1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclOpenMP.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Type.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 void CodeGenFunction::EmitDecl(const Decl &D) { 39 switch (D.getKind()) { 40 case Decl::BuiltinTemplate: 41 case Decl::TranslationUnit: 42 case Decl::ExternCContext: 43 case Decl::Namespace: 44 case Decl::UnresolvedUsingTypename: 45 case Decl::ClassTemplateSpecialization: 46 case Decl::ClassTemplatePartialSpecialization: 47 case Decl::VarTemplateSpecialization: 48 case Decl::VarTemplatePartialSpecialization: 49 case Decl::TemplateTypeParm: 50 case Decl::UnresolvedUsingValue: 51 case Decl::NonTypeTemplateParm: 52 case Decl::CXXMethod: 53 case Decl::CXXConstructor: 54 case Decl::CXXDestructor: 55 case Decl::CXXConversion: 56 case Decl::Field: 57 case Decl::MSProperty: 58 case Decl::IndirectField: 59 case Decl::ObjCIvar: 60 case Decl::ObjCAtDefsField: 61 case Decl::ParmVar: 62 case Decl::ImplicitParam: 63 case Decl::ClassTemplate: 64 case Decl::VarTemplate: 65 case Decl::FunctionTemplate: 66 case Decl::TypeAliasTemplate: 67 case Decl::TemplateTemplateParm: 68 case Decl::ObjCMethod: 69 case Decl::ObjCCategory: 70 case Decl::ObjCProtocol: 71 case Decl::ObjCInterface: 72 case Decl::ObjCCategoryImpl: 73 case Decl::ObjCImplementation: 74 case Decl::ObjCProperty: 75 case Decl::ObjCCompatibleAlias: 76 case Decl::PragmaComment: 77 case Decl::PragmaDetectMismatch: 78 case Decl::AccessSpec: 79 case Decl::LinkageSpec: 80 case Decl::ObjCPropertyImpl: 81 case Decl::FileScopeAsm: 82 case Decl::Friend: 83 case Decl::FriendTemplate: 84 case Decl::Block: 85 case Decl::Captured: 86 case Decl::ClassScopeFunctionSpecialization: 87 case Decl::UsingShadow: 88 case Decl::ConstructorUsingShadow: 89 case Decl::ObjCTypeParam: 90 llvm_unreachable("Declaration should not be in declstmts!"); 91 case Decl::Function: // void X(); 92 case Decl::Record: // struct/union/class X; 93 case Decl::Enum: // enum X; 94 case Decl::EnumConstant: // enum ? { X = ? } 95 case Decl::CXXRecord: // struct/union/class X; [C++] 96 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 97 case Decl::Label: // __label__ x; 98 case Decl::Import: 99 case Decl::OMPThreadPrivate: 100 case Decl::OMPCapturedExpr: 101 case Decl::Empty: 102 // None of these decls require codegen support. 103 return; 104 105 case Decl::NamespaceAlias: 106 if (CGDebugInfo *DI = getDebugInfo()) 107 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 108 return; 109 case Decl::Using: // using X; [C++] 110 if (CGDebugInfo *DI = getDebugInfo()) 111 DI->EmitUsingDecl(cast<UsingDecl>(D)); 112 return; 113 case Decl::UsingDirective: // using namespace X; [C++] 114 if (CGDebugInfo *DI = getDebugInfo()) 115 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 116 return; 117 case Decl::Var: 118 case Decl::Decomposition: { 119 const VarDecl &VD = cast<VarDecl>(D); 120 assert(VD.isLocalVarDecl() && 121 "Should not see file-scope variables inside a function!"); 122 return EmitVarDecl(VD); 123 } 124 case Decl::Binding: 125 return CGM.ErrorUnsupported(&D, "structured binding"); 126 127 case Decl::OMPDeclareReduction: 128 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 129 130 case Decl::Typedef: // typedef int X; 131 case Decl::TypeAlias: { // using X = int; [C++0x] 132 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 133 QualType Ty = TD.getUnderlyingType(); 134 135 if (Ty->isVariablyModifiedType()) 136 EmitVariablyModifiedType(Ty); 137 } 138 } 139 } 140 141 /// EmitVarDecl - This method handles emission of any variable declaration 142 /// inside a function, including static vars etc. 143 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 144 if (D.isStaticLocal()) { 145 llvm::GlobalValue::LinkageTypes Linkage = 146 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 147 148 // FIXME: We need to force the emission/use of a guard variable for 149 // some variables even if we can constant-evaluate them because 150 // we can't guarantee every translation unit will constant-evaluate them. 151 152 return EmitStaticVarDecl(D, Linkage); 153 } 154 155 if (D.hasExternalStorage()) 156 // Don't emit it now, allow it to be emitted lazily on its first use. 157 return; 158 159 if (D.getType().getAddressSpace() == LangAS::opencl_local) 160 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 161 162 assert(D.hasLocalStorage()); 163 return EmitAutoVarDecl(D); 164 } 165 166 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 167 if (CGM.getLangOpts().CPlusPlus) 168 return CGM.getMangledName(&D).str(); 169 170 // If this isn't C++, we don't need a mangled name, just a pretty one. 171 assert(!D.isExternallyVisible() && "name shouldn't matter"); 172 std::string ContextName; 173 const DeclContext *DC = D.getDeclContext(); 174 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 175 DC = cast<DeclContext>(CD->getNonClosureContext()); 176 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 177 ContextName = CGM.getMangledName(FD); 178 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 179 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 180 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 181 ContextName = OMD->getSelector().getAsString(); 182 else 183 llvm_unreachable("Unknown context for static var decl"); 184 185 ContextName += "." + D.getNameAsString(); 186 return ContextName; 187 } 188 189 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 190 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 191 // In general, we don't always emit static var decls once before we reference 192 // them. It is possible to reference them before emitting the function that 193 // contains them, and it is possible to emit the containing function multiple 194 // times. 195 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 196 return ExistingGV; 197 198 QualType Ty = D.getType(); 199 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 200 201 // Use the label if the variable is renamed with the asm-label extension. 202 std::string Name; 203 if (D.hasAttr<AsmLabelAttr>()) 204 Name = getMangledName(&D); 205 else 206 Name = getStaticDeclName(*this, D); 207 208 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 209 unsigned AddrSpace = 210 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 211 212 // Local address space cannot have an initializer. 213 llvm::Constant *Init = nullptr; 214 if (Ty.getAddressSpace() != LangAS::opencl_local) 215 Init = EmitNullConstant(Ty); 216 else 217 Init = llvm::UndefValue::get(LTy); 218 219 llvm::GlobalVariable *GV = 220 new llvm::GlobalVariable(getModule(), LTy, 221 Ty.isConstant(getContext()), Linkage, 222 Init, Name, nullptr, 223 llvm::GlobalVariable::NotThreadLocal, 224 AddrSpace); 225 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 226 setGlobalVisibility(GV, &D); 227 228 if (supportsCOMDAT() && GV->isWeakForLinker()) 229 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 230 231 if (D.getTLSKind()) 232 setTLSMode(GV, D); 233 234 if (D.isExternallyVisible()) { 235 if (D.hasAttr<DLLImportAttr>()) 236 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 237 else if (D.hasAttr<DLLExportAttr>()) 238 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 239 } 240 241 // Make sure the result is of the correct type. 242 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 243 llvm::Constant *Addr = GV; 244 if (AddrSpace != ExpectedAddrSpace) { 245 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 246 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 247 } 248 249 setStaticLocalDeclAddress(&D, Addr); 250 251 // Ensure that the static local gets initialized by making sure the parent 252 // function gets emitted eventually. 253 const Decl *DC = cast<Decl>(D.getDeclContext()); 254 255 // We can't name blocks or captured statements directly, so try to emit their 256 // parents. 257 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 258 DC = DC->getNonClosureContext(); 259 // FIXME: Ensure that global blocks get emitted. 260 if (!DC) 261 return Addr; 262 } 263 264 GlobalDecl GD; 265 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 266 GD = GlobalDecl(CD, Ctor_Base); 267 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 268 GD = GlobalDecl(DD, Dtor_Base); 269 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 270 GD = GlobalDecl(FD); 271 else { 272 // Don't do anything for Obj-C method decls or global closures. We should 273 // never defer them. 274 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 275 } 276 if (GD.getDecl()) 277 (void)GetAddrOfGlobal(GD); 278 279 return Addr; 280 } 281 282 /// hasNontrivialDestruction - Determine whether a type's destruction is 283 /// non-trivial. If so, and the variable uses static initialization, we must 284 /// register its destructor to run on exit. 285 static bool hasNontrivialDestruction(QualType T) { 286 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 287 return RD && !RD->hasTrivialDestructor(); 288 } 289 290 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 291 /// global variable that has already been created for it. If the initializer 292 /// has a different type than GV does, this may free GV and return a different 293 /// one. Otherwise it just returns GV. 294 llvm::GlobalVariable * 295 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 296 llvm::GlobalVariable *GV) { 297 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 298 299 // If constant emission failed, then this should be a C++ static 300 // initializer. 301 if (!Init) { 302 if (!getLangOpts().CPlusPlus) 303 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 304 else if (Builder.GetInsertBlock()) { 305 // Since we have a static initializer, this global variable can't 306 // be constant. 307 GV->setConstant(false); 308 309 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 310 } 311 return GV; 312 } 313 314 // The initializer may differ in type from the global. Rewrite 315 // the global to match the initializer. (We have to do this 316 // because some types, like unions, can't be completely represented 317 // in the LLVM type system.) 318 if (GV->getType()->getElementType() != Init->getType()) { 319 llvm::GlobalVariable *OldGV = GV; 320 321 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 322 OldGV->isConstant(), 323 OldGV->getLinkage(), Init, "", 324 /*InsertBefore*/ OldGV, 325 OldGV->getThreadLocalMode(), 326 CGM.getContext().getTargetAddressSpace(D.getType())); 327 GV->setVisibility(OldGV->getVisibility()); 328 GV->setComdat(OldGV->getComdat()); 329 330 // Steal the name of the old global 331 GV->takeName(OldGV); 332 333 // Replace all uses of the old global with the new global 334 llvm::Constant *NewPtrForOldDecl = 335 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 336 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 337 338 // Erase the old global, since it is no longer used. 339 OldGV->eraseFromParent(); 340 } 341 342 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 343 GV->setInitializer(Init); 344 345 if (hasNontrivialDestruction(D.getType())) { 346 // We have a constant initializer, but a nontrivial destructor. We still 347 // need to perform a guarded "initialization" in order to register the 348 // destructor. 349 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 350 } 351 352 return GV; 353 } 354 355 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 356 llvm::GlobalValue::LinkageTypes Linkage) { 357 // Check to see if we already have a global variable for this 358 // declaration. This can happen when double-emitting function 359 // bodies, e.g. with complete and base constructors. 360 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 361 CharUnits alignment = getContext().getDeclAlign(&D); 362 363 // Store into LocalDeclMap before generating initializer to handle 364 // circular references. 365 setAddrOfLocalVar(&D, Address(addr, alignment)); 366 367 // We can't have a VLA here, but we can have a pointer to a VLA, 368 // even though that doesn't really make any sense. 369 // Make sure to evaluate VLA bounds now so that we have them for later. 370 if (D.getType()->isVariablyModifiedType()) 371 EmitVariablyModifiedType(D.getType()); 372 373 // Save the type in case adding the initializer forces a type change. 374 llvm::Type *expectedType = addr->getType(); 375 376 llvm::GlobalVariable *var = 377 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 378 379 // CUDA's local and local static __shared__ variables should not 380 // have any non-empty initializers. This is ensured by Sema. 381 // Whatever initializer such variable may have when it gets here is 382 // a no-op and should not be emitted. 383 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 384 D.hasAttr<CUDASharedAttr>(); 385 // If this value has an initializer, emit it. 386 if (D.getInit() && !isCudaSharedVar) 387 var = AddInitializerToStaticVarDecl(D, var); 388 389 var->setAlignment(alignment.getQuantity()); 390 391 if (D.hasAttr<AnnotateAttr>()) 392 CGM.AddGlobalAnnotations(&D, var); 393 394 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 395 var->setSection(SA->getName()); 396 397 if (D.hasAttr<UsedAttr>()) 398 CGM.addUsedGlobal(var); 399 400 // We may have to cast the constant because of the initializer 401 // mismatch above. 402 // 403 // FIXME: It is really dangerous to store this in the map; if anyone 404 // RAUW's the GV uses of this constant will be invalid. 405 llvm::Constant *castedAddr = 406 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 407 if (var != castedAddr) 408 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 409 CGM.setStaticLocalDeclAddress(&D, castedAddr); 410 411 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 412 413 // Emit global variable debug descriptor for static vars. 414 CGDebugInfo *DI = getDebugInfo(); 415 if (DI && 416 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 417 DI->setLocation(D.getLocation()); 418 DI->EmitGlobalVariable(var, &D); 419 } 420 } 421 422 namespace { 423 struct DestroyObject final : EHScopeStack::Cleanup { 424 DestroyObject(Address addr, QualType type, 425 CodeGenFunction::Destroyer *destroyer, 426 bool useEHCleanupForArray) 427 : addr(addr), type(type), destroyer(destroyer), 428 useEHCleanupForArray(useEHCleanupForArray) {} 429 430 Address addr; 431 QualType type; 432 CodeGenFunction::Destroyer *destroyer; 433 bool useEHCleanupForArray; 434 435 void Emit(CodeGenFunction &CGF, Flags flags) override { 436 // Don't use an EH cleanup recursively from an EH cleanup. 437 bool useEHCleanupForArray = 438 flags.isForNormalCleanup() && this->useEHCleanupForArray; 439 440 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 441 } 442 }; 443 444 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 445 DestroyNRVOVariable(Address addr, 446 const CXXDestructorDecl *Dtor, 447 llvm::Value *NRVOFlag) 448 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 449 450 const CXXDestructorDecl *Dtor; 451 llvm::Value *NRVOFlag; 452 Address Loc; 453 454 void Emit(CodeGenFunction &CGF, Flags flags) override { 455 // Along the exceptions path we always execute the dtor. 456 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 457 458 llvm::BasicBlock *SkipDtorBB = nullptr; 459 if (NRVO) { 460 // If we exited via NRVO, we skip the destructor call. 461 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 462 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 463 llvm::Value *DidNRVO = 464 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 465 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 466 CGF.EmitBlock(RunDtorBB); 467 } 468 469 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 470 /*ForVirtualBase=*/false, 471 /*Delegating=*/false, 472 Loc); 473 474 if (NRVO) CGF.EmitBlock(SkipDtorBB); 475 } 476 }; 477 478 struct CallStackRestore final : EHScopeStack::Cleanup { 479 Address Stack; 480 CallStackRestore(Address Stack) : Stack(Stack) {} 481 void Emit(CodeGenFunction &CGF, Flags flags) override { 482 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 483 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 484 CGF.Builder.CreateCall(F, V); 485 } 486 }; 487 488 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 489 const VarDecl &Var; 490 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 491 492 void Emit(CodeGenFunction &CGF, Flags flags) override { 493 // Compute the address of the local variable, in case it's a 494 // byref or something. 495 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 496 Var.getType(), VK_LValue, SourceLocation()); 497 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 498 SourceLocation()); 499 CGF.EmitExtendGCLifetime(value); 500 } 501 }; 502 503 struct CallCleanupFunction final : EHScopeStack::Cleanup { 504 llvm::Constant *CleanupFn; 505 const CGFunctionInfo &FnInfo; 506 const VarDecl &Var; 507 508 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 509 const VarDecl *Var) 510 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 511 512 void Emit(CodeGenFunction &CGF, Flags flags) override { 513 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 514 Var.getType(), VK_LValue, SourceLocation()); 515 // Compute the address of the local variable, in case it's a byref 516 // or something. 517 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 518 519 // In some cases, the type of the function argument will be different from 520 // the type of the pointer. An example of this is 521 // void f(void* arg); 522 // __attribute__((cleanup(f))) void *g; 523 // 524 // To fix this we insert a bitcast here. 525 QualType ArgTy = FnInfo.arg_begin()->type; 526 llvm::Value *Arg = 527 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 528 529 CallArgList Args; 530 Args.add(RValue::get(Arg), 531 CGF.getContext().getPointerType(Var.getType())); 532 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 533 } 534 }; 535 } // end anonymous namespace 536 537 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 538 /// variable with lifetime. 539 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 540 Address addr, 541 Qualifiers::ObjCLifetime lifetime) { 542 switch (lifetime) { 543 case Qualifiers::OCL_None: 544 llvm_unreachable("present but none"); 545 546 case Qualifiers::OCL_ExplicitNone: 547 // nothing to do 548 break; 549 550 case Qualifiers::OCL_Strong: { 551 CodeGenFunction::Destroyer *destroyer = 552 (var.hasAttr<ObjCPreciseLifetimeAttr>() 553 ? CodeGenFunction::destroyARCStrongPrecise 554 : CodeGenFunction::destroyARCStrongImprecise); 555 556 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 557 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 558 cleanupKind & EHCleanup); 559 break; 560 } 561 case Qualifiers::OCL_Autoreleasing: 562 // nothing to do 563 break; 564 565 case Qualifiers::OCL_Weak: 566 // __weak objects always get EH cleanups; otherwise, exceptions 567 // could cause really nasty crashes instead of mere leaks. 568 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 569 CodeGenFunction::destroyARCWeak, 570 /*useEHCleanup*/ true); 571 break; 572 } 573 } 574 575 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 576 if (const Expr *e = dyn_cast<Expr>(s)) { 577 // Skip the most common kinds of expressions that make 578 // hierarchy-walking expensive. 579 s = e = e->IgnoreParenCasts(); 580 581 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 582 return (ref->getDecl() == &var); 583 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 584 const BlockDecl *block = be->getBlockDecl(); 585 for (const auto &I : block->captures()) { 586 if (I.getVariable() == &var) 587 return true; 588 } 589 } 590 } 591 592 for (const Stmt *SubStmt : s->children()) 593 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 594 if (SubStmt && isAccessedBy(var, SubStmt)) 595 return true; 596 597 return false; 598 } 599 600 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 601 if (!decl) return false; 602 if (!isa<VarDecl>(decl)) return false; 603 const VarDecl *var = cast<VarDecl>(decl); 604 return isAccessedBy(*var, e); 605 } 606 607 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 608 const LValue &destLV, const Expr *init) { 609 bool needsCast = false; 610 611 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 612 switch (castExpr->getCastKind()) { 613 // Look through casts that don't require representation changes. 614 case CK_NoOp: 615 case CK_BitCast: 616 case CK_BlockPointerToObjCPointerCast: 617 needsCast = true; 618 break; 619 620 // If we find an l-value to r-value cast from a __weak variable, 621 // emit this operation as a copy or move. 622 case CK_LValueToRValue: { 623 const Expr *srcExpr = castExpr->getSubExpr(); 624 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 625 return false; 626 627 // Emit the source l-value. 628 LValue srcLV = CGF.EmitLValue(srcExpr); 629 630 // Handle a formal type change to avoid asserting. 631 auto srcAddr = srcLV.getAddress(); 632 if (needsCast) { 633 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 634 destLV.getAddress().getElementType()); 635 } 636 637 // If it was an l-value, use objc_copyWeak. 638 if (srcExpr->getValueKind() == VK_LValue) { 639 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 640 } else { 641 assert(srcExpr->getValueKind() == VK_XValue); 642 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 643 } 644 return true; 645 } 646 647 // Stop at anything else. 648 default: 649 return false; 650 } 651 652 init = castExpr->getSubExpr(); 653 } 654 return false; 655 } 656 657 static void drillIntoBlockVariable(CodeGenFunction &CGF, 658 LValue &lvalue, 659 const VarDecl *var) { 660 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 661 } 662 663 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 664 LValue lvalue, bool capturedByInit) { 665 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 666 if (!lifetime) { 667 llvm::Value *value = EmitScalarExpr(init); 668 if (capturedByInit) 669 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 670 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 671 return; 672 } 673 674 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 675 init = DIE->getExpr(); 676 677 // If we're emitting a value with lifetime, we have to do the 678 // initialization *before* we leave the cleanup scopes. 679 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 680 enterFullExpression(ewc); 681 init = ewc->getSubExpr(); 682 } 683 CodeGenFunction::RunCleanupsScope Scope(*this); 684 685 // We have to maintain the illusion that the variable is 686 // zero-initialized. If the variable might be accessed in its 687 // initializer, zero-initialize before running the initializer, then 688 // actually perform the initialization with an assign. 689 bool accessedByInit = false; 690 if (lifetime != Qualifiers::OCL_ExplicitNone) 691 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 692 if (accessedByInit) { 693 LValue tempLV = lvalue; 694 // Drill down to the __block object if necessary. 695 if (capturedByInit) { 696 // We can use a simple GEP for this because it can't have been 697 // moved yet. 698 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 699 cast<VarDecl>(D), 700 /*follow*/ false)); 701 } 702 703 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 704 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 705 706 // If __weak, we want to use a barrier under certain conditions. 707 if (lifetime == Qualifiers::OCL_Weak) 708 EmitARCInitWeak(tempLV.getAddress(), zero); 709 710 // Otherwise just do a simple store. 711 else 712 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 713 } 714 715 // Emit the initializer. 716 llvm::Value *value = nullptr; 717 718 switch (lifetime) { 719 case Qualifiers::OCL_None: 720 llvm_unreachable("present but none"); 721 722 case Qualifiers::OCL_ExplicitNone: 723 value = EmitARCUnsafeUnretainedScalarExpr(init); 724 break; 725 726 case Qualifiers::OCL_Strong: { 727 value = EmitARCRetainScalarExpr(init); 728 break; 729 } 730 731 case Qualifiers::OCL_Weak: { 732 // If it's not accessed by the initializer, try to emit the 733 // initialization with a copy or move. 734 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 735 return; 736 } 737 738 // No way to optimize a producing initializer into this. It's not 739 // worth optimizing for, because the value will immediately 740 // disappear in the common case. 741 value = EmitScalarExpr(init); 742 743 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 744 if (accessedByInit) 745 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 746 else 747 EmitARCInitWeak(lvalue.getAddress(), value); 748 return; 749 } 750 751 case Qualifiers::OCL_Autoreleasing: 752 value = EmitARCRetainAutoreleaseScalarExpr(init); 753 break; 754 } 755 756 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 757 758 // If the variable might have been accessed by its initializer, we 759 // might have to initialize with a barrier. We have to do this for 760 // both __weak and __strong, but __weak got filtered out above. 761 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 762 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 763 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 764 EmitARCRelease(oldValue, ARCImpreciseLifetime); 765 return; 766 } 767 768 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 769 } 770 771 /// EmitScalarInit - Initialize the given lvalue with the given object. 772 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 773 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 774 if (!lifetime) 775 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 776 777 switch (lifetime) { 778 case Qualifiers::OCL_None: 779 llvm_unreachable("present but none"); 780 781 case Qualifiers::OCL_ExplicitNone: 782 // nothing to do 783 break; 784 785 case Qualifiers::OCL_Strong: 786 init = EmitARCRetain(lvalue.getType(), init); 787 break; 788 789 case Qualifiers::OCL_Weak: 790 // Initialize and then skip the primitive store. 791 EmitARCInitWeak(lvalue.getAddress(), init); 792 return; 793 794 case Qualifiers::OCL_Autoreleasing: 795 init = EmitARCRetainAutorelease(lvalue.getType(), init); 796 break; 797 } 798 799 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 800 } 801 802 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 803 /// non-zero parts of the specified initializer with equal or fewer than 804 /// NumStores scalar stores. 805 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 806 unsigned &NumStores) { 807 // Zero and Undef never requires any extra stores. 808 if (isa<llvm::ConstantAggregateZero>(Init) || 809 isa<llvm::ConstantPointerNull>(Init) || 810 isa<llvm::UndefValue>(Init)) 811 return true; 812 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 813 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 814 isa<llvm::ConstantExpr>(Init)) 815 return Init->isNullValue() || NumStores--; 816 817 // See if we can emit each element. 818 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 819 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 820 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 821 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 822 return false; 823 } 824 return true; 825 } 826 827 if (llvm::ConstantDataSequential *CDS = 828 dyn_cast<llvm::ConstantDataSequential>(Init)) { 829 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 830 llvm::Constant *Elt = CDS->getElementAsConstant(i); 831 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 832 return false; 833 } 834 return true; 835 } 836 837 // Anything else is hard and scary. 838 return false; 839 } 840 841 /// emitStoresForInitAfterMemset - For inits that 842 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 843 /// stores that would be required. 844 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 845 bool isVolatile, CGBuilderTy &Builder) { 846 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 847 "called emitStoresForInitAfterMemset for zero or undef value."); 848 849 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 850 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 851 isa<llvm::ConstantExpr>(Init)) { 852 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 853 return; 854 } 855 856 if (llvm::ConstantDataSequential *CDS = 857 dyn_cast<llvm::ConstantDataSequential>(Init)) { 858 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 859 llvm::Constant *Elt = CDS->getElementAsConstant(i); 860 861 // If necessary, get a pointer to the element and emit it. 862 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 863 emitStoresForInitAfterMemset( 864 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 865 isVolatile, Builder); 866 } 867 return; 868 } 869 870 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 871 "Unknown value type!"); 872 873 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 874 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 875 876 // If necessary, get a pointer to the element and emit it. 877 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 878 emitStoresForInitAfterMemset( 879 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 880 isVolatile, Builder); 881 } 882 } 883 884 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 885 /// plus some stores to initialize a local variable instead of using a memcpy 886 /// from a constant global. It is beneficial to use memset if the global is all 887 /// zeros, or mostly zeros and large. 888 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 889 uint64_t GlobalSize) { 890 // If a global is all zeros, always use a memset. 891 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 892 893 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 894 // do it if it will require 6 or fewer scalar stores. 895 // TODO: Should budget depends on the size? Avoiding a large global warrants 896 // plopping in more stores. 897 unsigned StoreBudget = 6; 898 uint64_t SizeLimit = 32; 899 900 return GlobalSize > SizeLimit && 901 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 902 } 903 904 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 905 /// variable declaration with auto, register, or no storage class specifier. 906 /// These turn into simple stack objects, or GlobalValues depending on target. 907 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 908 AutoVarEmission emission = EmitAutoVarAlloca(D); 909 EmitAutoVarInit(emission); 910 EmitAutoVarCleanups(emission); 911 } 912 913 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 914 /// markers. 915 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 916 const LangOptions &LangOpts) { 917 // Asan uses markers for use-after-scope checks. 918 if (CGOpts.SanitizeAddressUseAfterScope) 919 return true; 920 921 // Disable lifetime markers in msan builds. 922 // FIXME: Remove this when msan works with lifetime markers. 923 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 924 return false; 925 926 // For now, only in optimized builds. 927 return CGOpts.OptimizationLevel != 0; 928 } 929 930 /// Emit a lifetime.begin marker if some criteria are satisfied. 931 /// \return a pointer to the temporary size Value if a marker was emitted, null 932 /// otherwise 933 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 934 llvm::Value *Addr) { 935 if (!shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), getLangOpts())) 936 return nullptr; 937 938 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 939 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 940 llvm::CallInst *C = 941 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 942 C->setDoesNotThrow(); 943 return SizeV; 944 } 945 946 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 947 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 948 llvm::CallInst *C = 949 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 950 C->setDoesNotThrow(); 951 } 952 953 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 954 /// local variable. Does not emit initialization or destruction. 955 CodeGenFunction::AutoVarEmission 956 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 957 QualType Ty = D.getType(); 958 959 AutoVarEmission emission(D); 960 961 bool isByRef = D.hasAttr<BlocksAttr>(); 962 emission.IsByRef = isByRef; 963 964 CharUnits alignment = getContext().getDeclAlign(&D); 965 966 // If the type is variably-modified, emit all the VLA sizes for it. 967 if (Ty->isVariablyModifiedType()) 968 EmitVariablyModifiedType(Ty); 969 970 Address address = Address::invalid(); 971 if (Ty->isConstantSizeType()) { 972 bool NRVO = getLangOpts().ElideConstructors && 973 D.isNRVOVariable(); 974 975 // If this value is an array or struct with a statically determinable 976 // constant initializer, there are optimizations we can do. 977 // 978 // TODO: We should constant-evaluate the initializer of any variable, 979 // as long as it is initialized by a constant expression. Currently, 980 // isConstantInitializer produces wrong answers for structs with 981 // reference or bitfield members, and a few other cases, and checking 982 // for POD-ness protects us from some of these. 983 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 984 (D.isConstexpr() || 985 ((Ty.isPODType(getContext()) || 986 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 987 D.getInit()->isConstantInitializer(getContext(), false)))) { 988 989 // If the variable's a const type, and it's neither an NRVO 990 // candidate nor a __block variable and has no mutable members, 991 // emit it as a global instead. 992 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 993 CGM.isTypeConstant(Ty, true)) { 994 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 995 996 // Signal this condition to later callbacks. 997 emission.Addr = Address::invalid(); 998 assert(emission.wasEmittedAsGlobal()); 999 return emission; 1000 } 1001 1002 // Otherwise, tell the initialization code that we're in this case. 1003 emission.IsConstantAggregate = true; 1004 } 1005 1006 // A normal fixed sized variable becomes an alloca in the entry block, 1007 // unless it's an NRVO variable. 1008 1009 if (NRVO) { 1010 // The named return value optimization: allocate this variable in the 1011 // return slot, so that we can elide the copy when returning this 1012 // variable (C++0x [class.copy]p34). 1013 address = ReturnValue; 1014 1015 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1016 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 1017 // Create a flag that is used to indicate when the NRVO was applied 1018 // to this variable. Set it to zero to indicate that NRVO was not 1019 // applied. 1020 llvm::Value *Zero = Builder.getFalse(); 1021 Address NRVOFlag = 1022 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1023 EnsureInsertPoint(); 1024 Builder.CreateStore(Zero, NRVOFlag); 1025 1026 // Record the NRVO flag for this variable. 1027 NRVOFlags[&D] = NRVOFlag.getPointer(); 1028 emission.NRVOFlag = NRVOFlag.getPointer(); 1029 } 1030 } 1031 } else { 1032 CharUnits allocaAlignment; 1033 llvm::Type *allocaTy; 1034 if (isByRef) { 1035 auto &byrefInfo = getBlockByrefInfo(&D); 1036 allocaTy = byrefInfo.Type; 1037 allocaAlignment = byrefInfo.ByrefAlignment; 1038 } else { 1039 allocaTy = ConvertTypeForMem(Ty); 1040 allocaAlignment = alignment; 1041 } 1042 1043 // Create the alloca. Note that we set the name separately from 1044 // building the instruction so that it's there even in no-asserts 1045 // builds. 1046 address = CreateTempAlloca(allocaTy, allocaAlignment); 1047 address.getPointer()->setName(D.getName()); 1048 1049 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1050 // the catch parameter starts in the catchpad instruction, and we can't 1051 // insert code in those basic blocks. 1052 bool IsMSCatchParam = 1053 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1054 1055 // Emit a lifetime intrinsic if meaningful. There's no point 1056 // in doing this if we don't have a valid insertion point (?). 1057 if (HaveInsertPoint() && !IsMSCatchParam) { 1058 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1059 emission.SizeForLifetimeMarkers = 1060 EmitLifetimeStart(size, address.getPointer()); 1061 } else { 1062 assert(!emission.useLifetimeMarkers()); 1063 } 1064 } 1065 } else { 1066 EnsureInsertPoint(); 1067 1068 if (!DidCallStackSave) { 1069 // Save the stack. 1070 Address Stack = 1071 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1072 1073 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1074 llvm::Value *V = Builder.CreateCall(F); 1075 Builder.CreateStore(V, Stack); 1076 1077 DidCallStackSave = true; 1078 1079 // Push a cleanup block and restore the stack there. 1080 // FIXME: in general circumstances, this should be an EH cleanup. 1081 pushStackRestore(NormalCleanup, Stack); 1082 } 1083 1084 llvm::Value *elementCount; 1085 QualType elementType; 1086 std::tie(elementCount, elementType) = getVLASize(Ty); 1087 1088 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1089 1090 // Allocate memory for the array. 1091 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 1092 vla->setAlignment(alignment.getQuantity()); 1093 1094 address = Address(vla, alignment); 1095 } 1096 1097 setAddrOfLocalVar(&D, address); 1098 emission.Addr = address; 1099 1100 // Emit debug info for local var declaration. 1101 if (HaveInsertPoint()) 1102 if (CGDebugInfo *DI = getDebugInfo()) { 1103 if (CGM.getCodeGenOpts().getDebugInfo() >= 1104 codegenoptions::LimitedDebugInfo) { 1105 DI->setLocation(D.getLocation()); 1106 DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1107 } 1108 } 1109 1110 if (D.hasAttr<AnnotateAttr>()) 1111 EmitVarAnnotations(&D, address.getPointer()); 1112 1113 return emission; 1114 } 1115 1116 /// Determines whether the given __block variable is potentially 1117 /// captured by the given expression. 1118 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1119 // Skip the most common kinds of expressions that make 1120 // hierarchy-walking expensive. 1121 e = e->IgnoreParenCasts(); 1122 1123 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1124 const BlockDecl *block = be->getBlockDecl(); 1125 for (const auto &I : block->captures()) { 1126 if (I.getVariable() == &var) 1127 return true; 1128 } 1129 1130 // No need to walk into the subexpressions. 1131 return false; 1132 } 1133 1134 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1135 const CompoundStmt *CS = SE->getSubStmt(); 1136 for (const auto *BI : CS->body()) 1137 if (const auto *E = dyn_cast<Expr>(BI)) { 1138 if (isCapturedBy(var, E)) 1139 return true; 1140 } 1141 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1142 // special case declarations 1143 for (const auto *I : DS->decls()) { 1144 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1145 const Expr *Init = VD->getInit(); 1146 if (Init && isCapturedBy(var, Init)) 1147 return true; 1148 } 1149 } 1150 } 1151 else 1152 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1153 // Later, provide code to poke into statements for capture analysis. 1154 return true; 1155 return false; 1156 } 1157 1158 for (const Stmt *SubStmt : e->children()) 1159 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1160 return true; 1161 1162 return false; 1163 } 1164 1165 /// \brief Determine whether the given initializer is trivial in the sense 1166 /// that it requires no code to be generated. 1167 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1168 if (!Init) 1169 return true; 1170 1171 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1172 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1173 if (Constructor->isTrivial() && 1174 Constructor->isDefaultConstructor() && 1175 !Construct->requiresZeroInitialization()) 1176 return true; 1177 1178 return false; 1179 } 1180 1181 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1182 assert(emission.Variable && "emission was not valid!"); 1183 1184 // If this was emitted as a global constant, we're done. 1185 if (emission.wasEmittedAsGlobal()) return; 1186 1187 const VarDecl &D = *emission.Variable; 1188 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1189 QualType type = D.getType(); 1190 1191 // If this local has an initializer, emit it now. 1192 const Expr *Init = D.getInit(); 1193 1194 // If we are at an unreachable point, we don't need to emit the initializer 1195 // unless it contains a label. 1196 if (!HaveInsertPoint()) { 1197 if (!Init || !ContainsLabel(Init)) return; 1198 EnsureInsertPoint(); 1199 } 1200 1201 // Initialize the structure of a __block variable. 1202 if (emission.IsByRef) 1203 emitByrefStructureInit(emission); 1204 1205 if (isTrivialInitializer(Init)) 1206 return; 1207 1208 // Check whether this is a byref variable that's potentially 1209 // captured and moved by its own initializer. If so, we'll need to 1210 // emit the initializer first, then copy into the variable. 1211 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1212 1213 Address Loc = 1214 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1215 1216 llvm::Constant *constant = nullptr; 1217 if (emission.IsConstantAggregate || D.isConstexpr()) { 1218 assert(!capturedByInit && "constant init contains a capturing block?"); 1219 constant = CGM.EmitConstantInit(D, this); 1220 } 1221 1222 if (!constant) { 1223 LValue lv = MakeAddrLValue(Loc, type); 1224 lv.setNonGC(true); 1225 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1226 } 1227 1228 if (!emission.IsConstantAggregate) { 1229 // For simple scalar/complex initialization, store the value directly. 1230 LValue lv = MakeAddrLValue(Loc, type); 1231 lv.setNonGC(true); 1232 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1233 } 1234 1235 // If this is a simple aggregate initialization, we can optimize it 1236 // in various ways. 1237 bool isVolatile = type.isVolatileQualified(); 1238 1239 llvm::Value *SizeVal = 1240 llvm::ConstantInt::get(IntPtrTy, 1241 getContext().getTypeSizeInChars(type).getQuantity()); 1242 1243 llvm::Type *BP = Int8PtrTy; 1244 if (Loc.getType() != BP) 1245 Loc = Builder.CreateBitCast(Loc, BP); 1246 1247 // If the initializer is all or mostly zeros, codegen with memset then do 1248 // a few stores afterward. 1249 if (shouldUseMemSetPlusStoresToInitialize(constant, 1250 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1251 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1252 isVolatile); 1253 // Zero and undef don't require a stores. 1254 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1255 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1256 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1257 isVolatile, Builder); 1258 } 1259 } else { 1260 // Otherwise, create a temporary global with the initializer then 1261 // memcpy from the global to the alloca. 1262 std::string Name = getStaticDeclName(CGM, D); 1263 llvm::GlobalVariable *GV = 1264 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1265 llvm::GlobalValue::PrivateLinkage, 1266 constant, Name); 1267 GV->setAlignment(Loc.getAlignment().getQuantity()); 1268 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1269 1270 Address SrcPtr = Address(GV, Loc.getAlignment()); 1271 if (SrcPtr.getType() != BP) 1272 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1273 1274 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1275 } 1276 } 1277 1278 /// Emit an expression as an initializer for a variable at the given 1279 /// location. The expression is not necessarily the normal 1280 /// initializer for the variable, and the address is not necessarily 1281 /// its normal location. 1282 /// 1283 /// \param init the initializing expression 1284 /// \param var the variable to act as if we're initializing 1285 /// \param loc the address to initialize; its type is a pointer 1286 /// to the LLVM mapping of the variable's type 1287 /// \param alignment the alignment of the address 1288 /// \param capturedByInit true if the variable is a __block variable 1289 /// whose address is potentially changed by the initializer 1290 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1291 LValue lvalue, bool capturedByInit) { 1292 QualType type = D->getType(); 1293 1294 if (type->isReferenceType()) { 1295 RValue rvalue = EmitReferenceBindingToExpr(init); 1296 if (capturedByInit) 1297 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1298 EmitStoreThroughLValue(rvalue, lvalue, true); 1299 return; 1300 } 1301 switch (getEvaluationKind(type)) { 1302 case TEK_Scalar: 1303 EmitScalarInit(init, D, lvalue, capturedByInit); 1304 return; 1305 case TEK_Complex: { 1306 ComplexPairTy complex = EmitComplexExpr(init); 1307 if (capturedByInit) 1308 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1309 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1310 return; 1311 } 1312 case TEK_Aggregate: 1313 if (type->isAtomicType()) { 1314 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1315 } else { 1316 // TODO: how can we delay here if D is captured by its initializer? 1317 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1318 AggValueSlot::IsDestructed, 1319 AggValueSlot::DoesNotNeedGCBarriers, 1320 AggValueSlot::IsNotAliased)); 1321 } 1322 return; 1323 } 1324 llvm_unreachable("bad evaluation kind"); 1325 } 1326 1327 /// Enter a destroy cleanup for the given local variable. 1328 void CodeGenFunction::emitAutoVarTypeCleanup( 1329 const CodeGenFunction::AutoVarEmission &emission, 1330 QualType::DestructionKind dtorKind) { 1331 assert(dtorKind != QualType::DK_none); 1332 1333 // Note that for __block variables, we want to destroy the 1334 // original stack object, not the possibly forwarded object. 1335 Address addr = emission.getObjectAddress(*this); 1336 1337 const VarDecl *var = emission.Variable; 1338 QualType type = var->getType(); 1339 1340 CleanupKind cleanupKind = NormalAndEHCleanup; 1341 CodeGenFunction::Destroyer *destroyer = nullptr; 1342 1343 switch (dtorKind) { 1344 case QualType::DK_none: 1345 llvm_unreachable("no cleanup for trivially-destructible variable"); 1346 1347 case QualType::DK_cxx_destructor: 1348 // If there's an NRVO flag on the emission, we need a different 1349 // cleanup. 1350 if (emission.NRVOFlag) { 1351 assert(!type->isArrayType()); 1352 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1353 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1354 dtor, emission.NRVOFlag); 1355 return; 1356 } 1357 break; 1358 1359 case QualType::DK_objc_strong_lifetime: 1360 // Suppress cleanups for pseudo-strong variables. 1361 if (var->isARCPseudoStrong()) return; 1362 1363 // Otherwise, consider whether to use an EH cleanup or not. 1364 cleanupKind = getARCCleanupKind(); 1365 1366 // Use the imprecise destroyer by default. 1367 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1368 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1369 break; 1370 1371 case QualType::DK_objc_weak_lifetime: 1372 break; 1373 } 1374 1375 // If we haven't chosen a more specific destroyer, use the default. 1376 if (!destroyer) destroyer = getDestroyer(dtorKind); 1377 1378 // Use an EH cleanup in array destructors iff the destructor itself 1379 // is being pushed as an EH cleanup. 1380 bool useEHCleanup = (cleanupKind & EHCleanup); 1381 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1382 useEHCleanup); 1383 } 1384 1385 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1386 assert(emission.Variable && "emission was not valid!"); 1387 1388 // If this was emitted as a global constant, we're done. 1389 if (emission.wasEmittedAsGlobal()) return; 1390 1391 // If we don't have an insertion point, we're done. Sema prevents 1392 // us from jumping into any of these scopes anyway. 1393 if (!HaveInsertPoint()) return; 1394 1395 const VarDecl &D = *emission.Variable; 1396 1397 // Make sure we call @llvm.lifetime.end. This needs to happen 1398 // *last*, so the cleanup needs to be pushed *first*. 1399 if (emission.useLifetimeMarkers()) 1400 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1401 emission.getAllocatedAddress(), 1402 emission.getSizeForLifetimeMarkers()); 1403 1404 // Check the type for a cleanup. 1405 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1406 emitAutoVarTypeCleanup(emission, dtorKind); 1407 1408 // In GC mode, honor objc_precise_lifetime. 1409 if (getLangOpts().getGC() != LangOptions::NonGC && 1410 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1411 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1412 } 1413 1414 // Handle the cleanup attribute. 1415 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1416 const FunctionDecl *FD = CA->getFunctionDecl(); 1417 1418 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1419 assert(F && "Could not find function!"); 1420 1421 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1422 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1423 } 1424 1425 // If this is a block variable, call _Block_object_destroy 1426 // (on the unforwarded address). 1427 if (emission.IsByRef) 1428 enterByrefCleanup(emission); 1429 } 1430 1431 CodeGenFunction::Destroyer * 1432 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1433 switch (kind) { 1434 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1435 case QualType::DK_cxx_destructor: 1436 return destroyCXXObject; 1437 case QualType::DK_objc_strong_lifetime: 1438 return destroyARCStrongPrecise; 1439 case QualType::DK_objc_weak_lifetime: 1440 return destroyARCWeak; 1441 } 1442 llvm_unreachable("Unknown DestructionKind"); 1443 } 1444 1445 /// pushEHDestroy - Push the standard destructor for the given type as 1446 /// an EH-only cleanup. 1447 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1448 Address addr, QualType type) { 1449 assert(dtorKind && "cannot push destructor for trivial type"); 1450 assert(needsEHCleanup(dtorKind)); 1451 1452 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1453 } 1454 1455 /// pushDestroy - Push the standard destructor for the given type as 1456 /// at least a normal cleanup. 1457 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1458 Address addr, QualType type) { 1459 assert(dtorKind && "cannot push destructor for trivial type"); 1460 1461 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1462 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1463 cleanupKind & EHCleanup); 1464 } 1465 1466 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1467 QualType type, Destroyer *destroyer, 1468 bool useEHCleanupForArray) { 1469 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1470 destroyer, useEHCleanupForArray); 1471 } 1472 1473 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1474 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1475 } 1476 1477 void CodeGenFunction::pushLifetimeExtendedDestroy( 1478 CleanupKind cleanupKind, Address addr, QualType type, 1479 Destroyer *destroyer, bool useEHCleanupForArray) { 1480 assert(!isInConditionalBranch() && 1481 "performing lifetime extension from within conditional"); 1482 1483 // Push an EH-only cleanup for the object now. 1484 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1485 // around in case a temporary's destructor throws an exception. 1486 if (cleanupKind & EHCleanup) 1487 EHStack.pushCleanup<DestroyObject>( 1488 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1489 destroyer, useEHCleanupForArray); 1490 1491 // Remember that we need to push a full cleanup for the object at the 1492 // end of the full-expression. 1493 pushCleanupAfterFullExpr<DestroyObject>( 1494 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1495 } 1496 1497 /// emitDestroy - Immediately perform the destruction of the given 1498 /// object. 1499 /// 1500 /// \param addr - the address of the object; a type* 1501 /// \param type - the type of the object; if an array type, all 1502 /// objects are destroyed in reverse order 1503 /// \param destroyer - the function to call to destroy individual 1504 /// elements 1505 /// \param useEHCleanupForArray - whether an EH cleanup should be 1506 /// used when destroying array elements, in case one of the 1507 /// destructions throws an exception 1508 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1509 Destroyer *destroyer, 1510 bool useEHCleanupForArray) { 1511 const ArrayType *arrayType = getContext().getAsArrayType(type); 1512 if (!arrayType) 1513 return destroyer(*this, addr, type); 1514 1515 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1516 1517 CharUnits elementAlign = 1518 addr.getAlignment() 1519 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1520 1521 // Normally we have to check whether the array is zero-length. 1522 bool checkZeroLength = true; 1523 1524 // But if the array length is constant, we can suppress that. 1525 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1526 // ...and if it's constant zero, we can just skip the entire thing. 1527 if (constLength->isZero()) return; 1528 checkZeroLength = false; 1529 } 1530 1531 llvm::Value *begin = addr.getPointer(); 1532 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1533 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1534 checkZeroLength, useEHCleanupForArray); 1535 } 1536 1537 /// emitArrayDestroy - Destroys all the elements of the given array, 1538 /// beginning from last to first. The array cannot be zero-length. 1539 /// 1540 /// \param begin - a type* denoting the first element of the array 1541 /// \param end - a type* denoting one past the end of the array 1542 /// \param elementType - the element type of the array 1543 /// \param destroyer - the function to call to destroy elements 1544 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1545 /// the remaining elements in case the destruction of a single 1546 /// element throws 1547 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1548 llvm::Value *end, 1549 QualType elementType, 1550 CharUnits elementAlign, 1551 Destroyer *destroyer, 1552 bool checkZeroLength, 1553 bool useEHCleanup) { 1554 assert(!elementType->isArrayType()); 1555 1556 // The basic structure here is a do-while loop, because we don't 1557 // need to check for the zero-element case. 1558 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1559 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1560 1561 if (checkZeroLength) { 1562 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1563 "arraydestroy.isempty"); 1564 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1565 } 1566 1567 // Enter the loop body, making that address the current address. 1568 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1569 EmitBlock(bodyBB); 1570 llvm::PHINode *elementPast = 1571 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1572 elementPast->addIncoming(end, entryBB); 1573 1574 // Shift the address back by one element. 1575 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1576 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1577 "arraydestroy.element"); 1578 1579 if (useEHCleanup) 1580 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1581 destroyer); 1582 1583 // Perform the actual destruction there. 1584 destroyer(*this, Address(element, elementAlign), elementType); 1585 1586 if (useEHCleanup) 1587 PopCleanupBlock(); 1588 1589 // Check whether we've reached the end. 1590 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1591 Builder.CreateCondBr(done, doneBB, bodyBB); 1592 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1593 1594 // Done. 1595 EmitBlock(doneBB); 1596 } 1597 1598 /// Perform partial array destruction as if in an EH cleanup. Unlike 1599 /// emitArrayDestroy, the element type here may still be an array type. 1600 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1601 llvm::Value *begin, llvm::Value *end, 1602 QualType type, CharUnits elementAlign, 1603 CodeGenFunction::Destroyer *destroyer) { 1604 // If the element type is itself an array, drill down. 1605 unsigned arrayDepth = 0; 1606 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1607 // VLAs don't require a GEP index to walk into. 1608 if (!isa<VariableArrayType>(arrayType)) 1609 arrayDepth++; 1610 type = arrayType->getElementType(); 1611 } 1612 1613 if (arrayDepth) { 1614 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1615 1616 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1617 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1618 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1619 } 1620 1621 // Destroy the array. We don't ever need an EH cleanup because we 1622 // assume that we're in an EH cleanup ourselves, so a throwing 1623 // destructor causes an immediate terminate. 1624 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1625 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1626 } 1627 1628 namespace { 1629 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1630 /// array destroy where the end pointer is regularly determined and 1631 /// does not need to be loaded from a local. 1632 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1633 llvm::Value *ArrayBegin; 1634 llvm::Value *ArrayEnd; 1635 QualType ElementType; 1636 CodeGenFunction::Destroyer *Destroyer; 1637 CharUnits ElementAlign; 1638 public: 1639 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1640 QualType elementType, CharUnits elementAlign, 1641 CodeGenFunction::Destroyer *destroyer) 1642 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1643 ElementType(elementType), Destroyer(destroyer), 1644 ElementAlign(elementAlign) {} 1645 1646 void Emit(CodeGenFunction &CGF, Flags flags) override { 1647 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1648 ElementType, ElementAlign, Destroyer); 1649 } 1650 }; 1651 1652 /// IrregularPartialArrayDestroy - a cleanup which performs a 1653 /// partial array destroy where the end pointer is irregularly 1654 /// determined and must be loaded from a local. 1655 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1656 llvm::Value *ArrayBegin; 1657 Address ArrayEndPointer; 1658 QualType ElementType; 1659 CodeGenFunction::Destroyer *Destroyer; 1660 CharUnits ElementAlign; 1661 public: 1662 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1663 Address arrayEndPointer, 1664 QualType elementType, 1665 CharUnits elementAlign, 1666 CodeGenFunction::Destroyer *destroyer) 1667 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1668 ElementType(elementType), Destroyer(destroyer), 1669 ElementAlign(elementAlign) {} 1670 1671 void Emit(CodeGenFunction &CGF, Flags flags) override { 1672 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1673 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1674 ElementType, ElementAlign, Destroyer); 1675 } 1676 }; 1677 } // end anonymous namespace 1678 1679 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1680 /// already-constructed elements of the given array. The cleanup 1681 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1682 /// 1683 /// \param elementType - the immediate element type of the array; 1684 /// possibly still an array type 1685 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1686 Address arrayEndPointer, 1687 QualType elementType, 1688 CharUnits elementAlign, 1689 Destroyer *destroyer) { 1690 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1691 arrayBegin, arrayEndPointer, 1692 elementType, elementAlign, 1693 destroyer); 1694 } 1695 1696 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1697 /// already-constructed elements of the given array. The cleanup 1698 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1699 /// 1700 /// \param elementType - the immediate element type of the array; 1701 /// possibly still an array type 1702 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1703 llvm::Value *arrayEnd, 1704 QualType elementType, 1705 CharUnits elementAlign, 1706 Destroyer *destroyer) { 1707 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1708 arrayBegin, arrayEnd, 1709 elementType, elementAlign, 1710 destroyer); 1711 } 1712 1713 /// Lazily declare the @llvm.lifetime.start intrinsic. 1714 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1715 if (LifetimeStartFn) return LifetimeStartFn; 1716 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1717 llvm::Intrinsic::lifetime_start); 1718 return LifetimeStartFn; 1719 } 1720 1721 /// Lazily declare the @llvm.lifetime.end intrinsic. 1722 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1723 if (LifetimeEndFn) return LifetimeEndFn; 1724 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1725 llvm::Intrinsic::lifetime_end); 1726 return LifetimeEndFn; 1727 } 1728 1729 namespace { 1730 /// A cleanup to perform a release of an object at the end of a 1731 /// function. This is used to balance out the incoming +1 of a 1732 /// ns_consumed argument when we can't reasonably do that just by 1733 /// not doing the initial retain for a __block argument. 1734 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1735 ConsumeARCParameter(llvm::Value *param, 1736 ARCPreciseLifetime_t precise) 1737 : Param(param), Precise(precise) {} 1738 1739 llvm::Value *Param; 1740 ARCPreciseLifetime_t Precise; 1741 1742 void Emit(CodeGenFunction &CGF, Flags flags) override { 1743 CGF.EmitARCRelease(Param, Precise); 1744 } 1745 }; 1746 } // end anonymous namespace 1747 1748 /// Emit an alloca (or GlobalValue depending on target) 1749 /// for the specified parameter and set up LocalDeclMap. 1750 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1751 unsigned ArgNo) { 1752 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1753 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1754 "Invalid argument to EmitParmDecl"); 1755 1756 Arg.getAnyValue()->setName(D.getName()); 1757 1758 QualType Ty = D.getType(); 1759 1760 // Use better IR generation for certain implicit parameters. 1761 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1762 // The only implicit argument a block has is its literal. 1763 // We assume this is always passed directly. 1764 if (BlockInfo) { 1765 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1766 return; 1767 } 1768 } 1769 1770 Address DeclPtr = Address::invalid(); 1771 bool DoStore = false; 1772 bool IsScalar = hasScalarEvaluationKind(Ty); 1773 // If we already have a pointer to the argument, reuse the input pointer. 1774 if (Arg.isIndirect()) { 1775 DeclPtr = Arg.getIndirectAddress(); 1776 // If we have a prettier pointer type at this point, bitcast to that. 1777 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1778 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1779 if (DeclPtr.getType() != IRTy) 1780 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1781 1782 // Push a destructor cleanup for this parameter if the ABI requires it. 1783 // Don't push a cleanup in a thunk for a method that will also emit a 1784 // cleanup. 1785 if (!IsScalar && !CurFuncIsThunk && 1786 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1787 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1788 if (RD && RD->hasNonTrivialDestructor()) 1789 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1790 } 1791 } else { 1792 // Otherwise, create a temporary to hold the value. 1793 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1794 D.getName() + ".addr"); 1795 DoStore = true; 1796 } 1797 1798 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1799 1800 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1801 if (IsScalar) { 1802 Qualifiers qs = Ty.getQualifiers(); 1803 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1804 // We honor __attribute__((ns_consumed)) for types with lifetime. 1805 // For __strong, it's handled by just skipping the initial retain; 1806 // otherwise we have to balance out the initial +1 with an extra 1807 // cleanup to do the release at the end of the function. 1808 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1809 1810 // 'self' is always formally __strong, but if this is not an 1811 // init method then we don't want to retain it. 1812 if (D.isARCPseudoStrong()) { 1813 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1814 assert(&D == method->getSelfDecl()); 1815 assert(lt == Qualifiers::OCL_Strong); 1816 assert(qs.hasConst()); 1817 assert(method->getMethodFamily() != OMF_init); 1818 (void) method; 1819 lt = Qualifiers::OCL_ExplicitNone; 1820 } 1821 1822 if (lt == Qualifiers::OCL_Strong) { 1823 if (!isConsumed) { 1824 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1825 // use objc_storeStrong(&dest, value) for retaining the 1826 // object. But first, store a null into 'dest' because 1827 // objc_storeStrong attempts to release its old value. 1828 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1829 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1830 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1831 DoStore = false; 1832 } 1833 else 1834 // Don't use objc_retainBlock for block pointers, because we 1835 // don't want to Block_copy something just because we got it 1836 // as a parameter. 1837 ArgVal = EmitARCRetainNonBlock(ArgVal); 1838 } 1839 } else { 1840 // Push the cleanup for a consumed parameter. 1841 if (isConsumed) { 1842 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1843 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1844 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1845 precise); 1846 } 1847 1848 if (lt == Qualifiers::OCL_Weak) { 1849 EmitARCInitWeak(DeclPtr, ArgVal); 1850 DoStore = false; // The weak init is a store, no need to do two. 1851 } 1852 } 1853 1854 // Enter the cleanup scope. 1855 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1856 } 1857 } 1858 1859 // Store the initial value into the alloca. 1860 if (DoStore) 1861 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1862 1863 setAddrOfLocalVar(&D, DeclPtr); 1864 1865 // Emit debug info for param declaration. 1866 if (CGDebugInfo *DI = getDebugInfo()) { 1867 if (CGM.getCodeGenOpts().getDebugInfo() >= 1868 codegenoptions::LimitedDebugInfo) { 1869 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1870 } 1871 } 1872 1873 if (D.hasAttr<AnnotateAttr>()) 1874 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1875 } 1876 1877 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 1878 CodeGenFunction *CGF) { 1879 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 1880 return; 1881 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 1882 } 1883