1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclOpenMP.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/CodeGen/CGFunctionInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Type.h"
37 
38 using namespace clang;
39 using namespace CodeGen;
40 
41 void CodeGenFunction::EmitDecl(const Decl &D) {
42   switch (D.getKind()) {
43   case Decl::BuiltinTemplate:
44   case Decl::TranslationUnit:
45   case Decl::ExternCContext:
46   case Decl::Namespace:
47   case Decl::UnresolvedUsingTypename:
48   case Decl::ClassTemplateSpecialization:
49   case Decl::ClassTemplatePartialSpecialization:
50   case Decl::VarTemplateSpecialization:
51   case Decl::VarTemplatePartialSpecialization:
52   case Decl::TemplateTypeParm:
53   case Decl::UnresolvedUsingValue:
54   case Decl::NonTypeTemplateParm:
55   case Decl::CXXDeductionGuide:
56   case Decl::CXXMethod:
57   case Decl::CXXConstructor:
58   case Decl::CXXDestructor:
59   case Decl::CXXConversion:
60   case Decl::Field:
61   case Decl::MSProperty:
62   case Decl::IndirectField:
63   case Decl::ObjCIvar:
64   case Decl::ObjCAtDefsField:
65   case Decl::ParmVar:
66   case Decl::ImplicitParam:
67   case Decl::ClassTemplate:
68   case Decl::VarTemplate:
69   case Decl::FunctionTemplate:
70   case Decl::TypeAliasTemplate:
71   case Decl::TemplateTemplateParm:
72   case Decl::ObjCMethod:
73   case Decl::ObjCCategory:
74   case Decl::ObjCProtocol:
75   case Decl::ObjCInterface:
76   case Decl::ObjCCategoryImpl:
77   case Decl::ObjCImplementation:
78   case Decl::ObjCProperty:
79   case Decl::ObjCCompatibleAlias:
80   case Decl::PragmaComment:
81   case Decl::PragmaDetectMismatch:
82   case Decl::AccessSpec:
83   case Decl::LinkageSpec:
84   case Decl::Export:
85   case Decl::ObjCPropertyImpl:
86   case Decl::FileScopeAsm:
87   case Decl::Friend:
88   case Decl::FriendTemplate:
89   case Decl::Block:
90   case Decl::Captured:
91   case Decl::ClassScopeFunctionSpecialization:
92   case Decl::UsingShadow:
93   case Decl::ConstructorUsingShadow:
94   case Decl::ObjCTypeParam:
95   case Decl::Binding:
96     llvm_unreachable("Declaration should not be in declstmts!");
97   case Decl::Function:  // void X();
98   case Decl::Record:    // struct/union/class X;
99   case Decl::Enum:      // enum X;
100   case Decl::EnumConstant: // enum ? { X = ? }
101   case Decl::CXXRecord: // struct/union/class X; [C++]
102   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
103   case Decl::Label:        // __label__ x;
104   case Decl::Import:
105   case Decl::OMPThreadPrivate:
106   case Decl::OMPCapturedExpr:
107   case Decl::OMPRequires:
108   case Decl::Empty:
109     // None of these decls require codegen support.
110     return;
111 
112   case Decl::NamespaceAlias:
113     if (CGDebugInfo *DI = getDebugInfo())
114         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
115     return;
116   case Decl::Using:          // using X; [C++]
117     if (CGDebugInfo *DI = getDebugInfo())
118         DI->EmitUsingDecl(cast<UsingDecl>(D));
119     return;
120   case Decl::UsingPack:
121     for (auto *Using : cast<UsingPackDecl>(D).expansions())
122       EmitDecl(*Using);
123     return;
124   case Decl::UsingDirective: // using namespace X; [C++]
125     if (CGDebugInfo *DI = getDebugInfo())
126       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
127     return;
128   case Decl::Var:
129   case Decl::Decomposition: {
130     const VarDecl &VD = cast<VarDecl>(D);
131     assert(VD.isLocalVarDecl() &&
132            "Should not see file-scope variables inside a function!");
133     EmitVarDecl(VD);
134     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
135       for (auto *B : DD->bindings())
136         if (auto *HD = B->getHoldingVar())
137           EmitVarDecl(*HD);
138     return;
139   }
140 
141   case Decl::OMPDeclareReduction:
142     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
143 
144   case Decl::OMPDeclareMapper:
145     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
146 
147   case Decl::Typedef:      // typedef int X;
148   case Decl::TypeAlias: {  // using X = int; [C++0x]
149     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
150     QualType Ty = TD.getUnderlyingType();
151 
152     if (Ty->isVariablyModifiedType())
153       EmitVariablyModifiedType(Ty);
154   }
155   }
156 }
157 
158 /// EmitVarDecl - This method handles emission of any variable declaration
159 /// inside a function, including static vars etc.
160 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
161   if (D.hasExternalStorage())
162     // Don't emit it now, allow it to be emitted lazily on its first use.
163     return;
164 
165   // Some function-scope variable does not have static storage but still
166   // needs to be emitted like a static variable, e.g. a function-scope
167   // variable in constant address space in OpenCL.
168   if (D.getStorageDuration() != SD_Automatic) {
169     // Static sampler variables translated to function calls.
170     if (D.getType()->isSamplerT())
171       return;
172 
173     llvm::GlobalValue::LinkageTypes Linkage =
174         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
175 
176     // FIXME: We need to force the emission/use of a guard variable for
177     // some variables even if we can constant-evaluate them because
178     // we can't guarantee every translation unit will constant-evaluate them.
179 
180     return EmitStaticVarDecl(D, Linkage);
181   }
182 
183   if (D.getType().getAddressSpace() == LangAS::opencl_local)
184     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
185 
186   assert(D.hasLocalStorage());
187   return EmitAutoVarDecl(D);
188 }
189 
190 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
191   if (CGM.getLangOpts().CPlusPlus)
192     return CGM.getMangledName(&D).str();
193 
194   // If this isn't C++, we don't need a mangled name, just a pretty one.
195   assert(!D.isExternallyVisible() && "name shouldn't matter");
196   std::string ContextName;
197   const DeclContext *DC = D.getDeclContext();
198   if (auto *CD = dyn_cast<CapturedDecl>(DC))
199     DC = cast<DeclContext>(CD->getNonClosureContext());
200   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
201     ContextName = CGM.getMangledName(FD);
202   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
203     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
204   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
205     ContextName = OMD->getSelector().getAsString();
206   else
207     llvm_unreachable("Unknown context for static var decl");
208 
209   ContextName += "." + D.getNameAsString();
210   return ContextName;
211 }
212 
213 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
214     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
215   // In general, we don't always emit static var decls once before we reference
216   // them. It is possible to reference them before emitting the function that
217   // contains them, and it is possible to emit the containing function multiple
218   // times.
219   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
220     return ExistingGV;
221 
222   QualType Ty = D.getType();
223   assert(Ty->isConstantSizeType() && "VLAs can't be static");
224 
225   // Use the label if the variable is renamed with the asm-label extension.
226   std::string Name;
227   if (D.hasAttr<AsmLabelAttr>())
228     Name = getMangledName(&D);
229   else
230     Name = getStaticDeclName(*this, D);
231 
232   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
233   LangAS AS = GetGlobalVarAddressSpace(&D);
234   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
235 
236   // OpenCL variables in local address space and CUDA shared
237   // variables cannot have an initializer.
238   llvm::Constant *Init = nullptr;
239   if (Ty.getAddressSpace() == LangAS::opencl_local ||
240       D.hasAttr<CUDASharedAttr>())
241     Init = llvm::UndefValue::get(LTy);
242   else
243     Init = EmitNullConstant(Ty);
244 
245   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
246       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
247       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
248   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
249 
250   if (supportsCOMDAT() && GV->isWeakForLinker())
251     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
252 
253   if (D.getTLSKind())
254     setTLSMode(GV, D);
255 
256   setGVProperties(GV, &D);
257 
258   // Make sure the result is of the correct type.
259   LangAS ExpectedAS = Ty.getAddressSpace();
260   llvm::Constant *Addr = GV;
261   if (AS != ExpectedAS) {
262     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
263         *this, GV, AS, ExpectedAS,
264         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
265   }
266 
267   setStaticLocalDeclAddress(&D, Addr);
268 
269   // Ensure that the static local gets initialized by making sure the parent
270   // function gets emitted eventually.
271   const Decl *DC = cast<Decl>(D.getDeclContext());
272 
273   // We can't name blocks or captured statements directly, so try to emit their
274   // parents.
275   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
276     DC = DC->getNonClosureContext();
277     // FIXME: Ensure that global blocks get emitted.
278     if (!DC)
279       return Addr;
280   }
281 
282   GlobalDecl GD;
283   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
284     GD = GlobalDecl(CD, Ctor_Base);
285   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
286     GD = GlobalDecl(DD, Dtor_Base);
287   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
288     GD = GlobalDecl(FD);
289   else {
290     // Don't do anything for Obj-C method decls or global closures. We should
291     // never defer them.
292     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
293   }
294   if (GD.getDecl()) {
295     // Disable emission of the parent function for the OpenMP device codegen.
296     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
297     (void)GetAddrOfGlobal(GD);
298   }
299 
300   return Addr;
301 }
302 
303 /// hasNontrivialDestruction - Determine whether a type's destruction is
304 /// non-trivial. If so, and the variable uses static initialization, we must
305 /// register its destructor to run on exit.
306 static bool hasNontrivialDestruction(QualType T) {
307   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
308   return RD && !RD->hasTrivialDestructor();
309 }
310 
311 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
312 /// global variable that has already been created for it.  If the initializer
313 /// has a different type than GV does, this may free GV and return a different
314 /// one.  Otherwise it just returns GV.
315 llvm::GlobalVariable *
316 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
317                                                llvm::GlobalVariable *GV) {
318   ConstantEmitter emitter(*this);
319   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
320 
321   // If constant emission failed, then this should be a C++ static
322   // initializer.
323   if (!Init) {
324     if (!getLangOpts().CPlusPlus)
325       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
326     else if (HaveInsertPoint()) {
327       // Since we have a static initializer, this global variable can't
328       // be constant.
329       GV->setConstant(false);
330 
331       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
332     }
333     return GV;
334   }
335 
336   // The initializer may differ in type from the global. Rewrite
337   // the global to match the initializer.  (We have to do this
338   // because some types, like unions, can't be completely represented
339   // in the LLVM type system.)
340   if (GV->getType()->getElementType() != Init->getType()) {
341     llvm::GlobalVariable *OldGV = GV;
342 
343     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
344                                   OldGV->isConstant(),
345                                   OldGV->getLinkage(), Init, "",
346                                   /*InsertBefore*/ OldGV,
347                                   OldGV->getThreadLocalMode(),
348                            CGM.getContext().getTargetAddressSpace(D.getType()));
349     GV->setVisibility(OldGV->getVisibility());
350     GV->setDSOLocal(OldGV->isDSOLocal());
351     GV->setComdat(OldGV->getComdat());
352 
353     // Steal the name of the old global
354     GV->takeName(OldGV);
355 
356     // Replace all uses of the old global with the new global
357     llvm::Constant *NewPtrForOldDecl =
358     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
359     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
360 
361     // Erase the old global, since it is no longer used.
362     OldGV->eraseFromParent();
363   }
364 
365   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
366   GV->setInitializer(Init);
367 
368   emitter.finalize(GV);
369 
370   if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
371     // We have a constant initializer, but a nontrivial destructor. We still
372     // need to perform a guarded "initialization" in order to register the
373     // destructor.
374     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
375   }
376 
377   return GV;
378 }
379 
380 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
381                                       llvm::GlobalValue::LinkageTypes Linkage) {
382   // Check to see if we already have a global variable for this
383   // declaration.  This can happen when double-emitting function
384   // bodies, e.g. with complete and base constructors.
385   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
386   CharUnits alignment = getContext().getDeclAlign(&D);
387 
388   // Store into LocalDeclMap before generating initializer to handle
389   // circular references.
390   setAddrOfLocalVar(&D, Address(addr, alignment));
391 
392   // We can't have a VLA here, but we can have a pointer to a VLA,
393   // even though that doesn't really make any sense.
394   // Make sure to evaluate VLA bounds now so that we have them for later.
395   if (D.getType()->isVariablyModifiedType())
396     EmitVariablyModifiedType(D.getType());
397 
398   // Save the type in case adding the initializer forces a type change.
399   llvm::Type *expectedType = addr->getType();
400 
401   llvm::GlobalVariable *var =
402     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
403 
404   // CUDA's local and local static __shared__ variables should not
405   // have any non-empty initializers. This is ensured by Sema.
406   // Whatever initializer such variable may have when it gets here is
407   // a no-op and should not be emitted.
408   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
409                          D.hasAttr<CUDASharedAttr>();
410   // If this value has an initializer, emit it.
411   if (D.getInit() && !isCudaSharedVar)
412     var = AddInitializerToStaticVarDecl(D, var);
413 
414   var->setAlignment(alignment.getQuantity());
415 
416   if (D.hasAttr<AnnotateAttr>())
417     CGM.AddGlobalAnnotations(&D, var);
418 
419   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
420     var->addAttribute("bss-section", SA->getName());
421   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
422     var->addAttribute("data-section", SA->getName());
423   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
424     var->addAttribute("rodata-section", SA->getName());
425 
426   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
427     var->setSection(SA->getName());
428 
429   if (D.hasAttr<UsedAttr>())
430     CGM.addUsedGlobal(var);
431 
432   // We may have to cast the constant because of the initializer
433   // mismatch above.
434   //
435   // FIXME: It is really dangerous to store this in the map; if anyone
436   // RAUW's the GV uses of this constant will be invalid.
437   llvm::Constant *castedAddr =
438     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
439   if (var != castedAddr)
440     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
441   CGM.setStaticLocalDeclAddress(&D, castedAddr);
442 
443   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
444 
445   // Emit global variable debug descriptor for static vars.
446   CGDebugInfo *DI = getDebugInfo();
447   if (DI &&
448       CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
449     DI->setLocation(D.getLocation());
450     DI->EmitGlobalVariable(var, &D);
451   }
452 }
453 
454 namespace {
455   struct DestroyObject final : EHScopeStack::Cleanup {
456     DestroyObject(Address addr, QualType type,
457                   CodeGenFunction::Destroyer *destroyer,
458                   bool useEHCleanupForArray)
459       : addr(addr), type(type), destroyer(destroyer),
460         useEHCleanupForArray(useEHCleanupForArray) {}
461 
462     Address addr;
463     QualType type;
464     CodeGenFunction::Destroyer *destroyer;
465     bool useEHCleanupForArray;
466 
467     void Emit(CodeGenFunction &CGF, Flags flags) override {
468       // Don't use an EH cleanup recursively from an EH cleanup.
469       bool useEHCleanupForArray =
470         flags.isForNormalCleanup() && this->useEHCleanupForArray;
471 
472       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
473     }
474   };
475 
476   template <class Derived>
477   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
478     DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag)
479         : NRVOFlag(NRVOFlag), Loc(addr) {}
480 
481     llvm::Value *NRVOFlag;
482     Address Loc;
483 
484     void Emit(CodeGenFunction &CGF, Flags flags) override {
485       // Along the exceptions path we always execute the dtor.
486       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
487 
488       llvm::BasicBlock *SkipDtorBB = nullptr;
489       if (NRVO) {
490         // If we exited via NRVO, we skip the destructor call.
491         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
492         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
493         llvm::Value *DidNRVO =
494           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
495         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
496         CGF.EmitBlock(RunDtorBB);
497       }
498 
499       static_cast<Derived *>(this)->emitDestructorCall(CGF);
500 
501       if (NRVO) CGF.EmitBlock(SkipDtorBB);
502     }
503 
504     virtual ~DestroyNRVOVariable() = default;
505   };
506 
507   struct DestroyNRVOVariableCXX final
508       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
509     DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor,
510                            llvm::Value *NRVOFlag)
511       : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag),
512         Dtor(Dtor) {}
513 
514     const CXXDestructorDecl *Dtor;
515 
516     void emitDestructorCall(CodeGenFunction &CGF) {
517       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
518                                 /*ForVirtualBase=*/false,
519                                 /*Delegating=*/false, Loc);
520     }
521   };
522 
523   struct DestroyNRVOVariableC final
524       : DestroyNRVOVariable<DestroyNRVOVariableC> {
525     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
526         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {}
527 
528     QualType Ty;
529 
530     void emitDestructorCall(CodeGenFunction &CGF) {
531       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
532     }
533   };
534 
535   struct CallStackRestore final : EHScopeStack::Cleanup {
536     Address Stack;
537     CallStackRestore(Address Stack) : Stack(Stack) {}
538     void Emit(CodeGenFunction &CGF, Flags flags) override {
539       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
540       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
541       CGF.Builder.CreateCall(F, V);
542     }
543   };
544 
545   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
546     const VarDecl &Var;
547     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
548 
549     void Emit(CodeGenFunction &CGF, Flags flags) override {
550       // Compute the address of the local variable, in case it's a
551       // byref or something.
552       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
553                       Var.getType(), VK_LValue, SourceLocation());
554       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
555                                                 SourceLocation());
556       CGF.EmitExtendGCLifetime(value);
557     }
558   };
559 
560   struct CallCleanupFunction final : EHScopeStack::Cleanup {
561     llvm::Constant *CleanupFn;
562     const CGFunctionInfo &FnInfo;
563     const VarDecl &Var;
564 
565     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
566                         const VarDecl *Var)
567       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
568 
569     void Emit(CodeGenFunction &CGF, Flags flags) override {
570       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
571                       Var.getType(), VK_LValue, SourceLocation());
572       // Compute the address of the local variable, in case it's a byref
573       // or something.
574       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
575 
576       // In some cases, the type of the function argument will be different from
577       // the type of the pointer. An example of this is
578       // void f(void* arg);
579       // __attribute__((cleanup(f))) void *g;
580       //
581       // To fix this we insert a bitcast here.
582       QualType ArgTy = FnInfo.arg_begin()->type;
583       llvm::Value *Arg =
584         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
585 
586       CallArgList Args;
587       Args.add(RValue::get(Arg),
588                CGF.getContext().getPointerType(Var.getType()));
589       auto Callee = CGCallee::forDirect(CleanupFn);
590       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
591     }
592   };
593 } // end anonymous namespace
594 
595 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
596 /// variable with lifetime.
597 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
598                                     Address addr,
599                                     Qualifiers::ObjCLifetime lifetime) {
600   switch (lifetime) {
601   case Qualifiers::OCL_None:
602     llvm_unreachable("present but none");
603 
604   case Qualifiers::OCL_ExplicitNone:
605     // nothing to do
606     break;
607 
608   case Qualifiers::OCL_Strong: {
609     CodeGenFunction::Destroyer *destroyer =
610       (var.hasAttr<ObjCPreciseLifetimeAttr>()
611        ? CodeGenFunction::destroyARCStrongPrecise
612        : CodeGenFunction::destroyARCStrongImprecise);
613 
614     CleanupKind cleanupKind = CGF.getARCCleanupKind();
615     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
616                     cleanupKind & EHCleanup);
617     break;
618   }
619   case Qualifiers::OCL_Autoreleasing:
620     // nothing to do
621     break;
622 
623   case Qualifiers::OCL_Weak:
624     // __weak objects always get EH cleanups; otherwise, exceptions
625     // could cause really nasty crashes instead of mere leaks.
626     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
627                     CodeGenFunction::destroyARCWeak,
628                     /*useEHCleanup*/ true);
629     break;
630   }
631 }
632 
633 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
634   if (const Expr *e = dyn_cast<Expr>(s)) {
635     // Skip the most common kinds of expressions that make
636     // hierarchy-walking expensive.
637     s = e = e->IgnoreParenCasts();
638 
639     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
640       return (ref->getDecl() == &var);
641     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
642       const BlockDecl *block = be->getBlockDecl();
643       for (const auto &I : block->captures()) {
644         if (I.getVariable() == &var)
645           return true;
646       }
647     }
648   }
649 
650   for (const Stmt *SubStmt : s->children())
651     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
652     if (SubStmt && isAccessedBy(var, SubStmt))
653       return true;
654 
655   return false;
656 }
657 
658 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
659   if (!decl) return false;
660   if (!isa<VarDecl>(decl)) return false;
661   const VarDecl *var = cast<VarDecl>(decl);
662   return isAccessedBy(*var, e);
663 }
664 
665 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
666                                    const LValue &destLV, const Expr *init) {
667   bool needsCast = false;
668 
669   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
670     switch (castExpr->getCastKind()) {
671     // Look through casts that don't require representation changes.
672     case CK_NoOp:
673     case CK_BitCast:
674     case CK_BlockPointerToObjCPointerCast:
675       needsCast = true;
676       break;
677 
678     // If we find an l-value to r-value cast from a __weak variable,
679     // emit this operation as a copy or move.
680     case CK_LValueToRValue: {
681       const Expr *srcExpr = castExpr->getSubExpr();
682       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
683         return false;
684 
685       // Emit the source l-value.
686       LValue srcLV = CGF.EmitLValue(srcExpr);
687 
688       // Handle a formal type change to avoid asserting.
689       auto srcAddr = srcLV.getAddress();
690       if (needsCast) {
691         srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
692                                          destLV.getAddress().getElementType());
693       }
694 
695       // If it was an l-value, use objc_copyWeak.
696       if (srcExpr->getValueKind() == VK_LValue) {
697         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
698       } else {
699         assert(srcExpr->getValueKind() == VK_XValue);
700         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
701       }
702       return true;
703     }
704 
705     // Stop at anything else.
706     default:
707       return false;
708     }
709 
710     init = castExpr->getSubExpr();
711   }
712   return false;
713 }
714 
715 static void drillIntoBlockVariable(CodeGenFunction &CGF,
716                                    LValue &lvalue,
717                                    const VarDecl *var) {
718   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
719 }
720 
721 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
722                                            SourceLocation Loc) {
723   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
724     return;
725 
726   auto Nullability = LHS.getType()->getNullability(getContext());
727   if (!Nullability || *Nullability != NullabilityKind::NonNull)
728     return;
729 
730   // Check if the right hand side of the assignment is nonnull, if the left
731   // hand side must be nonnull.
732   SanitizerScope SanScope(this);
733   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
734   llvm::Constant *StaticData[] = {
735       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
736       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
737       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
738   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
739             SanitizerHandler::TypeMismatch, StaticData, RHS);
740 }
741 
742 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
743                                      LValue lvalue, bool capturedByInit) {
744   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
745   if (!lifetime) {
746     llvm::Value *value = EmitScalarExpr(init);
747     if (capturedByInit)
748       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
749     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
750     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
751     return;
752   }
753 
754   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
755     init = DIE->getExpr();
756 
757   // If we're emitting a value with lifetime, we have to do the
758   // initialization *before* we leave the cleanup scopes.
759   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
760     enterFullExpression(fe);
761     init = fe->getSubExpr();
762   }
763   CodeGenFunction::RunCleanupsScope Scope(*this);
764 
765   // We have to maintain the illusion that the variable is
766   // zero-initialized.  If the variable might be accessed in its
767   // initializer, zero-initialize before running the initializer, then
768   // actually perform the initialization with an assign.
769   bool accessedByInit = false;
770   if (lifetime != Qualifiers::OCL_ExplicitNone)
771     accessedByInit = (capturedByInit || isAccessedBy(D, init));
772   if (accessedByInit) {
773     LValue tempLV = lvalue;
774     // Drill down to the __block object if necessary.
775     if (capturedByInit) {
776       // We can use a simple GEP for this because it can't have been
777       // moved yet.
778       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
779                                               cast<VarDecl>(D),
780                                               /*follow*/ false));
781     }
782 
783     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
784     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
785 
786     // If __weak, we want to use a barrier under certain conditions.
787     if (lifetime == Qualifiers::OCL_Weak)
788       EmitARCInitWeak(tempLV.getAddress(), zero);
789 
790     // Otherwise just do a simple store.
791     else
792       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
793   }
794 
795   // Emit the initializer.
796   llvm::Value *value = nullptr;
797 
798   switch (lifetime) {
799   case Qualifiers::OCL_None:
800     llvm_unreachable("present but none");
801 
802   case Qualifiers::OCL_Strong: {
803     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
804       value = EmitARCRetainScalarExpr(init);
805       break;
806     }
807     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
808     // that we omit the retain, and causes non-autoreleased return values to be
809     // immediately released.
810     LLVM_FALLTHROUGH;
811   }
812 
813   case Qualifiers::OCL_ExplicitNone:
814     value = EmitARCUnsafeUnretainedScalarExpr(init);
815     break;
816 
817   case Qualifiers::OCL_Weak: {
818     // If it's not accessed by the initializer, try to emit the
819     // initialization with a copy or move.
820     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
821       return;
822     }
823 
824     // No way to optimize a producing initializer into this.  It's not
825     // worth optimizing for, because the value will immediately
826     // disappear in the common case.
827     value = EmitScalarExpr(init);
828 
829     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
830     if (accessedByInit)
831       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
832     else
833       EmitARCInitWeak(lvalue.getAddress(), value);
834     return;
835   }
836 
837   case Qualifiers::OCL_Autoreleasing:
838     value = EmitARCRetainAutoreleaseScalarExpr(init);
839     break;
840   }
841 
842   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
843 
844   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
845 
846   // If the variable might have been accessed by its initializer, we
847   // might have to initialize with a barrier.  We have to do this for
848   // both __weak and __strong, but __weak got filtered out above.
849   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
850     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
851     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
852     EmitARCRelease(oldValue, ARCImpreciseLifetime);
853     return;
854   }
855 
856   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
857 }
858 
859 /// Decide whether we can emit the non-zero parts of the specified initializer
860 /// with equal or fewer than NumStores scalar stores.
861 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
862                                                unsigned &NumStores) {
863   // Zero and Undef never requires any extra stores.
864   if (isa<llvm::ConstantAggregateZero>(Init) ||
865       isa<llvm::ConstantPointerNull>(Init) ||
866       isa<llvm::UndefValue>(Init))
867     return true;
868   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
869       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
870       isa<llvm::ConstantExpr>(Init))
871     return Init->isNullValue() || NumStores--;
872 
873   // See if we can emit each element.
874   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
875     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
876       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
877       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
878         return false;
879     }
880     return true;
881   }
882 
883   if (llvm::ConstantDataSequential *CDS =
884         dyn_cast<llvm::ConstantDataSequential>(Init)) {
885     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
886       llvm::Constant *Elt = CDS->getElementAsConstant(i);
887       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
888         return false;
889     }
890     return true;
891   }
892 
893   // Anything else is hard and scary.
894   return false;
895 }
896 
897 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
898 /// the scalar stores that would be required.
899 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
900                                         llvm::Constant *Init, Address Loc,
901                                         bool isVolatile, CGBuilderTy &Builder) {
902   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
903          "called emitStoresForInitAfterBZero for zero or undef value.");
904 
905   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
906       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
907       isa<llvm::ConstantExpr>(Init)) {
908     Builder.CreateStore(Init, Loc, isVolatile);
909     return;
910   }
911 
912   if (llvm::ConstantDataSequential *CDS =
913           dyn_cast<llvm::ConstantDataSequential>(Init)) {
914     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
915       llvm::Constant *Elt = CDS->getElementAsConstant(i);
916 
917       // If necessary, get a pointer to the element and emit it.
918       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
919         emitStoresForInitAfterBZero(
920             CGM, Elt,
921             Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
922             isVolatile, Builder);
923     }
924     return;
925   }
926 
927   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
928          "Unknown value type!");
929 
930   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
931     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
932 
933     // If necessary, get a pointer to the element and emit it.
934     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
935       emitStoresForInitAfterBZero(
936           CGM, Elt,
937           Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
938           isVolatile, Builder);
939   }
940 }
941 
942 /// Decide whether we should use bzero plus some stores to initialize a local
943 /// variable instead of using a memcpy from a constant global.  It is beneficial
944 /// to use bzero if the global is all zeros, or mostly zeros and large.
945 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
946                                                  uint64_t GlobalSize) {
947   // If a global is all zeros, always use a bzero.
948   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
949 
950   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
951   // do it if it will require 6 or fewer scalar stores.
952   // TODO: Should budget depends on the size?  Avoiding a large global warrants
953   // plopping in more stores.
954   unsigned StoreBudget = 6;
955   uint64_t SizeLimit = 32;
956 
957   return GlobalSize > SizeLimit &&
958          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
959 }
960 
961 /// Decide whether we should use memset to initialize a local variable instead
962 /// of using a memcpy from a constant global. Assumes we've already decided to
963 /// not user bzero.
964 /// FIXME We could be more clever, as we are for bzero above, and generate
965 ///       memset followed by stores. It's unclear that's worth the effort.
966 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
967                                                 uint64_t GlobalSize) {
968   uint64_t SizeLimit = 32;
969   if (GlobalSize <= SizeLimit)
970     return nullptr;
971   return llvm::isBytewiseValue(Init);
972 }
973 
974 static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) {
975   // The following value is a guaranteed unmappable pointer value and has a
976   // repeated byte-pattern which makes it easier to synthesize. We use it for
977   // pointers as well as integers so that aggregates are likely to be
978   // initialized with this repeated value.
979   constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull;
980   // For 32-bit platforms it's a bit trickier because, across systems, only the
981   // zero page can reasonably be expected to be unmapped, and even then we need
982   // a very low address. We use a smaller value, and that value sadly doesn't
983   // have a repeated byte-pattern. We don't use it for integers.
984   constexpr uint32_t SmallValue = 0x000000AA;
985   // Floating-point values are initialized as NaNs because they propagate. Using
986   // a repeated byte pattern means that it will be easier to initialize
987   // all-floating-point aggregates and arrays with memset. Further, aggregates
988   // which mix integral and a few floats might also initialize with memset
989   // followed by a handful of stores for the floats. Using fairly unique NaNs
990   // also means they'll be easier to distinguish in a crash.
991   constexpr bool NegativeNaN = true;
992   constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull;
993   if (Ty->isIntOrIntVectorTy()) {
994     unsigned BitWidth = cast<llvm::IntegerType>(
995                             Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
996                             ->getBitWidth();
997     if (BitWidth <= 64)
998       return llvm::ConstantInt::get(Ty, LargeValue);
999     return llvm::ConstantInt::get(
1000         Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue)));
1001   }
1002   if (Ty->isPtrOrPtrVectorTy()) {
1003     auto *PtrTy = cast<llvm::PointerType>(
1004         Ty->isVectorTy() ? Ty->getVectorElementType() : Ty);
1005     unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth(
1006         PtrTy->getAddressSpace());
1007     llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth);
1008     uint64_t IntValue;
1009     switch (PtrWidth) {
1010     default:
1011       llvm_unreachable("pattern initialization of unsupported pointer width");
1012     case 64:
1013       IntValue = LargeValue;
1014       break;
1015     case 32:
1016       IntValue = SmallValue;
1017       break;
1018     }
1019     auto *Int = llvm::ConstantInt::get(IntTy, IntValue);
1020     return llvm::ConstantExpr::getIntToPtr(Int, PtrTy);
1021   }
1022   if (Ty->isFPOrFPVectorTy()) {
1023     unsigned BitWidth = llvm::APFloat::semanticsSizeInBits(
1024         (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
1025             ->getFltSemantics());
1026     llvm::APInt Payload(64, NaNPayload);
1027     if (BitWidth >= 64)
1028       Payload = llvm::APInt::getSplat(BitWidth, Payload);
1029     return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload);
1030   }
1031   if (Ty->isArrayTy()) {
1032     // Note: this doesn't touch tail padding (at the end of an object, before
1033     // the next array object). It is instead handled by replaceUndef.
1034     auto *ArrTy = cast<llvm::ArrayType>(Ty);
1035     llvm::SmallVector<llvm::Constant *, 8> Element(
1036         ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType()));
1037     return llvm::ConstantArray::get(ArrTy, Element);
1038   }
1039 
1040   // Note: this doesn't touch struct padding. It will initialize as much union
1041   // padding as is required for the largest type in the union. Padding is
1042   // instead handled by replaceUndef. Stores to structs with volatile members
1043   // don't have a volatile qualifier when initialized according to C++. This is
1044   // fine because stack-based volatiles don't really have volatile semantics
1045   // anyways, and the initialization shouldn't be observable.
1046   auto *StructTy = cast<llvm::StructType>(Ty);
1047   llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements());
1048   for (unsigned El = 0; El != Struct.size(); ++El)
1049     Struct[El] = patternFor(CGM, StructTy->getElementType(El));
1050   return llvm::ConstantStruct::get(StructTy, Struct);
1051 }
1052 
1053 static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D,
1054                                        CGBuilderTy &Builder,
1055                                        llvm::Constant *Constant,
1056                                        CharUnits Align) {
1057   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1058     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1059       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1060         return CC->getNameAsString();
1061       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1062         return CD->getNameAsString();
1063       return CGM.getMangledName(FD);
1064     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1065       return OM->getNameAsString();
1066     } else if (isa<BlockDecl>(DC)) {
1067       return "<block>";
1068     } else if (isa<CapturedDecl>(DC)) {
1069       return "<captured>";
1070     } else {
1071       llvm::llvm_unreachable_internal("expected a function or method");
1072     }
1073   };
1074 
1075   auto *Ty = Constant->getType();
1076   bool isConstant = true;
1077   llvm::GlobalVariable *InsertBefore = nullptr;
1078   unsigned AS = CGM.getContext().getTargetAddressSpace(
1079       CGM.getStringLiteralAddressSpace());
1080   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1081       CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1082       Constant,
1083       "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." +
1084           D.getName(),
1085       InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1086   GV->setAlignment(Align.getQuantity());
1087   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1088 
1089   Address SrcPtr = Address(GV, Align);
1090   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS);
1091   if (SrcPtr.getType() != BP)
1092     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1093   return SrcPtr;
1094 }
1095 
1096 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1097                                   Address Loc, bool isVolatile,
1098                                   CGBuilderTy &Builder,
1099                                   llvm::Constant *constant) {
1100   auto *Ty = constant->getType();
1101   bool isScalar = Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy() ||
1102                   Ty->isFPOrFPVectorTy();
1103   if (isScalar) {
1104     Builder.CreateStore(constant, Loc, isVolatile);
1105     return;
1106   }
1107 
1108   auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1109   auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext());
1110 
1111   // If the initializer is all or mostly the same, codegen with bzero / memset
1112   // then do a few stores afterward.
1113   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1114   auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize);
1115   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1116     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1117                          isVolatile);
1118 
1119     bool valueAlreadyCorrect =
1120         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1121     if (!valueAlreadyCorrect) {
1122       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1123       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1124     }
1125     return;
1126   }
1127 
1128   llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize);
1129   if (Pattern) {
1130     uint64_t Value = 0x00;
1131     if (!isa<llvm::UndefValue>(Pattern)) {
1132       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1133       assert(AP.getBitWidth() <= 8);
1134       Value = AP.getLimitedValue();
1135     }
1136     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal,
1137                          isVolatile);
1138     return;
1139   }
1140 
1141   Builder.CreateMemCpy(
1142       Loc,
1143       createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()),
1144       SizeVal, isVolatile);
1145 }
1146 
1147 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1148                                   Address Loc, bool isVolatile,
1149                                   CGBuilderTy &Builder) {
1150   llvm::Type *ElTy = Loc.getElementType();
1151   llvm::Constant *constant = llvm::Constant::getNullValue(ElTy);
1152   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1153 }
1154 
1155 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1156                                      Address Loc, bool isVolatile,
1157                                      CGBuilderTy &Builder) {
1158   llvm::Type *ElTy = Loc.getElementType();
1159   llvm::Constant *constant = patternFor(CGM, ElTy);
1160   assert(!isa<llvm::UndefValue>(constant));
1161   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1162 }
1163 
1164 static bool containsUndef(llvm::Constant *constant) {
1165   auto *Ty = constant->getType();
1166   if (isa<llvm::UndefValue>(constant))
1167     return true;
1168   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1169     for (llvm::Use &Op : constant->operands())
1170       if (containsUndef(cast<llvm::Constant>(Op)))
1171         return true;
1172   return false;
1173 }
1174 
1175 static llvm::Constant *replaceUndef(llvm::Constant *constant) {
1176   // FIXME: when doing pattern initialization, replace undef with 0xAA instead.
1177   // FIXME: also replace padding between values by creating a new struct type
1178   //        which has no padding.
1179   auto *Ty = constant->getType();
1180   if (isa<llvm::UndefValue>(constant))
1181     return llvm::Constant::getNullValue(Ty);
1182   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1183     return constant;
1184   if (!containsUndef(constant))
1185     return constant;
1186   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1187   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1188     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1189     Values[Op] = replaceUndef(OpValue);
1190   }
1191   if (Ty->isStructTy())
1192     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1193   if (Ty->isArrayTy())
1194     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1195   assert(Ty->isVectorTy());
1196   return llvm::ConstantVector::get(Values);
1197 }
1198 
1199 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1200 /// variable declaration with auto, register, or no storage class specifier.
1201 /// These turn into simple stack objects, or GlobalValues depending on target.
1202 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1203   AutoVarEmission emission = EmitAutoVarAlloca(D);
1204   EmitAutoVarInit(emission);
1205   EmitAutoVarCleanups(emission);
1206 }
1207 
1208 /// Emit a lifetime.begin marker if some criteria are satisfied.
1209 /// \return a pointer to the temporary size Value if a marker was emitted, null
1210 /// otherwise
1211 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1212                                                 llvm::Value *Addr) {
1213   if (!ShouldEmitLifetimeMarkers)
1214     return nullptr;
1215 
1216   assert(Addr->getType()->getPointerAddressSpace() ==
1217              CGM.getDataLayout().getAllocaAddrSpace() &&
1218          "Pointer should be in alloca address space");
1219   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1220   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1221   llvm::CallInst *C =
1222       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1223   C->setDoesNotThrow();
1224   return SizeV;
1225 }
1226 
1227 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1228   assert(Addr->getType()->getPointerAddressSpace() ==
1229              CGM.getDataLayout().getAllocaAddrSpace() &&
1230          "Pointer should be in alloca address space");
1231   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1232   llvm::CallInst *C =
1233       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1234   C->setDoesNotThrow();
1235 }
1236 
1237 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1238     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1239   // For each dimension stores its QualType and corresponding
1240   // size-expression Value.
1241   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1242   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1243 
1244   // Break down the array into individual dimensions.
1245   QualType Type1D = D.getType();
1246   while (getContext().getAsVariableArrayType(Type1D)) {
1247     auto VlaSize = getVLAElements1D(Type1D);
1248     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1249       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1250     else {
1251       // Generate a locally unique name for the size expression.
1252       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1253       SmallString<12> Buffer;
1254       StringRef NameRef = Name.toStringRef(Buffer);
1255       auto &Ident = getContext().Idents.getOwn(NameRef);
1256       VLAExprNames.push_back(&Ident);
1257       auto SizeExprAddr =
1258           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1259       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1260       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1261                               Type1D.getUnqualifiedType());
1262     }
1263     Type1D = VlaSize.Type;
1264   }
1265 
1266   if (!EmitDebugInfo)
1267     return;
1268 
1269   // Register each dimension's size-expression with a DILocalVariable,
1270   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1271   // to describe this array.
1272   unsigned NameIdx = 0;
1273   for (auto &VlaSize : Dimensions) {
1274     llvm::Metadata *MD;
1275     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1276       MD = llvm::ConstantAsMetadata::get(C);
1277     else {
1278       // Create an artificial VarDecl to generate debug info for.
1279       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1280       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1281       auto QT = getContext().getIntTypeForBitwidth(
1282           VlaExprTy->getScalarSizeInBits(), false);
1283       auto *ArtificialDecl = VarDecl::Create(
1284           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1285           D.getLocation(), D.getLocation(), NameIdent, QT,
1286           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1287       ArtificialDecl->setImplicit();
1288 
1289       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1290                                          Builder);
1291     }
1292     assert(MD && "No Size expression debug node created");
1293     DI->registerVLASizeExpression(VlaSize.Type, MD);
1294   }
1295 }
1296 
1297 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1298 /// local variable.  Does not emit initialization or destruction.
1299 CodeGenFunction::AutoVarEmission
1300 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1301   QualType Ty = D.getType();
1302   assert(
1303       Ty.getAddressSpace() == LangAS::Default ||
1304       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1305 
1306   AutoVarEmission emission(D);
1307 
1308   bool isEscapingByRef = D.isEscapingByref();
1309   emission.IsEscapingByRef = isEscapingByRef;
1310 
1311   CharUnits alignment = getContext().getDeclAlign(&D);
1312 
1313   // If the type is variably-modified, emit all the VLA sizes for it.
1314   if (Ty->isVariablyModifiedType())
1315     EmitVariablyModifiedType(Ty);
1316 
1317   auto *DI = getDebugInfo();
1318   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
1319                                  codegenoptions::LimitedDebugInfo;
1320 
1321   Address address = Address::invalid();
1322   Address AllocaAddr = Address::invalid();
1323   if (Ty->isConstantSizeType()) {
1324     bool NRVO = getLangOpts().ElideConstructors &&
1325       D.isNRVOVariable();
1326 
1327     // If this value is an array or struct with a statically determinable
1328     // constant initializer, there are optimizations we can do.
1329     //
1330     // TODO: We should constant-evaluate the initializer of any variable,
1331     // as long as it is initialized by a constant expression. Currently,
1332     // isConstantInitializer produces wrong answers for structs with
1333     // reference or bitfield members, and a few other cases, and checking
1334     // for POD-ness protects us from some of these.
1335     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1336         (D.isConstexpr() ||
1337          ((Ty.isPODType(getContext()) ||
1338            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1339           D.getInit()->isConstantInitializer(getContext(), false)))) {
1340 
1341       // If the variable's a const type, and it's neither an NRVO
1342       // candidate nor a __block variable and has no mutable members,
1343       // emit it as a global instead.
1344       // Exception is if a variable is located in non-constant address space
1345       // in OpenCL.
1346       if ((!getLangOpts().OpenCL ||
1347            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1348           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1349            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1350         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1351 
1352         // Signal this condition to later callbacks.
1353         emission.Addr = Address::invalid();
1354         assert(emission.wasEmittedAsGlobal());
1355         return emission;
1356       }
1357 
1358       // Otherwise, tell the initialization code that we're in this case.
1359       emission.IsConstantAggregate = true;
1360     }
1361 
1362     // A normal fixed sized variable becomes an alloca in the entry block,
1363     // unless:
1364     // - it's an NRVO variable.
1365     // - we are compiling OpenMP and it's an OpenMP local variable.
1366 
1367     Address OpenMPLocalAddr =
1368         getLangOpts().OpenMP
1369             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1370             : Address::invalid();
1371     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1372       address = OpenMPLocalAddr;
1373     } else if (NRVO) {
1374       // The named return value optimization: allocate this variable in the
1375       // return slot, so that we can elide the copy when returning this
1376       // variable (C++0x [class.copy]p34).
1377       address = ReturnValue;
1378 
1379       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1380         const auto *RD = RecordTy->getDecl();
1381         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1382         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1383             RD->isNonTrivialToPrimitiveDestroy()) {
1384           // Create a flag that is used to indicate when the NRVO was applied
1385           // to this variable. Set it to zero to indicate that NRVO was not
1386           // applied.
1387           llvm::Value *Zero = Builder.getFalse();
1388           Address NRVOFlag =
1389             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1390           EnsureInsertPoint();
1391           Builder.CreateStore(Zero, NRVOFlag);
1392 
1393           // Record the NRVO flag for this variable.
1394           NRVOFlags[&D] = NRVOFlag.getPointer();
1395           emission.NRVOFlag = NRVOFlag.getPointer();
1396         }
1397       }
1398     } else {
1399       CharUnits allocaAlignment;
1400       llvm::Type *allocaTy;
1401       if (isEscapingByRef) {
1402         auto &byrefInfo = getBlockByrefInfo(&D);
1403         allocaTy = byrefInfo.Type;
1404         allocaAlignment = byrefInfo.ByrefAlignment;
1405       } else {
1406         allocaTy = ConvertTypeForMem(Ty);
1407         allocaAlignment = alignment;
1408       }
1409 
1410       // Create the alloca.  Note that we set the name separately from
1411       // building the instruction so that it's there even in no-asserts
1412       // builds.
1413       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1414                                  /*ArraySize=*/nullptr, &AllocaAddr);
1415 
1416       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1417       // the catch parameter starts in the catchpad instruction, and we can't
1418       // insert code in those basic blocks.
1419       bool IsMSCatchParam =
1420           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1421 
1422       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1423       // if we don't have a valid insertion point (?).
1424       if (HaveInsertPoint() && !IsMSCatchParam) {
1425         // If there's a jump into the lifetime of this variable, its lifetime
1426         // gets broken up into several regions in IR, which requires more work
1427         // to handle correctly. For now, just omit the intrinsics; this is a
1428         // rare case, and it's better to just be conservatively correct.
1429         // PR28267.
1430         //
1431         // We have to do this in all language modes if there's a jump past the
1432         // declaration. We also have to do it in C if there's a jump to an
1433         // earlier point in the current block because non-VLA lifetimes begin as
1434         // soon as the containing block is entered, not when its variables
1435         // actually come into scope; suppressing the lifetime annotations
1436         // completely in this case is unnecessarily pessimistic, but again, this
1437         // is rare.
1438         if (!Bypasses.IsBypassed(&D) &&
1439             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1440           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1441           emission.SizeForLifetimeMarkers =
1442               EmitLifetimeStart(size, AllocaAddr.getPointer());
1443         }
1444       } else {
1445         assert(!emission.useLifetimeMarkers());
1446       }
1447     }
1448   } else {
1449     EnsureInsertPoint();
1450 
1451     if (!DidCallStackSave) {
1452       // Save the stack.
1453       Address Stack =
1454         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1455 
1456       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1457       llvm::Value *V = Builder.CreateCall(F);
1458       Builder.CreateStore(V, Stack);
1459 
1460       DidCallStackSave = true;
1461 
1462       // Push a cleanup block and restore the stack there.
1463       // FIXME: in general circumstances, this should be an EH cleanup.
1464       pushStackRestore(NormalCleanup, Stack);
1465     }
1466 
1467     auto VlaSize = getVLASize(Ty);
1468     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1469 
1470     // Allocate memory for the array.
1471     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1472                                &AllocaAddr);
1473 
1474     // If we have debug info enabled, properly describe the VLA dimensions for
1475     // this type by registering the vla size expression for each of the
1476     // dimensions.
1477     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1478   }
1479 
1480   setAddrOfLocalVar(&D, address);
1481   emission.Addr = address;
1482   emission.AllocaAddr = AllocaAddr;
1483 
1484   // Emit debug info for local var declaration.
1485   if (EmitDebugInfo && HaveInsertPoint()) {
1486     DI->setLocation(D.getLocation());
1487     (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
1488   }
1489 
1490   if (D.hasAttr<AnnotateAttr>())
1491     EmitVarAnnotations(&D, address.getPointer());
1492 
1493   // Make sure we call @llvm.lifetime.end.
1494   if (emission.useLifetimeMarkers())
1495     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1496                                          emission.getOriginalAllocatedAddress(),
1497                                          emission.getSizeForLifetimeMarkers());
1498 
1499   return emission;
1500 }
1501 
1502 static bool isCapturedBy(const VarDecl &, const Expr *);
1503 
1504 /// Determines whether the given __block variable is potentially
1505 /// captured by the given statement.
1506 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1507   if (const Expr *E = dyn_cast<Expr>(S))
1508     return isCapturedBy(Var, E);
1509   for (const Stmt *SubStmt : S->children())
1510     if (isCapturedBy(Var, SubStmt))
1511       return true;
1512   return false;
1513 }
1514 
1515 /// Determines whether the given __block variable is potentially
1516 /// captured by the given expression.
1517 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1518   // Skip the most common kinds of expressions that make
1519   // hierarchy-walking expensive.
1520   E = E->IgnoreParenCasts();
1521 
1522   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1523     const BlockDecl *Block = BE->getBlockDecl();
1524     for (const auto &I : Block->captures()) {
1525       if (I.getVariable() == &Var)
1526         return true;
1527     }
1528 
1529     // No need to walk into the subexpressions.
1530     return false;
1531   }
1532 
1533   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1534     const CompoundStmt *CS = SE->getSubStmt();
1535     for (const auto *BI : CS->body())
1536       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1537         if (isCapturedBy(Var, BIE))
1538           return true;
1539       }
1540       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1541           // special case declarations
1542           for (const auto *I : DS->decls()) {
1543               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1544                 const Expr *Init = VD->getInit();
1545                 if (Init && isCapturedBy(Var, Init))
1546                   return true;
1547               }
1548           }
1549       }
1550       else
1551         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1552         // Later, provide code to poke into statements for capture analysis.
1553         return true;
1554     return false;
1555   }
1556 
1557   for (const Stmt *SubStmt : E->children())
1558     if (isCapturedBy(Var, SubStmt))
1559       return true;
1560 
1561   return false;
1562 }
1563 
1564 /// Determine whether the given initializer is trivial in the sense
1565 /// that it requires no code to be generated.
1566 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1567   if (!Init)
1568     return true;
1569 
1570   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1571     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1572       if (Constructor->isTrivial() &&
1573           Constructor->isDefaultConstructor() &&
1574           !Construct->requiresZeroInitialization())
1575         return true;
1576 
1577   return false;
1578 }
1579 
1580 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1581   assert(emission.Variable && "emission was not valid!");
1582 
1583   // If this was emitted as a global constant, we're done.
1584   if (emission.wasEmittedAsGlobal()) return;
1585 
1586   const VarDecl &D = *emission.Variable;
1587   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1588   QualType type = D.getType();
1589 
1590   bool isVolatile = type.isVolatileQualified();
1591 
1592   // If this local has an initializer, emit it now.
1593   const Expr *Init = D.getInit();
1594 
1595   // If we are at an unreachable point, we don't need to emit the initializer
1596   // unless it contains a label.
1597   if (!HaveInsertPoint()) {
1598     if (!Init || !ContainsLabel(Init)) return;
1599     EnsureInsertPoint();
1600   }
1601 
1602   // Initialize the structure of a __block variable.
1603   if (emission.IsEscapingByRef)
1604     emitByrefStructureInit(emission);
1605 
1606   // Initialize the variable here if it doesn't have a initializer and it is a
1607   // C struct that is non-trivial to initialize or an array containing such a
1608   // struct.
1609   if (!Init &&
1610       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1611           QualType::PDIK_Struct) {
1612     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1613     if (emission.IsEscapingByRef)
1614       drillIntoBlockVariable(*this, Dst, &D);
1615     defaultInitNonTrivialCStructVar(Dst);
1616     return;
1617   }
1618 
1619   // Check whether this is a byref variable that's potentially
1620   // captured and moved by its own initializer.  If so, we'll need to
1621   // emit the initializer first, then copy into the variable.
1622   bool capturedByInit =
1623       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1624 
1625   Address Loc =
1626       capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
1627 
1628   // Note: constexpr already initializes everything correctly.
1629   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1630       (D.isConstexpr()
1631            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1632            : (D.getAttr<UninitializedAttr>()
1633                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1634                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1635 
1636   auto initializeWhatIsTechnicallyUninitialized = [&]() {
1637     if (trivialAutoVarInit ==
1638         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1639       return;
1640 
1641     CharUnits Size = getContext().getTypeSizeInChars(type);
1642     if (!Size.isZero()) {
1643       switch (trivialAutoVarInit) {
1644       case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1645         llvm_unreachable("Uninitialized handled above");
1646       case LangOptions::TrivialAutoVarInitKind::Zero:
1647         emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1648         break;
1649       case LangOptions::TrivialAutoVarInitKind::Pattern:
1650         emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1651         break;
1652       }
1653       return;
1654     }
1655 
1656     // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1657     // them, so emit a memcpy with the VLA size to initialize each element.
1658     // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1659     // will catch that code, but there exists code which generates zero-sized
1660     // VLAs. Be nice and initialize whatever they requested.
1661     const VariableArrayType *VlaType =
1662         dyn_cast_or_null<VariableArrayType>(getContext().getAsArrayType(type));
1663     if (!VlaType)
1664       return;
1665     auto VlaSize = getVLASize(VlaType);
1666     auto SizeVal = VlaSize.NumElts;
1667     CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1668     switch (trivialAutoVarInit) {
1669     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1670       llvm_unreachable("Uninitialized handled above");
1671 
1672     case LangOptions::TrivialAutoVarInitKind::Zero:
1673       if (!EltSize.isOne())
1674         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1675       Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1676                            isVolatile);
1677       break;
1678 
1679     case LangOptions::TrivialAutoVarInitKind::Pattern: {
1680       llvm::Type *ElTy = Loc.getElementType();
1681       llvm::Constant *Constant = patternFor(CGM, ElTy);
1682       CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1683       llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1684       llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1685       llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1686       llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1687           SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1688           "vla.iszerosized");
1689       Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1690       EmitBlock(SetupBB);
1691       if (!EltSize.isOne())
1692         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1693       llvm::Value *BaseSizeInChars =
1694           llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1695       Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1696       llvm::Value *End =
1697           Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1698       llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1699       EmitBlock(LoopBB);
1700       llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1701       Cur->addIncoming(Begin.getPointer(), OriginBB);
1702       CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1703       Builder.CreateMemCpy(
1704           Address(Cur, CurAlign),
1705           createUnnamedGlobalFrom(CGM, D, Builder, Constant, ConstantAlign),
1706           BaseSizeInChars, isVolatile);
1707       llvm::Value *Next =
1708           Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1709       llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1710       Builder.CreateCondBr(Done, ContBB, LoopBB);
1711       Cur->addIncoming(Next, LoopBB);
1712       EmitBlock(ContBB);
1713     } break;
1714     }
1715   };
1716 
1717   if (isTrivialInitializer(Init)) {
1718     initializeWhatIsTechnicallyUninitialized();
1719     return;
1720   }
1721 
1722   llvm::Constant *constant = nullptr;
1723   if (emission.IsConstantAggregate || D.isConstexpr()) {
1724     assert(!capturedByInit && "constant init contains a capturing block?");
1725     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1726     if (constant && trivialAutoVarInit !=
1727                         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1728       constant = replaceUndef(constant);
1729   }
1730 
1731   if (!constant) {
1732     initializeWhatIsTechnicallyUninitialized();
1733     LValue lv = MakeAddrLValue(Loc, type);
1734     lv.setNonGC(true);
1735     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1736   }
1737 
1738   if (!emission.IsConstantAggregate) {
1739     // For simple scalar/complex initialization, store the value directly.
1740     LValue lv = MakeAddrLValue(Loc, type);
1741     lv.setNonGC(true);
1742     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1743   }
1744 
1745   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1746   if (Loc.getType() != BP)
1747     Loc = Builder.CreateBitCast(Loc, BP);
1748 
1749   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1750 }
1751 
1752 /// Emit an expression as an initializer for an object (variable, field, etc.)
1753 /// at the given location.  The expression is not necessarily the normal
1754 /// initializer for the object, and the address is not necessarily
1755 /// its normal location.
1756 ///
1757 /// \param init the initializing expression
1758 /// \param D the object to act as if we're initializing
1759 /// \param loc the address to initialize; its type is a pointer
1760 ///   to the LLVM mapping of the object's type
1761 /// \param alignment the alignment of the address
1762 /// \param capturedByInit true if \p D is a __block variable
1763 ///   whose address is potentially changed by the initializer
1764 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1765                                      LValue lvalue, bool capturedByInit) {
1766   QualType type = D->getType();
1767 
1768   if (type->isReferenceType()) {
1769     RValue rvalue = EmitReferenceBindingToExpr(init);
1770     if (capturedByInit)
1771       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1772     EmitStoreThroughLValue(rvalue, lvalue, true);
1773     return;
1774   }
1775   switch (getEvaluationKind(type)) {
1776   case TEK_Scalar:
1777     EmitScalarInit(init, D, lvalue, capturedByInit);
1778     return;
1779   case TEK_Complex: {
1780     ComplexPairTy complex = EmitComplexExpr(init);
1781     if (capturedByInit)
1782       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1783     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1784     return;
1785   }
1786   case TEK_Aggregate:
1787     if (type->isAtomicType()) {
1788       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1789     } else {
1790       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1791       if (isa<VarDecl>(D))
1792         Overlap = AggValueSlot::DoesNotOverlap;
1793       else if (auto *FD = dyn_cast<FieldDecl>(D))
1794         Overlap = overlapForFieldInit(FD);
1795       // TODO: how can we delay here if D is captured by its initializer?
1796       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1797                                               AggValueSlot::IsDestructed,
1798                                          AggValueSlot::DoesNotNeedGCBarriers,
1799                                               AggValueSlot::IsNotAliased,
1800                                               Overlap));
1801     }
1802     return;
1803   }
1804   llvm_unreachable("bad evaluation kind");
1805 }
1806 
1807 /// Enter a destroy cleanup for the given local variable.
1808 void CodeGenFunction::emitAutoVarTypeCleanup(
1809                             const CodeGenFunction::AutoVarEmission &emission,
1810                             QualType::DestructionKind dtorKind) {
1811   assert(dtorKind != QualType::DK_none);
1812 
1813   // Note that for __block variables, we want to destroy the
1814   // original stack object, not the possibly forwarded object.
1815   Address addr = emission.getObjectAddress(*this);
1816 
1817   const VarDecl *var = emission.Variable;
1818   QualType type = var->getType();
1819 
1820   CleanupKind cleanupKind = NormalAndEHCleanup;
1821   CodeGenFunction::Destroyer *destroyer = nullptr;
1822 
1823   switch (dtorKind) {
1824   case QualType::DK_none:
1825     llvm_unreachable("no cleanup for trivially-destructible variable");
1826 
1827   case QualType::DK_cxx_destructor:
1828     // If there's an NRVO flag on the emission, we need a different
1829     // cleanup.
1830     if (emission.NRVOFlag) {
1831       assert(!type->isArrayType());
1832       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1833       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor,
1834                                                   emission.NRVOFlag);
1835       return;
1836     }
1837     break;
1838 
1839   case QualType::DK_objc_strong_lifetime:
1840     // Suppress cleanups for pseudo-strong variables.
1841     if (var->isARCPseudoStrong()) return;
1842 
1843     // Otherwise, consider whether to use an EH cleanup or not.
1844     cleanupKind = getARCCleanupKind();
1845 
1846     // Use the imprecise destroyer by default.
1847     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1848       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1849     break;
1850 
1851   case QualType::DK_objc_weak_lifetime:
1852     break;
1853 
1854   case QualType::DK_nontrivial_c_struct:
1855     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1856     if (emission.NRVOFlag) {
1857       assert(!type->isArrayType());
1858       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1859                                                 emission.NRVOFlag, type);
1860       return;
1861     }
1862     break;
1863   }
1864 
1865   // If we haven't chosen a more specific destroyer, use the default.
1866   if (!destroyer) destroyer = getDestroyer(dtorKind);
1867 
1868   // Use an EH cleanup in array destructors iff the destructor itself
1869   // is being pushed as an EH cleanup.
1870   bool useEHCleanup = (cleanupKind & EHCleanup);
1871   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1872                                      useEHCleanup);
1873 }
1874 
1875 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1876   assert(emission.Variable && "emission was not valid!");
1877 
1878   // If this was emitted as a global constant, we're done.
1879   if (emission.wasEmittedAsGlobal()) return;
1880 
1881   // If we don't have an insertion point, we're done.  Sema prevents
1882   // us from jumping into any of these scopes anyway.
1883   if (!HaveInsertPoint()) return;
1884 
1885   const VarDecl &D = *emission.Variable;
1886 
1887   // Check the type for a cleanup.
1888   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1889     emitAutoVarTypeCleanup(emission, dtorKind);
1890 
1891   // In GC mode, honor objc_precise_lifetime.
1892   if (getLangOpts().getGC() != LangOptions::NonGC &&
1893       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1894     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1895   }
1896 
1897   // Handle the cleanup attribute.
1898   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1899     const FunctionDecl *FD = CA->getFunctionDecl();
1900 
1901     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1902     assert(F && "Could not find function!");
1903 
1904     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1905     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1906   }
1907 
1908   // If this is a block variable, call _Block_object_destroy
1909   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
1910   // mode.
1911   if (emission.IsEscapingByRef &&
1912       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
1913     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
1914     if (emission.Variable->getType().isObjCGCWeak())
1915       Flags |= BLOCK_FIELD_IS_WEAK;
1916     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
1917                       /*LoadBlockVarAddr*/ false,
1918                       cxxDestructorCanThrow(emission.Variable->getType()));
1919   }
1920 }
1921 
1922 CodeGenFunction::Destroyer *
1923 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1924   switch (kind) {
1925   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1926   case QualType::DK_cxx_destructor:
1927     return destroyCXXObject;
1928   case QualType::DK_objc_strong_lifetime:
1929     return destroyARCStrongPrecise;
1930   case QualType::DK_objc_weak_lifetime:
1931     return destroyARCWeak;
1932   case QualType::DK_nontrivial_c_struct:
1933     return destroyNonTrivialCStruct;
1934   }
1935   llvm_unreachable("Unknown DestructionKind");
1936 }
1937 
1938 /// pushEHDestroy - Push the standard destructor for the given type as
1939 /// an EH-only cleanup.
1940 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1941                                     Address addr, QualType type) {
1942   assert(dtorKind && "cannot push destructor for trivial type");
1943   assert(needsEHCleanup(dtorKind));
1944 
1945   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1946 }
1947 
1948 /// pushDestroy - Push the standard destructor for the given type as
1949 /// at least a normal cleanup.
1950 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1951                                   Address addr, QualType type) {
1952   assert(dtorKind && "cannot push destructor for trivial type");
1953 
1954   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1955   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1956               cleanupKind & EHCleanup);
1957 }
1958 
1959 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
1960                                   QualType type, Destroyer *destroyer,
1961                                   bool useEHCleanupForArray) {
1962   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1963                                      destroyer, useEHCleanupForArray);
1964 }
1965 
1966 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
1967   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1968 }
1969 
1970 void CodeGenFunction::pushLifetimeExtendedDestroy(
1971     CleanupKind cleanupKind, Address addr, QualType type,
1972     Destroyer *destroyer, bool useEHCleanupForArray) {
1973   // Push an EH-only cleanup for the object now.
1974   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1975   // around in case a temporary's destructor throws an exception.
1976   if (cleanupKind & EHCleanup)
1977     EHStack.pushCleanup<DestroyObject>(
1978         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1979         destroyer, useEHCleanupForArray);
1980 
1981   // Remember that we need to push a full cleanup for the object at the
1982   // end of the full-expression.
1983   pushCleanupAfterFullExpr<DestroyObject>(
1984       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1985 }
1986 
1987 /// emitDestroy - Immediately perform the destruction of the given
1988 /// object.
1989 ///
1990 /// \param addr - the address of the object; a type*
1991 /// \param type - the type of the object; if an array type, all
1992 ///   objects are destroyed in reverse order
1993 /// \param destroyer - the function to call to destroy individual
1994 ///   elements
1995 /// \param useEHCleanupForArray - whether an EH cleanup should be
1996 ///   used when destroying array elements, in case one of the
1997 ///   destructions throws an exception
1998 void CodeGenFunction::emitDestroy(Address addr, QualType type,
1999                                   Destroyer *destroyer,
2000                                   bool useEHCleanupForArray) {
2001   const ArrayType *arrayType = getContext().getAsArrayType(type);
2002   if (!arrayType)
2003     return destroyer(*this, addr, type);
2004 
2005   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2006 
2007   CharUnits elementAlign =
2008     addr.getAlignment()
2009         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2010 
2011   // Normally we have to check whether the array is zero-length.
2012   bool checkZeroLength = true;
2013 
2014   // But if the array length is constant, we can suppress that.
2015   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2016     // ...and if it's constant zero, we can just skip the entire thing.
2017     if (constLength->isZero()) return;
2018     checkZeroLength = false;
2019   }
2020 
2021   llvm::Value *begin = addr.getPointer();
2022   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2023   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2024                    checkZeroLength, useEHCleanupForArray);
2025 }
2026 
2027 /// emitArrayDestroy - Destroys all the elements of the given array,
2028 /// beginning from last to first.  The array cannot be zero-length.
2029 ///
2030 /// \param begin - a type* denoting the first element of the array
2031 /// \param end - a type* denoting one past the end of the array
2032 /// \param elementType - the element type of the array
2033 /// \param destroyer - the function to call to destroy elements
2034 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2035 ///   the remaining elements in case the destruction of a single
2036 ///   element throws
2037 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2038                                        llvm::Value *end,
2039                                        QualType elementType,
2040                                        CharUnits elementAlign,
2041                                        Destroyer *destroyer,
2042                                        bool checkZeroLength,
2043                                        bool useEHCleanup) {
2044   assert(!elementType->isArrayType());
2045 
2046   // The basic structure here is a do-while loop, because we don't
2047   // need to check for the zero-element case.
2048   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2049   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2050 
2051   if (checkZeroLength) {
2052     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2053                                                 "arraydestroy.isempty");
2054     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2055   }
2056 
2057   // Enter the loop body, making that address the current address.
2058   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2059   EmitBlock(bodyBB);
2060   llvm::PHINode *elementPast =
2061     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2062   elementPast->addIncoming(end, entryBB);
2063 
2064   // Shift the address back by one element.
2065   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2066   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2067                                                    "arraydestroy.element");
2068 
2069   if (useEHCleanup)
2070     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2071                                    destroyer);
2072 
2073   // Perform the actual destruction there.
2074   destroyer(*this, Address(element, elementAlign), elementType);
2075 
2076   if (useEHCleanup)
2077     PopCleanupBlock();
2078 
2079   // Check whether we've reached the end.
2080   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2081   Builder.CreateCondBr(done, doneBB, bodyBB);
2082   elementPast->addIncoming(element, Builder.GetInsertBlock());
2083 
2084   // Done.
2085   EmitBlock(doneBB);
2086 }
2087 
2088 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2089 /// emitArrayDestroy, the element type here may still be an array type.
2090 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2091                                     llvm::Value *begin, llvm::Value *end,
2092                                     QualType type, CharUnits elementAlign,
2093                                     CodeGenFunction::Destroyer *destroyer) {
2094   // If the element type is itself an array, drill down.
2095   unsigned arrayDepth = 0;
2096   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2097     // VLAs don't require a GEP index to walk into.
2098     if (!isa<VariableArrayType>(arrayType))
2099       arrayDepth++;
2100     type = arrayType->getElementType();
2101   }
2102 
2103   if (arrayDepth) {
2104     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2105 
2106     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2107     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2108     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2109   }
2110 
2111   // Destroy the array.  We don't ever need an EH cleanup because we
2112   // assume that we're in an EH cleanup ourselves, so a throwing
2113   // destructor causes an immediate terminate.
2114   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2115                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2116 }
2117 
2118 namespace {
2119   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2120   /// array destroy where the end pointer is regularly determined and
2121   /// does not need to be loaded from a local.
2122   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2123     llvm::Value *ArrayBegin;
2124     llvm::Value *ArrayEnd;
2125     QualType ElementType;
2126     CodeGenFunction::Destroyer *Destroyer;
2127     CharUnits ElementAlign;
2128   public:
2129     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2130                                QualType elementType, CharUnits elementAlign,
2131                                CodeGenFunction::Destroyer *destroyer)
2132       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2133         ElementType(elementType), Destroyer(destroyer),
2134         ElementAlign(elementAlign) {}
2135 
2136     void Emit(CodeGenFunction &CGF, Flags flags) override {
2137       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2138                               ElementType, ElementAlign, Destroyer);
2139     }
2140   };
2141 
2142   /// IrregularPartialArrayDestroy - a cleanup which performs a
2143   /// partial array destroy where the end pointer is irregularly
2144   /// determined and must be loaded from a local.
2145   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2146     llvm::Value *ArrayBegin;
2147     Address ArrayEndPointer;
2148     QualType ElementType;
2149     CodeGenFunction::Destroyer *Destroyer;
2150     CharUnits ElementAlign;
2151   public:
2152     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2153                                  Address arrayEndPointer,
2154                                  QualType elementType,
2155                                  CharUnits elementAlign,
2156                                  CodeGenFunction::Destroyer *destroyer)
2157       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2158         ElementType(elementType), Destroyer(destroyer),
2159         ElementAlign(elementAlign) {}
2160 
2161     void Emit(CodeGenFunction &CGF, Flags flags) override {
2162       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2163       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2164                               ElementType, ElementAlign, Destroyer);
2165     }
2166   };
2167 } // end anonymous namespace
2168 
2169 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2170 /// already-constructed elements of the given array.  The cleanup
2171 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2172 ///
2173 /// \param elementType - the immediate element type of the array;
2174 ///   possibly still an array type
2175 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2176                                                        Address arrayEndPointer,
2177                                                        QualType elementType,
2178                                                        CharUnits elementAlign,
2179                                                        Destroyer *destroyer) {
2180   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2181                                                     arrayBegin, arrayEndPointer,
2182                                                     elementType, elementAlign,
2183                                                     destroyer);
2184 }
2185 
2186 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2187 /// already-constructed elements of the given array.  The cleanup
2188 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2189 ///
2190 /// \param elementType - the immediate element type of the array;
2191 ///   possibly still an array type
2192 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2193                                                      llvm::Value *arrayEnd,
2194                                                      QualType elementType,
2195                                                      CharUnits elementAlign,
2196                                                      Destroyer *destroyer) {
2197   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2198                                                   arrayBegin, arrayEnd,
2199                                                   elementType, elementAlign,
2200                                                   destroyer);
2201 }
2202 
2203 /// Lazily declare the @llvm.lifetime.start intrinsic.
2204 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
2205   if (LifetimeStartFn)
2206     return LifetimeStartFn;
2207   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2208     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2209   return LifetimeStartFn;
2210 }
2211 
2212 /// Lazily declare the @llvm.lifetime.end intrinsic.
2213 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
2214   if (LifetimeEndFn)
2215     return LifetimeEndFn;
2216   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2217     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2218   return LifetimeEndFn;
2219 }
2220 
2221 namespace {
2222   /// A cleanup to perform a release of an object at the end of a
2223   /// function.  This is used to balance out the incoming +1 of a
2224   /// ns_consumed argument when we can't reasonably do that just by
2225   /// not doing the initial retain for a __block argument.
2226   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2227     ConsumeARCParameter(llvm::Value *param,
2228                         ARCPreciseLifetime_t precise)
2229       : Param(param), Precise(precise) {}
2230 
2231     llvm::Value *Param;
2232     ARCPreciseLifetime_t Precise;
2233 
2234     void Emit(CodeGenFunction &CGF, Flags flags) override {
2235       CGF.EmitARCRelease(Param, Precise);
2236     }
2237   };
2238 } // end anonymous namespace
2239 
2240 /// Emit an alloca (or GlobalValue depending on target)
2241 /// for the specified parameter and set up LocalDeclMap.
2242 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2243                                    unsigned ArgNo) {
2244   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2245   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2246          "Invalid argument to EmitParmDecl");
2247 
2248   Arg.getAnyValue()->setName(D.getName());
2249 
2250   QualType Ty = D.getType();
2251 
2252   // Use better IR generation for certain implicit parameters.
2253   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2254     // The only implicit argument a block has is its literal.
2255     // This may be passed as an inalloca'ed value on Windows x86.
2256     if (BlockInfo) {
2257       llvm::Value *V = Arg.isIndirect()
2258                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2259                            : Arg.getDirectValue();
2260       setBlockContextParameter(IPD, ArgNo, V);
2261       return;
2262     }
2263   }
2264 
2265   Address DeclPtr = Address::invalid();
2266   bool DoStore = false;
2267   bool IsScalar = hasScalarEvaluationKind(Ty);
2268   // If we already have a pointer to the argument, reuse the input pointer.
2269   if (Arg.isIndirect()) {
2270     DeclPtr = Arg.getIndirectAddress();
2271     // If we have a prettier pointer type at this point, bitcast to that.
2272     unsigned AS = DeclPtr.getType()->getAddressSpace();
2273     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2274     if (DeclPtr.getType() != IRTy)
2275       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2276     // Indirect argument is in alloca address space, which may be different
2277     // from the default address space.
2278     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2279     auto *V = DeclPtr.getPointer();
2280     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2281     auto DestLangAS =
2282         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2283     if (SrcLangAS != DestLangAS) {
2284       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2285              CGM.getDataLayout().getAllocaAddrSpace());
2286       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2287       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2288       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2289                             *this, V, SrcLangAS, DestLangAS, T, true),
2290                         DeclPtr.getAlignment());
2291     }
2292 
2293     // Push a destructor cleanup for this parameter if the ABI requires it.
2294     // Don't push a cleanup in a thunk for a method that will also emit a
2295     // cleanup.
2296     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2297         Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2298       if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
2299         assert((DtorKind == QualType::DK_cxx_destructor ||
2300                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2301                "unexpected destructor type");
2302         pushDestroy(DtorKind, DeclPtr, Ty);
2303         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2304             EHStack.stable_begin();
2305       }
2306     }
2307   } else {
2308     // Check if the parameter address is controlled by OpenMP runtime.
2309     Address OpenMPLocalAddr =
2310         getLangOpts().OpenMP
2311             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2312             : Address::invalid();
2313     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2314       DeclPtr = OpenMPLocalAddr;
2315     } else {
2316       // Otherwise, create a temporary to hold the value.
2317       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2318                               D.getName() + ".addr");
2319     }
2320     DoStore = true;
2321   }
2322 
2323   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2324 
2325   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2326   if (IsScalar) {
2327     Qualifiers qs = Ty.getQualifiers();
2328     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2329       // We honor __attribute__((ns_consumed)) for types with lifetime.
2330       // For __strong, it's handled by just skipping the initial retain;
2331       // otherwise we have to balance out the initial +1 with an extra
2332       // cleanup to do the release at the end of the function.
2333       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2334 
2335       // If a parameter is pseudo-strong then we can omit the implicit retain.
2336       if (D.isARCPseudoStrong()) {
2337         assert(lt == Qualifiers::OCL_Strong &&
2338                "pseudo-strong variable isn't strong?");
2339         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2340         lt = Qualifiers::OCL_ExplicitNone;
2341       }
2342 
2343       // Load objects passed indirectly.
2344       if (Arg.isIndirect() && !ArgVal)
2345         ArgVal = Builder.CreateLoad(DeclPtr);
2346 
2347       if (lt == Qualifiers::OCL_Strong) {
2348         if (!isConsumed) {
2349           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2350             // use objc_storeStrong(&dest, value) for retaining the
2351             // object. But first, store a null into 'dest' because
2352             // objc_storeStrong attempts to release its old value.
2353             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2354             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2355             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2356             DoStore = false;
2357           }
2358           else
2359           // Don't use objc_retainBlock for block pointers, because we
2360           // don't want to Block_copy something just because we got it
2361           // as a parameter.
2362             ArgVal = EmitARCRetainNonBlock(ArgVal);
2363         }
2364       } else {
2365         // Push the cleanup for a consumed parameter.
2366         if (isConsumed) {
2367           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2368                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2369           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2370                                                    precise);
2371         }
2372 
2373         if (lt == Qualifiers::OCL_Weak) {
2374           EmitARCInitWeak(DeclPtr, ArgVal);
2375           DoStore = false; // The weak init is a store, no need to do two.
2376         }
2377       }
2378 
2379       // Enter the cleanup scope.
2380       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2381     }
2382   }
2383 
2384   // Store the initial value into the alloca.
2385   if (DoStore)
2386     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2387 
2388   setAddrOfLocalVar(&D, DeclPtr);
2389 
2390   // Emit debug info for param declaration.
2391   if (CGDebugInfo *DI = getDebugInfo()) {
2392     if (CGM.getCodeGenOpts().getDebugInfo() >=
2393         codegenoptions::LimitedDebugInfo) {
2394       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2395     }
2396   }
2397 
2398   if (D.hasAttr<AnnotateAttr>())
2399     EmitVarAnnotations(&D, DeclPtr.getPointer());
2400 
2401   // We can only check return value nullability if all arguments to the
2402   // function satisfy their nullability preconditions. This makes it necessary
2403   // to emit null checks for args in the function body itself.
2404   if (requiresReturnValueNullabilityCheck()) {
2405     auto Nullability = Ty->getNullability(getContext());
2406     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2407       SanitizerScope SanScope(this);
2408       RetValNullabilityPrecondition =
2409           Builder.CreateAnd(RetValNullabilityPrecondition,
2410                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2411     }
2412   }
2413 }
2414 
2415 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2416                                             CodeGenFunction *CGF) {
2417   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2418     return;
2419   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2420 }
2421 
2422 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2423                                             CodeGenFunction *CGF) {
2424   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2425     return;
2426   // FIXME: need to implement mapper code generation
2427 }
2428 
2429 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2430   getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D);
2431 }
2432