1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/GlobalVariable.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Type.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 32 void CodeGenFunction::EmitDecl(const Decl &D) { 33 switch (D.getKind()) { 34 case Decl::TranslationUnit: 35 case Decl::Namespace: 36 case Decl::UnresolvedUsingTypename: 37 case Decl::ClassTemplateSpecialization: 38 case Decl::ClassTemplatePartialSpecialization: 39 case Decl::TemplateTypeParm: 40 case Decl::UnresolvedUsingValue: 41 case Decl::NonTypeTemplateParm: 42 case Decl::CXXMethod: 43 case Decl::CXXConstructor: 44 case Decl::CXXDestructor: 45 case Decl::CXXConversion: 46 case Decl::Field: 47 case Decl::IndirectField: 48 case Decl::ObjCIvar: 49 case Decl::ObjCAtDefsField: 50 case Decl::ParmVar: 51 case Decl::ImplicitParam: 52 case Decl::ClassTemplate: 53 case Decl::FunctionTemplate: 54 case Decl::TypeAliasTemplate: 55 case Decl::TemplateTemplateParm: 56 case Decl::ObjCMethod: 57 case Decl::ObjCCategory: 58 case Decl::ObjCProtocol: 59 case Decl::ObjCInterface: 60 case Decl::ObjCCategoryImpl: 61 case Decl::ObjCImplementation: 62 case Decl::ObjCProperty: 63 case Decl::ObjCCompatibleAlias: 64 case Decl::AccessSpec: 65 case Decl::LinkageSpec: 66 case Decl::ObjCPropertyImpl: 67 case Decl::ObjCClass: 68 case Decl::ObjCForwardProtocol: 69 case Decl::FileScopeAsm: 70 case Decl::Friend: 71 case Decl::FriendTemplate: 72 case Decl::Block: 73 assert(0 && "Declaration should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 // None of these decls require codegen support. 86 return; 87 88 case Decl::Var: { 89 const VarDecl &VD = cast<VarDecl>(D); 90 assert(VD.isLocalVarDecl() && 91 "Should not see file-scope variables inside a function!"); 92 return EmitVarDecl(VD); 93 } 94 95 case Decl::Typedef: // typedef int X; 96 case Decl::TypeAlias: { // using X = int; [C++0x] 97 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 98 QualType Ty = TD.getUnderlyingType(); 99 100 if (Ty->isVariablyModifiedType()) 101 EmitVLASize(Ty); 102 } 103 } 104 } 105 106 /// EmitVarDecl - This method handles emission of any variable declaration 107 /// inside a function, including static vars etc. 108 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 109 switch (D.getStorageClass()) { 110 case SC_None: 111 case SC_Auto: 112 case SC_Register: 113 return EmitAutoVarDecl(D); 114 case SC_Static: { 115 llvm::GlobalValue::LinkageTypes Linkage = 116 llvm::GlobalValue::InternalLinkage; 117 118 // If the function definition has some sort of weak linkage, its 119 // static variables should also be weak so that they get properly 120 // uniqued. We can't do this in C, though, because there's no 121 // standard way to agree on which variables are the same (i.e. 122 // there's no mangling). 123 if (getContext().getLangOptions().CPlusPlus) 124 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 125 Linkage = CurFn->getLinkage(); 126 127 return EmitStaticVarDecl(D, Linkage); 128 } 129 case SC_Extern: 130 case SC_PrivateExtern: 131 // Don't emit it now, allow it to be emitted lazily on its first use. 132 return; 133 } 134 135 assert(0 && "Unknown storage class"); 136 } 137 138 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 139 const char *Separator) { 140 CodeGenModule &CGM = CGF.CGM; 141 if (CGF.getContext().getLangOptions().CPlusPlus) { 142 llvm::StringRef Name = CGM.getMangledName(&D); 143 return Name.str(); 144 } 145 146 std::string ContextName; 147 if (!CGF.CurFuncDecl) { 148 // Better be in a block declared in global scope. 149 const NamedDecl *ND = cast<NamedDecl>(&D); 150 const DeclContext *DC = ND->getDeclContext(); 151 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 152 MangleBuffer Name; 153 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 154 ContextName = Name.getString(); 155 } 156 else 157 assert(0 && "Unknown context for block static var decl"); 158 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 159 llvm::StringRef Name = CGM.getMangledName(FD); 160 ContextName = Name.str(); 161 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 162 ContextName = CGF.CurFn->getName(); 163 else 164 assert(0 && "Unknown context for static var decl"); 165 166 return ContextName + Separator + D.getNameAsString(); 167 } 168 169 llvm::GlobalVariable * 170 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 171 const char *Separator, 172 llvm::GlobalValue::LinkageTypes Linkage) { 173 QualType Ty = D.getType(); 174 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 175 176 std::string Name = GetStaticDeclName(*this, D, Separator); 177 178 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 179 llvm::GlobalVariable *GV = 180 new llvm::GlobalVariable(CGM.getModule(), LTy, 181 Ty.isConstant(getContext()), Linkage, 182 CGM.EmitNullConstant(D.getType()), Name, 0, 183 D.isThreadSpecified(), 184 CGM.getContext().getTargetAddressSpace(Ty)); 185 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 186 if (Linkage != llvm::GlobalValue::InternalLinkage) 187 GV->setVisibility(CurFn->getVisibility()); 188 return GV; 189 } 190 191 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 192 /// global variable that has already been created for it. If the initializer 193 /// has a different type than GV does, this may free GV and return a different 194 /// one. Otherwise it just returns GV. 195 llvm::GlobalVariable * 196 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 197 llvm::GlobalVariable *GV) { 198 llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this); 199 200 // If constant emission failed, then this should be a C++ static 201 // initializer. 202 if (!Init) { 203 if (!getContext().getLangOptions().CPlusPlus) 204 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 205 else if (Builder.GetInsertBlock()) { 206 // Since we have a static initializer, this global variable can't 207 // be constant. 208 GV->setConstant(false); 209 210 EmitCXXGuardedInit(D, GV); 211 } 212 return GV; 213 } 214 215 // The initializer may differ in type from the global. Rewrite 216 // the global to match the initializer. (We have to do this 217 // because some types, like unions, can't be completely represented 218 // in the LLVM type system.) 219 if (GV->getType()->getElementType() != Init->getType()) { 220 llvm::GlobalVariable *OldGV = GV; 221 222 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 223 OldGV->isConstant(), 224 OldGV->getLinkage(), Init, "", 225 /*InsertBefore*/ OldGV, 226 D.isThreadSpecified(), 227 CGM.getContext().getTargetAddressSpace(D.getType())); 228 GV->setVisibility(OldGV->getVisibility()); 229 230 // Steal the name of the old global 231 GV->takeName(OldGV); 232 233 // Replace all uses of the old global with the new global 234 llvm::Constant *NewPtrForOldDecl = 235 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 236 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 237 238 // Erase the old global, since it is no longer used. 239 OldGV->eraseFromParent(); 240 } 241 242 GV->setInitializer(Init); 243 return GV; 244 } 245 246 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 247 llvm::GlobalValue::LinkageTypes Linkage) { 248 llvm::Value *&DMEntry = LocalDeclMap[&D]; 249 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 250 251 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 252 253 // Store into LocalDeclMap before generating initializer to handle 254 // circular references. 255 DMEntry = GV; 256 257 // We can't have a VLA here, but we can have a pointer to a VLA, 258 // even though that doesn't really make any sense. 259 // Make sure to evaluate VLA bounds now so that we have them for later. 260 if (D.getType()->isVariablyModifiedType()) 261 EmitVLASize(D.getType()); 262 263 // Local static block variables must be treated as globals as they may be 264 // referenced in their RHS initializer block-literal expresion. 265 CGM.setStaticLocalDeclAddress(&D, GV); 266 267 // If this value has an initializer, emit it. 268 if (D.getInit()) 269 GV = AddInitializerToStaticVarDecl(D, GV); 270 271 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 272 273 // FIXME: Merge attribute handling. 274 if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) { 275 SourceManager &SM = CGM.getContext().getSourceManager(); 276 llvm::Constant *Ann = 277 CGM.EmitAnnotateAttr(GV, AA, 278 SM.getInstantiationLineNumber(D.getLocation())); 279 CGM.AddAnnotation(Ann); 280 } 281 282 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 283 GV->setSection(SA->getName()); 284 285 if (D.hasAttr<UsedAttr>()) 286 CGM.AddUsedGlobal(GV); 287 288 // We may have to cast the constant because of the initializer 289 // mismatch above. 290 // 291 // FIXME: It is really dangerous to store this in the map; if anyone 292 // RAUW's the GV uses of this constant will be invalid. 293 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 294 const llvm::Type *LPtrTy = 295 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 296 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 297 298 // Emit global variable debug descriptor for static vars. 299 CGDebugInfo *DI = getDebugInfo(); 300 if (DI) { 301 DI->setLocation(D.getLocation()); 302 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 303 } 304 } 305 306 namespace { 307 struct CallArrayDtor : EHScopeStack::Cleanup { 308 CallArrayDtor(const CXXDestructorDecl *Dtor, 309 const ConstantArrayType *Type, 310 llvm::Value *Loc) 311 : Dtor(Dtor), Type(Type), Loc(Loc) {} 312 313 const CXXDestructorDecl *Dtor; 314 const ConstantArrayType *Type; 315 llvm::Value *Loc; 316 317 void Emit(CodeGenFunction &CGF, bool IsForEH) { 318 QualType BaseElementTy = CGF.getContext().getBaseElementType(Type); 319 const llvm::Type *BasePtr = CGF.ConvertType(BaseElementTy); 320 BasePtr = llvm::PointerType::getUnqual(BasePtr); 321 llvm::Value *BaseAddrPtr = CGF.Builder.CreateBitCast(Loc, BasePtr); 322 CGF.EmitCXXAggrDestructorCall(Dtor, Type, BaseAddrPtr); 323 } 324 }; 325 326 struct CallVarDtor : EHScopeStack::Cleanup { 327 CallVarDtor(const CXXDestructorDecl *Dtor, 328 llvm::Value *NRVOFlag, 329 llvm::Value *Loc) 330 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(Loc) {} 331 332 const CXXDestructorDecl *Dtor; 333 llvm::Value *NRVOFlag; 334 llvm::Value *Loc; 335 336 void Emit(CodeGenFunction &CGF, bool IsForEH) { 337 // Along the exceptions path we always execute the dtor. 338 bool NRVO = !IsForEH && NRVOFlag; 339 340 llvm::BasicBlock *SkipDtorBB = 0; 341 if (NRVO) { 342 // If we exited via NRVO, we skip the destructor call. 343 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 344 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 345 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 346 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 347 CGF.EmitBlock(RunDtorBB); 348 } 349 350 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 351 /*ForVirtualBase=*/false, Loc); 352 353 if (NRVO) CGF.EmitBlock(SkipDtorBB); 354 } 355 }; 356 } 357 358 namespace { 359 struct CallStackRestore : EHScopeStack::Cleanup { 360 llvm::Value *Stack; 361 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 362 void Emit(CodeGenFunction &CGF, bool IsForEH) { 363 llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp"); 364 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 365 CGF.Builder.CreateCall(F, V); 366 } 367 }; 368 369 struct CallCleanupFunction : EHScopeStack::Cleanup { 370 llvm::Constant *CleanupFn; 371 const CGFunctionInfo &FnInfo; 372 const VarDecl &Var; 373 374 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 375 const VarDecl *Var) 376 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 377 378 void Emit(CodeGenFunction &CGF, bool IsForEH) { 379 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 380 SourceLocation()); 381 // Compute the address of the local variable, in case it's a byref 382 // or something. 383 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 384 385 // In some cases, the type of the function argument will be different from 386 // the type of the pointer. An example of this is 387 // void f(void* arg); 388 // __attribute__((cleanup(f))) void *g; 389 // 390 // To fix this we insert a bitcast here. 391 QualType ArgTy = FnInfo.arg_begin()->type; 392 llvm::Value *Arg = 393 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 394 395 CallArgList Args; 396 Args.add(RValue::get(Arg), 397 CGF.getContext().getPointerType(Var.getType())); 398 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 399 } 400 }; 401 } 402 403 404 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 405 /// non-zero parts of the specified initializer with equal or fewer than 406 /// NumStores scalar stores. 407 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 408 unsigned &NumStores) { 409 // Zero and Undef never requires any extra stores. 410 if (isa<llvm::ConstantAggregateZero>(Init) || 411 isa<llvm::ConstantPointerNull>(Init) || 412 isa<llvm::UndefValue>(Init)) 413 return true; 414 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 415 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 416 isa<llvm::ConstantExpr>(Init)) 417 return Init->isNullValue() || NumStores--; 418 419 // See if we can emit each element. 420 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 421 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 422 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 423 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 424 return false; 425 } 426 return true; 427 } 428 429 // Anything else is hard and scary. 430 return false; 431 } 432 433 /// emitStoresForInitAfterMemset - For inits that 434 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 435 /// stores that would be required. 436 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 437 bool isVolatile, CGBuilderTy &Builder) { 438 // Zero doesn't require any stores. 439 if (isa<llvm::ConstantAggregateZero>(Init) || 440 isa<llvm::ConstantPointerNull>(Init) || 441 isa<llvm::UndefValue>(Init)) 442 return; 443 444 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 445 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 446 isa<llvm::ConstantExpr>(Init)) { 447 if (!Init->isNullValue()) 448 Builder.CreateStore(Init, Loc, isVolatile); 449 return; 450 } 451 452 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 453 "Unknown value type!"); 454 455 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 456 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 457 if (Elt->isNullValue()) continue; 458 459 // Otherwise, get a pointer to the element and emit it. 460 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 461 isVolatile, Builder); 462 } 463 } 464 465 466 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 467 /// plus some stores to initialize a local variable instead of using a memcpy 468 /// from a constant global. It is beneficial to use memset if the global is all 469 /// zeros, or mostly zeros and large. 470 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 471 uint64_t GlobalSize) { 472 // If a global is all zeros, always use a memset. 473 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 474 475 476 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 477 // do it if it will require 6 or fewer scalar stores. 478 // TODO: Should budget depends on the size? Avoiding a large global warrants 479 // plopping in more stores. 480 unsigned StoreBudget = 6; 481 uint64_t SizeLimit = 32; 482 483 return GlobalSize > SizeLimit && 484 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 485 } 486 487 488 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 489 /// variable declaration with auto, register, or no storage class specifier. 490 /// These turn into simple stack objects, or GlobalValues depending on target. 491 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 492 AutoVarEmission emission = EmitAutoVarAlloca(D); 493 EmitAutoVarInit(emission); 494 EmitAutoVarCleanups(emission); 495 } 496 497 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 498 /// local variable. Does not emit initalization or destruction. 499 CodeGenFunction::AutoVarEmission 500 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 501 QualType Ty = D.getType(); 502 503 AutoVarEmission emission(D); 504 505 bool isByRef = D.hasAttr<BlocksAttr>(); 506 emission.IsByRef = isByRef; 507 508 CharUnits alignment = getContext().getDeclAlign(&D); 509 emission.Alignment = alignment; 510 511 llvm::Value *DeclPtr; 512 if (Ty->isConstantSizeType()) { 513 if (!Target.useGlobalsForAutomaticVariables()) { 514 bool NRVO = getContext().getLangOptions().ElideConstructors && 515 D.isNRVOVariable(); 516 517 // If this value is a POD array or struct with a statically 518 // determinable constant initializer, there are optimizations we 519 // can do. 520 // TODO: we can potentially constant-evaluate non-POD structs and 521 // arrays as long as the initialization is trivial (e.g. if they 522 // have a non-trivial destructor, but not a non-trivial constructor). 523 if (D.getInit() && 524 (Ty->isArrayType() || Ty->isRecordType()) && Ty->isPODType() && 525 D.getInit()->isConstantInitializer(getContext(), false)) { 526 527 // If the variable's a const type, and it's neither an NRVO 528 // candidate nor a __block variable, emit it as a global instead. 529 if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() && 530 !NRVO && !isByRef) { 531 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 532 533 emission.Address = 0; // signal this condition to later callbacks 534 assert(emission.wasEmittedAsGlobal()); 535 return emission; 536 } 537 538 // Otherwise, tell the initialization code that we're in this case. 539 emission.IsConstantAggregate = true; 540 } 541 542 // A normal fixed sized variable becomes an alloca in the entry block, 543 // unless it's an NRVO variable. 544 const llvm::Type *LTy = ConvertTypeForMem(Ty); 545 546 if (NRVO) { 547 // The named return value optimization: allocate this variable in the 548 // return slot, so that we can elide the copy when returning this 549 // variable (C++0x [class.copy]p34). 550 DeclPtr = ReturnValue; 551 552 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 553 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 554 // Create a flag that is used to indicate when the NRVO was applied 555 // to this variable. Set it to zero to indicate that NRVO was not 556 // applied. 557 llvm::Value *Zero = Builder.getFalse(); 558 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 559 EnsureInsertPoint(); 560 Builder.CreateStore(Zero, NRVOFlag); 561 562 // Record the NRVO flag for this variable. 563 NRVOFlags[&D] = NRVOFlag; 564 emission.NRVOFlag = NRVOFlag; 565 } 566 } 567 } else { 568 if (isByRef) 569 LTy = BuildByRefType(&D); 570 571 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 572 Alloc->setName(D.getNameAsString()); 573 574 CharUnits allocaAlignment = alignment; 575 if (isByRef) 576 allocaAlignment = std::max(allocaAlignment, 577 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 578 Alloc->setAlignment(allocaAlignment.getQuantity()); 579 DeclPtr = Alloc; 580 } 581 } else { 582 // Targets that don't support recursion emit locals as globals. 583 const char *Class = 584 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 585 DeclPtr = CreateStaticVarDecl(D, Class, 586 llvm::GlobalValue::InternalLinkage); 587 } 588 589 // FIXME: Can this happen? 590 if (Ty->isVariablyModifiedType()) 591 EmitVLASize(Ty); 592 } else { 593 EnsureInsertPoint(); 594 595 if (!DidCallStackSave) { 596 // Save the stack. 597 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 598 599 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 600 llvm::Value *V = Builder.CreateCall(F); 601 602 Builder.CreateStore(V, Stack); 603 604 DidCallStackSave = true; 605 606 // Push a cleanup block and restore the stack there. 607 // FIXME: in general circumstances, this should be an EH cleanup. 608 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 609 } 610 611 // Get the element type. 612 const llvm::Type *LElemTy = ConvertTypeForMem(Ty); 613 const llvm::Type *LElemPtrTy = 614 LElemTy->getPointerTo(CGM.getContext().getTargetAddressSpace(Ty)); 615 616 llvm::Value *VLASize = EmitVLASize(Ty); 617 618 // Allocate memory for the array. 619 llvm::AllocaInst *VLA = 620 Builder.CreateAlloca(llvm::Type::getInt8Ty(getLLVMContext()), VLASize, "vla"); 621 VLA->setAlignment(alignment.getQuantity()); 622 623 DeclPtr = Builder.CreateBitCast(VLA, LElemPtrTy, "tmp"); 624 } 625 626 llvm::Value *&DMEntry = LocalDeclMap[&D]; 627 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 628 DMEntry = DeclPtr; 629 emission.Address = DeclPtr; 630 631 // Emit debug info for local var declaration. 632 if (CGDebugInfo *DI = getDebugInfo()) { 633 assert(HaveInsertPoint() && "Unexpected unreachable point!"); 634 635 DI->setLocation(D.getLocation()); 636 if (Target.useGlobalsForAutomaticVariables()) { 637 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 638 } else 639 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 640 } 641 642 return emission; 643 } 644 645 /// Determines whether the given __block variable is potentially 646 /// captured by the given expression. 647 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 648 // Skip the most common kinds of expressions that make 649 // hierarchy-walking expensive. 650 e = e->IgnoreParenCasts(); 651 652 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 653 const BlockDecl *block = be->getBlockDecl(); 654 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 655 e = block->capture_end(); i != e; ++i) { 656 if (i->getVariable() == &var) 657 return true; 658 } 659 660 // No need to walk into the subexpressions. 661 return false; 662 } 663 664 for (Stmt::const_child_range children = e->children(); children; ++children) 665 if (isCapturedBy(var, cast<Expr>(*children))) 666 return true; 667 668 return false; 669 } 670 671 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 672 assert(emission.Variable && "emission was not valid!"); 673 674 // If this was emitted as a global constant, we're done. 675 if (emission.wasEmittedAsGlobal()) return; 676 677 const VarDecl &D = *emission.Variable; 678 QualType type = D.getType(); 679 680 // If this local has an initializer, emit it now. 681 const Expr *Init = D.getInit(); 682 683 // If we are at an unreachable point, we don't need to emit the initializer 684 // unless it contains a label. 685 if (!HaveInsertPoint()) { 686 if (!Init || !ContainsLabel(Init)) return; 687 EnsureInsertPoint(); 688 } 689 690 // Initialize the structure of a __block variable. 691 if (emission.IsByRef) 692 emitByrefStructureInit(emission); 693 694 if (!Init) return; 695 696 CharUnits alignment = emission.Alignment; 697 698 // Check whether this is a byref variable that's potentially 699 // captured and moved by its own initializer. If so, we'll need to 700 // emit the initializer first, then copy into the variable. 701 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 702 703 llvm::Value *Loc = 704 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 705 706 if (!emission.IsConstantAggregate) 707 return EmitExprAsInit(Init, &D, Loc, alignment, capturedByInit); 708 709 // If this is a simple aggregate initialization, we can optimize it 710 // in various ways. 711 assert(!capturedByInit && "constant init contains a capturing block?"); 712 713 bool isVolatile = type.isVolatileQualified(); 714 715 llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this); 716 assert(constant != 0 && "Wasn't a simple constant init?"); 717 718 llvm::Value *SizeVal = 719 llvm::ConstantInt::get(IntPtrTy, 720 getContext().getTypeSizeInChars(type).getQuantity()); 721 722 const llvm::Type *BP = Int8PtrTy; 723 if (Loc->getType() != BP) 724 Loc = Builder.CreateBitCast(Loc, BP, "tmp"); 725 726 // If the initializer is all or mostly zeros, codegen with memset then do 727 // a few stores afterward. 728 if (shouldUseMemSetPlusStoresToInitialize(constant, 729 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 730 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 731 alignment.getQuantity(), isVolatile); 732 if (!constant->isNullValue()) { 733 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 734 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 735 } 736 } else { 737 // Otherwise, create a temporary global with the initializer then 738 // memcpy from the global to the alloca. 739 std::string Name = GetStaticDeclName(*this, D, "."); 740 llvm::GlobalVariable *GV = 741 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 742 llvm::GlobalValue::InternalLinkage, 743 constant, Name, 0, false, 0); 744 GV->setAlignment(alignment.getQuantity()); 745 GV->setUnnamedAddr(true); 746 747 llvm::Value *SrcPtr = GV; 748 if (SrcPtr->getType() != BP) 749 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 750 751 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 752 isVolatile); 753 } 754 } 755 756 /// Emit an expression as an initializer for a variable at the given 757 /// location. The expression is not necessarily the normal 758 /// initializer for the variable, and the address is not necessarily 759 /// its normal location. 760 /// 761 /// \param init the initializing expression 762 /// \param var the variable to act as if we're initializing 763 /// \param loc the address to initialize; its type is a pointer 764 /// to the LLVM mapping of the variable's type 765 /// \param alignment the alignment of the address 766 /// \param capturedByInit true if the variable is a __block variable 767 /// whose address is potentially changed by the initializer 768 void CodeGenFunction::EmitExprAsInit(const Expr *init, 769 const VarDecl *var, 770 llvm::Value *loc, 771 CharUnits alignment, 772 bool capturedByInit) { 773 QualType type = var->getType(); 774 bool isVolatile = type.isVolatileQualified(); 775 776 if (type->isReferenceType()) { 777 RValue RV = EmitReferenceBindingToExpr(init, var); 778 if (capturedByInit) loc = BuildBlockByrefAddress(loc, var); 779 EmitStoreOfScalar(RV.getScalarVal(), loc, false, 780 alignment.getQuantity(), type); 781 } else if (!hasAggregateLLVMType(type)) { 782 llvm::Value *V = EmitScalarExpr(init); 783 if (capturedByInit) loc = BuildBlockByrefAddress(loc, var); 784 EmitStoreOfScalar(V, loc, isVolatile, alignment.getQuantity(), type); 785 } else if (type->isAnyComplexType()) { 786 ComplexPairTy complex = EmitComplexExpr(init); 787 if (capturedByInit) loc = BuildBlockByrefAddress(loc, var); 788 StoreComplexToAddr(complex, loc, isVolatile); 789 } else { 790 // TODO: how can we delay here if D is captured by its initializer? 791 EmitAggExpr(init, AggValueSlot::forAddr(loc, isVolatile, true, false)); 792 } 793 } 794 795 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 796 assert(emission.Variable && "emission was not valid!"); 797 798 // If this was emitted as a global constant, we're done. 799 if (emission.wasEmittedAsGlobal()) return; 800 801 const VarDecl &D = *emission.Variable; 802 803 // Handle C++ destruction of variables. 804 if (getLangOptions().CPlusPlus) { 805 QualType type = D.getType(); 806 QualType baseType = getContext().getBaseElementType(type); 807 if (const RecordType *RT = baseType->getAs<RecordType>()) { 808 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 809 if (!ClassDecl->hasTrivialDestructor()) { 810 // Note: We suppress the destructor call when the corresponding NRVO 811 // flag has been set. 812 813 // Note that for __block variables, we want to destroy the 814 // original stack object, not the possible forwarded object. 815 llvm::Value *Loc = emission.getObjectAddress(*this); 816 817 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 818 assert(D && "EmitLocalBlockVarDecl - destructor is nul"); 819 820 if (type != baseType) { 821 const ConstantArrayType *Array = 822 getContext().getAsConstantArrayType(type); 823 assert(Array && "types changed without array?"); 824 EHStack.pushCleanup<CallArrayDtor>(NormalAndEHCleanup, 825 D, Array, Loc); 826 } else { 827 EHStack.pushCleanup<CallVarDtor>(NormalAndEHCleanup, 828 D, emission.NRVOFlag, Loc); 829 } 830 } 831 } 832 } 833 834 // Handle the cleanup attribute. 835 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 836 const FunctionDecl *FD = CA->getFunctionDecl(); 837 838 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 839 assert(F && "Could not find function!"); 840 841 const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD); 842 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 843 } 844 845 // If this is a block variable, call _Block_object_destroy 846 // (on the unforwarded address). 847 if (emission.IsByRef) 848 enterByrefCleanup(emission); 849 } 850 851 /// Emit an alloca (or GlobalValue depending on target) 852 /// for the specified parameter and set up LocalDeclMap. 853 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 854 unsigned ArgNo) { 855 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 856 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 857 "Invalid argument to EmitParmDecl"); 858 859 Arg->setName(D.getName()); 860 861 // Use better IR generation for certain implicit parameters. 862 if (isa<ImplicitParamDecl>(D)) { 863 // The only implicit argument a block has is its literal. 864 if (BlockInfo) { 865 LocalDeclMap[&D] = Arg; 866 867 if (CGDebugInfo *DI = getDebugInfo()) { 868 DI->setLocation(D.getLocation()); 869 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 870 } 871 872 return; 873 } 874 } 875 876 QualType Ty = D.getType(); 877 878 llvm::Value *DeclPtr; 879 // If this is an aggregate or variable sized value, reuse the input pointer. 880 if (!Ty->isConstantSizeType() || 881 CodeGenFunction::hasAggregateLLVMType(Ty)) { 882 DeclPtr = Arg; 883 } else { 884 // Otherwise, create a temporary to hold the value. 885 DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr"); 886 887 // Store the initial value into the alloca. 888 EmitStoreOfScalar(Arg, DeclPtr, Ty.isVolatileQualified(), 889 getContext().getDeclAlign(&D).getQuantity(), Ty, 890 CGM.getTBAAInfo(Ty)); 891 } 892 893 llvm::Value *&DMEntry = LocalDeclMap[&D]; 894 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 895 DMEntry = DeclPtr; 896 897 // Emit debug info for param declaration. 898 if (CGDebugInfo *DI = getDebugInfo()) { 899 DI->setLocation(D.getLocation()); 900 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 901 } 902 } 903