1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/DeclOpenMP.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Type.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 void CodeGenFunction::EmitDecl(const Decl &D) { 42 switch (D.getKind()) { 43 case Decl::BuiltinTemplate: 44 case Decl::TranslationUnit: 45 case Decl::ExternCContext: 46 case Decl::Namespace: 47 case Decl::UnresolvedUsingTypename: 48 case Decl::ClassTemplateSpecialization: 49 case Decl::ClassTemplatePartialSpecialization: 50 case Decl::VarTemplateSpecialization: 51 case Decl::VarTemplatePartialSpecialization: 52 case Decl::TemplateTypeParm: 53 case Decl::UnresolvedUsingValue: 54 case Decl::NonTypeTemplateParm: 55 case Decl::CXXDeductionGuide: 56 case Decl::CXXMethod: 57 case Decl::CXXConstructor: 58 case Decl::CXXDestructor: 59 case Decl::CXXConversion: 60 case Decl::Field: 61 case Decl::MSProperty: 62 case Decl::IndirectField: 63 case Decl::ObjCIvar: 64 case Decl::ObjCAtDefsField: 65 case Decl::ParmVar: 66 case Decl::ImplicitParam: 67 case Decl::ClassTemplate: 68 case Decl::VarTemplate: 69 case Decl::FunctionTemplate: 70 case Decl::TypeAliasTemplate: 71 case Decl::TemplateTemplateParm: 72 case Decl::ObjCMethod: 73 case Decl::ObjCCategory: 74 case Decl::ObjCProtocol: 75 case Decl::ObjCInterface: 76 case Decl::ObjCCategoryImpl: 77 case Decl::ObjCImplementation: 78 case Decl::ObjCProperty: 79 case Decl::ObjCCompatibleAlias: 80 case Decl::PragmaComment: 81 case Decl::PragmaDetectMismatch: 82 case Decl::AccessSpec: 83 case Decl::LinkageSpec: 84 case Decl::Export: 85 case Decl::ObjCPropertyImpl: 86 case Decl::FileScopeAsm: 87 case Decl::Friend: 88 case Decl::FriendTemplate: 89 case Decl::Block: 90 case Decl::Captured: 91 case Decl::ClassScopeFunctionSpecialization: 92 case Decl::UsingShadow: 93 case Decl::ConstructorUsingShadow: 94 case Decl::ObjCTypeParam: 95 case Decl::Binding: 96 llvm_unreachable("Declaration should not be in declstmts!"); 97 case Decl::Function: // void X(); 98 case Decl::Record: // struct/union/class X; 99 case Decl::Enum: // enum X; 100 case Decl::EnumConstant: // enum ? { X = ? } 101 case Decl::CXXRecord: // struct/union/class X; [C++] 102 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 103 case Decl::Label: // __label__ x; 104 case Decl::Import: 105 case Decl::OMPThreadPrivate: 106 case Decl::OMPCapturedExpr: 107 case Decl::OMPRequires: 108 case Decl::Empty: 109 // None of these decls require codegen support. 110 return; 111 112 case Decl::NamespaceAlias: 113 if (CGDebugInfo *DI = getDebugInfo()) 114 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 115 return; 116 case Decl::Using: // using X; [C++] 117 if (CGDebugInfo *DI = getDebugInfo()) 118 DI->EmitUsingDecl(cast<UsingDecl>(D)); 119 return; 120 case Decl::UsingPack: 121 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 122 EmitDecl(*Using); 123 return; 124 case Decl::UsingDirective: // using namespace X; [C++] 125 if (CGDebugInfo *DI = getDebugInfo()) 126 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 127 return; 128 case Decl::Var: 129 case Decl::Decomposition: { 130 const VarDecl &VD = cast<VarDecl>(D); 131 assert(VD.isLocalVarDecl() && 132 "Should not see file-scope variables inside a function!"); 133 EmitVarDecl(VD); 134 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 135 for (auto *B : DD->bindings()) 136 if (auto *HD = B->getHoldingVar()) 137 EmitVarDecl(*HD); 138 return; 139 } 140 141 case Decl::OMPDeclareReduction: 142 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 143 144 case Decl::OMPDeclareMapper: 145 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 146 147 case Decl::Typedef: // typedef int X; 148 case Decl::TypeAlias: { // using X = int; [C++0x] 149 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 150 QualType Ty = TD.getUnderlyingType(); 151 152 if (Ty->isVariablyModifiedType()) 153 EmitVariablyModifiedType(Ty); 154 } 155 } 156 } 157 158 /// EmitVarDecl - This method handles emission of any variable declaration 159 /// inside a function, including static vars etc. 160 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 161 if (D.hasExternalStorage()) 162 // Don't emit it now, allow it to be emitted lazily on its first use. 163 return; 164 165 // Some function-scope variable does not have static storage but still 166 // needs to be emitted like a static variable, e.g. a function-scope 167 // variable in constant address space in OpenCL. 168 if (D.getStorageDuration() != SD_Automatic) { 169 // Static sampler variables translated to function calls. 170 if (D.getType()->isSamplerT()) 171 return; 172 173 llvm::GlobalValue::LinkageTypes Linkage = 174 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 175 176 // FIXME: We need to force the emission/use of a guard variable for 177 // some variables even if we can constant-evaluate them because 178 // we can't guarantee every translation unit will constant-evaluate them. 179 180 return EmitStaticVarDecl(D, Linkage); 181 } 182 183 if (D.getType().getAddressSpace() == LangAS::opencl_local) 184 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 185 186 assert(D.hasLocalStorage()); 187 return EmitAutoVarDecl(D); 188 } 189 190 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 191 if (CGM.getLangOpts().CPlusPlus) 192 return CGM.getMangledName(&D).str(); 193 194 // If this isn't C++, we don't need a mangled name, just a pretty one. 195 assert(!D.isExternallyVisible() && "name shouldn't matter"); 196 std::string ContextName; 197 const DeclContext *DC = D.getDeclContext(); 198 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 199 DC = cast<DeclContext>(CD->getNonClosureContext()); 200 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 201 ContextName = CGM.getMangledName(FD); 202 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 203 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 204 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 205 ContextName = OMD->getSelector().getAsString(); 206 else 207 llvm_unreachable("Unknown context for static var decl"); 208 209 ContextName += "." + D.getNameAsString(); 210 return ContextName; 211 } 212 213 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 214 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 215 // In general, we don't always emit static var decls once before we reference 216 // them. It is possible to reference them before emitting the function that 217 // contains them, and it is possible to emit the containing function multiple 218 // times. 219 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 220 return ExistingGV; 221 222 QualType Ty = D.getType(); 223 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 224 225 // Use the label if the variable is renamed with the asm-label extension. 226 std::string Name; 227 if (D.hasAttr<AsmLabelAttr>()) 228 Name = getMangledName(&D); 229 else 230 Name = getStaticDeclName(*this, D); 231 232 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 233 LangAS AS = GetGlobalVarAddressSpace(&D); 234 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 235 236 // OpenCL variables in local address space and CUDA shared 237 // variables cannot have an initializer. 238 llvm::Constant *Init = nullptr; 239 if (Ty.getAddressSpace() == LangAS::opencl_local || 240 D.hasAttr<CUDASharedAttr>()) 241 Init = llvm::UndefValue::get(LTy); 242 else 243 Init = EmitNullConstant(Ty); 244 245 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 246 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 247 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 248 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 249 250 if (supportsCOMDAT() && GV->isWeakForLinker()) 251 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 252 253 if (D.getTLSKind()) 254 setTLSMode(GV, D); 255 256 setGVProperties(GV, &D); 257 258 // Make sure the result is of the correct type. 259 LangAS ExpectedAS = Ty.getAddressSpace(); 260 llvm::Constant *Addr = GV; 261 if (AS != ExpectedAS) { 262 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 263 *this, GV, AS, ExpectedAS, 264 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 265 } 266 267 setStaticLocalDeclAddress(&D, Addr); 268 269 // Ensure that the static local gets initialized by making sure the parent 270 // function gets emitted eventually. 271 const Decl *DC = cast<Decl>(D.getDeclContext()); 272 273 // We can't name blocks or captured statements directly, so try to emit their 274 // parents. 275 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 276 DC = DC->getNonClosureContext(); 277 // FIXME: Ensure that global blocks get emitted. 278 if (!DC) 279 return Addr; 280 } 281 282 GlobalDecl GD; 283 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 284 GD = GlobalDecl(CD, Ctor_Base); 285 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 286 GD = GlobalDecl(DD, Dtor_Base); 287 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 288 GD = GlobalDecl(FD); 289 else { 290 // Don't do anything for Obj-C method decls or global closures. We should 291 // never defer them. 292 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 293 } 294 if (GD.getDecl()) { 295 // Disable emission of the parent function for the OpenMP device codegen. 296 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 297 (void)GetAddrOfGlobal(GD); 298 } 299 300 return Addr; 301 } 302 303 /// hasNontrivialDestruction - Determine whether a type's destruction is 304 /// non-trivial. If so, and the variable uses static initialization, we must 305 /// register its destructor to run on exit. 306 static bool hasNontrivialDestruction(QualType T) { 307 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 308 return RD && !RD->hasTrivialDestructor(); 309 } 310 311 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 312 /// global variable that has already been created for it. If the initializer 313 /// has a different type than GV does, this may free GV and return a different 314 /// one. Otherwise it just returns GV. 315 llvm::GlobalVariable * 316 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 317 llvm::GlobalVariable *GV) { 318 ConstantEmitter emitter(*this); 319 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 320 321 // If constant emission failed, then this should be a C++ static 322 // initializer. 323 if (!Init) { 324 if (!getLangOpts().CPlusPlus) 325 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 326 else if (HaveInsertPoint()) { 327 // Since we have a static initializer, this global variable can't 328 // be constant. 329 GV->setConstant(false); 330 331 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 332 } 333 return GV; 334 } 335 336 // The initializer may differ in type from the global. Rewrite 337 // the global to match the initializer. (We have to do this 338 // because some types, like unions, can't be completely represented 339 // in the LLVM type system.) 340 if (GV->getType()->getElementType() != Init->getType()) { 341 llvm::GlobalVariable *OldGV = GV; 342 343 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 344 OldGV->isConstant(), 345 OldGV->getLinkage(), Init, "", 346 /*InsertBefore*/ OldGV, 347 OldGV->getThreadLocalMode(), 348 CGM.getContext().getTargetAddressSpace(D.getType())); 349 GV->setVisibility(OldGV->getVisibility()); 350 GV->setDSOLocal(OldGV->isDSOLocal()); 351 GV->setComdat(OldGV->getComdat()); 352 353 // Steal the name of the old global 354 GV->takeName(OldGV); 355 356 // Replace all uses of the old global with the new global 357 llvm::Constant *NewPtrForOldDecl = 358 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 359 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 360 361 // Erase the old global, since it is no longer used. 362 OldGV->eraseFromParent(); 363 } 364 365 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 366 GV->setInitializer(Init); 367 368 emitter.finalize(GV); 369 370 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 371 // We have a constant initializer, but a nontrivial destructor. We still 372 // need to perform a guarded "initialization" in order to register the 373 // destructor. 374 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 375 } 376 377 return GV; 378 } 379 380 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 381 llvm::GlobalValue::LinkageTypes Linkage) { 382 // Check to see if we already have a global variable for this 383 // declaration. This can happen when double-emitting function 384 // bodies, e.g. with complete and base constructors. 385 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 386 CharUnits alignment = getContext().getDeclAlign(&D); 387 388 // Store into LocalDeclMap before generating initializer to handle 389 // circular references. 390 setAddrOfLocalVar(&D, Address(addr, alignment)); 391 392 // We can't have a VLA here, but we can have a pointer to a VLA, 393 // even though that doesn't really make any sense. 394 // Make sure to evaluate VLA bounds now so that we have them for later. 395 if (D.getType()->isVariablyModifiedType()) 396 EmitVariablyModifiedType(D.getType()); 397 398 // Save the type in case adding the initializer forces a type change. 399 llvm::Type *expectedType = addr->getType(); 400 401 llvm::GlobalVariable *var = 402 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 403 404 // CUDA's local and local static __shared__ variables should not 405 // have any non-empty initializers. This is ensured by Sema. 406 // Whatever initializer such variable may have when it gets here is 407 // a no-op and should not be emitted. 408 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 409 D.hasAttr<CUDASharedAttr>(); 410 // If this value has an initializer, emit it. 411 if (D.getInit() && !isCudaSharedVar) 412 var = AddInitializerToStaticVarDecl(D, var); 413 414 var->setAlignment(alignment.getQuantity()); 415 416 if (D.hasAttr<AnnotateAttr>()) 417 CGM.AddGlobalAnnotations(&D, var); 418 419 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 420 var->addAttribute("bss-section", SA->getName()); 421 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 422 var->addAttribute("data-section", SA->getName()); 423 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 424 var->addAttribute("rodata-section", SA->getName()); 425 426 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 427 var->setSection(SA->getName()); 428 429 if (D.hasAttr<UsedAttr>()) 430 CGM.addUsedGlobal(var); 431 432 // We may have to cast the constant because of the initializer 433 // mismatch above. 434 // 435 // FIXME: It is really dangerous to store this in the map; if anyone 436 // RAUW's the GV uses of this constant will be invalid. 437 llvm::Constant *castedAddr = 438 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 439 if (var != castedAddr) 440 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 441 CGM.setStaticLocalDeclAddress(&D, castedAddr); 442 443 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 444 445 // Emit global variable debug descriptor for static vars. 446 CGDebugInfo *DI = getDebugInfo(); 447 if (DI && 448 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 449 DI->setLocation(D.getLocation()); 450 DI->EmitGlobalVariable(var, &D); 451 } 452 } 453 454 namespace { 455 struct DestroyObject final : EHScopeStack::Cleanup { 456 DestroyObject(Address addr, QualType type, 457 CodeGenFunction::Destroyer *destroyer, 458 bool useEHCleanupForArray) 459 : addr(addr), type(type), destroyer(destroyer), 460 useEHCleanupForArray(useEHCleanupForArray) {} 461 462 Address addr; 463 QualType type; 464 CodeGenFunction::Destroyer *destroyer; 465 bool useEHCleanupForArray; 466 467 void Emit(CodeGenFunction &CGF, Flags flags) override { 468 // Don't use an EH cleanup recursively from an EH cleanup. 469 bool useEHCleanupForArray = 470 flags.isForNormalCleanup() && this->useEHCleanupForArray; 471 472 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 473 } 474 }; 475 476 template <class Derived> 477 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 478 DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) 479 : NRVOFlag(NRVOFlag), Loc(addr) {} 480 481 llvm::Value *NRVOFlag; 482 Address Loc; 483 484 void Emit(CodeGenFunction &CGF, Flags flags) override { 485 // Along the exceptions path we always execute the dtor. 486 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 487 488 llvm::BasicBlock *SkipDtorBB = nullptr; 489 if (NRVO) { 490 // If we exited via NRVO, we skip the destructor call. 491 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 492 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 493 llvm::Value *DidNRVO = 494 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 495 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 496 CGF.EmitBlock(RunDtorBB); 497 } 498 499 static_cast<Derived *>(this)->emitDestructorCall(CGF); 500 501 if (NRVO) CGF.EmitBlock(SkipDtorBB); 502 } 503 504 virtual ~DestroyNRVOVariable() = default; 505 }; 506 507 struct DestroyNRVOVariableCXX final 508 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 509 DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, 510 llvm::Value *NRVOFlag) 511 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), 512 Dtor(Dtor) {} 513 514 const CXXDestructorDecl *Dtor; 515 516 void emitDestructorCall(CodeGenFunction &CGF) { 517 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 518 /*ForVirtualBase=*/false, 519 /*Delegating=*/false, Loc); 520 } 521 }; 522 523 struct DestroyNRVOVariableC final 524 : DestroyNRVOVariable<DestroyNRVOVariableC> { 525 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 526 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} 527 528 QualType Ty; 529 530 void emitDestructorCall(CodeGenFunction &CGF) { 531 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 532 } 533 }; 534 535 struct CallStackRestore final : EHScopeStack::Cleanup { 536 Address Stack; 537 CallStackRestore(Address Stack) : Stack(Stack) {} 538 void Emit(CodeGenFunction &CGF, Flags flags) override { 539 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 540 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 541 CGF.Builder.CreateCall(F, V); 542 } 543 }; 544 545 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 546 const VarDecl &Var; 547 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 548 549 void Emit(CodeGenFunction &CGF, Flags flags) override { 550 // Compute the address of the local variable, in case it's a 551 // byref or something. 552 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 553 Var.getType(), VK_LValue, SourceLocation()); 554 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 555 SourceLocation()); 556 CGF.EmitExtendGCLifetime(value); 557 } 558 }; 559 560 struct CallCleanupFunction final : EHScopeStack::Cleanup { 561 llvm::Constant *CleanupFn; 562 const CGFunctionInfo &FnInfo; 563 const VarDecl &Var; 564 565 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 566 const VarDecl *Var) 567 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 568 569 void Emit(CodeGenFunction &CGF, Flags flags) override { 570 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 571 Var.getType(), VK_LValue, SourceLocation()); 572 // Compute the address of the local variable, in case it's a byref 573 // or something. 574 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 575 576 // In some cases, the type of the function argument will be different from 577 // the type of the pointer. An example of this is 578 // void f(void* arg); 579 // __attribute__((cleanup(f))) void *g; 580 // 581 // To fix this we insert a bitcast here. 582 QualType ArgTy = FnInfo.arg_begin()->type; 583 llvm::Value *Arg = 584 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 585 586 CallArgList Args; 587 Args.add(RValue::get(Arg), 588 CGF.getContext().getPointerType(Var.getType())); 589 auto Callee = CGCallee::forDirect(CleanupFn); 590 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 591 } 592 }; 593 } // end anonymous namespace 594 595 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 596 /// variable with lifetime. 597 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 598 Address addr, 599 Qualifiers::ObjCLifetime lifetime) { 600 switch (lifetime) { 601 case Qualifiers::OCL_None: 602 llvm_unreachable("present but none"); 603 604 case Qualifiers::OCL_ExplicitNone: 605 // nothing to do 606 break; 607 608 case Qualifiers::OCL_Strong: { 609 CodeGenFunction::Destroyer *destroyer = 610 (var.hasAttr<ObjCPreciseLifetimeAttr>() 611 ? CodeGenFunction::destroyARCStrongPrecise 612 : CodeGenFunction::destroyARCStrongImprecise); 613 614 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 615 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 616 cleanupKind & EHCleanup); 617 break; 618 } 619 case Qualifiers::OCL_Autoreleasing: 620 // nothing to do 621 break; 622 623 case Qualifiers::OCL_Weak: 624 // __weak objects always get EH cleanups; otherwise, exceptions 625 // could cause really nasty crashes instead of mere leaks. 626 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 627 CodeGenFunction::destroyARCWeak, 628 /*useEHCleanup*/ true); 629 break; 630 } 631 } 632 633 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 634 if (const Expr *e = dyn_cast<Expr>(s)) { 635 // Skip the most common kinds of expressions that make 636 // hierarchy-walking expensive. 637 s = e = e->IgnoreParenCasts(); 638 639 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 640 return (ref->getDecl() == &var); 641 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 642 const BlockDecl *block = be->getBlockDecl(); 643 for (const auto &I : block->captures()) { 644 if (I.getVariable() == &var) 645 return true; 646 } 647 } 648 } 649 650 for (const Stmt *SubStmt : s->children()) 651 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 652 if (SubStmt && isAccessedBy(var, SubStmt)) 653 return true; 654 655 return false; 656 } 657 658 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 659 if (!decl) return false; 660 if (!isa<VarDecl>(decl)) return false; 661 const VarDecl *var = cast<VarDecl>(decl); 662 return isAccessedBy(*var, e); 663 } 664 665 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 666 const LValue &destLV, const Expr *init) { 667 bool needsCast = false; 668 669 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 670 switch (castExpr->getCastKind()) { 671 // Look through casts that don't require representation changes. 672 case CK_NoOp: 673 case CK_BitCast: 674 case CK_BlockPointerToObjCPointerCast: 675 needsCast = true; 676 break; 677 678 // If we find an l-value to r-value cast from a __weak variable, 679 // emit this operation as a copy or move. 680 case CK_LValueToRValue: { 681 const Expr *srcExpr = castExpr->getSubExpr(); 682 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 683 return false; 684 685 // Emit the source l-value. 686 LValue srcLV = CGF.EmitLValue(srcExpr); 687 688 // Handle a formal type change to avoid asserting. 689 auto srcAddr = srcLV.getAddress(); 690 if (needsCast) { 691 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 692 destLV.getAddress().getElementType()); 693 } 694 695 // If it was an l-value, use objc_copyWeak. 696 if (srcExpr->getValueKind() == VK_LValue) { 697 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 698 } else { 699 assert(srcExpr->getValueKind() == VK_XValue); 700 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 701 } 702 return true; 703 } 704 705 // Stop at anything else. 706 default: 707 return false; 708 } 709 710 init = castExpr->getSubExpr(); 711 } 712 return false; 713 } 714 715 static void drillIntoBlockVariable(CodeGenFunction &CGF, 716 LValue &lvalue, 717 const VarDecl *var) { 718 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 719 } 720 721 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 722 SourceLocation Loc) { 723 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 724 return; 725 726 auto Nullability = LHS.getType()->getNullability(getContext()); 727 if (!Nullability || *Nullability != NullabilityKind::NonNull) 728 return; 729 730 // Check if the right hand side of the assignment is nonnull, if the left 731 // hand side must be nonnull. 732 SanitizerScope SanScope(this); 733 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 734 llvm::Constant *StaticData[] = { 735 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 736 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 737 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 738 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 739 SanitizerHandler::TypeMismatch, StaticData, RHS); 740 } 741 742 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 743 LValue lvalue, bool capturedByInit) { 744 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 745 if (!lifetime) { 746 llvm::Value *value = EmitScalarExpr(init); 747 if (capturedByInit) 748 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 749 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 750 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 751 return; 752 } 753 754 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 755 init = DIE->getExpr(); 756 757 // If we're emitting a value with lifetime, we have to do the 758 // initialization *before* we leave the cleanup scopes. 759 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 760 enterFullExpression(fe); 761 init = fe->getSubExpr(); 762 } 763 CodeGenFunction::RunCleanupsScope Scope(*this); 764 765 // We have to maintain the illusion that the variable is 766 // zero-initialized. If the variable might be accessed in its 767 // initializer, zero-initialize before running the initializer, then 768 // actually perform the initialization with an assign. 769 bool accessedByInit = false; 770 if (lifetime != Qualifiers::OCL_ExplicitNone) 771 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 772 if (accessedByInit) { 773 LValue tempLV = lvalue; 774 // Drill down to the __block object if necessary. 775 if (capturedByInit) { 776 // We can use a simple GEP for this because it can't have been 777 // moved yet. 778 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 779 cast<VarDecl>(D), 780 /*follow*/ false)); 781 } 782 783 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 784 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 785 786 // If __weak, we want to use a barrier under certain conditions. 787 if (lifetime == Qualifiers::OCL_Weak) 788 EmitARCInitWeak(tempLV.getAddress(), zero); 789 790 // Otherwise just do a simple store. 791 else 792 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 793 } 794 795 // Emit the initializer. 796 llvm::Value *value = nullptr; 797 798 switch (lifetime) { 799 case Qualifiers::OCL_None: 800 llvm_unreachable("present but none"); 801 802 case Qualifiers::OCL_Strong: { 803 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 804 value = EmitARCRetainScalarExpr(init); 805 break; 806 } 807 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 808 // that we omit the retain, and causes non-autoreleased return values to be 809 // immediately released. 810 LLVM_FALLTHROUGH; 811 } 812 813 case Qualifiers::OCL_ExplicitNone: 814 value = EmitARCUnsafeUnretainedScalarExpr(init); 815 break; 816 817 case Qualifiers::OCL_Weak: { 818 // If it's not accessed by the initializer, try to emit the 819 // initialization with a copy or move. 820 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 821 return; 822 } 823 824 // No way to optimize a producing initializer into this. It's not 825 // worth optimizing for, because the value will immediately 826 // disappear in the common case. 827 value = EmitScalarExpr(init); 828 829 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 830 if (accessedByInit) 831 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 832 else 833 EmitARCInitWeak(lvalue.getAddress(), value); 834 return; 835 } 836 837 case Qualifiers::OCL_Autoreleasing: 838 value = EmitARCRetainAutoreleaseScalarExpr(init); 839 break; 840 } 841 842 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 843 844 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 845 846 // If the variable might have been accessed by its initializer, we 847 // might have to initialize with a barrier. We have to do this for 848 // both __weak and __strong, but __weak got filtered out above. 849 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 850 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 851 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 852 EmitARCRelease(oldValue, ARCImpreciseLifetime); 853 return; 854 } 855 856 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 857 } 858 859 /// Decide whether we can emit the non-zero parts of the specified initializer 860 /// with equal or fewer than NumStores scalar stores. 861 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 862 unsigned &NumStores) { 863 // Zero and Undef never requires any extra stores. 864 if (isa<llvm::ConstantAggregateZero>(Init) || 865 isa<llvm::ConstantPointerNull>(Init) || 866 isa<llvm::UndefValue>(Init)) 867 return true; 868 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 869 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 870 isa<llvm::ConstantExpr>(Init)) 871 return Init->isNullValue() || NumStores--; 872 873 // See if we can emit each element. 874 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 875 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 876 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 877 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 878 return false; 879 } 880 return true; 881 } 882 883 if (llvm::ConstantDataSequential *CDS = 884 dyn_cast<llvm::ConstantDataSequential>(Init)) { 885 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 886 llvm::Constant *Elt = CDS->getElementAsConstant(i); 887 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 888 return false; 889 } 890 return true; 891 } 892 893 // Anything else is hard and scary. 894 return false; 895 } 896 897 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 898 /// the scalar stores that would be required. 899 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 900 llvm::Constant *Init, Address Loc, 901 bool isVolatile, CGBuilderTy &Builder) { 902 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 903 "called emitStoresForInitAfterBZero for zero or undef value."); 904 905 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 906 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 907 isa<llvm::ConstantExpr>(Init)) { 908 Builder.CreateStore(Init, Loc, isVolatile); 909 return; 910 } 911 912 if (llvm::ConstantDataSequential *CDS = 913 dyn_cast<llvm::ConstantDataSequential>(Init)) { 914 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 915 llvm::Constant *Elt = CDS->getElementAsConstant(i); 916 917 // If necessary, get a pointer to the element and emit it. 918 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 919 emitStoresForInitAfterBZero( 920 CGM, Elt, 921 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 922 isVolatile, Builder); 923 } 924 return; 925 } 926 927 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 928 "Unknown value type!"); 929 930 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 931 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 932 933 // If necessary, get a pointer to the element and emit it. 934 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 935 emitStoresForInitAfterBZero( 936 CGM, Elt, 937 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 938 isVolatile, Builder); 939 } 940 } 941 942 /// Decide whether we should use bzero plus some stores to initialize a local 943 /// variable instead of using a memcpy from a constant global. It is beneficial 944 /// to use bzero if the global is all zeros, or mostly zeros and large. 945 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 946 uint64_t GlobalSize) { 947 // If a global is all zeros, always use a bzero. 948 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 949 950 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 951 // do it if it will require 6 or fewer scalar stores. 952 // TODO: Should budget depends on the size? Avoiding a large global warrants 953 // plopping in more stores. 954 unsigned StoreBudget = 6; 955 uint64_t SizeLimit = 32; 956 957 return GlobalSize > SizeLimit && 958 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 959 } 960 961 /// Decide whether we should use memset to initialize a local variable instead 962 /// of using a memcpy from a constant global. Assumes we've already decided to 963 /// not user bzero. 964 /// FIXME We could be more clever, as we are for bzero above, and generate 965 /// memset followed by stores. It's unclear that's worth the effort. 966 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 967 uint64_t GlobalSize) { 968 uint64_t SizeLimit = 32; 969 if (GlobalSize <= SizeLimit) 970 return nullptr; 971 return llvm::isBytewiseValue(Init); 972 } 973 974 static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) { 975 // The following value is a guaranteed unmappable pointer value and has a 976 // repeated byte-pattern which makes it easier to synthesize. We use it for 977 // pointers as well as integers so that aggregates are likely to be 978 // initialized with this repeated value. 979 constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull; 980 // For 32-bit platforms it's a bit trickier because, across systems, only the 981 // zero page can reasonably be expected to be unmapped, and even then we need 982 // a very low address. We use a smaller value, and that value sadly doesn't 983 // have a repeated byte-pattern. We don't use it for integers. 984 constexpr uint32_t SmallValue = 0x000000AA; 985 // Floating-point values are initialized as NaNs because they propagate. Using 986 // a repeated byte pattern means that it will be easier to initialize 987 // all-floating-point aggregates and arrays with memset. Further, aggregates 988 // which mix integral and a few floats might also initialize with memset 989 // followed by a handful of stores for the floats. Using fairly unique NaNs 990 // also means they'll be easier to distinguish in a crash. 991 constexpr bool NegativeNaN = true; 992 constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull; 993 if (Ty->isIntOrIntVectorTy()) { 994 unsigned BitWidth = cast<llvm::IntegerType>( 995 Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) 996 ->getBitWidth(); 997 if (BitWidth <= 64) 998 return llvm::ConstantInt::get(Ty, LargeValue); 999 return llvm::ConstantInt::get( 1000 Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue))); 1001 } 1002 if (Ty->isPtrOrPtrVectorTy()) { 1003 auto *PtrTy = cast<llvm::PointerType>( 1004 Ty->isVectorTy() ? Ty->getVectorElementType() : Ty); 1005 unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth( 1006 PtrTy->getAddressSpace()); 1007 llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth); 1008 uint64_t IntValue; 1009 switch (PtrWidth) { 1010 default: 1011 llvm_unreachable("pattern initialization of unsupported pointer width"); 1012 case 64: 1013 IntValue = LargeValue; 1014 break; 1015 case 32: 1016 IntValue = SmallValue; 1017 break; 1018 } 1019 auto *Int = llvm::ConstantInt::get(IntTy, IntValue); 1020 return llvm::ConstantExpr::getIntToPtr(Int, PtrTy); 1021 } 1022 if (Ty->isFPOrFPVectorTy()) { 1023 unsigned BitWidth = llvm::APFloat::semanticsSizeInBits( 1024 (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) 1025 ->getFltSemantics()); 1026 llvm::APInt Payload(64, NaNPayload); 1027 if (BitWidth >= 64) 1028 Payload = llvm::APInt::getSplat(BitWidth, Payload); 1029 return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload); 1030 } 1031 if (Ty->isArrayTy()) { 1032 // Note: this doesn't touch tail padding (at the end of an object, before 1033 // the next array object). It is instead handled by replaceUndef. 1034 auto *ArrTy = cast<llvm::ArrayType>(Ty); 1035 llvm::SmallVector<llvm::Constant *, 8> Element( 1036 ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType())); 1037 return llvm::ConstantArray::get(ArrTy, Element); 1038 } 1039 1040 // Note: this doesn't touch struct padding. It will initialize as much union 1041 // padding as is required for the largest type in the union. Padding is 1042 // instead handled by replaceUndef. Stores to structs with volatile members 1043 // don't have a volatile qualifier when initialized according to C++. This is 1044 // fine because stack-based volatiles don't really have volatile semantics 1045 // anyways, and the initialization shouldn't be observable. 1046 auto *StructTy = cast<llvm::StructType>(Ty); 1047 llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements()); 1048 for (unsigned El = 0; El != Struct.size(); ++El) 1049 Struct[El] = patternFor(CGM, StructTy->getElementType(El)); 1050 return llvm::ConstantStruct::get(StructTy, Struct); 1051 } 1052 1053 static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D, 1054 CGBuilderTy &Builder, 1055 llvm::Constant *Constant, 1056 CharUnits Align) { 1057 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1058 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1059 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1060 return CC->getNameAsString(); 1061 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1062 return CD->getNameAsString(); 1063 return CGM.getMangledName(FD); 1064 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1065 return OM->getNameAsString(); 1066 } else if (isa<BlockDecl>(DC)) { 1067 return "<block>"; 1068 } else if (isa<CapturedDecl>(DC)) { 1069 return "<captured>"; 1070 } else { 1071 llvm::llvm_unreachable_internal("expected a function or method"); 1072 } 1073 }; 1074 1075 auto *Ty = Constant->getType(); 1076 bool isConstant = true; 1077 llvm::GlobalVariable *InsertBefore = nullptr; 1078 unsigned AS = CGM.getContext().getTargetAddressSpace( 1079 CGM.getStringLiteralAddressSpace()); 1080 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1081 CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1082 Constant, 1083 "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." + 1084 D.getName(), 1085 InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1086 GV->setAlignment(Align.getQuantity()); 1087 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1088 1089 Address SrcPtr = Address(GV, Align); 1090 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS); 1091 if (SrcPtr.getType() != BP) 1092 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1093 return SrcPtr; 1094 } 1095 1096 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1097 Address Loc, bool isVolatile, 1098 CGBuilderTy &Builder, 1099 llvm::Constant *constant) { 1100 auto *Ty = constant->getType(); 1101 bool isScalar = Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy() || 1102 Ty->isFPOrFPVectorTy(); 1103 if (isScalar) { 1104 Builder.CreateStore(constant, Loc, isVolatile); 1105 return; 1106 } 1107 1108 auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1109 auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext()); 1110 1111 // If the initializer is all or mostly the same, codegen with bzero / memset 1112 // then do a few stores afterward. 1113 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1114 auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize); 1115 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1116 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1117 isVolatile); 1118 1119 bool valueAlreadyCorrect = 1120 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1121 if (!valueAlreadyCorrect) { 1122 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1123 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1124 } 1125 return; 1126 } 1127 1128 llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize); 1129 if (Pattern) { 1130 uint64_t Value = 0x00; 1131 if (!isa<llvm::UndefValue>(Pattern)) { 1132 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1133 assert(AP.getBitWidth() <= 8); 1134 Value = AP.getLimitedValue(); 1135 } 1136 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal, 1137 isVolatile); 1138 return; 1139 } 1140 1141 Builder.CreateMemCpy( 1142 Loc, 1143 createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()), 1144 SizeVal, isVolatile); 1145 } 1146 1147 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1148 Address Loc, bool isVolatile, 1149 CGBuilderTy &Builder) { 1150 llvm::Type *ElTy = Loc.getElementType(); 1151 llvm::Constant *constant = llvm::Constant::getNullValue(ElTy); 1152 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1153 } 1154 1155 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1156 Address Loc, bool isVolatile, 1157 CGBuilderTy &Builder) { 1158 llvm::Type *ElTy = Loc.getElementType(); 1159 llvm::Constant *constant = patternFor(CGM, ElTy); 1160 assert(!isa<llvm::UndefValue>(constant)); 1161 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1162 } 1163 1164 static bool containsUndef(llvm::Constant *constant) { 1165 auto *Ty = constant->getType(); 1166 if (isa<llvm::UndefValue>(constant)) 1167 return true; 1168 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1169 for (llvm::Use &Op : constant->operands()) 1170 if (containsUndef(cast<llvm::Constant>(Op))) 1171 return true; 1172 return false; 1173 } 1174 1175 static llvm::Constant *replaceUndef(llvm::Constant *constant) { 1176 // FIXME: when doing pattern initialization, replace undef with 0xAA instead. 1177 // FIXME: also replace padding between values by creating a new struct type 1178 // which has no padding. 1179 auto *Ty = constant->getType(); 1180 if (isa<llvm::UndefValue>(constant)) 1181 return llvm::Constant::getNullValue(Ty); 1182 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1183 return constant; 1184 if (!containsUndef(constant)) 1185 return constant; 1186 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1187 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1188 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1189 Values[Op] = replaceUndef(OpValue); 1190 } 1191 if (Ty->isStructTy()) 1192 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1193 if (Ty->isArrayTy()) 1194 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1195 assert(Ty->isVectorTy()); 1196 return llvm::ConstantVector::get(Values); 1197 } 1198 1199 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1200 /// variable declaration with auto, register, or no storage class specifier. 1201 /// These turn into simple stack objects, or GlobalValues depending on target. 1202 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1203 AutoVarEmission emission = EmitAutoVarAlloca(D); 1204 EmitAutoVarInit(emission); 1205 EmitAutoVarCleanups(emission); 1206 } 1207 1208 /// Emit a lifetime.begin marker if some criteria are satisfied. 1209 /// \return a pointer to the temporary size Value if a marker was emitted, null 1210 /// otherwise 1211 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1212 llvm::Value *Addr) { 1213 if (!ShouldEmitLifetimeMarkers) 1214 return nullptr; 1215 1216 assert(Addr->getType()->getPointerAddressSpace() == 1217 CGM.getDataLayout().getAllocaAddrSpace() && 1218 "Pointer should be in alloca address space"); 1219 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1220 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1221 llvm::CallInst *C = 1222 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1223 C->setDoesNotThrow(); 1224 return SizeV; 1225 } 1226 1227 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1228 assert(Addr->getType()->getPointerAddressSpace() == 1229 CGM.getDataLayout().getAllocaAddrSpace() && 1230 "Pointer should be in alloca address space"); 1231 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1232 llvm::CallInst *C = 1233 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1234 C->setDoesNotThrow(); 1235 } 1236 1237 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1238 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1239 // For each dimension stores its QualType and corresponding 1240 // size-expression Value. 1241 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1242 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1243 1244 // Break down the array into individual dimensions. 1245 QualType Type1D = D.getType(); 1246 while (getContext().getAsVariableArrayType(Type1D)) { 1247 auto VlaSize = getVLAElements1D(Type1D); 1248 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1249 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1250 else { 1251 // Generate a locally unique name for the size expression. 1252 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1253 SmallString<12> Buffer; 1254 StringRef NameRef = Name.toStringRef(Buffer); 1255 auto &Ident = getContext().Idents.getOwn(NameRef); 1256 VLAExprNames.push_back(&Ident); 1257 auto SizeExprAddr = 1258 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1259 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1260 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1261 Type1D.getUnqualifiedType()); 1262 } 1263 Type1D = VlaSize.Type; 1264 } 1265 1266 if (!EmitDebugInfo) 1267 return; 1268 1269 // Register each dimension's size-expression with a DILocalVariable, 1270 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1271 // to describe this array. 1272 unsigned NameIdx = 0; 1273 for (auto &VlaSize : Dimensions) { 1274 llvm::Metadata *MD; 1275 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1276 MD = llvm::ConstantAsMetadata::get(C); 1277 else { 1278 // Create an artificial VarDecl to generate debug info for. 1279 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1280 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1281 auto QT = getContext().getIntTypeForBitwidth( 1282 VlaExprTy->getScalarSizeInBits(), false); 1283 auto *ArtificialDecl = VarDecl::Create( 1284 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1285 D.getLocation(), D.getLocation(), NameIdent, QT, 1286 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1287 ArtificialDecl->setImplicit(); 1288 1289 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1290 Builder); 1291 } 1292 assert(MD && "No Size expression debug node created"); 1293 DI->registerVLASizeExpression(VlaSize.Type, MD); 1294 } 1295 } 1296 1297 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1298 /// local variable. Does not emit initialization or destruction. 1299 CodeGenFunction::AutoVarEmission 1300 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1301 QualType Ty = D.getType(); 1302 assert( 1303 Ty.getAddressSpace() == LangAS::Default || 1304 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1305 1306 AutoVarEmission emission(D); 1307 1308 bool isEscapingByRef = D.isEscapingByref(); 1309 emission.IsEscapingByRef = isEscapingByRef; 1310 1311 CharUnits alignment = getContext().getDeclAlign(&D); 1312 1313 // If the type is variably-modified, emit all the VLA sizes for it. 1314 if (Ty->isVariablyModifiedType()) 1315 EmitVariablyModifiedType(Ty); 1316 1317 auto *DI = getDebugInfo(); 1318 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1319 codegenoptions::LimitedDebugInfo; 1320 1321 Address address = Address::invalid(); 1322 Address AllocaAddr = Address::invalid(); 1323 if (Ty->isConstantSizeType()) { 1324 bool NRVO = getLangOpts().ElideConstructors && 1325 D.isNRVOVariable(); 1326 1327 // If this value is an array or struct with a statically determinable 1328 // constant initializer, there are optimizations we can do. 1329 // 1330 // TODO: We should constant-evaluate the initializer of any variable, 1331 // as long as it is initialized by a constant expression. Currently, 1332 // isConstantInitializer produces wrong answers for structs with 1333 // reference or bitfield members, and a few other cases, and checking 1334 // for POD-ness protects us from some of these. 1335 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1336 (D.isConstexpr() || 1337 ((Ty.isPODType(getContext()) || 1338 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1339 D.getInit()->isConstantInitializer(getContext(), false)))) { 1340 1341 // If the variable's a const type, and it's neither an NRVO 1342 // candidate nor a __block variable and has no mutable members, 1343 // emit it as a global instead. 1344 // Exception is if a variable is located in non-constant address space 1345 // in OpenCL. 1346 if ((!getLangOpts().OpenCL || 1347 Ty.getAddressSpace() == LangAS::opencl_constant) && 1348 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1349 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1350 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1351 1352 // Signal this condition to later callbacks. 1353 emission.Addr = Address::invalid(); 1354 assert(emission.wasEmittedAsGlobal()); 1355 return emission; 1356 } 1357 1358 // Otherwise, tell the initialization code that we're in this case. 1359 emission.IsConstantAggregate = true; 1360 } 1361 1362 // A normal fixed sized variable becomes an alloca in the entry block, 1363 // unless: 1364 // - it's an NRVO variable. 1365 // - we are compiling OpenMP and it's an OpenMP local variable. 1366 1367 Address OpenMPLocalAddr = 1368 getLangOpts().OpenMP 1369 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1370 : Address::invalid(); 1371 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1372 address = OpenMPLocalAddr; 1373 } else if (NRVO) { 1374 // The named return value optimization: allocate this variable in the 1375 // return slot, so that we can elide the copy when returning this 1376 // variable (C++0x [class.copy]p34). 1377 address = ReturnValue; 1378 1379 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1380 const auto *RD = RecordTy->getDecl(); 1381 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1382 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1383 RD->isNonTrivialToPrimitiveDestroy()) { 1384 // Create a flag that is used to indicate when the NRVO was applied 1385 // to this variable. Set it to zero to indicate that NRVO was not 1386 // applied. 1387 llvm::Value *Zero = Builder.getFalse(); 1388 Address NRVOFlag = 1389 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1390 EnsureInsertPoint(); 1391 Builder.CreateStore(Zero, NRVOFlag); 1392 1393 // Record the NRVO flag for this variable. 1394 NRVOFlags[&D] = NRVOFlag.getPointer(); 1395 emission.NRVOFlag = NRVOFlag.getPointer(); 1396 } 1397 } 1398 } else { 1399 CharUnits allocaAlignment; 1400 llvm::Type *allocaTy; 1401 if (isEscapingByRef) { 1402 auto &byrefInfo = getBlockByrefInfo(&D); 1403 allocaTy = byrefInfo.Type; 1404 allocaAlignment = byrefInfo.ByrefAlignment; 1405 } else { 1406 allocaTy = ConvertTypeForMem(Ty); 1407 allocaAlignment = alignment; 1408 } 1409 1410 // Create the alloca. Note that we set the name separately from 1411 // building the instruction so that it's there even in no-asserts 1412 // builds. 1413 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1414 /*ArraySize=*/nullptr, &AllocaAddr); 1415 1416 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1417 // the catch parameter starts in the catchpad instruction, and we can't 1418 // insert code in those basic blocks. 1419 bool IsMSCatchParam = 1420 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1421 1422 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1423 // if we don't have a valid insertion point (?). 1424 if (HaveInsertPoint() && !IsMSCatchParam) { 1425 // If there's a jump into the lifetime of this variable, its lifetime 1426 // gets broken up into several regions in IR, which requires more work 1427 // to handle correctly. For now, just omit the intrinsics; this is a 1428 // rare case, and it's better to just be conservatively correct. 1429 // PR28267. 1430 // 1431 // We have to do this in all language modes if there's a jump past the 1432 // declaration. We also have to do it in C if there's a jump to an 1433 // earlier point in the current block because non-VLA lifetimes begin as 1434 // soon as the containing block is entered, not when its variables 1435 // actually come into scope; suppressing the lifetime annotations 1436 // completely in this case is unnecessarily pessimistic, but again, this 1437 // is rare. 1438 if (!Bypasses.IsBypassed(&D) && 1439 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1440 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1441 emission.SizeForLifetimeMarkers = 1442 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1443 } 1444 } else { 1445 assert(!emission.useLifetimeMarkers()); 1446 } 1447 } 1448 } else { 1449 EnsureInsertPoint(); 1450 1451 if (!DidCallStackSave) { 1452 // Save the stack. 1453 Address Stack = 1454 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1455 1456 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1457 llvm::Value *V = Builder.CreateCall(F); 1458 Builder.CreateStore(V, Stack); 1459 1460 DidCallStackSave = true; 1461 1462 // Push a cleanup block and restore the stack there. 1463 // FIXME: in general circumstances, this should be an EH cleanup. 1464 pushStackRestore(NormalCleanup, Stack); 1465 } 1466 1467 auto VlaSize = getVLASize(Ty); 1468 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1469 1470 // Allocate memory for the array. 1471 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1472 &AllocaAddr); 1473 1474 // If we have debug info enabled, properly describe the VLA dimensions for 1475 // this type by registering the vla size expression for each of the 1476 // dimensions. 1477 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1478 } 1479 1480 setAddrOfLocalVar(&D, address); 1481 emission.Addr = address; 1482 emission.AllocaAddr = AllocaAddr; 1483 1484 // Emit debug info for local var declaration. 1485 if (EmitDebugInfo && HaveInsertPoint()) { 1486 DI->setLocation(D.getLocation()); 1487 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1488 } 1489 1490 if (D.hasAttr<AnnotateAttr>()) 1491 EmitVarAnnotations(&D, address.getPointer()); 1492 1493 // Make sure we call @llvm.lifetime.end. 1494 if (emission.useLifetimeMarkers()) 1495 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1496 emission.getOriginalAllocatedAddress(), 1497 emission.getSizeForLifetimeMarkers()); 1498 1499 return emission; 1500 } 1501 1502 static bool isCapturedBy(const VarDecl &, const Expr *); 1503 1504 /// Determines whether the given __block variable is potentially 1505 /// captured by the given statement. 1506 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1507 if (const Expr *E = dyn_cast<Expr>(S)) 1508 return isCapturedBy(Var, E); 1509 for (const Stmt *SubStmt : S->children()) 1510 if (isCapturedBy(Var, SubStmt)) 1511 return true; 1512 return false; 1513 } 1514 1515 /// Determines whether the given __block variable is potentially 1516 /// captured by the given expression. 1517 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1518 // Skip the most common kinds of expressions that make 1519 // hierarchy-walking expensive. 1520 E = E->IgnoreParenCasts(); 1521 1522 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1523 const BlockDecl *Block = BE->getBlockDecl(); 1524 for (const auto &I : Block->captures()) { 1525 if (I.getVariable() == &Var) 1526 return true; 1527 } 1528 1529 // No need to walk into the subexpressions. 1530 return false; 1531 } 1532 1533 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1534 const CompoundStmt *CS = SE->getSubStmt(); 1535 for (const auto *BI : CS->body()) 1536 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1537 if (isCapturedBy(Var, BIE)) 1538 return true; 1539 } 1540 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1541 // special case declarations 1542 for (const auto *I : DS->decls()) { 1543 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1544 const Expr *Init = VD->getInit(); 1545 if (Init && isCapturedBy(Var, Init)) 1546 return true; 1547 } 1548 } 1549 } 1550 else 1551 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1552 // Later, provide code to poke into statements for capture analysis. 1553 return true; 1554 return false; 1555 } 1556 1557 for (const Stmt *SubStmt : E->children()) 1558 if (isCapturedBy(Var, SubStmt)) 1559 return true; 1560 1561 return false; 1562 } 1563 1564 /// Determine whether the given initializer is trivial in the sense 1565 /// that it requires no code to be generated. 1566 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1567 if (!Init) 1568 return true; 1569 1570 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1571 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1572 if (Constructor->isTrivial() && 1573 Constructor->isDefaultConstructor() && 1574 !Construct->requiresZeroInitialization()) 1575 return true; 1576 1577 return false; 1578 } 1579 1580 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1581 assert(emission.Variable && "emission was not valid!"); 1582 1583 // If this was emitted as a global constant, we're done. 1584 if (emission.wasEmittedAsGlobal()) return; 1585 1586 const VarDecl &D = *emission.Variable; 1587 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1588 QualType type = D.getType(); 1589 1590 bool isVolatile = type.isVolatileQualified(); 1591 1592 // If this local has an initializer, emit it now. 1593 const Expr *Init = D.getInit(); 1594 1595 // If we are at an unreachable point, we don't need to emit the initializer 1596 // unless it contains a label. 1597 if (!HaveInsertPoint()) { 1598 if (!Init || !ContainsLabel(Init)) return; 1599 EnsureInsertPoint(); 1600 } 1601 1602 // Initialize the structure of a __block variable. 1603 if (emission.IsEscapingByRef) 1604 emitByrefStructureInit(emission); 1605 1606 // Initialize the variable here if it doesn't have a initializer and it is a 1607 // C struct that is non-trivial to initialize or an array containing such a 1608 // struct. 1609 if (!Init && 1610 type.isNonTrivialToPrimitiveDefaultInitialize() == 1611 QualType::PDIK_Struct) { 1612 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1613 if (emission.IsEscapingByRef) 1614 drillIntoBlockVariable(*this, Dst, &D); 1615 defaultInitNonTrivialCStructVar(Dst); 1616 return; 1617 } 1618 1619 // Check whether this is a byref variable that's potentially 1620 // captured and moved by its own initializer. If so, we'll need to 1621 // emit the initializer first, then copy into the variable. 1622 bool capturedByInit = 1623 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1624 1625 Address Loc = 1626 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1627 1628 // Note: constexpr already initializes everything correctly. 1629 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1630 (D.isConstexpr() 1631 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1632 : (D.getAttr<UninitializedAttr>() 1633 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1634 : getContext().getLangOpts().getTrivialAutoVarInit())); 1635 1636 auto initializeWhatIsTechnicallyUninitialized = [&]() { 1637 if (trivialAutoVarInit == 1638 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1639 return; 1640 1641 CharUnits Size = getContext().getTypeSizeInChars(type); 1642 if (!Size.isZero()) { 1643 switch (trivialAutoVarInit) { 1644 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1645 llvm_unreachable("Uninitialized handled above"); 1646 case LangOptions::TrivialAutoVarInitKind::Zero: 1647 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1648 break; 1649 case LangOptions::TrivialAutoVarInitKind::Pattern: 1650 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1651 break; 1652 } 1653 return; 1654 } 1655 1656 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1657 // them, so emit a memcpy with the VLA size to initialize each element. 1658 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1659 // will catch that code, but there exists code which generates zero-sized 1660 // VLAs. Be nice and initialize whatever they requested. 1661 const VariableArrayType *VlaType = 1662 dyn_cast_or_null<VariableArrayType>(getContext().getAsArrayType(type)); 1663 if (!VlaType) 1664 return; 1665 auto VlaSize = getVLASize(VlaType); 1666 auto SizeVal = VlaSize.NumElts; 1667 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1668 switch (trivialAutoVarInit) { 1669 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1670 llvm_unreachable("Uninitialized handled above"); 1671 1672 case LangOptions::TrivialAutoVarInitKind::Zero: 1673 if (!EltSize.isOne()) 1674 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1675 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1676 isVolatile); 1677 break; 1678 1679 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1680 llvm::Type *ElTy = Loc.getElementType(); 1681 llvm::Constant *Constant = patternFor(CGM, ElTy); 1682 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1683 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1684 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1685 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1686 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1687 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1688 "vla.iszerosized"); 1689 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1690 EmitBlock(SetupBB); 1691 if (!EltSize.isOne()) 1692 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1693 llvm::Value *BaseSizeInChars = 1694 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1695 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1696 llvm::Value *End = 1697 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1698 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1699 EmitBlock(LoopBB); 1700 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1701 Cur->addIncoming(Begin.getPointer(), OriginBB); 1702 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1703 Builder.CreateMemCpy( 1704 Address(Cur, CurAlign), 1705 createUnnamedGlobalFrom(CGM, D, Builder, Constant, ConstantAlign), 1706 BaseSizeInChars, isVolatile); 1707 llvm::Value *Next = 1708 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1709 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1710 Builder.CreateCondBr(Done, ContBB, LoopBB); 1711 Cur->addIncoming(Next, LoopBB); 1712 EmitBlock(ContBB); 1713 } break; 1714 } 1715 }; 1716 1717 if (isTrivialInitializer(Init)) { 1718 initializeWhatIsTechnicallyUninitialized(); 1719 return; 1720 } 1721 1722 llvm::Constant *constant = nullptr; 1723 if (emission.IsConstantAggregate || D.isConstexpr()) { 1724 assert(!capturedByInit && "constant init contains a capturing block?"); 1725 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1726 if (constant && trivialAutoVarInit != 1727 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1728 constant = replaceUndef(constant); 1729 } 1730 1731 if (!constant) { 1732 initializeWhatIsTechnicallyUninitialized(); 1733 LValue lv = MakeAddrLValue(Loc, type); 1734 lv.setNonGC(true); 1735 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1736 } 1737 1738 if (!emission.IsConstantAggregate) { 1739 // For simple scalar/complex initialization, store the value directly. 1740 LValue lv = MakeAddrLValue(Loc, type); 1741 lv.setNonGC(true); 1742 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1743 } 1744 1745 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1746 if (Loc.getType() != BP) 1747 Loc = Builder.CreateBitCast(Loc, BP); 1748 1749 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1750 } 1751 1752 /// Emit an expression as an initializer for an object (variable, field, etc.) 1753 /// at the given location. The expression is not necessarily the normal 1754 /// initializer for the object, and the address is not necessarily 1755 /// its normal location. 1756 /// 1757 /// \param init the initializing expression 1758 /// \param D the object to act as if we're initializing 1759 /// \param loc the address to initialize; its type is a pointer 1760 /// to the LLVM mapping of the object's type 1761 /// \param alignment the alignment of the address 1762 /// \param capturedByInit true if \p D is a __block variable 1763 /// whose address is potentially changed by the initializer 1764 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1765 LValue lvalue, bool capturedByInit) { 1766 QualType type = D->getType(); 1767 1768 if (type->isReferenceType()) { 1769 RValue rvalue = EmitReferenceBindingToExpr(init); 1770 if (capturedByInit) 1771 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1772 EmitStoreThroughLValue(rvalue, lvalue, true); 1773 return; 1774 } 1775 switch (getEvaluationKind(type)) { 1776 case TEK_Scalar: 1777 EmitScalarInit(init, D, lvalue, capturedByInit); 1778 return; 1779 case TEK_Complex: { 1780 ComplexPairTy complex = EmitComplexExpr(init); 1781 if (capturedByInit) 1782 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1783 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1784 return; 1785 } 1786 case TEK_Aggregate: 1787 if (type->isAtomicType()) { 1788 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1789 } else { 1790 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1791 if (isa<VarDecl>(D)) 1792 Overlap = AggValueSlot::DoesNotOverlap; 1793 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1794 Overlap = overlapForFieldInit(FD); 1795 // TODO: how can we delay here if D is captured by its initializer? 1796 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1797 AggValueSlot::IsDestructed, 1798 AggValueSlot::DoesNotNeedGCBarriers, 1799 AggValueSlot::IsNotAliased, 1800 Overlap)); 1801 } 1802 return; 1803 } 1804 llvm_unreachable("bad evaluation kind"); 1805 } 1806 1807 /// Enter a destroy cleanup for the given local variable. 1808 void CodeGenFunction::emitAutoVarTypeCleanup( 1809 const CodeGenFunction::AutoVarEmission &emission, 1810 QualType::DestructionKind dtorKind) { 1811 assert(dtorKind != QualType::DK_none); 1812 1813 // Note that for __block variables, we want to destroy the 1814 // original stack object, not the possibly forwarded object. 1815 Address addr = emission.getObjectAddress(*this); 1816 1817 const VarDecl *var = emission.Variable; 1818 QualType type = var->getType(); 1819 1820 CleanupKind cleanupKind = NormalAndEHCleanup; 1821 CodeGenFunction::Destroyer *destroyer = nullptr; 1822 1823 switch (dtorKind) { 1824 case QualType::DK_none: 1825 llvm_unreachable("no cleanup for trivially-destructible variable"); 1826 1827 case QualType::DK_cxx_destructor: 1828 // If there's an NRVO flag on the emission, we need a different 1829 // cleanup. 1830 if (emission.NRVOFlag) { 1831 assert(!type->isArrayType()); 1832 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1833 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, 1834 emission.NRVOFlag); 1835 return; 1836 } 1837 break; 1838 1839 case QualType::DK_objc_strong_lifetime: 1840 // Suppress cleanups for pseudo-strong variables. 1841 if (var->isARCPseudoStrong()) return; 1842 1843 // Otherwise, consider whether to use an EH cleanup or not. 1844 cleanupKind = getARCCleanupKind(); 1845 1846 // Use the imprecise destroyer by default. 1847 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1848 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1849 break; 1850 1851 case QualType::DK_objc_weak_lifetime: 1852 break; 1853 1854 case QualType::DK_nontrivial_c_struct: 1855 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1856 if (emission.NRVOFlag) { 1857 assert(!type->isArrayType()); 1858 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1859 emission.NRVOFlag, type); 1860 return; 1861 } 1862 break; 1863 } 1864 1865 // If we haven't chosen a more specific destroyer, use the default. 1866 if (!destroyer) destroyer = getDestroyer(dtorKind); 1867 1868 // Use an EH cleanup in array destructors iff the destructor itself 1869 // is being pushed as an EH cleanup. 1870 bool useEHCleanup = (cleanupKind & EHCleanup); 1871 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1872 useEHCleanup); 1873 } 1874 1875 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1876 assert(emission.Variable && "emission was not valid!"); 1877 1878 // If this was emitted as a global constant, we're done. 1879 if (emission.wasEmittedAsGlobal()) return; 1880 1881 // If we don't have an insertion point, we're done. Sema prevents 1882 // us from jumping into any of these scopes anyway. 1883 if (!HaveInsertPoint()) return; 1884 1885 const VarDecl &D = *emission.Variable; 1886 1887 // Check the type for a cleanup. 1888 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1889 emitAutoVarTypeCleanup(emission, dtorKind); 1890 1891 // In GC mode, honor objc_precise_lifetime. 1892 if (getLangOpts().getGC() != LangOptions::NonGC && 1893 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1894 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1895 } 1896 1897 // Handle the cleanup attribute. 1898 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1899 const FunctionDecl *FD = CA->getFunctionDecl(); 1900 1901 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1902 assert(F && "Could not find function!"); 1903 1904 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1905 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1906 } 1907 1908 // If this is a block variable, call _Block_object_destroy 1909 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 1910 // mode. 1911 if (emission.IsEscapingByRef && 1912 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 1913 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 1914 if (emission.Variable->getType().isObjCGCWeak()) 1915 Flags |= BLOCK_FIELD_IS_WEAK; 1916 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 1917 /*LoadBlockVarAddr*/ false, 1918 cxxDestructorCanThrow(emission.Variable->getType())); 1919 } 1920 } 1921 1922 CodeGenFunction::Destroyer * 1923 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1924 switch (kind) { 1925 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1926 case QualType::DK_cxx_destructor: 1927 return destroyCXXObject; 1928 case QualType::DK_objc_strong_lifetime: 1929 return destroyARCStrongPrecise; 1930 case QualType::DK_objc_weak_lifetime: 1931 return destroyARCWeak; 1932 case QualType::DK_nontrivial_c_struct: 1933 return destroyNonTrivialCStruct; 1934 } 1935 llvm_unreachable("Unknown DestructionKind"); 1936 } 1937 1938 /// pushEHDestroy - Push the standard destructor for the given type as 1939 /// an EH-only cleanup. 1940 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1941 Address addr, QualType type) { 1942 assert(dtorKind && "cannot push destructor for trivial type"); 1943 assert(needsEHCleanup(dtorKind)); 1944 1945 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1946 } 1947 1948 /// pushDestroy - Push the standard destructor for the given type as 1949 /// at least a normal cleanup. 1950 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1951 Address addr, QualType type) { 1952 assert(dtorKind && "cannot push destructor for trivial type"); 1953 1954 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1955 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1956 cleanupKind & EHCleanup); 1957 } 1958 1959 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1960 QualType type, Destroyer *destroyer, 1961 bool useEHCleanupForArray) { 1962 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1963 destroyer, useEHCleanupForArray); 1964 } 1965 1966 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1967 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1968 } 1969 1970 void CodeGenFunction::pushLifetimeExtendedDestroy( 1971 CleanupKind cleanupKind, Address addr, QualType type, 1972 Destroyer *destroyer, bool useEHCleanupForArray) { 1973 // Push an EH-only cleanup for the object now. 1974 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1975 // around in case a temporary's destructor throws an exception. 1976 if (cleanupKind & EHCleanup) 1977 EHStack.pushCleanup<DestroyObject>( 1978 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1979 destroyer, useEHCleanupForArray); 1980 1981 // Remember that we need to push a full cleanup for the object at the 1982 // end of the full-expression. 1983 pushCleanupAfterFullExpr<DestroyObject>( 1984 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1985 } 1986 1987 /// emitDestroy - Immediately perform the destruction of the given 1988 /// object. 1989 /// 1990 /// \param addr - the address of the object; a type* 1991 /// \param type - the type of the object; if an array type, all 1992 /// objects are destroyed in reverse order 1993 /// \param destroyer - the function to call to destroy individual 1994 /// elements 1995 /// \param useEHCleanupForArray - whether an EH cleanup should be 1996 /// used when destroying array elements, in case one of the 1997 /// destructions throws an exception 1998 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1999 Destroyer *destroyer, 2000 bool useEHCleanupForArray) { 2001 const ArrayType *arrayType = getContext().getAsArrayType(type); 2002 if (!arrayType) 2003 return destroyer(*this, addr, type); 2004 2005 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2006 2007 CharUnits elementAlign = 2008 addr.getAlignment() 2009 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2010 2011 // Normally we have to check whether the array is zero-length. 2012 bool checkZeroLength = true; 2013 2014 // But if the array length is constant, we can suppress that. 2015 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2016 // ...and if it's constant zero, we can just skip the entire thing. 2017 if (constLength->isZero()) return; 2018 checkZeroLength = false; 2019 } 2020 2021 llvm::Value *begin = addr.getPointer(); 2022 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2023 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2024 checkZeroLength, useEHCleanupForArray); 2025 } 2026 2027 /// emitArrayDestroy - Destroys all the elements of the given array, 2028 /// beginning from last to first. The array cannot be zero-length. 2029 /// 2030 /// \param begin - a type* denoting the first element of the array 2031 /// \param end - a type* denoting one past the end of the array 2032 /// \param elementType - the element type of the array 2033 /// \param destroyer - the function to call to destroy elements 2034 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2035 /// the remaining elements in case the destruction of a single 2036 /// element throws 2037 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2038 llvm::Value *end, 2039 QualType elementType, 2040 CharUnits elementAlign, 2041 Destroyer *destroyer, 2042 bool checkZeroLength, 2043 bool useEHCleanup) { 2044 assert(!elementType->isArrayType()); 2045 2046 // The basic structure here is a do-while loop, because we don't 2047 // need to check for the zero-element case. 2048 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2049 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2050 2051 if (checkZeroLength) { 2052 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2053 "arraydestroy.isempty"); 2054 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2055 } 2056 2057 // Enter the loop body, making that address the current address. 2058 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2059 EmitBlock(bodyBB); 2060 llvm::PHINode *elementPast = 2061 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2062 elementPast->addIncoming(end, entryBB); 2063 2064 // Shift the address back by one element. 2065 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2066 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2067 "arraydestroy.element"); 2068 2069 if (useEHCleanup) 2070 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2071 destroyer); 2072 2073 // Perform the actual destruction there. 2074 destroyer(*this, Address(element, elementAlign), elementType); 2075 2076 if (useEHCleanup) 2077 PopCleanupBlock(); 2078 2079 // Check whether we've reached the end. 2080 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2081 Builder.CreateCondBr(done, doneBB, bodyBB); 2082 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2083 2084 // Done. 2085 EmitBlock(doneBB); 2086 } 2087 2088 /// Perform partial array destruction as if in an EH cleanup. Unlike 2089 /// emitArrayDestroy, the element type here may still be an array type. 2090 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2091 llvm::Value *begin, llvm::Value *end, 2092 QualType type, CharUnits elementAlign, 2093 CodeGenFunction::Destroyer *destroyer) { 2094 // If the element type is itself an array, drill down. 2095 unsigned arrayDepth = 0; 2096 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2097 // VLAs don't require a GEP index to walk into. 2098 if (!isa<VariableArrayType>(arrayType)) 2099 arrayDepth++; 2100 type = arrayType->getElementType(); 2101 } 2102 2103 if (arrayDepth) { 2104 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2105 2106 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2107 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2108 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2109 } 2110 2111 // Destroy the array. We don't ever need an EH cleanup because we 2112 // assume that we're in an EH cleanup ourselves, so a throwing 2113 // destructor causes an immediate terminate. 2114 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2115 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2116 } 2117 2118 namespace { 2119 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2120 /// array destroy where the end pointer is regularly determined and 2121 /// does not need to be loaded from a local. 2122 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2123 llvm::Value *ArrayBegin; 2124 llvm::Value *ArrayEnd; 2125 QualType ElementType; 2126 CodeGenFunction::Destroyer *Destroyer; 2127 CharUnits ElementAlign; 2128 public: 2129 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2130 QualType elementType, CharUnits elementAlign, 2131 CodeGenFunction::Destroyer *destroyer) 2132 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2133 ElementType(elementType), Destroyer(destroyer), 2134 ElementAlign(elementAlign) {} 2135 2136 void Emit(CodeGenFunction &CGF, Flags flags) override { 2137 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2138 ElementType, ElementAlign, Destroyer); 2139 } 2140 }; 2141 2142 /// IrregularPartialArrayDestroy - a cleanup which performs a 2143 /// partial array destroy where the end pointer is irregularly 2144 /// determined and must be loaded from a local. 2145 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2146 llvm::Value *ArrayBegin; 2147 Address ArrayEndPointer; 2148 QualType ElementType; 2149 CodeGenFunction::Destroyer *Destroyer; 2150 CharUnits ElementAlign; 2151 public: 2152 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2153 Address arrayEndPointer, 2154 QualType elementType, 2155 CharUnits elementAlign, 2156 CodeGenFunction::Destroyer *destroyer) 2157 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2158 ElementType(elementType), Destroyer(destroyer), 2159 ElementAlign(elementAlign) {} 2160 2161 void Emit(CodeGenFunction &CGF, Flags flags) override { 2162 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2163 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2164 ElementType, ElementAlign, Destroyer); 2165 } 2166 }; 2167 } // end anonymous namespace 2168 2169 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2170 /// already-constructed elements of the given array. The cleanup 2171 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2172 /// 2173 /// \param elementType - the immediate element type of the array; 2174 /// possibly still an array type 2175 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2176 Address arrayEndPointer, 2177 QualType elementType, 2178 CharUnits elementAlign, 2179 Destroyer *destroyer) { 2180 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2181 arrayBegin, arrayEndPointer, 2182 elementType, elementAlign, 2183 destroyer); 2184 } 2185 2186 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2187 /// already-constructed elements of the given array. The cleanup 2188 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2189 /// 2190 /// \param elementType - the immediate element type of the array; 2191 /// possibly still an array type 2192 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2193 llvm::Value *arrayEnd, 2194 QualType elementType, 2195 CharUnits elementAlign, 2196 Destroyer *destroyer) { 2197 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2198 arrayBegin, arrayEnd, 2199 elementType, elementAlign, 2200 destroyer); 2201 } 2202 2203 /// Lazily declare the @llvm.lifetime.start intrinsic. 2204 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 2205 if (LifetimeStartFn) 2206 return LifetimeStartFn; 2207 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2208 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2209 return LifetimeStartFn; 2210 } 2211 2212 /// Lazily declare the @llvm.lifetime.end intrinsic. 2213 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 2214 if (LifetimeEndFn) 2215 return LifetimeEndFn; 2216 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2217 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2218 return LifetimeEndFn; 2219 } 2220 2221 namespace { 2222 /// A cleanup to perform a release of an object at the end of a 2223 /// function. This is used to balance out the incoming +1 of a 2224 /// ns_consumed argument when we can't reasonably do that just by 2225 /// not doing the initial retain for a __block argument. 2226 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2227 ConsumeARCParameter(llvm::Value *param, 2228 ARCPreciseLifetime_t precise) 2229 : Param(param), Precise(precise) {} 2230 2231 llvm::Value *Param; 2232 ARCPreciseLifetime_t Precise; 2233 2234 void Emit(CodeGenFunction &CGF, Flags flags) override { 2235 CGF.EmitARCRelease(Param, Precise); 2236 } 2237 }; 2238 } // end anonymous namespace 2239 2240 /// Emit an alloca (or GlobalValue depending on target) 2241 /// for the specified parameter and set up LocalDeclMap. 2242 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2243 unsigned ArgNo) { 2244 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2245 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2246 "Invalid argument to EmitParmDecl"); 2247 2248 Arg.getAnyValue()->setName(D.getName()); 2249 2250 QualType Ty = D.getType(); 2251 2252 // Use better IR generation for certain implicit parameters. 2253 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2254 // The only implicit argument a block has is its literal. 2255 // This may be passed as an inalloca'ed value on Windows x86. 2256 if (BlockInfo) { 2257 llvm::Value *V = Arg.isIndirect() 2258 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2259 : Arg.getDirectValue(); 2260 setBlockContextParameter(IPD, ArgNo, V); 2261 return; 2262 } 2263 } 2264 2265 Address DeclPtr = Address::invalid(); 2266 bool DoStore = false; 2267 bool IsScalar = hasScalarEvaluationKind(Ty); 2268 // If we already have a pointer to the argument, reuse the input pointer. 2269 if (Arg.isIndirect()) { 2270 DeclPtr = Arg.getIndirectAddress(); 2271 // If we have a prettier pointer type at this point, bitcast to that. 2272 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2273 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2274 if (DeclPtr.getType() != IRTy) 2275 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2276 // Indirect argument is in alloca address space, which may be different 2277 // from the default address space. 2278 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2279 auto *V = DeclPtr.getPointer(); 2280 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2281 auto DestLangAS = 2282 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2283 if (SrcLangAS != DestLangAS) { 2284 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2285 CGM.getDataLayout().getAllocaAddrSpace()); 2286 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2287 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2288 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2289 *this, V, SrcLangAS, DestLangAS, T, true), 2290 DeclPtr.getAlignment()); 2291 } 2292 2293 // Push a destructor cleanup for this parameter if the ABI requires it. 2294 // Don't push a cleanup in a thunk for a method that will also emit a 2295 // cleanup. 2296 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2297 Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2298 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 2299 assert((DtorKind == QualType::DK_cxx_destructor || 2300 DtorKind == QualType::DK_nontrivial_c_struct) && 2301 "unexpected destructor type"); 2302 pushDestroy(DtorKind, DeclPtr, Ty); 2303 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2304 EHStack.stable_begin(); 2305 } 2306 } 2307 } else { 2308 // Check if the parameter address is controlled by OpenMP runtime. 2309 Address OpenMPLocalAddr = 2310 getLangOpts().OpenMP 2311 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2312 : Address::invalid(); 2313 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2314 DeclPtr = OpenMPLocalAddr; 2315 } else { 2316 // Otherwise, create a temporary to hold the value. 2317 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2318 D.getName() + ".addr"); 2319 } 2320 DoStore = true; 2321 } 2322 2323 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2324 2325 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2326 if (IsScalar) { 2327 Qualifiers qs = Ty.getQualifiers(); 2328 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2329 // We honor __attribute__((ns_consumed)) for types with lifetime. 2330 // For __strong, it's handled by just skipping the initial retain; 2331 // otherwise we have to balance out the initial +1 with an extra 2332 // cleanup to do the release at the end of the function. 2333 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2334 2335 // If a parameter is pseudo-strong then we can omit the implicit retain. 2336 if (D.isARCPseudoStrong()) { 2337 assert(lt == Qualifiers::OCL_Strong && 2338 "pseudo-strong variable isn't strong?"); 2339 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2340 lt = Qualifiers::OCL_ExplicitNone; 2341 } 2342 2343 // Load objects passed indirectly. 2344 if (Arg.isIndirect() && !ArgVal) 2345 ArgVal = Builder.CreateLoad(DeclPtr); 2346 2347 if (lt == Qualifiers::OCL_Strong) { 2348 if (!isConsumed) { 2349 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2350 // use objc_storeStrong(&dest, value) for retaining the 2351 // object. But first, store a null into 'dest' because 2352 // objc_storeStrong attempts to release its old value. 2353 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2354 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2355 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2356 DoStore = false; 2357 } 2358 else 2359 // Don't use objc_retainBlock for block pointers, because we 2360 // don't want to Block_copy something just because we got it 2361 // as a parameter. 2362 ArgVal = EmitARCRetainNonBlock(ArgVal); 2363 } 2364 } else { 2365 // Push the cleanup for a consumed parameter. 2366 if (isConsumed) { 2367 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2368 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2369 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2370 precise); 2371 } 2372 2373 if (lt == Qualifiers::OCL_Weak) { 2374 EmitARCInitWeak(DeclPtr, ArgVal); 2375 DoStore = false; // The weak init is a store, no need to do two. 2376 } 2377 } 2378 2379 // Enter the cleanup scope. 2380 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2381 } 2382 } 2383 2384 // Store the initial value into the alloca. 2385 if (DoStore) 2386 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2387 2388 setAddrOfLocalVar(&D, DeclPtr); 2389 2390 // Emit debug info for param declaration. 2391 if (CGDebugInfo *DI = getDebugInfo()) { 2392 if (CGM.getCodeGenOpts().getDebugInfo() >= 2393 codegenoptions::LimitedDebugInfo) { 2394 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2395 } 2396 } 2397 2398 if (D.hasAttr<AnnotateAttr>()) 2399 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2400 2401 // We can only check return value nullability if all arguments to the 2402 // function satisfy their nullability preconditions. This makes it necessary 2403 // to emit null checks for args in the function body itself. 2404 if (requiresReturnValueNullabilityCheck()) { 2405 auto Nullability = Ty->getNullability(getContext()); 2406 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2407 SanitizerScope SanScope(this); 2408 RetValNullabilityPrecondition = 2409 Builder.CreateAnd(RetValNullabilityPrecondition, 2410 Builder.CreateIsNotNull(Arg.getAnyValue())); 2411 } 2412 } 2413 } 2414 2415 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2416 CodeGenFunction *CGF) { 2417 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2418 return; 2419 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2420 } 2421 2422 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2423 CodeGenFunction *CGF) { 2424 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2425 return; 2426 // FIXME: need to implement mapper code generation 2427 } 2428 2429 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2430 getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D); 2431 } 2432