681 // emit this operation as a copy or move. 682 case CK_LValueToRValue: { 683 const Expr *srcExpr = castExpr->getSubExpr(); 684 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 685 return false; 686 687 // Emit the source l-value. 688 LValue srcLV = CGF.EmitLValue(srcExpr); 689 690 // Handle a formal type change to avoid asserting. 691 auto srcAddr = srcLV.getAddress(); 692 if (needsCast) { 693 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 694 destLV.getAddress().getElementType()); 695 } 696 697 // If it was an l-value, use objc_copyWeak. 698 if (srcExpr->getValueKind() == VK_LValue) { 699 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 700 } else { 701 assert(srcExpr->getValueKind() == VK_XValue); 702 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 703 } 704 return true; 705 } 706 707 // Stop at anything else. 708 default: 709 return false; 710 } 711 712 init = castExpr->getSubExpr(); 713 } 714 return false; 715 } 716 717 static void drillIntoBlockVariable(CodeGenFunction &CGF, 718 LValue &lvalue, 719 const VarDecl *var) { 720 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 721 } 722 723 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 724 SourceLocation Loc) { 725 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 726 return; 727 728 auto Nullability = LHS.getType()->getNullability(getContext()); 729 if (!Nullability || *Nullability != NullabilityKind::NonNull) 730 return; 731 732 // Check if the right hand side of the assignment is nonnull, if the left 733 // hand side must be nonnull. 734 SanitizerScope SanScope(this); 735 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 736 llvm::Constant *StaticData[] = { 737 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 738 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 739 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 740 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 741 SanitizerHandler::TypeMismatch, StaticData, RHS); 742 } 743 744 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 745 LValue lvalue, bool capturedByInit) { 746 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 747 if (!lifetime) { 748 llvm::Value *value = EmitScalarExpr(init); 749 if (capturedByInit) 750 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 751 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 752 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 753 return; 754 } 755 756 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 757 init = DIE->getExpr(); 758 759 // If we're emitting a value with lifetime, we have to do the 760 // initialization *before* we leave the cleanup scopes. 761 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 762 enterFullExpression(fe); 763 init = fe->getSubExpr(); 764 } 765 CodeGenFunction::RunCleanupsScope Scope(*this); 766 767 // We have to maintain the illusion that the variable is 768 // zero-initialized. If the variable might be accessed in its 769 // initializer, zero-initialize before running the initializer, then 770 // actually perform the initialization with an assign. 771 bool accessedByInit = false; 772 if (lifetime != Qualifiers::OCL_ExplicitNone) 773 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 774 if (accessedByInit) { 775 LValue tempLV = lvalue; 776 // Drill down to the __block object if necessary. 777 if (capturedByInit) { 778 // We can use a simple GEP for this because it can't have been 779 // moved yet. 780 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 781 cast<VarDecl>(D), 782 /*follow*/ false)); 783 } 784 785 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 786 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 787 788 // If __weak, we want to use a barrier under certain conditions. 789 if (lifetime == Qualifiers::OCL_Weak) 790 EmitARCInitWeak(tempLV.getAddress(), zero); 791 792 // Otherwise just do a simple store. 793 else 794 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 795 } 796 797 // Emit the initializer. 798 llvm::Value *value = nullptr; 799 800 switch (lifetime) { 801 case Qualifiers::OCL_None: 802 llvm_unreachable("present but none"); 803 804 case Qualifiers::OCL_Strong: { 805 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 806 value = EmitARCRetainScalarExpr(init); 807 break; 808 } 809 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 810 // that we omit the retain, and causes non-autoreleased return values to be 811 // immediately released. 812 LLVM_FALLTHROUGH; 813 } 814 815 case Qualifiers::OCL_ExplicitNone: 816 value = EmitARCUnsafeUnretainedScalarExpr(init); 817 break; 818 819 case Qualifiers::OCL_Weak: { 820 // If it's not accessed by the initializer, try to emit the 821 // initialization with a copy or move. 822 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 823 return; 824 } 825 826 // No way to optimize a producing initializer into this. It's not 827 // worth optimizing for, because the value will immediately 828 // disappear in the common case. 829 value = EmitScalarExpr(init); 830 831 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 832 if (accessedByInit) 833 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 834 else 835 EmitARCInitWeak(lvalue.getAddress(), value); 836 return; 837 } 838 839 case Qualifiers::OCL_Autoreleasing: 840 value = EmitARCRetainAutoreleaseScalarExpr(init); 841 break; 842 } 843 844 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 845 846 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 847 848 // If the variable might have been accessed by its initializer, we 849 // might have to initialize with a barrier. We have to do this for 850 // both __weak and __strong, but __weak got filtered out above. 851 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 852 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 853 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 854 EmitARCRelease(oldValue, ARCImpreciseLifetime); 855 return; 856 } 857 858 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 859 } 860 861 /// Decide whether we can emit the non-zero parts of the specified initializer 862 /// with equal or fewer than NumStores scalar stores. 863 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 864 unsigned &NumStores) { 865 // Zero and Undef never requires any extra stores. 866 if (isa<llvm::ConstantAggregateZero>(Init) || 867 isa<llvm::ConstantPointerNull>(Init) || 868 isa<llvm::UndefValue>(Init)) 869 return true; 870 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 871 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 872 isa<llvm::ConstantExpr>(Init)) 873 return Init->isNullValue() || NumStores--; 874 875 // See if we can emit each element. 876 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 877 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 878 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 879 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 880 return false; 881 } 882 return true; 883 } 884 885 if (llvm::ConstantDataSequential *CDS = 886 dyn_cast<llvm::ConstantDataSequential>(Init)) { 887 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 888 llvm::Constant *Elt = CDS->getElementAsConstant(i); 889 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 890 return false; 891 } 892 return true; 893 } 894 895 // Anything else is hard and scary. 896 return false; 897 } 898 899 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 900 /// the scalar stores that would be required. 901 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 902 llvm::Constant *Init, Address Loc, 903 bool isVolatile, CGBuilderTy &Builder) { 904 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 905 "called emitStoresForInitAfterBZero for zero or undef value."); 906 907 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 908 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 909 isa<llvm::ConstantExpr>(Init)) { 910 Builder.CreateStore(Init, Loc, isVolatile); 911 return; 912 } 913 914 if (llvm::ConstantDataSequential *CDS = 915 dyn_cast<llvm::ConstantDataSequential>(Init)) { 916 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 917 llvm::Constant *Elt = CDS->getElementAsConstant(i); 918 919 // If necessary, get a pointer to the element and emit it. 920 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 921 emitStoresForInitAfterBZero( 922 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 923 Builder); 924 } 925 return; 926 } 927 928 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 929 "Unknown value type!"); 930 931 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 932 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 933 934 // If necessary, get a pointer to the element and emit it. 935 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 936 emitStoresForInitAfterBZero(CGM, Elt, 937 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 938 isVolatile, Builder); 939 } 940 } 941 942 /// Decide whether we should use bzero plus some stores to initialize a local 943 /// variable instead of using a memcpy from a constant global. It is beneficial 944 /// to use bzero if the global is all zeros, or mostly zeros and large. 945 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 946 uint64_t GlobalSize) { 947 // If a global is all zeros, always use a bzero. 948 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 949 950 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 951 // do it if it will require 6 or fewer scalar stores. 952 // TODO: Should budget depends on the size? Avoiding a large global warrants 953 // plopping in more stores. 954 unsigned StoreBudget = 6; 955 uint64_t SizeLimit = 32; 956 957 return GlobalSize > SizeLimit && 958 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 959 } 960 961 /// Decide whether we should use memset to initialize a local variable instead 962 /// of using a memcpy from a constant global. Assumes we've already decided to 963 /// not user bzero. 964 /// FIXME We could be more clever, as we are for bzero above, and generate 965 /// memset followed by stores. It's unclear that's worth the effort. 966 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 967 uint64_t GlobalSize) { 968 uint64_t SizeLimit = 32; 969 if (GlobalSize <= SizeLimit) 970 return nullptr; 971 return llvm::isBytewiseValue(Init); 972 } 973 974 /// Decide whether we want to split a constant structure or array store into a 975 /// sequence of its fields' stores. This may cost us code size and compilation 976 /// speed, but plays better with store optimizations. 977 static bool shouldSplitConstantStore(CodeGenModule &CGM, 978 uint64_t GlobalByteSize) { 979 // Don't break things that occupy more than one cacheline. 980 uint64_t ByteSizeLimit = 64; 981 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 982 return false; 983 if (GlobalByteSize <= ByteSizeLimit) 984 return true; 985 return false; 986 } 987 988 enum class IsPattern { No, Yes }; 989 990 /// Generate a constant filled with either a pattern or zeroes. 991 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 992 llvm::Type *Ty) { 993 if (isPattern == IsPattern::Yes) 994 return initializationPatternFor(CGM, Ty); 995 else 996 return llvm::Constant::getNullValue(Ty); 997 } 998 999 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1000 llvm::Constant *constant); 1001 1002 /// Helper function for constWithPadding() to deal with padding in structures. 1003 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1004 IsPattern isPattern, 1005 llvm::StructType *STy, 1006 llvm::Constant *constant) { 1007 const llvm::DataLayout &DL = CGM.getDataLayout(); 1008 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1009 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1010 unsigned SizeSoFar = 0; 1011 SmallVector<llvm::Constant *, 8> Values; 1012 bool NestedIntact = true; 1013 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1014 unsigned CurOff = Layout->getElementOffset(i); 1015 if (SizeSoFar < CurOff) { 1016 assert(!STy->isPacked()); 1017 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1018 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1019 } 1020 llvm::Constant *CurOp; 1021 if (constant->isZeroValue()) 1022 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1023 else 1024 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1025 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1026 if (CurOp != NewOp) 1027 NestedIntact = false; 1028 Values.push_back(NewOp); 1029 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1030 } 1031 unsigned TotalSize = Layout->getSizeInBytes(); 1032 if (SizeSoFar < TotalSize) { 1033 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1034 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1035 } 1036 if (NestedIntact && Values.size() == STy->getNumElements()) 1037 return constant; 1038 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1039 } 1040 1041 /// Replace all padding bytes in a given constant with either a pattern byte or 1042 /// 0x00. 1043 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1044 llvm::Constant *constant) { 1045 llvm::Type *OrigTy = constant->getType(); 1046 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1047 return constStructWithPadding(CGM, isPattern, STy, constant); 1048 if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) { 1049 llvm::SmallVector<llvm::Constant *, 8> Values; 1050 unsigned Size = STy->getNumElements(); 1051 if (!Size) 1052 return constant; 1053 llvm::Type *ElemTy = STy->getElementType(); 1054 bool ZeroInitializer = constant->isZeroValue(); 1055 llvm::Constant *OpValue, *PaddedOp; 1056 if (ZeroInitializer) { 1057 OpValue = llvm::Constant::getNullValue(ElemTy); 1058 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1059 } 1060 for (unsigned Op = 0; Op != Size; ++Op) { 1061 if (!ZeroInitializer) { 1062 OpValue = constant->getAggregateElement(Op); 1063 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1064 } 1065 Values.push_back(PaddedOp); 1066 } 1067 auto *NewElemTy = Values[0]->getType(); 1068 if (NewElemTy == ElemTy) 1069 return constant; 1070 if (OrigTy->isArrayTy()) { 1071 auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1072 return llvm::ConstantArray::get(ArrayTy, Values); 1073 } else { 1074 return llvm::ConstantVector::get(Values); 1075 } 1076 } 1077 return constant; 1078 } 1079 1080 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1081 llvm::Constant *Constant, 1082 CharUnits Align) { 1083 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1084 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1085 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1086 return CC->getNameAsString(); 1087 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1088 return CD->getNameAsString(); 1089 return getMangledName(FD); 1090 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1091 return OM->getNameAsString(); 1092 } else if (isa<BlockDecl>(DC)) { 1093 return "<block>"; 1094 } else if (isa<CapturedDecl>(DC)) { 1095 return "<captured>"; 1096 } else { 1097 llvm::llvm_unreachable_internal("expected a function or method"); 1098 } 1099 }; 1100 1101 // Form a simple per-variable cache of these values in case we find we 1102 // want to reuse them. 1103 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1104 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1105 auto *Ty = Constant->getType(); 1106 bool isConstant = true; 1107 llvm::GlobalVariable *InsertBefore = nullptr; 1108 unsigned AS = 1109 getContext().getTargetAddressSpace(getStringLiteralAddressSpace()); 1110 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1111 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1112 Constant, 1113 "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." + 1114 D.getName(), 1115 InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1116 GV->setAlignment(Align.getQuantity()); 1117 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1118 CacheEntry = GV; 1119 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1120 CacheEntry->setAlignment(Align.getQuantity()); 1121 } 1122 1123 return Address(CacheEntry, Align); 1124 } 1125 1126 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1127 const VarDecl &D, 1128 CGBuilderTy &Builder, 1129 llvm::Constant *Constant, 1130 CharUnits Align) { 1131 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1132 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1133 SrcPtr.getAddressSpace()); 1134 if (SrcPtr.getType() != BP) 1135 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1136 return SrcPtr; 1137 } 1138 1139 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1140 Address Loc, bool isVolatile, 1141 CGBuilderTy &Builder, 1142 llvm::Constant *constant) { 1143 auto *Ty = constant->getType(); 1144 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1145 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1146 if (canDoSingleStore) { 1147 Builder.CreateStore(constant, Loc, isVolatile); 1148 return; 1149 } 1150 1151 auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1152 auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext()); 1153 1154 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1155 if (!ConstantSize) 1156 return; 1157 auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize); 1158 1159 // If the initializer is all or mostly the same, codegen with bzero / memset 1160 // then do a few stores afterward. 1161 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1162 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1163 isVolatile); 1164 1165 bool valueAlreadyCorrect = 1166 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1167 if (!valueAlreadyCorrect) { 1168 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1169 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1170 } 1171 return; 1172 } 1173 1174 // If the initializer is a repeated byte pattern, use memset. 1175 llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize); 1176 if (Pattern) { 1177 uint64_t Value = 0x00; 1178 if (!isa<llvm::UndefValue>(Pattern)) { 1179 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1180 assert(AP.getBitWidth() <= 8); 1181 Value = AP.getLimitedValue(); 1182 } 1183 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal, 1184 isVolatile); 1185 return; 1186 } 1187 1188 // If the initializer is small, use a handful of stores. 1189 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1190 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1191 // FIXME: handle the case when STy != Loc.getElementType(). 1192 if (STy == Loc.getElementType()) { 1193 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1194 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1195 emitStoresForConstant( 1196 CGM, D, EltPtr, isVolatile, Builder, 1197 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1198 } 1199 return; 1200 } 1201 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1202 // FIXME: handle the case when ATy != Loc.getElementType(). 1203 if (ATy == Loc.getElementType()) { 1204 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1205 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1206 emitStoresForConstant( 1207 CGM, D, EltPtr, isVolatile, Builder, 1208 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1209 } 1210 return; 1211 } 1212 } 1213 } 1214 1215 // Copy from a global. 1216 Builder.CreateMemCpy(Loc, 1217 createUnnamedGlobalForMemcpyFrom( 1218 CGM, D, Builder, constant, Loc.getAlignment()), 1219 SizeVal, isVolatile); 1220 } 1221 1222 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1223 Address Loc, bool isVolatile, 1224 CGBuilderTy &Builder) { 1225 llvm::Type *ElTy = Loc.getElementType(); 1226 llvm::Constant *constant = 1227 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1228 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1229 } 1230 1231 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1232 Address Loc, bool isVolatile, 1233 CGBuilderTy &Builder) { 1234 llvm::Type *ElTy = Loc.getElementType(); 1235 llvm::Constant *constant = constWithPadding( 1236 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1237 assert(!isa<llvm::UndefValue>(constant)); 1238 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1239 } 1240 1241 static bool containsUndef(llvm::Constant *constant) { 1242 auto *Ty = constant->getType(); 1243 if (isa<llvm::UndefValue>(constant)) 1244 return true; 1245 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1246 for (llvm::Use &Op : constant->operands()) 1247 if (containsUndef(cast<llvm::Constant>(Op))) 1248 return true; 1249 return false; 1250 } 1251 1252 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1253 llvm::Constant *constant) { 1254 auto *Ty = constant->getType(); 1255 if (isa<llvm::UndefValue>(constant)) 1256 return patternOrZeroFor(CGM, isPattern, Ty); 1257 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1258 return constant; 1259 if (!containsUndef(constant)) 1260 return constant; 1261 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1262 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1263 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1264 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1265 } 1266 if (Ty->isStructTy()) 1267 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1268 if (Ty->isArrayTy()) 1269 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1270 assert(Ty->isVectorTy()); 1271 return llvm::ConstantVector::get(Values); 1272 } 1273 1274 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1275 /// variable declaration with auto, register, or no storage class specifier. 1276 /// These turn into simple stack objects, or GlobalValues depending on target. 1277 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1278 AutoVarEmission emission = EmitAutoVarAlloca(D); 1279 EmitAutoVarInit(emission); 1280 EmitAutoVarCleanups(emission); 1281 } 1282 1283 /// Emit a lifetime.begin marker if some criteria are satisfied. 1284 /// \return a pointer to the temporary size Value if a marker was emitted, null 1285 /// otherwise 1286 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1287 llvm::Value *Addr) { 1288 if (!ShouldEmitLifetimeMarkers) 1289 return nullptr; 1290 1291 assert(Addr->getType()->getPointerAddressSpace() == 1292 CGM.getDataLayout().getAllocaAddrSpace() && 1293 "Pointer should be in alloca address space"); 1294 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1295 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1296 llvm::CallInst *C = 1297 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1298 C->setDoesNotThrow(); 1299 return SizeV; 1300 } 1301 1302 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1303 assert(Addr->getType()->getPointerAddressSpace() == 1304 CGM.getDataLayout().getAllocaAddrSpace() && 1305 "Pointer should be in alloca address space"); 1306 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1307 llvm::CallInst *C = 1308 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1309 C->setDoesNotThrow(); 1310 } 1311 1312 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1313 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1314 // For each dimension stores its QualType and corresponding 1315 // size-expression Value. 1316 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1317 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1318 1319 // Break down the array into individual dimensions. 1320 QualType Type1D = D.getType(); 1321 while (getContext().getAsVariableArrayType(Type1D)) { 1322 auto VlaSize = getVLAElements1D(Type1D); 1323 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1324 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1325 else { 1326 // Generate a locally unique name for the size expression. 1327 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1328 SmallString<12> Buffer; 1329 StringRef NameRef = Name.toStringRef(Buffer); 1330 auto &Ident = getContext().Idents.getOwn(NameRef); 1331 VLAExprNames.push_back(&Ident); 1332 auto SizeExprAddr = 1333 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1334 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1335 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1336 Type1D.getUnqualifiedType()); 1337 } 1338 Type1D = VlaSize.Type; 1339 } 1340 1341 if (!EmitDebugInfo) 1342 return; 1343 1344 // Register each dimension's size-expression with a DILocalVariable, 1345 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1346 // to describe this array. 1347 unsigned NameIdx = 0; 1348 for (auto &VlaSize : Dimensions) { 1349 llvm::Metadata *MD; 1350 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1351 MD = llvm::ConstantAsMetadata::get(C); 1352 else { 1353 // Create an artificial VarDecl to generate debug info for. 1354 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1355 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1356 auto QT = getContext().getIntTypeForBitwidth( 1357 VlaExprTy->getScalarSizeInBits(), false); 1358 auto *ArtificialDecl = VarDecl::Create( 1359 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1360 D.getLocation(), D.getLocation(), NameIdent, QT, 1361 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1362 ArtificialDecl->setImplicit(); 1363 1364 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1365 Builder); 1366 } 1367 assert(MD && "No Size expression debug node created"); 1368 DI->registerVLASizeExpression(VlaSize.Type, MD); 1369 } 1370 } 1371 1372 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1373 /// local variable. Does not emit initialization or destruction. 1374 CodeGenFunction::AutoVarEmission 1375 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1376 QualType Ty = D.getType(); 1377 assert( 1378 Ty.getAddressSpace() == LangAS::Default || 1379 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1380 1381 AutoVarEmission emission(D); 1382 1383 bool isEscapingByRef = D.isEscapingByref(); 1384 emission.IsEscapingByRef = isEscapingByRef; 1385 1386 CharUnits alignment = getContext().getDeclAlign(&D); 1387 1388 // If the type is variably-modified, emit all the VLA sizes for it. 1389 if (Ty->isVariablyModifiedType()) 1390 EmitVariablyModifiedType(Ty); 1391 1392 auto *DI = getDebugInfo(); 1393 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1394 codegenoptions::LimitedDebugInfo; 1395 1396 Address address = Address::invalid(); 1397 Address AllocaAddr = Address::invalid(); 1398 Address OpenMPLocalAddr = 1399 getLangOpts().OpenMP 1400 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1401 : Address::invalid(); 1402 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1403 address = OpenMPLocalAddr; 1404 } else if (Ty->isConstantSizeType()) { 1405 bool NRVO = getLangOpts().ElideConstructors && 1406 D.isNRVOVariable(); 1407 1408 // If this value is an array or struct with a statically determinable 1409 // constant initializer, there are optimizations we can do. 1410 // 1411 // TODO: We should constant-evaluate the initializer of any variable, 1412 // as long as it is initialized by a constant expression. Currently, 1413 // isConstantInitializer produces wrong answers for structs with 1414 // reference or bitfield members, and a few other cases, and checking 1415 // for POD-ness protects us from some of these. 1416 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1417 (D.isConstexpr() || 1418 ((Ty.isPODType(getContext()) || 1419 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1420 D.getInit()->isConstantInitializer(getContext(), false)))) { 1421 1422 // If the variable's a const type, and it's neither an NRVO 1423 // candidate nor a __block variable and has no mutable members, 1424 // emit it as a global instead. 1425 // Exception is if a variable is located in non-constant address space 1426 // in OpenCL. 1427 if ((!getLangOpts().OpenCL || 1428 Ty.getAddressSpace() == LangAS::opencl_constant) && 1429 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1430 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1431 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1432 1433 // Signal this condition to later callbacks. 1434 emission.Addr = Address::invalid(); 1435 assert(emission.wasEmittedAsGlobal()); 1436 return emission; 1437 } 1438 1439 // Otherwise, tell the initialization code that we're in this case. 1440 emission.IsConstantAggregate = true; 1441 } 1442 1443 // A normal fixed sized variable becomes an alloca in the entry block, 1444 // unless: 1445 // - it's an NRVO variable. 1446 // - we are compiling OpenMP and it's an OpenMP local variable. 1447 if (NRVO) { 1448 // The named return value optimization: allocate this variable in the 1449 // return slot, so that we can elide the copy when returning this 1450 // variable (C++0x [class.copy]p34). 1451 address = ReturnValue; 1452 1453 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1454 const auto *RD = RecordTy->getDecl(); 1455 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1456 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1457 RD->isNonTrivialToPrimitiveDestroy()) { 1458 // Create a flag that is used to indicate when the NRVO was applied 1459 // to this variable. Set it to zero to indicate that NRVO was not 1460 // applied. 1461 llvm::Value *Zero = Builder.getFalse(); 1462 Address NRVOFlag = 1463 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1464 EnsureInsertPoint(); 1465 Builder.CreateStore(Zero, NRVOFlag); 1466 1467 // Record the NRVO flag for this variable. 1468 NRVOFlags[&D] = NRVOFlag.getPointer(); 1469 emission.NRVOFlag = NRVOFlag.getPointer(); 1470 } 1471 } 1472 } else { 1473 CharUnits allocaAlignment; 1474 llvm::Type *allocaTy; 1475 if (isEscapingByRef) { 1476 auto &byrefInfo = getBlockByrefInfo(&D); 1477 allocaTy = byrefInfo.Type; 1478 allocaAlignment = byrefInfo.ByrefAlignment; 1479 } else { 1480 allocaTy = ConvertTypeForMem(Ty); 1481 allocaAlignment = alignment; 1482 } 1483 1484 // Create the alloca. Note that we set the name separately from 1485 // building the instruction so that it's there even in no-asserts 1486 // builds. 1487 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1488 /*ArraySize=*/nullptr, &AllocaAddr); 1489 1490 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1491 // the catch parameter starts in the catchpad instruction, and we can't 1492 // insert code in those basic blocks. 1493 bool IsMSCatchParam = 1494 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1495 1496 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1497 // if we don't have a valid insertion point (?). 1498 if (HaveInsertPoint() && !IsMSCatchParam) { 1499 // If there's a jump into the lifetime of this variable, its lifetime 1500 // gets broken up into several regions in IR, which requires more work 1501 // to handle correctly. For now, just omit the intrinsics; this is a 1502 // rare case, and it's better to just be conservatively correct. 1503 // PR28267. 1504 // 1505 // We have to do this in all language modes if there's a jump past the 1506 // declaration. We also have to do it in C if there's a jump to an 1507 // earlier point in the current block because non-VLA lifetimes begin as 1508 // soon as the containing block is entered, not when its variables 1509 // actually come into scope; suppressing the lifetime annotations 1510 // completely in this case is unnecessarily pessimistic, but again, this 1511 // is rare. 1512 if (!Bypasses.IsBypassed(&D) && 1513 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1514 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1515 emission.SizeForLifetimeMarkers = 1516 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1517 } 1518 } else { 1519 assert(!emission.useLifetimeMarkers()); 1520 } 1521 } 1522 } else { 1523 EnsureInsertPoint(); 1524 1525 if (!DidCallStackSave) { 1526 // Save the stack. 1527 Address Stack = 1528 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1529 1530 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1531 llvm::Value *V = Builder.CreateCall(F); 1532 Builder.CreateStore(V, Stack); 1533 1534 DidCallStackSave = true; 1535 1536 // Push a cleanup block and restore the stack there. 1537 // FIXME: in general circumstances, this should be an EH cleanup. 1538 pushStackRestore(NormalCleanup, Stack); 1539 } 1540 1541 auto VlaSize = getVLASize(Ty); 1542 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1543 1544 // Allocate memory for the array. 1545 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1546 &AllocaAddr); 1547 1548 // If we have debug info enabled, properly describe the VLA dimensions for 1549 // this type by registering the vla size expression for each of the 1550 // dimensions. 1551 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1552 } 1553 1554 setAddrOfLocalVar(&D, address); 1555 emission.Addr = address; 1556 emission.AllocaAddr = AllocaAddr; 1557 1558 // Emit debug info for local var declaration. 1559 if (EmitDebugInfo && HaveInsertPoint()) { 1560 DI->setLocation(D.getLocation()); 1561 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1562 } 1563 1564 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1565 EmitVarAnnotations(&D, address.getPointer()); 1566 1567 // Make sure we call @llvm.lifetime.end. 1568 if (emission.useLifetimeMarkers()) 1569 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1570 emission.getOriginalAllocatedAddress(), 1571 emission.getSizeForLifetimeMarkers()); 1572 1573 return emission; 1574 } 1575 1576 static bool isCapturedBy(const VarDecl &, const Expr *); 1577 1578 /// Determines whether the given __block variable is potentially 1579 /// captured by the given statement. 1580 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1581 if (const Expr *E = dyn_cast<Expr>(S)) 1582 return isCapturedBy(Var, E); 1583 for (const Stmt *SubStmt : S->children()) 1584 if (isCapturedBy(Var, SubStmt)) 1585 return true; 1586 return false; 1587 } 1588 1589 /// Determines whether the given __block variable is potentially 1590 /// captured by the given expression. 1591 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1592 // Skip the most common kinds of expressions that make 1593 // hierarchy-walking expensive. 1594 E = E->IgnoreParenCasts(); 1595 1596 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1597 const BlockDecl *Block = BE->getBlockDecl(); 1598 for (const auto &I : Block->captures()) { 1599 if (I.getVariable() == &Var) 1600 return true; 1601 } 1602 1603 // No need to walk into the subexpressions. 1604 return false; 1605 } 1606 1607 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1608 const CompoundStmt *CS = SE->getSubStmt(); 1609 for (const auto *BI : CS->body()) 1610 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1611 if (isCapturedBy(Var, BIE)) 1612 return true; 1613 } 1614 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1615 // special case declarations 1616 for (const auto *I : DS->decls()) { 1617 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1618 const Expr *Init = VD->getInit(); 1619 if (Init && isCapturedBy(Var, Init)) 1620 return true; 1621 } 1622 } 1623 } 1624 else 1625 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1626 // Later, provide code to poke into statements for capture analysis. 1627 return true; 1628 return false; 1629 } 1630 1631 for (const Stmt *SubStmt : E->children()) 1632 if (isCapturedBy(Var, SubStmt)) 1633 return true; 1634 1635 return false; 1636 } 1637 1638 /// Determine whether the given initializer is trivial in the sense 1639 /// that it requires no code to be generated. 1640 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1641 if (!Init) 1642 return true; 1643 1644 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1645 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1646 if (Constructor->isTrivial() && 1647 Constructor->isDefaultConstructor() && 1648 !Construct->requiresZeroInitialization()) 1649 return true; 1650 1651 return false; 1652 } 1653 1654 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1655 assert(emission.Variable && "emission was not valid!"); 1656 1657 // If this was emitted as a global constant, we're done. 1658 if (emission.wasEmittedAsGlobal()) return; 1659 1660 const VarDecl &D = *emission.Variable; 1661 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1662 QualType type = D.getType(); 1663 1664 bool isVolatile = type.isVolatileQualified(); 1665 1666 // If this local has an initializer, emit it now. 1667 const Expr *Init = D.getInit(); 1668 1669 // If we are at an unreachable point, we don't need to emit the initializer 1670 // unless it contains a label. 1671 if (!HaveInsertPoint()) { 1672 if (!Init || !ContainsLabel(Init)) return; 1673 EnsureInsertPoint(); 1674 } 1675 1676 // Initialize the structure of a __block variable. 1677 if (emission.IsEscapingByRef) 1678 emitByrefStructureInit(emission); 1679 1680 // Initialize the variable here if it doesn't have a initializer and it is a 1681 // C struct that is non-trivial to initialize or an array containing such a 1682 // struct. 1683 if (!Init && 1684 type.isNonTrivialToPrimitiveDefaultInitialize() == 1685 QualType::PDIK_Struct) { 1686 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1687 if (emission.IsEscapingByRef) 1688 drillIntoBlockVariable(*this, Dst, &D); 1689 defaultInitNonTrivialCStructVar(Dst); 1690 return; 1691 } 1692 1693 // Check whether this is a byref variable that's potentially 1694 // captured and moved by its own initializer. If so, we'll need to 1695 // emit the initializer first, then copy into the variable. 1696 bool capturedByInit = 1697 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1698 1699 bool locIsByrefHeader = !capturedByInit; 1700 const Address Loc = 1701 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1702 1703 // Note: constexpr already initializes everything correctly. 1704 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1705 (D.isConstexpr() 1706 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1707 : (D.getAttr<UninitializedAttr>() 1708 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1709 : getContext().getLangOpts().getTrivialAutoVarInit())); 1710 1711 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1712 if (trivialAutoVarInit == 1713 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1714 return; 1715 1716 // Only initialize a __block's storage: we always initialize the header. 1717 if (emission.IsEscapingByRef && !locIsByrefHeader) 1718 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1719 1720 CharUnits Size = getContext().getTypeSizeInChars(type); 1721 if (!Size.isZero()) { 1722 switch (trivialAutoVarInit) { 1723 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1724 llvm_unreachable("Uninitialized handled above"); 1725 case LangOptions::TrivialAutoVarInitKind::Zero: 1726 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1727 break; 1728 case LangOptions::TrivialAutoVarInitKind::Pattern: 1729 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1730 break; 1731 } 1732 return; 1733 } 1734 1735 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1736 // them, so emit a memcpy with the VLA size to initialize each element. 1737 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1738 // will catch that code, but there exists code which generates zero-sized 1739 // VLAs. Be nice and initialize whatever they requested. 1740 const auto *VlaType = getContext().getAsVariableArrayType(type); 1741 if (!VlaType) 1742 return; 1743 auto VlaSize = getVLASize(VlaType); 1744 auto SizeVal = VlaSize.NumElts; 1745 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1746 switch (trivialAutoVarInit) { 1747 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1748 llvm_unreachable("Uninitialized handled above"); 1749 1750 case LangOptions::TrivialAutoVarInitKind::Zero: 1751 if (!EltSize.isOne()) 1752 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1753 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1754 isVolatile); 1755 break; 1756 1757 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1758 llvm::Type *ElTy = Loc.getElementType(); 1759 llvm::Constant *Constant = constWithPadding( 1760 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1761 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1762 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1763 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1764 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1765 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1766 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1767 "vla.iszerosized"); 1768 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1769 EmitBlock(SetupBB); 1770 if (!EltSize.isOne()) 1771 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1772 llvm::Value *BaseSizeInChars = 1773 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1774 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1775 llvm::Value *End = 1776 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1777 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1778 EmitBlock(LoopBB); 1779 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1780 Cur->addIncoming(Begin.getPointer(), OriginBB); 1781 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1782 Builder.CreateMemCpy(Address(Cur, CurAlign), 1783 createUnnamedGlobalForMemcpyFrom( 1784 CGM, D, Builder, Constant, ConstantAlign), 1785 BaseSizeInChars, isVolatile); 1786 llvm::Value *Next = 1787 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1788 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1789 Builder.CreateCondBr(Done, ContBB, LoopBB); 1790 Cur->addIncoming(Next, LoopBB); 1791 EmitBlock(ContBB); 1792 } break; 1793 } 1794 }; 1795 1796 if (isTrivialInitializer(Init)) { 1797 initializeWhatIsTechnicallyUninitialized(Loc); 1798 return; 1799 } 1800 1801 llvm::Constant *constant = nullptr; 1802 if (emission.IsConstantAggregate || 1803 D.mightBeUsableInConstantExpressions(getContext())) { 1804 assert(!capturedByInit && "constant init contains a capturing block?"); 1805 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1806 if (constant && !constant->isZeroValue() && 1807 (trivialAutoVarInit != 1808 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1809 IsPattern isPattern = 1810 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1811 ? IsPattern::Yes 1812 : IsPattern::No; 1813 // C guarantees that brace-init with fewer initializers than members in 1814 // the aggregate will initialize the rest of the aggregate as-if it were 1815 // static initialization. In turn static initialization guarantees that 1816 // padding is initialized to zero bits. We could instead pattern-init if D 1817 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1818 // behavior. 1819 constant = constWithPadding(CGM, IsPattern::No, 1820 replaceUndef(CGM, isPattern, constant)); 1821 } 1822 } 1823 1824 if (!constant) { 1825 initializeWhatIsTechnicallyUninitialized(Loc); 1826 LValue lv = MakeAddrLValue(Loc, type); 1827 lv.setNonGC(true); 1828 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1829 } 1830 1831 if (!emission.IsConstantAggregate) { 1832 // For simple scalar/complex initialization, store the value directly. 1833 LValue lv = MakeAddrLValue(Loc, type); 1834 lv.setNonGC(true); 1835 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1836 } 1837 1838 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1839 emitStoresForConstant( 1840 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1841 isVolatile, Builder, constant); 1842 } 1843 1844 /// Emit an expression as an initializer for an object (variable, field, etc.) 1845 /// at the given location. The expression is not necessarily the normal 1846 /// initializer for the object, and the address is not necessarily 1847 /// its normal location. 1848 /// 1849 /// \param init the initializing expression 1850 /// \param D the object to act as if we're initializing 1851 /// \param loc the address to initialize; its type is a pointer 1852 /// to the LLVM mapping of the object's type 1853 /// \param alignment the alignment of the address 1854 /// \param capturedByInit true if \p D is a __block variable 1855 /// whose address is potentially changed by the initializer 1856 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1857 LValue lvalue, bool capturedByInit) { 1858 QualType type = D->getType(); 1859 1860 if (type->isReferenceType()) { 1861 RValue rvalue = EmitReferenceBindingToExpr(init); 1862 if (capturedByInit) 1863 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1864 EmitStoreThroughLValue(rvalue, lvalue, true); 1865 return; 1866 } 1867 switch (getEvaluationKind(type)) { 1868 case TEK_Scalar: 1869 EmitScalarInit(init, D, lvalue, capturedByInit); 1870 return; 1871 case TEK_Complex: { 1872 ComplexPairTy complex = EmitComplexExpr(init); 1873 if (capturedByInit) 1874 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1875 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1876 return; 1877 } 1878 case TEK_Aggregate: 1879 if (type->isAtomicType()) { 1880 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1881 } else { 1882 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1883 if (isa<VarDecl>(D)) 1884 Overlap = AggValueSlot::DoesNotOverlap; 1885 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1886 Overlap = overlapForFieldInit(FD); 1887 // TODO: how can we delay here if D is captured by its initializer? 1888 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1889 AggValueSlot::IsDestructed, 1890 AggValueSlot::DoesNotNeedGCBarriers, 1891 AggValueSlot::IsNotAliased, 1892 Overlap)); 1893 } 1894 return; 1895 } 1896 llvm_unreachable("bad evaluation kind"); 1897 } 1898 1899 /// Enter a destroy cleanup for the given local variable. 1900 void CodeGenFunction::emitAutoVarTypeCleanup( 1901 const CodeGenFunction::AutoVarEmission &emission, 1902 QualType::DestructionKind dtorKind) { 1903 assert(dtorKind != QualType::DK_none); 1904 1905 // Note that for __block variables, we want to destroy the 1906 // original stack object, not the possibly forwarded object. 1907 Address addr = emission.getObjectAddress(*this); 1908 1909 const VarDecl *var = emission.Variable; 1910 QualType type = var->getType(); 1911 1912 CleanupKind cleanupKind = NormalAndEHCleanup; 1913 CodeGenFunction::Destroyer *destroyer = nullptr; 1914 1915 switch (dtorKind) { 1916 case QualType::DK_none: 1917 llvm_unreachable("no cleanup for trivially-destructible variable"); 1918 1919 case QualType::DK_cxx_destructor: 1920 // If there's an NRVO flag on the emission, we need a different 1921 // cleanup. 1922 if (emission.NRVOFlag) { 1923 assert(!type->isArrayType()); 1924 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1925 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, 1926 emission.NRVOFlag); 1927 return; 1928 } 1929 break; 1930 1931 case QualType::DK_objc_strong_lifetime: 1932 // Suppress cleanups for pseudo-strong variables. 1933 if (var->isARCPseudoStrong()) return; 1934 1935 // Otherwise, consider whether to use an EH cleanup or not. 1936 cleanupKind = getARCCleanupKind(); 1937 1938 // Use the imprecise destroyer by default. 1939 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1940 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1941 break; 1942 1943 case QualType::DK_objc_weak_lifetime: 1944 break; 1945 1946 case QualType::DK_nontrivial_c_struct: 1947 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1948 if (emission.NRVOFlag) { 1949 assert(!type->isArrayType()); 1950 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1951 emission.NRVOFlag, type); 1952 return; 1953 } 1954 break; 1955 } 1956 1957 // If we haven't chosen a more specific destroyer, use the default. 1958 if (!destroyer) destroyer = getDestroyer(dtorKind); 1959 1960 // Use an EH cleanup in array destructors iff the destructor itself 1961 // is being pushed as an EH cleanup. 1962 bool useEHCleanup = (cleanupKind & EHCleanup); 1963 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1964 useEHCleanup); 1965 } 1966 1967 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1968 assert(emission.Variable && "emission was not valid!"); 1969 1970 // If this was emitted as a global constant, we're done. 1971 if (emission.wasEmittedAsGlobal()) return; 1972 1973 // If we don't have an insertion point, we're done. Sema prevents 1974 // us from jumping into any of these scopes anyway. 1975 if (!HaveInsertPoint()) return; 1976 1977 const VarDecl &D = *emission.Variable; 1978 1979 // Check the type for a cleanup. 1980 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1981 emitAutoVarTypeCleanup(emission, dtorKind); 1982 1983 // In GC mode, honor objc_precise_lifetime. 1984 if (getLangOpts().getGC() != LangOptions::NonGC && 1985 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1986 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1987 } 1988 1989 // Handle the cleanup attribute. 1990 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1991 const FunctionDecl *FD = CA->getFunctionDecl(); 1992 1993 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1994 assert(F && "Could not find function!"); 1995 1996 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1997 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1998 } 1999 2000 // If this is a block variable, call _Block_object_destroy 2001 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2002 // mode. 2003 if (emission.IsEscapingByRef && 2004 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2005 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2006 if (emission.Variable->getType().isObjCGCWeak()) 2007 Flags |= BLOCK_FIELD_IS_WEAK; 2008 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2009 /*LoadBlockVarAddr*/ false, 2010 cxxDestructorCanThrow(emission.Variable->getType())); 2011 } 2012 } 2013 2014 CodeGenFunction::Destroyer * 2015 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2016 switch (kind) { 2017 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2018 case QualType::DK_cxx_destructor: 2019 return destroyCXXObject; 2020 case QualType::DK_objc_strong_lifetime: 2021 return destroyARCStrongPrecise; 2022 case QualType::DK_objc_weak_lifetime: 2023 return destroyARCWeak; 2024 case QualType::DK_nontrivial_c_struct: 2025 return destroyNonTrivialCStruct; 2026 } 2027 llvm_unreachable("Unknown DestructionKind"); 2028 } 2029 2030 /// pushEHDestroy - Push the standard destructor for the given type as 2031 /// an EH-only cleanup. 2032 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2033 Address addr, QualType type) { 2034 assert(dtorKind && "cannot push destructor for trivial type"); 2035 assert(needsEHCleanup(dtorKind)); 2036 2037 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2038 } 2039 2040 /// pushDestroy - Push the standard destructor for the given type as 2041 /// at least a normal cleanup. 2042 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2043 Address addr, QualType type) { 2044 assert(dtorKind && "cannot push destructor for trivial type"); 2045 2046 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2047 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2048 cleanupKind & EHCleanup); 2049 } 2050 2051 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2052 QualType type, Destroyer *destroyer, 2053 bool useEHCleanupForArray) { 2054 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2055 destroyer, useEHCleanupForArray); 2056 } 2057 2058 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2059 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2060 } 2061 2062 void CodeGenFunction::pushLifetimeExtendedDestroy( 2063 CleanupKind cleanupKind, Address addr, QualType type, 2064 Destroyer *destroyer, bool useEHCleanupForArray) { 2065 // Push an EH-only cleanup for the object now. 2066 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2067 // around in case a temporary's destructor throws an exception. 2068 if (cleanupKind & EHCleanup) 2069 EHStack.pushCleanup<DestroyObject>( 2070 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2071 destroyer, useEHCleanupForArray); 2072 2073 // Remember that we need to push a full cleanup for the object at the 2074 // end of the full-expression. 2075 pushCleanupAfterFullExpr<DestroyObject>( 2076 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2077 } 2078 2079 /// emitDestroy - Immediately perform the destruction of the given 2080 /// object. 2081 /// 2082 /// \param addr - the address of the object; a type* 2083 /// \param type - the type of the object; if an array type, all 2084 /// objects are destroyed in reverse order 2085 /// \param destroyer - the function to call to destroy individual 2086 /// elements 2087 /// \param useEHCleanupForArray - whether an EH cleanup should be 2088 /// used when destroying array elements, in case one of the 2089 /// destructions throws an exception 2090 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2091 Destroyer *destroyer, 2092 bool useEHCleanupForArray) { 2093 const ArrayType *arrayType = getContext().getAsArrayType(type); 2094 if (!arrayType) 2095 return destroyer(*this, addr, type); 2096 2097 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2098 2099 CharUnits elementAlign = 2100 addr.getAlignment() 2101 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2102 2103 // Normally we have to check whether the array is zero-length. 2104 bool checkZeroLength = true; 2105 2106 // But if the array length is constant, we can suppress that. 2107 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2108 // ...and if it's constant zero, we can just skip the entire thing. 2109 if (constLength->isZero()) return; 2110 checkZeroLength = false; 2111 } 2112 2113 llvm::Value *begin = addr.getPointer(); 2114 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2115 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2116 checkZeroLength, useEHCleanupForArray); 2117 } 2118 2119 /// emitArrayDestroy - Destroys all the elements of the given array, 2120 /// beginning from last to first. The array cannot be zero-length. 2121 /// 2122 /// \param begin - a type* denoting the first element of the array 2123 /// \param end - a type* denoting one past the end of the array 2124 /// \param elementType - the element type of the array 2125 /// \param destroyer - the function to call to destroy elements 2126 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2127 /// the remaining elements in case the destruction of a single 2128 /// element throws 2129 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2130 llvm::Value *end, 2131 QualType elementType, 2132 CharUnits elementAlign, 2133 Destroyer *destroyer, 2134 bool checkZeroLength, 2135 bool useEHCleanup) { 2136 assert(!elementType->isArrayType()); 2137 2138 // The basic structure here is a do-while loop, because we don't 2139 // need to check for the zero-element case. 2140 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2141 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2142 2143 if (checkZeroLength) { 2144 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2145 "arraydestroy.isempty"); 2146 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2147 } 2148 2149 // Enter the loop body, making that address the current address. 2150 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2151 EmitBlock(bodyBB); 2152 llvm::PHINode *elementPast = 2153 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2154 elementPast->addIncoming(end, entryBB); 2155 2156 // Shift the address back by one element. 2157 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2158 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2159 "arraydestroy.element"); 2160 2161 if (useEHCleanup) 2162 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2163 destroyer); 2164 2165 // Perform the actual destruction there. 2166 destroyer(*this, Address(element, elementAlign), elementType); 2167 2168 if (useEHCleanup) 2169 PopCleanupBlock(); 2170 2171 // Check whether we've reached the end. 2172 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2173 Builder.CreateCondBr(done, doneBB, bodyBB); 2174 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2175 2176 // Done. 2177 EmitBlock(doneBB); 2178 } 2179 2180 /// Perform partial array destruction as if in an EH cleanup. Unlike 2181 /// emitArrayDestroy, the element type here may still be an array type. 2182 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2183 llvm::Value *begin, llvm::Value *end, 2184 QualType type, CharUnits elementAlign, 2185 CodeGenFunction::Destroyer *destroyer) { 2186 // If the element type is itself an array, drill down. 2187 unsigned arrayDepth = 0; 2188 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2189 // VLAs don't require a GEP index to walk into. 2190 if (!isa<VariableArrayType>(arrayType)) 2191 arrayDepth++; 2192 type = arrayType->getElementType(); 2193 } 2194 2195 if (arrayDepth) { 2196 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2197 2198 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2199 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2200 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2201 } 2202 2203 // Destroy the array. We don't ever need an EH cleanup because we 2204 // assume that we're in an EH cleanup ourselves, so a throwing 2205 // destructor causes an immediate terminate. 2206 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2207 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2208 } 2209 2210 namespace { 2211 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2212 /// array destroy where the end pointer is regularly determined and 2213 /// does not need to be loaded from a local. 2214 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2215 llvm::Value *ArrayBegin; 2216 llvm::Value *ArrayEnd; 2217 QualType ElementType; 2218 CodeGenFunction::Destroyer *Destroyer; 2219 CharUnits ElementAlign; 2220 public: 2221 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2222 QualType elementType, CharUnits elementAlign, 2223 CodeGenFunction::Destroyer *destroyer) 2224 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2225 ElementType(elementType), Destroyer(destroyer), 2226 ElementAlign(elementAlign) {} 2227 2228 void Emit(CodeGenFunction &CGF, Flags flags) override { 2229 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2230 ElementType, ElementAlign, Destroyer); 2231 } 2232 }; 2233 2234 /// IrregularPartialArrayDestroy - a cleanup which performs a 2235 /// partial array destroy where the end pointer is irregularly 2236 /// determined and must be loaded from a local. 2237 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2238 llvm::Value *ArrayBegin; 2239 Address ArrayEndPointer; 2240 QualType ElementType; 2241 CodeGenFunction::Destroyer *Destroyer; 2242 CharUnits ElementAlign; 2243 public: 2244 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2245 Address arrayEndPointer, 2246 QualType elementType, 2247 CharUnits elementAlign, 2248 CodeGenFunction::Destroyer *destroyer) 2249 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2250 ElementType(elementType), Destroyer(destroyer), 2251 ElementAlign(elementAlign) {} 2252 2253 void Emit(CodeGenFunction &CGF, Flags flags) override { 2254 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2255 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2256 ElementType, ElementAlign, Destroyer); 2257 } 2258 }; 2259 } // end anonymous namespace 2260 2261 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2262 /// already-constructed elements of the given array. The cleanup 2263 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2264 /// 2265 /// \param elementType - the immediate element type of the array; 2266 /// possibly still an array type 2267 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2268 Address arrayEndPointer, 2269 QualType elementType, 2270 CharUnits elementAlign, 2271 Destroyer *destroyer) { 2272 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2273 arrayBegin, arrayEndPointer, 2274 elementType, elementAlign, 2275 destroyer); 2276 } 2277 2278 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2279 /// already-constructed elements of the given array. The cleanup 2280 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2281 /// 2282 /// \param elementType - the immediate element type of the array; 2283 /// possibly still an array type 2284 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2285 llvm::Value *arrayEnd, 2286 QualType elementType, 2287 CharUnits elementAlign, 2288 Destroyer *destroyer) { 2289 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2290 arrayBegin, arrayEnd, 2291 elementType, elementAlign, 2292 destroyer); 2293 } 2294 2295 /// Lazily declare the @llvm.lifetime.start intrinsic. 2296 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2297 if (LifetimeStartFn) 2298 return LifetimeStartFn; 2299 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2300 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2301 return LifetimeStartFn; 2302 } 2303 2304 /// Lazily declare the @llvm.lifetime.end intrinsic. 2305 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2306 if (LifetimeEndFn) 2307 return LifetimeEndFn; 2308 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2309 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2310 return LifetimeEndFn; 2311 } 2312 2313 namespace { 2314 /// A cleanup to perform a release of an object at the end of a 2315 /// function. This is used to balance out the incoming +1 of a 2316 /// ns_consumed argument when we can't reasonably do that just by 2317 /// not doing the initial retain for a __block argument. 2318 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2319 ConsumeARCParameter(llvm::Value *param, 2320 ARCPreciseLifetime_t precise) 2321 : Param(param), Precise(precise) {} 2322 2323 llvm::Value *Param; 2324 ARCPreciseLifetime_t Precise; 2325 2326 void Emit(CodeGenFunction &CGF, Flags flags) override { 2327 CGF.EmitARCRelease(Param, Precise); 2328 } 2329 }; 2330 } // end anonymous namespace 2331 2332 /// Emit an alloca (or GlobalValue depending on target) 2333 /// for the specified parameter and set up LocalDeclMap. 2334 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2335 unsigned ArgNo) { 2336 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2337 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2338 "Invalid argument to EmitParmDecl"); 2339 2340 Arg.getAnyValue()->setName(D.getName()); 2341 2342 QualType Ty = D.getType(); 2343 2344 // Use better IR generation for certain implicit parameters. 2345 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2346 // The only implicit argument a block has is its literal. 2347 // This may be passed as an inalloca'ed value on Windows x86. 2348 if (BlockInfo) { 2349 llvm::Value *V = Arg.isIndirect() 2350 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2351 : Arg.getDirectValue(); 2352 setBlockContextParameter(IPD, ArgNo, V); 2353 return; 2354 } 2355 } 2356 2357 Address DeclPtr = Address::invalid(); 2358 bool DoStore = false; 2359 bool IsScalar = hasScalarEvaluationKind(Ty); 2360 // If we already have a pointer to the argument, reuse the input pointer. 2361 if (Arg.isIndirect()) { 2362 DeclPtr = Arg.getIndirectAddress(); 2363 // If we have a prettier pointer type at this point, bitcast to that. 2364 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2365 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2366 if (DeclPtr.getType() != IRTy) 2367 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2368 // Indirect argument is in alloca address space, which may be different 2369 // from the default address space. 2370 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2371 auto *V = DeclPtr.getPointer(); 2372 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2373 auto DestLangAS = 2374 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2375 if (SrcLangAS != DestLangAS) { 2376 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2377 CGM.getDataLayout().getAllocaAddrSpace()); 2378 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2379 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2380 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2381 *this, V, SrcLangAS, DestLangAS, T, true), 2382 DeclPtr.getAlignment()); 2383 } 2384 2385 // Push a destructor cleanup for this parameter if the ABI requires it. 2386 // Don't push a cleanup in a thunk for a method that will also emit a 2387 // cleanup. 2388 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2389 Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2390 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 2391 assert((DtorKind == QualType::DK_cxx_destructor || 2392 DtorKind == QualType::DK_nontrivial_c_struct) && 2393 "unexpected destructor type"); 2394 pushDestroy(DtorKind, DeclPtr, Ty); 2395 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2396 EHStack.stable_begin(); 2397 } 2398 } 2399 } else { 2400 // Check if the parameter address is controlled by OpenMP runtime. 2401 Address OpenMPLocalAddr = 2402 getLangOpts().OpenMP 2403 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2404 : Address::invalid(); 2405 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2406 DeclPtr = OpenMPLocalAddr; 2407 } else { 2408 // Otherwise, create a temporary to hold the value. 2409 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2410 D.getName() + ".addr"); 2411 } 2412 DoStore = true; 2413 } 2414 2415 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2416 2417 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2418 if (IsScalar) { 2419 Qualifiers qs = Ty.getQualifiers(); 2420 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2421 // We honor __attribute__((ns_consumed)) for types with lifetime. 2422 // For __strong, it's handled by just skipping the initial retain; 2423 // otherwise we have to balance out the initial +1 with an extra 2424 // cleanup to do the release at the end of the function. 2425 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2426 2427 // If a parameter is pseudo-strong then we can omit the implicit retain. 2428 if (D.isARCPseudoStrong()) { 2429 assert(lt == Qualifiers::OCL_Strong && 2430 "pseudo-strong variable isn't strong?"); 2431 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2432 lt = Qualifiers::OCL_ExplicitNone; 2433 } 2434 2435 // Load objects passed indirectly. 2436 if (Arg.isIndirect() && !ArgVal) 2437 ArgVal = Builder.CreateLoad(DeclPtr); 2438 2439 if (lt == Qualifiers::OCL_Strong) { 2440 if (!isConsumed) { 2441 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2442 // use objc_storeStrong(&dest, value) for retaining the 2443 // object. But first, store a null into 'dest' because 2444 // objc_storeStrong attempts to release its old value. 2445 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2446 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2447 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2448 DoStore = false; 2449 } 2450 else 2451 // Don't use objc_retainBlock for block pointers, because we 2452 // don't want to Block_copy something just because we got it 2453 // as a parameter. 2454 ArgVal = EmitARCRetainNonBlock(ArgVal); 2455 } 2456 } else { 2457 // Push the cleanup for a consumed parameter. 2458 if (isConsumed) { 2459 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2460 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2461 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2462 precise); 2463 } 2464 2465 if (lt == Qualifiers::OCL_Weak) { 2466 EmitARCInitWeak(DeclPtr, ArgVal); 2467 DoStore = false; // The weak init is a store, no need to do two. 2468 } 2469 } 2470 2471 // Enter the cleanup scope. 2472 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2473 } 2474 } 2475 2476 // Store the initial value into the alloca. 2477 if (DoStore) 2478 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2479 2480 setAddrOfLocalVar(&D, DeclPtr); 2481 2482 // Emit debug info for param declaration. 2483 if (CGDebugInfo *DI = getDebugInfo()) { 2484 if (CGM.getCodeGenOpts().getDebugInfo() >= 2485 codegenoptions::LimitedDebugInfo) { 2486 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2487 } 2488 } 2489 2490 if (D.hasAttr<AnnotateAttr>()) 2491 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2492 2493 // We can only check return value nullability if all arguments to the 2494 // function satisfy their nullability preconditions. This makes it necessary 2495 // to emit null checks for args in the function body itself. 2496 if (requiresReturnValueNullabilityCheck()) { 2497 auto Nullability = Ty->getNullability(getContext()); 2498 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2499 SanitizerScope SanScope(this); 2500 RetValNullabilityPrecondition = 2501 Builder.CreateAnd(RetValNullabilityPrecondition, 2502 Builder.CreateIsNotNull(Arg.getAnyValue())); 2503 } 2504 } 2505 } 2506 2507 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2508 CodeGenFunction *CGF) { 2509 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2510 return; 2511 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2512 } 2513 2514 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2515 CodeGenFunction *CGF) { 2516 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2517 return; 2518 // FIXME: need to implement mapper code generation 2519 } 2520 2521 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2522 getOpenMPRuntime().checkArchForUnifiedAddressing(D); 2523 } 2524