1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/DeclOpenMP.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/Type.h" 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 void CodeGenFunction::EmitDecl(const Decl &D) { 41 switch (D.getKind()) { 42 case Decl::BuiltinTemplate: 43 case Decl::TranslationUnit: 44 case Decl::ExternCContext: 45 case Decl::Namespace: 46 case Decl::UnresolvedUsingTypename: 47 case Decl::ClassTemplateSpecialization: 48 case Decl::ClassTemplatePartialSpecialization: 49 case Decl::VarTemplateSpecialization: 50 case Decl::VarTemplatePartialSpecialization: 51 case Decl::TemplateTypeParm: 52 case Decl::UnresolvedUsingValue: 53 case Decl::NonTypeTemplateParm: 54 case Decl::CXXDeductionGuide: 55 case Decl::CXXMethod: 56 case Decl::CXXConstructor: 57 case Decl::CXXDestructor: 58 case Decl::CXXConversion: 59 case Decl::Field: 60 case Decl::MSProperty: 61 case Decl::IndirectField: 62 case Decl::ObjCIvar: 63 case Decl::ObjCAtDefsField: 64 case Decl::ParmVar: 65 case Decl::ImplicitParam: 66 case Decl::ClassTemplate: 67 case Decl::VarTemplate: 68 case Decl::FunctionTemplate: 69 case Decl::TypeAliasTemplate: 70 case Decl::TemplateTemplateParm: 71 case Decl::ObjCMethod: 72 case Decl::ObjCCategory: 73 case Decl::ObjCProtocol: 74 case Decl::ObjCInterface: 75 case Decl::ObjCCategoryImpl: 76 case Decl::ObjCImplementation: 77 case Decl::ObjCProperty: 78 case Decl::ObjCCompatibleAlias: 79 case Decl::PragmaComment: 80 case Decl::PragmaDetectMismatch: 81 case Decl::AccessSpec: 82 case Decl::LinkageSpec: 83 case Decl::Export: 84 case Decl::ObjCPropertyImpl: 85 case Decl::FileScopeAsm: 86 case Decl::Friend: 87 case Decl::FriendTemplate: 88 case Decl::Block: 89 case Decl::Captured: 90 case Decl::ClassScopeFunctionSpecialization: 91 case Decl::UsingShadow: 92 case Decl::ConstructorUsingShadow: 93 case Decl::ObjCTypeParam: 94 case Decl::Binding: 95 llvm_unreachable("Declaration should not be in declstmts!"); 96 case Decl::Function: // void X(); 97 case Decl::Record: // struct/union/class X; 98 case Decl::Enum: // enum X; 99 case Decl::EnumConstant: // enum ? { X = ? } 100 case Decl::CXXRecord: // struct/union/class X; [C++] 101 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 102 case Decl::Label: // __label__ x; 103 case Decl::Import: 104 case Decl::OMPThreadPrivate: 105 case Decl::OMPCapturedExpr: 106 case Decl::Empty: 107 // None of these decls require codegen support. 108 return; 109 110 case Decl::NamespaceAlias: 111 if (CGDebugInfo *DI = getDebugInfo()) 112 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 113 return; 114 case Decl::Using: // using X; [C++] 115 if (CGDebugInfo *DI = getDebugInfo()) 116 DI->EmitUsingDecl(cast<UsingDecl>(D)); 117 return; 118 case Decl::UsingPack: 119 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 120 EmitDecl(*Using); 121 return; 122 case Decl::UsingDirective: // using namespace X; [C++] 123 if (CGDebugInfo *DI = getDebugInfo()) 124 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 125 return; 126 case Decl::Var: 127 case Decl::Decomposition: { 128 const VarDecl &VD = cast<VarDecl>(D); 129 assert(VD.isLocalVarDecl() && 130 "Should not see file-scope variables inside a function!"); 131 EmitVarDecl(VD); 132 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 133 for (auto *B : DD->bindings()) 134 if (auto *HD = B->getHoldingVar()) 135 EmitVarDecl(*HD); 136 return; 137 } 138 139 case Decl::OMPDeclareReduction: 140 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 141 142 case Decl::Typedef: // typedef int X; 143 case Decl::TypeAlias: { // using X = int; [C++0x] 144 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 145 QualType Ty = TD.getUnderlyingType(); 146 147 if (Ty->isVariablyModifiedType()) 148 EmitVariablyModifiedType(Ty); 149 } 150 } 151 } 152 153 /// EmitVarDecl - This method handles emission of any variable declaration 154 /// inside a function, including static vars etc. 155 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 156 if (D.hasExternalStorage()) 157 // Don't emit it now, allow it to be emitted lazily on its first use. 158 return; 159 160 // Some function-scope variable does not have static storage but still 161 // needs to be emitted like a static variable, e.g. a function-scope 162 // variable in constant address space in OpenCL. 163 if (D.getStorageDuration() != SD_Automatic) { 164 llvm::GlobalValue::LinkageTypes Linkage = 165 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 166 167 // FIXME: We need to force the emission/use of a guard variable for 168 // some variables even if we can constant-evaluate them because 169 // we can't guarantee every translation unit will constant-evaluate them. 170 171 return EmitStaticVarDecl(D, Linkage); 172 } 173 174 if (D.getType().getAddressSpace() == LangAS::opencl_local) 175 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 176 177 assert(D.hasLocalStorage()); 178 return EmitAutoVarDecl(D); 179 } 180 181 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 182 if (CGM.getLangOpts().CPlusPlus) 183 return CGM.getMangledName(&D).str(); 184 185 // If this isn't C++, we don't need a mangled name, just a pretty one. 186 assert(!D.isExternallyVisible() && "name shouldn't matter"); 187 std::string ContextName; 188 const DeclContext *DC = D.getDeclContext(); 189 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 190 DC = cast<DeclContext>(CD->getNonClosureContext()); 191 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 192 ContextName = CGM.getMangledName(FD); 193 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 194 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 195 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 196 ContextName = OMD->getSelector().getAsString(); 197 else 198 llvm_unreachable("Unknown context for static var decl"); 199 200 ContextName += "." + D.getNameAsString(); 201 return ContextName; 202 } 203 204 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 205 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 206 // In general, we don't always emit static var decls once before we reference 207 // them. It is possible to reference them before emitting the function that 208 // contains them, and it is possible to emit the containing function multiple 209 // times. 210 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 211 return ExistingGV; 212 213 QualType Ty = D.getType(); 214 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 215 216 // Use the label if the variable is renamed with the asm-label extension. 217 std::string Name; 218 if (D.hasAttr<AsmLabelAttr>()) 219 Name = getMangledName(&D); 220 else 221 Name = getStaticDeclName(*this, D); 222 223 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 224 unsigned AddrSpace = 225 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 226 227 // Local address space cannot have an initializer. 228 llvm::Constant *Init = nullptr; 229 if (Ty.getAddressSpace() != LangAS::opencl_local) 230 Init = EmitNullConstant(Ty); 231 else 232 Init = llvm::UndefValue::get(LTy); 233 234 llvm::GlobalVariable *GV = 235 new llvm::GlobalVariable(getModule(), LTy, 236 Ty.isConstant(getContext()), Linkage, 237 Init, Name, nullptr, 238 llvm::GlobalVariable::NotThreadLocal, 239 AddrSpace); 240 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 241 setGlobalVisibility(GV, &D); 242 243 if (supportsCOMDAT() && GV->isWeakForLinker()) 244 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 245 246 if (D.getTLSKind()) 247 setTLSMode(GV, D); 248 249 if (D.isExternallyVisible()) { 250 if (D.hasAttr<DLLImportAttr>()) 251 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 252 else if (D.hasAttr<DLLExportAttr>()) 253 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 254 } 255 256 // Make sure the result is of the correct type. 257 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 258 llvm::Constant *Addr = GV; 259 if (AddrSpace != ExpectedAddrSpace) { 260 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 261 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 262 } 263 264 setStaticLocalDeclAddress(&D, Addr); 265 266 // Ensure that the static local gets initialized by making sure the parent 267 // function gets emitted eventually. 268 const Decl *DC = cast<Decl>(D.getDeclContext()); 269 270 // We can't name blocks or captured statements directly, so try to emit their 271 // parents. 272 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 273 DC = DC->getNonClosureContext(); 274 // FIXME: Ensure that global blocks get emitted. 275 if (!DC) 276 return Addr; 277 } 278 279 GlobalDecl GD; 280 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 281 GD = GlobalDecl(CD, Ctor_Base); 282 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 283 GD = GlobalDecl(DD, Dtor_Base); 284 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 285 GD = GlobalDecl(FD); 286 else { 287 // Don't do anything for Obj-C method decls or global closures. We should 288 // never defer them. 289 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 290 } 291 if (GD.getDecl()) 292 (void)GetAddrOfGlobal(GD); 293 294 return Addr; 295 } 296 297 /// hasNontrivialDestruction - Determine whether a type's destruction is 298 /// non-trivial. If so, and the variable uses static initialization, we must 299 /// register its destructor to run on exit. 300 static bool hasNontrivialDestruction(QualType T) { 301 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 302 return RD && !RD->hasTrivialDestructor(); 303 } 304 305 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 306 /// global variable that has already been created for it. If the initializer 307 /// has a different type than GV does, this may free GV and return a different 308 /// one. Otherwise it just returns GV. 309 llvm::GlobalVariable * 310 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 311 llvm::GlobalVariable *GV) { 312 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 313 314 // If constant emission failed, then this should be a C++ static 315 // initializer. 316 if (!Init) { 317 if (!getLangOpts().CPlusPlus) 318 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 319 else if (HaveInsertPoint()) { 320 // Since we have a static initializer, this global variable can't 321 // be constant. 322 GV->setConstant(false); 323 324 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 325 } 326 return GV; 327 } 328 329 // The initializer may differ in type from the global. Rewrite 330 // the global to match the initializer. (We have to do this 331 // because some types, like unions, can't be completely represented 332 // in the LLVM type system.) 333 if (GV->getType()->getElementType() != Init->getType()) { 334 llvm::GlobalVariable *OldGV = GV; 335 336 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 337 OldGV->isConstant(), 338 OldGV->getLinkage(), Init, "", 339 /*InsertBefore*/ OldGV, 340 OldGV->getThreadLocalMode(), 341 CGM.getContext().getTargetAddressSpace(D.getType())); 342 GV->setVisibility(OldGV->getVisibility()); 343 GV->setComdat(OldGV->getComdat()); 344 345 // Steal the name of the old global 346 GV->takeName(OldGV); 347 348 // Replace all uses of the old global with the new global 349 llvm::Constant *NewPtrForOldDecl = 350 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 351 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 352 353 // Erase the old global, since it is no longer used. 354 OldGV->eraseFromParent(); 355 } 356 357 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 358 GV->setInitializer(Init); 359 360 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 361 // We have a constant initializer, but a nontrivial destructor. We still 362 // need to perform a guarded "initialization" in order to register the 363 // destructor. 364 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 365 } 366 367 return GV; 368 } 369 370 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 371 llvm::GlobalValue::LinkageTypes Linkage) { 372 // Check to see if we already have a global variable for this 373 // declaration. This can happen when double-emitting function 374 // bodies, e.g. with complete and base constructors. 375 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 376 CharUnits alignment = getContext().getDeclAlign(&D); 377 378 // Store into LocalDeclMap before generating initializer to handle 379 // circular references. 380 setAddrOfLocalVar(&D, Address(addr, alignment)); 381 382 // We can't have a VLA here, but we can have a pointer to a VLA, 383 // even though that doesn't really make any sense. 384 // Make sure to evaluate VLA bounds now so that we have them for later. 385 if (D.getType()->isVariablyModifiedType()) 386 EmitVariablyModifiedType(D.getType()); 387 388 // Save the type in case adding the initializer forces a type change. 389 llvm::Type *expectedType = addr->getType(); 390 391 llvm::GlobalVariable *var = 392 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 393 394 // CUDA's local and local static __shared__ variables should not 395 // have any non-empty initializers. This is ensured by Sema. 396 // Whatever initializer such variable may have when it gets here is 397 // a no-op and should not be emitted. 398 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 399 D.hasAttr<CUDASharedAttr>(); 400 // If this value has an initializer, emit it. 401 if (D.getInit() && !isCudaSharedVar) 402 var = AddInitializerToStaticVarDecl(D, var); 403 404 var->setAlignment(alignment.getQuantity()); 405 406 if (D.hasAttr<AnnotateAttr>()) 407 CGM.AddGlobalAnnotations(&D, var); 408 409 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 410 var->addAttribute("bss-section", SA->getName()); 411 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 412 var->addAttribute("data-section", SA->getName()); 413 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 414 var->addAttribute("rodata-section", SA->getName()); 415 416 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 417 var->setSection(SA->getName()); 418 419 if (D.hasAttr<UsedAttr>()) 420 CGM.addUsedGlobal(var); 421 422 // We may have to cast the constant because of the initializer 423 // mismatch above. 424 // 425 // FIXME: It is really dangerous to store this in the map; if anyone 426 // RAUW's the GV uses of this constant will be invalid. 427 llvm::Constant *castedAddr = 428 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 429 if (var != castedAddr) 430 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 431 CGM.setStaticLocalDeclAddress(&D, castedAddr); 432 433 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 434 435 // Emit global variable debug descriptor for static vars. 436 CGDebugInfo *DI = getDebugInfo(); 437 if (DI && 438 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 439 DI->setLocation(D.getLocation()); 440 DI->EmitGlobalVariable(var, &D); 441 } 442 } 443 444 namespace { 445 struct DestroyObject final : EHScopeStack::Cleanup { 446 DestroyObject(Address addr, QualType type, 447 CodeGenFunction::Destroyer *destroyer, 448 bool useEHCleanupForArray) 449 : addr(addr), type(type), destroyer(destroyer), 450 useEHCleanupForArray(useEHCleanupForArray) {} 451 452 Address addr; 453 QualType type; 454 CodeGenFunction::Destroyer *destroyer; 455 bool useEHCleanupForArray; 456 457 void Emit(CodeGenFunction &CGF, Flags flags) override { 458 // Don't use an EH cleanup recursively from an EH cleanup. 459 bool useEHCleanupForArray = 460 flags.isForNormalCleanup() && this->useEHCleanupForArray; 461 462 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 463 } 464 }; 465 466 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 467 DestroyNRVOVariable(Address addr, 468 const CXXDestructorDecl *Dtor, 469 llvm::Value *NRVOFlag) 470 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 471 472 const CXXDestructorDecl *Dtor; 473 llvm::Value *NRVOFlag; 474 Address Loc; 475 476 void Emit(CodeGenFunction &CGF, Flags flags) override { 477 // Along the exceptions path we always execute the dtor. 478 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 479 480 llvm::BasicBlock *SkipDtorBB = nullptr; 481 if (NRVO) { 482 // If we exited via NRVO, we skip the destructor call. 483 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 484 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 485 llvm::Value *DidNRVO = 486 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 487 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 488 CGF.EmitBlock(RunDtorBB); 489 } 490 491 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 492 /*ForVirtualBase=*/false, 493 /*Delegating=*/false, 494 Loc); 495 496 if (NRVO) CGF.EmitBlock(SkipDtorBB); 497 } 498 }; 499 500 struct CallStackRestore final : EHScopeStack::Cleanup { 501 Address Stack; 502 CallStackRestore(Address Stack) : Stack(Stack) {} 503 void Emit(CodeGenFunction &CGF, Flags flags) override { 504 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 505 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 506 CGF.Builder.CreateCall(F, V); 507 } 508 }; 509 510 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 511 const VarDecl &Var; 512 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 513 514 void Emit(CodeGenFunction &CGF, Flags flags) override { 515 // Compute the address of the local variable, in case it's a 516 // byref or something. 517 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 518 Var.getType(), VK_LValue, SourceLocation()); 519 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 520 SourceLocation()); 521 CGF.EmitExtendGCLifetime(value); 522 } 523 }; 524 525 struct CallCleanupFunction final : EHScopeStack::Cleanup { 526 llvm::Constant *CleanupFn; 527 const CGFunctionInfo &FnInfo; 528 const VarDecl &Var; 529 530 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 531 const VarDecl *Var) 532 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 533 534 void Emit(CodeGenFunction &CGF, Flags flags) override { 535 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 536 Var.getType(), VK_LValue, SourceLocation()); 537 // Compute the address of the local variable, in case it's a byref 538 // or something. 539 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 540 541 // In some cases, the type of the function argument will be different from 542 // the type of the pointer. An example of this is 543 // void f(void* arg); 544 // __attribute__((cleanup(f))) void *g; 545 // 546 // To fix this we insert a bitcast here. 547 QualType ArgTy = FnInfo.arg_begin()->type; 548 llvm::Value *Arg = 549 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 550 551 CallArgList Args; 552 Args.add(RValue::get(Arg), 553 CGF.getContext().getPointerType(Var.getType())); 554 auto Callee = CGCallee::forDirect(CleanupFn); 555 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 556 } 557 }; 558 } // end anonymous namespace 559 560 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 561 /// variable with lifetime. 562 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 563 Address addr, 564 Qualifiers::ObjCLifetime lifetime) { 565 switch (lifetime) { 566 case Qualifiers::OCL_None: 567 llvm_unreachable("present but none"); 568 569 case Qualifiers::OCL_ExplicitNone: 570 // nothing to do 571 break; 572 573 case Qualifiers::OCL_Strong: { 574 CodeGenFunction::Destroyer *destroyer = 575 (var.hasAttr<ObjCPreciseLifetimeAttr>() 576 ? CodeGenFunction::destroyARCStrongPrecise 577 : CodeGenFunction::destroyARCStrongImprecise); 578 579 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 580 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 581 cleanupKind & EHCleanup); 582 break; 583 } 584 case Qualifiers::OCL_Autoreleasing: 585 // nothing to do 586 break; 587 588 case Qualifiers::OCL_Weak: 589 // __weak objects always get EH cleanups; otherwise, exceptions 590 // could cause really nasty crashes instead of mere leaks. 591 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 592 CodeGenFunction::destroyARCWeak, 593 /*useEHCleanup*/ true); 594 break; 595 } 596 } 597 598 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 599 if (const Expr *e = dyn_cast<Expr>(s)) { 600 // Skip the most common kinds of expressions that make 601 // hierarchy-walking expensive. 602 s = e = e->IgnoreParenCasts(); 603 604 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 605 return (ref->getDecl() == &var); 606 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 607 const BlockDecl *block = be->getBlockDecl(); 608 for (const auto &I : block->captures()) { 609 if (I.getVariable() == &var) 610 return true; 611 } 612 } 613 } 614 615 for (const Stmt *SubStmt : s->children()) 616 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 617 if (SubStmt && isAccessedBy(var, SubStmt)) 618 return true; 619 620 return false; 621 } 622 623 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 624 if (!decl) return false; 625 if (!isa<VarDecl>(decl)) return false; 626 const VarDecl *var = cast<VarDecl>(decl); 627 return isAccessedBy(*var, e); 628 } 629 630 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 631 const LValue &destLV, const Expr *init) { 632 bool needsCast = false; 633 634 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 635 switch (castExpr->getCastKind()) { 636 // Look through casts that don't require representation changes. 637 case CK_NoOp: 638 case CK_BitCast: 639 case CK_BlockPointerToObjCPointerCast: 640 needsCast = true; 641 break; 642 643 // If we find an l-value to r-value cast from a __weak variable, 644 // emit this operation as a copy or move. 645 case CK_LValueToRValue: { 646 const Expr *srcExpr = castExpr->getSubExpr(); 647 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 648 return false; 649 650 // Emit the source l-value. 651 LValue srcLV = CGF.EmitLValue(srcExpr); 652 653 // Handle a formal type change to avoid asserting. 654 auto srcAddr = srcLV.getAddress(); 655 if (needsCast) { 656 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 657 destLV.getAddress().getElementType()); 658 } 659 660 // If it was an l-value, use objc_copyWeak. 661 if (srcExpr->getValueKind() == VK_LValue) { 662 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 663 } else { 664 assert(srcExpr->getValueKind() == VK_XValue); 665 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 666 } 667 return true; 668 } 669 670 // Stop at anything else. 671 default: 672 return false; 673 } 674 675 init = castExpr->getSubExpr(); 676 } 677 return false; 678 } 679 680 static void drillIntoBlockVariable(CodeGenFunction &CGF, 681 LValue &lvalue, 682 const VarDecl *var) { 683 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 684 } 685 686 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 687 SourceLocation Loc) { 688 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 689 return; 690 691 auto Nullability = LHS.getType()->getNullability(getContext()); 692 if (!Nullability || *Nullability != NullabilityKind::NonNull) 693 return; 694 695 // Check if the right hand side of the assignment is nonnull, if the left 696 // hand side must be nonnull. 697 SanitizerScope SanScope(this); 698 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 699 llvm::Constant *StaticData[] = { 700 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 701 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 702 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 703 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 704 SanitizerHandler::TypeMismatch, StaticData, RHS); 705 } 706 707 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 708 LValue lvalue, bool capturedByInit) { 709 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 710 if (!lifetime) { 711 llvm::Value *value = EmitScalarExpr(init); 712 if (capturedByInit) 713 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 714 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 715 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 716 return; 717 } 718 719 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 720 init = DIE->getExpr(); 721 722 // If we're emitting a value with lifetime, we have to do the 723 // initialization *before* we leave the cleanup scopes. 724 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 725 enterFullExpression(ewc); 726 init = ewc->getSubExpr(); 727 } 728 CodeGenFunction::RunCleanupsScope Scope(*this); 729 730 // We have to maintain the illusion that the variable is 731 // zero-initialized. If the variable might be accessed in its 732 // initializer, zero-initialize before running the initializer, then 733 // actually perform the initialization with an assign. 734 bool accessedByInit = false; 735 if (lifetime != Qualifiers::OCL_ExplicitNone) 736 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 737 if (accessedByInit) { 738 LValue tempLV = lvalue; 739 // Drill down to the __block object if necessary. 740 if (capturedByInit) { 741 // We can use a simple GEP for this because it can't have been 742 // moved yet. 743 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 744 cast<VarDecl>(D), 745 /*follow*/ false)); 746 } 747 748 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 749 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 750 751 // If __weak, we want to use a barrier under certain conditions. 752 if (lifetime == Qualifiers::OCL_Weak) 753 EmitARCInitWeak(tempLV.getAddress(), zero); 754 755 // Otherwise just do a simple store. 756 else 757 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 758 } 759 760 // Emit the initializer. 761 llvm::Value *value = nullptr; 762 763 switch (lifetime) { 764 case Qualifiers::OCL_None: 765 llvm_unreachable("present but none"); 766 767 case Qualifiers::OCL_ExplicitNone: 768 value = EmitARCUnsafeUnretainedScalarExpr(init); 769 break; 770 771 case Qualifiers::OCL_Strong: { 772 value = EmitARCRetainScalarExpr(init); 773 break; 774 } 775 776 case Qualifiers::OCL_Weak: { 777 // If it's not accessed by the initializer, try to emit the 778 // initialization with a copy or move. 779 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 780 return; 781 } 782 783 // No way to optimize a producing initializer into this. It's not 784 // worth optimizing for, because the value will immediately 785 // disappear in the common case. 786 value = EmitScalarExpr(init); 787 788 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 789 if (accessedByInit) 790 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 791 else 792 EmitARCInitWeak(lvalue.getAddress(), value); 793 return; 794 } 795 796 case Qualifiers::OCL_Autoreleasing: 797 value = EmitARCRetainAutoreleaseScalarExpr(init); 798 break; 799 } 800 801 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 802 803 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 804 805 // If the variable might have been accessed by its initializer, we 806 // might have to initialize with a barrier. We have to do this for 807 // both __weak and __strong, but __weak got filtered out above. 808 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 809 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 810 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 811 EmitARCRelease(oldValue, ARCImpreciseLifetime); 812 return; 813 } 814 815 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 816 } 817 818 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 819 /// non-zero parts of the specified initializer with equal or fewer than 820 /// NumStores scalar stores. 821 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 822 unsigned &NumStores) { 823 // Zero and Undef never requires any extra stores. 824 if (isa<llvm::ConstantAggregateZero>(Init) || 825 isa<llvm::ConstantPointerNull>(Init) || 826 isa<llvm::UndefValue>(Init)) 827 return true; 828 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 829 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 830 isa<llvm::ConstantExpr>(Init)) 831 return Init->isNullValue() || NumStores--; 832 833 // See if we can emit each element. 834 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 835 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 836 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 837 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 838 return false; 839 } 840 return true; 841 } 842 843 if (llvm::ConstantDataSequential *CDS = 844 dyn_cast<llvm::ConstantDataSequential>(Init)) { 845 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 846 llvm::Constant *Elt = CDS->getElementAsConstant(i); 847 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 848 return false; 849 } 850 return true; 851 } 852 853 // Anything else is hard and scary. 854 return false; 855 } 856 857 /// emitStoresForInitAfterMemset - For inits that 858 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 859 /// stores that would be required. 860 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 861 bool isVolatile, CGBuilderTy &Builder) { 862 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 863 "called emitStoresForInitAfterMemset for zero or undef value."); 864 865 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 866 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 867 isa<llvm::ConstantExpr>(Init)) { 868 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 869 return; 870 } 871 872 if (llvm::ConstantDataSequential *CDS = 873 dyn_cast<llvm::ConstantDataSequential>(Init)) { 874 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 875 llvm::Constant *Elt = CDS->getElementAsConstant(i); 876 877 // If necessary, get a pointer to the element and emit it. 878 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 879 emitStoresForInitAfterMemset( 880 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 881 isVolatile, Builder); 882 } 883 return; 884 } 885 886 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 887 "Unknown value type!"); 888 889 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 890 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 891 892 // If necessary, get a pointer to the element and emit it. 893 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 894 emitStoresForInitAfterMemset( 895 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 896 isVolatile, Builder); 897 } 898 } 899 900 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 901 /// plus some stores to initialize a local variable instead of using a memcpy 902 /// from a constant global. It is beneficial to use memset if the global is all 903 /// zeros, or mostly zeros and large. 904 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 905 uint64_t GlobalSize) { 906 // If a global is all zeros, always use a memset. 907 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 908 909 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 910 // do it if it will require 6 or fewer scalar stores. 911 // TODO: Should budget depends on the size? Avoiding a large global warrants 912 // plopping in more stores. 913 unsigned StoreBudget = 6; 914 uint64_t SizeLimit = 32; 915 916 return GlobalSize > SizeLimit && 917 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 918 } 919 920 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 921 /// variable declaration with auto, register, or no storage class specifier. 922 /// These turn into simple stack objects, or GlobalValues depending on target. 923 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 924 AutoVarEmission emission = EmitAutoVarAlloca(D); 925 EmitAutoVarInit(emission); 926 EmitAutoVarCleanups(emission); 927 } 928 929 /// Emit a lifetime.begin marker if some criteria are satisfied. 930 /// \return a pointer to the temporary size Value if a marker was emitted, null 931 /// otherwise 932 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 933 llvm::Value *Addr) { 934 if (!ShouldEmitLifetimeMarkers) 935 return nullptr; 936 937 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 938 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 939 llvm::CallInst *C = 940 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 941 C->setDoesNotThrow(); 942 return SizeV; 943 } 944 945 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 946 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 947 llvm::CallInst *C = 948 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 949 C->setDoesNotThrow(); 950 } 951 952 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 953 /// local variable. Does not emit initialization or destruction. 954 CodeGenFunction::AutoVarEmission 955 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 956 QualType Ty = D.getType(); 957 958 AutoVarEmission emission(D); 959 960 bool isByRef = D.hasAttr<BlocksAttr>(); 961 emission.IsByRef = isByRef; 962 963 CharUnits alignment = getContext().getDeclAlign(&D); 964 965 // If the type is variably-modified, emit all the VLA sizes for it. 966 if (Ty->isVariablyModifiedType()) 967 EmitVariablyModifiedType(Ty); 968 969 Address address = Address::invalid(); 970 if (Ty->isConstantSizeType()) { 971 bool NRVO = getLangOpts().ElideConstructors && 972 D.isNRVOVariable(); 973 974 // If this value is an array or struct with a statically determinable 975 // constant initializer, there are optimizations we can do. 976 // 977 // TODO: We should constant-evaluate the initializer of any variable, 978 // as long as it is initialized by a constant expression. Currently, 979 // isConstantInitializer produces wrong answers for structs with 980 // reference or bitfield members, and a few other cases, and checking 981 // for POD-ness protects us from some of these. 982 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 983 (D.isConstexpr() || 984 ((Ty.isPODType(getContext()) || 985 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 986 D.getInit()->isConstantInitializer(getContext(), false)))) { 987 988 // If the variable's a const type, and it's neither an NRVO 989 // candidate nor a __block variable and has no mutable members, 990 // emit it as a global instead. 991 // Exception is if a variable is located in non-constant address space 992 // in OpenCL. 993 if ((!getLangOpts().OpenCL || 994 Ty.getAddressSpace() == LangAS::opencl_constant) && 995 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 996 CGM.isTypeConstant(Ty, true))) { 997 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 998 999 // Signal this condition to later callbacks. 1000 emission.Addr = Address::invalid(); 1001 assert(emission.wasEmittedAsGlobal()); 1002 return emission; 1003 } 1004 1005 // Otherwise, tell the initialization code that we're in this case. 1006 emission.IsConstantAggregate = true; 1007 } 1008 1009 // A normal fixed sized variable becomes an alloca in the entry block, 1010 // unless it's an NRVO variable. 1011 1012 if (NRVO) { 1013 // The named return value optimization: allocate this variable in the 1014 // return slot, so that we can elide the copy when returning this 1015 // variable (C++0x [class.copy]p34). 1016 address = ReturnValue; 1017 1018 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1019 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 1020 // Create a flag that is used to indicate when the NRVO was applied 1021 // to this variable. Set it to zero to indicate that NRVO was not 1022 // applied. 1023 llvm::Value *Zero = Builder.getFalse(); 1024 Address NRVOFlag = 1025 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1026 EnsureInsertPoint(); 1027 Builder.CreateStore(Zero, NRVOFlag); 1028 1029 // Record the NRVO flag for this variable. 1030 NRVOFlags[&D] = NRVOFlag.getPointer(); 1031 emission.NRVOFlag = NRVOFlag.getPointer(); 1032 } 1033 } 1034 } else { 1035 CharUnits allocaAlignment; 1036 llvm::Type *allocaTy; 1037 if (isByRef) { 1038 auto &byrefInfo = getBlockByrefInfo(&D); 1039 allocaTy = byrefInfo.Type; 1040 allocaAlignment = byrefInfo.ByrefAlignment; 1041 } else { 1042 allocaTy = ConvertTypeForMem(Ty); 1043 allocaAlignment = alignment; 1044 } 1045 1046 // Create the alloca. Note that we set the name separately from 1047 // building the instruction so that it's there even in no-asserts 1048 // builds. 1049 address = CreateTempAlloca(allocaTy, allocaAlignment); 1050 address.getPointer()->setName(D.getName()); 1051 1052 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1053 // the catch parameter starts in the catchpad instruction, and we can't 1054 // insert code in those basic blocks. 1055 bool IsMSCatchParam = 1056 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1057 1058 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1059 // if we don't have a valid insertion point (?). 1060 if (HaveInsertPoint() && !IsMSCatchParam) { 1061 // If there's a jump into the lifetime of this variable, its lifetime 1062 // gets broken up into several regions in IR, which requires more work 1063 // to handle correctly. For now, just omit the intrinsics; this is a 1064 // rare case, and it's better to just be conservatively correct. 1065 // PR28267. 1066 // 1067 // We have to do this in all language modes if there's a jump past the 1068 // declaration. We also have to do it in C if there's a jump to an 1069 // earlier point in the current block because non-VLA lifetimes begin as 1070 // soon as the containing block is entered, not when its variables 1071 // actually come into scope; suppressing the lifetime annotations 1072 // completely in this case is unnecessarily pessimistic, but again, this 1073 // is rare. 1074 if (!Bypasses.IsBypassed(&D) && 1075 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1076 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1077 emission.SizeForLifetimeMarkers = 1078 EmitLifetimeStart(size, address.getPointer()); 1079 } 1080 } else { 1081 assert(!emission.useLifetimeMarkers()); 1082 } 1083 } 1084 } else { 1085 EnsureInsertPoint(); 1086 1087 if (!DidCallStackSave) { 1088 // Save the stack. 1089 Address Stack = 1090 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1091 1092 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1093 llvm::Value *V = Builder.CreateCall(F); 1094 Builder.CreateStore(V, Stack); 1095 1096 DidCallStackSave = true; 1097 1098 // Push a cleanup block and restore the stack there. 1099 // FIXME: in general circumstances, this should be an EH cleanup. 1100 pushStackRestore(NormalCleanup, Stack); 1101 } 1102 1103 llvm::Value *elementCount; 1104 QualType elementType; 1105 std::tie(elementCount, elementType) = getVLASize(Ty); 1106 1107 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1108 1109 // Allocate memory for the array. 1110 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 1111 vla->setAlignment(alignment.getQuantity()); 1112 1113 address = Address(vla, alignment); 1114 } 1115 1116 // Alloca always returns a pointer in alloca address space, which may 1117 // be different from the type defined by the language. For example, 1118 // in C++ the auto variables are in the default address space. Therefore 1119 // cast alloca to the expected address space when necessary. 1120 auto T = D.getType(); 1121 assert(T.getAddressSpace() == LangAS::Default); 1122 if (getASTAllocaAddressSpace() != LangAS::Default) { 1123 auto *Addr = getTargetHooks().performAddrSpaceCast( 1124 *this, address.getPointer(), getASTAllocaAddressSpace(), 1125 T.getAddressSpace(), 1126 address.getElementType()->getPointerTo( 1127 getContext().getTargetAddressSpace(T.getAddressSpace())), 1128 /*non-null*/ true); 1129 address = Address(Addr, address.getAlignment()); 1130 } 1131 setAddrOfLocalVar(&D, address); 1132 emission.Addr = address; 1133 1134 // Emit debug info for local var declaration. 1135 if (HaveInsertPoint()) 1136 if (CGDebugInfo *DI = getDebugInfo()) { 1137 if (CGM.getCodeGenOpts().getDebugInfo() >= 1138 codegenoptions::LimitedDebugInfo) { 1139 DI->setLocation(D.getLocation()); 1140 DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1141 } 1142 } 1143 1144 if (D.hasAttr<AnnotateAttr>()) 1145 EmitVarAnnotations(&D, address.getPointer()); 1146 1147 // Make sure we call @llvm.lifetime.end. 1148 if (emission.useLifetimeMarkers()) 1149 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1150 emission.getAllocatedAddress(), 1151 emission.getSizeForLifetimeMarkers()); 1152 1153 return emission; 1154 } 1155 1156 /// Determines whether the given __block variable is potentially 1157 /// captured by the given expression. 1158 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1159 // Skip the most common kinds of expressions that make 1160 // hierarchy-walking expensive. 1161 e = e->IgnoreParenCasts(); 1162 1163 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1164 const BlockDecl *block = be->getBlockDecl(); 1165 for (const auto &I : block->captures()) { 1166 if (I.getVariable() == &var) 1167 return true; 1168 } 1169 1170 // No need to walk into the subexpressions. 1171 return false; 1172 } 1173 1174 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1175 const CompoundStmt *CS = SE->getSubStmt(); 1176 for (const auto *BI : CS->body()) 1177 if (const auto *E = dyn_cast<Expr>(BI)) { 1178 if (isCapturedBy(var, E)) 1179 return true; 1180 } 1181 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1182 // special case declarations 1183 for (const auto *I : DS->decls()) { 1184 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1185 const Expr *Init = VD->getInit(); 1186 if (Init && isCapturedBy(var, Init)) 1187 return true; 1188 } 1189 } 1190 } 1191 else 1192 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1193 // Later, provide code to poke into statements for capture analysis. 1194 return true; 1195 return false; 1196 } 1197 1198 for (const Stmt *SubStmt : e->children()) 1199 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1200 return true; 1201 1202 return false; 1203 } 1204 1205 /// \brief Determine whether the given initializer is trivial in the sense 1206 /// that it requires no code to be generated. 1207 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1208 if (!Init) 1209 return true; 1210 1211 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1212 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1213 if (Constructor->isTrivial() && 1214 Constructor->isDefaultConstructor() && 1215 !Construct->requiresZeroInitialization()) 1216 return true; 1217 1218 return false; 1219 } 1220 1221 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1222 assert(emission.Variable && "emission was not valid!"); 1223 1224 // If this was emitted as a global constant, we're done. 1225 if (emission.wasEmittedAsGlobal()) return; 1226 1227 const VarDecl &D = *emission.Variable; 1228 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1229 QualType type = D.getType(); 1230 1231 // If this local has an initializer, emit it now. 1232 const Expr *Init = D.getInit(); 1233 1234 // If we are at an unreachable point, we don't need to emit the initializer 1235 // unless it contains a label. 1236 if (!HaveInsertPoint()) { 1237 if (!Init || !ContainsLabel(Init)) return; 1238 EnsureInsertPoint(); 1239 } 1240 1241 // Initialize the structure of a __block variable. 1242 if (emission.IsByRef) 1243 emitByrefStructureInit(emission); 1244 1245 if (isTrivialInitializer(Init)) 1246 return; 1247 1248 // Check whether this is a byref variable that's potentially 1249 // captured and moved by its own initializer. If so, we'll need to 1250 // emit the initializer first, then copy into the variable. 1251 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1252 1253 Address Loc = 1254 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1255 1256 llvm::Constant *constant = nullptr; 1257 if (emission.IsConstantAggregate || D.isConstexpr()) { 1258 assert(!capturedByInit && "constant init contains a capturing block?"); 1259 constant = CGM.EmitConstantInit(D, this); 1260 } 1261 1262 if (!constant) { 1263 LValue lv = MakeAddrLValue(Loc, type); 1264 lv.setNonGC(true); 1265 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1266 } 1267 1268 if (!emission.IsConstantAggregate) { 1269 // For simple scalar/complex initialization, store the value directly. 1270 LValue lv = MakeAddrLValue(Loc, type); 1271 lv.setNonGC(true); 1272 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1273 } 1274 1275 // If this is a simple aggregate initialization, we can optimize it 1276 // in various ways. 1277 bool isVolatile = type.isVolatileQualified(); 1278 1279 llvm::Value *SizeVal = 1280 llvm::ConstantInt::get(IntPtrTy, 1281 getContext().getTypeSizeInChars(type).getQuantity()); 1282 1283 llvm::Type *BP = Int8PtrTy; 1284 if (Loc.getType() != BP) 1285 Loc = Builder.CreateBitCast(Loc, BP); 1286 1287 // If the initializer is all or mostly zeros, codegen with memset then do 1288 // a few stores afterward. 1289 if (shouldUseMemSetPlusStoresToInitialize(constant, 1290 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1291 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1292 isVolatile); 1293 // Zero and undef don't require a stores. 1294 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1295 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1296 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1297 isVolatile, Builder); 1298 } 1299 } else { 1300 // Otherwise, create a temporary global with the initializer then 1301 // memcpy from the global to the alloca. 1302 std::string Name = getStaticDeclName(CGM, D); 1303 unsigned AS = 0; 1304 if (getLangOpts().OpenCL) { 1305 AS = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 1306 BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS); 1307 } 1308 llvm::GlobalVariable *GV = 1309 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1310 llvm::GlobalValue::PrivateLinkage, 1311 constant, Name, nullptr, 1312 llvm::GlobalValue::NotThreadLocal, AS); 1313 GV->setAlignment(Loc.getAlignment().getQuantity()); 1314 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1315 1316 Address SrcPtr = Address(GV, Loc.getAlignment()); 1317 if (SrcPtr.getType() != BP) 1318 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1319 1320 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1321 } 1322 } 1323 1324 /// Emit an expression as an initializer for a variable at the given 1325 /// location. The expression is not necessarily the normal 1326 /// initializer for the variable, and the address is not necessarily 1327 /// its normal location. 1328 /// 1329 /// \param init the initializing expression 1330 /// \param var the variable to act as if we're initializing 1331 /// \param loc the address to initialize; its type is a pointer 1332 /// to the LLVM mapping of the variable's type 1333 /// \param alignment the alignment of the address 1334 /// \param capturedByInit true if the variable is a __block variable 1335 /// whose address is potentially changed by the initializer 1336 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1337 LValue lvalue, bool capturedByInit) { 1338 QualType type = D->getType(); 1339 1340 if (type->isReferenceType()) { 1341 RValue rvalue = EmitReferenceBindingToExpr(init); 1342 if (capturedByInit) 1343 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1344 EmitStoreThroughLValue(rvalue, lvalue, true); 1345 return; 1346 } 1347 switch (getEvaluationKind(type)) { 1348 case TEK_Scalar: 1349 EmitScalarInit(init, D, lvalue, capturedByInit); 1350 return; 1351 case TEK_Complex: { 1352 ComplexPairTy complex = EmitComplexExpr(init); 1353 if (capturedByInit) 1354 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1355 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1356 return; 1357 } 1358 case TEK_Aggregate: 1359 if (type->isAtomicType()) { 1360 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1361 } else { 1362 // TODO: how can we delay here if D is captured by its initializer? 1363 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1364 AggValueSlot::IsDestructed, 1365 AggValueSlot::DoesNotNeedGCBarriers, 1366 AggValueSlot::IsNotAliased)); 1367 } 1368 return; 1369 } 1370 llvm_unreachable("bad evaluation kind"); 1371 } 1372 1373 /// Enter a destroy cleanup for the given local variable. 1374 void CodeGenFunction::emitAutoVarTypeCleanup( 1375 const CodeGenFunction::AutoVarEmission &emission, 1376 QualType::DestructionKind dtorKind) { 1377 assert(dtorKind != QualType::DK_none); 1378 1379 // Note that for __block variables, we want to destroy the 1380 // original stack object, not the possibly forwarded object. 1381 Address addr = emission.getObjectAddress(*this); 1382 1383 const VarDecl *var = emission.Variable; 1384 QualType type = var->getType(); 1385 1386 CleanupKind cleanupKind = NormalAndEHCleanup; 1387 CodeGenFunction::Destroyer *destroyer = nullptr; 1388 1389 switch (dtorKind) { 1390 case QualType::DK_none: 1391 llvm_unreachable("no cleanup for trivially-destructible variable"); 1392 1393 case QualType::DK_cxx_destructor: 1394 // If there's an NRVO flag on the emission, we need a different 1395 // cleanup. 1396 if (emission.NRVOFlag) { 1397 assert(!type->isArrayType()); 1398 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1399 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1400 dtor, emission.NRVOFlag); 1401 return; 1402 } 1403 break; 1404 1405 case QualType::DK_objc_strong_lifetime: 1406 // Suppress cleanups for pseudo-strong variables. 1407 if (var->isARCPseudoStrong()) return; 1408 1409 // Otherwise, consider whether to use an EH cleanup or not. 1410 cleanupKind = getARCCleanupKind(); 1411 1412 // Use the imprecise destroyer by default. 1413 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1414 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1415 break; 1416 1417 case QualType::DK_objc_weak_lifetime: 1418 break; 1419 } 1420 1421 // If we haven't chosen a more specific destroyer, use the default. 1422 if (!destroyer) destroyer = getDestroyer(dtorKind); 1423 1424 // Use an EH cleanup in array destructors iff the destructor itself 1425 // is being pushed as an EH cleanup. 1426 bool useEHCleanup = (cleanupKind & EHCleanup); 1427 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1428 useEHCleanup); 1429 } 1430 1431 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1432 assert(emission.Variable && "emission was not valid!"); 1433 1434 // If this was emitted as a global constant, we're done. 1435 if (emission.wasEmittedAsGlobal()) return; 1436 1437 // If we don't have an insertion point, we're done. Sema prevents 1438 // us from jumping into any of these scopes anyway. 1439 if (!HaveInsertPoint()) return; 1440 1441 const VarDecl &D = *emission.Variable; 1442 1443 // Check the type for a cleanup. 1444 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1445 emitAutoVarTypeCleanup(emission, dtorKind); 1446 1447 // In GC mode, honor objc_precise_lifetime. 1448 if (getLangOpts().getGC() != LangOptions::NonGC && 1449 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1450 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1451 } 1452 1453 // Handle the cleanup attribute. 1454 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1455 const FunctionDecl *FD = CA->getFunctionDecl(); 1456 1457 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1458 assert(F && "Could not find function!"); 1459 1460 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1461 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1462 } 1463 1464 // If this is a block variable, call _Block_object_destroy 1465 // (on the unforwarded address). 1466 if (emission.IsByRef) 1467 enterByrefCleanup(emission); 1468 } 1469 1470 CodeGenFunction::Destroyer * 1471 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1472 switch (kind) { 1473 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1474 case QualType::DK_cxx_destructor: 1475 return destroyCXXObject; 1476 case QualType::DK_objc_strong_lifetime: 1477 return destroyARCStrongPrecise; 1478 case QualType::DK_objc_weak_lifetime: 1479 return destroyARCWeak; 1480 } 1481 llvm_unreachable("Unknown DestructionKind"); 1482 } 1483 1484 /// pushEHDestroy - Push the standard destructor for the given type as 1485 /// an EH-only cleanup. 1486 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1487 Address addr, QualType type) { 1488 assert(dtorKind && "cannot push destructor for trivial type"); 1489 assert(needsEHCleanup(dtorKind)); 1490 1491 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1492 } 1493 1494 /// pushDestroy - Push the standard destructor for the given type as 1495 /// at least a normal cleanup. 1496 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1497 Address addr, QualType type) { 1498 assert(dtorKind && "cannot push destructor for trivial type"); 1499 1500 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1501 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1502 cleanupKind & EHCleanup); 1503 } 1504 1505 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1506 QualType type, Destroyer *destroyer, 1507 bool useEHCleanupForArray) { 1508 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1509 destroyer, useEHCleanupForArray); 1510 } 1511 1512 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1513 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1514 } 1515 1516 void CodeGenFunction::pushLifetimeExtendedDestroy( 1517 CleanupKind cleanupKind, Address addr, QualType type, 1518 Destroyer *destroyer, bool useEHCleanupForArray) { 1519 assert(!isInConditionalBranch() && 1520 "performing lifetime extension from within conditional"); 1521 1522 // Push an EH-only cleanup for the object now. 1523 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1524 // around in case a temporary's destructor throws an exception. 1525 if (cleanupKind & EHCleanup) 1526 EHStack.pushCleanup<DestroyObject>( 1527 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1528 destroyer, useEHCleanupForArray); 1529 1530 // Remember that we need to push a full cleanup for the object at the 1531 // end of the full-expression. 1532 pushCleanupAfterFullExpr<DestroyObject>( 1533 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1534 } 1535 1536 /// emitDestroy - Immediately perform the destruction of the given 1537 /// object. 1538 /// 1539 /// \param addr - the address of the object; a type* 1540 /// \param type - the type of the object; if an array type, all 1541 /// objects are destroyed in reverse order 1542 /// \param destroyer - the function to call to destroy individual 1543 /// elements 1544 /// \param useEHCleanupForArray - whether an EH cleanup should be 1545 /// used when destroying array elements, in case one of the 1546 /// destructions throws an exception 1547 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1548 Destroyer *destroyer, 1549 bool useEHCleanupForArray) { 1550 const ArrayType *arrayType = getContext().getAsArrayType(type); 1551 if (!arrayType) 1552 return destroyer(*this, addr, type); 1553 1554 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1555 1556 CharUnits elementAlign = 1557 addr.getAlignment() 1558 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1559 1560 // Normally we have to check whether the array is zero-length. 1561 bool checkZeroLength = true; 1562 1563 // But if the array length is constant, we can suppress that. 1564 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1565 // ...and if it's constant zero, we can just skip the entire thing. 1566 if (constLength->isZero()) return; 1567 checkZeroLength = false; 1568 } 1569 1570 llvm::Value *begin = addr.getPointer(); 1571 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1572 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1573 checkZeroLength, useEHCleanupForArray); 1574 } 1575 1576 /// emitArrayDestroy - Destroys all the elements of the given array, 1577 /// beginning from last to first. The array cannot be zero-length. 1578 /// 1579 /// \param begin - a type* denoting the first element of the array 1580 /// \param end - a type* denoting one past the end of the array 1581 /// \param elementType - the element type of the array 1582 /// \param destroyer - the function to call to destroy elements 1583 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1584 /// the remaining elements in case the destruction of a single 1585 /// element throws 1586 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1587 llvm::Value *end, 1588 QualType elementType, 1589 CharUnits elementAlign, 1590 Destroyer *destroyer, 1591 bool checkZeroLength, 1592 bool useEHCleanup) { 1593 assert(!elementType->isArrayType()); 1594 1595 // The basic structure here is a do-while loop, because we don't 1596 // need to check for the zero-element case. 1597 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1598 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1599 1600 if (checkZeroLength) { 1601 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1602 "arraydestroy.isempty"); 1603 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1604 } 1605 1606 // Enter the loop body, making that address the current address. 1607 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1608 EmitBlock(bodyBB); 1609 llvm::PHINode *elementPast = 1610 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1611 elementPast->addIncoming(end, entryBB); 1612 1613 // Shift the address back by one element. 1614 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1615 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1616 "arraydestroy.element"); 1617 1618 if (useEHCleanup) 1619 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1620 destroyer); 1621 1622 // Perform the actual destruction there. 1623 destroyer(*this, Address(element, elementAlign), elementType); 1624 1625 if (useEHCleanup) 1626 PopCleanupBlock(); 1627 1628 // Check whether we've reached the end. 1629 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1630 Builder.CreateCondBr(done, doneBB, bodyBB); 1631 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1632 1633 // Done. 1634 EmitBlock(doneBB); 1635 } 1636 1637 /// Perform partial array destruction as if in an EH cleanup. Unlike 1638 /// emitArrayDestroy, the element type here may still be an array type. 1639 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1640 llvm::Value *begin, llvm::Value *end, 1641 QualType type, CharUnits elementAlign, 1642 CodeGenFunction::Destroyer *destroyer) { 1643 // If the element type is itself an array, drill down. 1644 unsigned arrayDepth = 0; 1645 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1646 // VLAs don't require a GEP index to walk into. 1647 if (!isa<VariableArrayType>(arrayType)) 1648 arrayDepth++; 1649 type = arrayType->getElementType(); 1650 } 1651 1652 if (arrayDepth) { 1653 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1654 1655 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1656 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1657 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1658 } 1659 1660 // Destroy the array. We don't ever need an EH cleanup because we 1661 // assume that we're in an EH cleanup ourselves, so a throwing 1662 // destructor causes an immediate terminate. 1663 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1664 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1665 } 1666 1667 namespace { 1668 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1669 /// array destroy where the end pointer is regularly determined and 1670 /// does not need to be loaded from a local. 1671 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1672 llvm::Value *ArrayBegin; 1673 llvm::Value *ArrayEnd; 1674 QualType ElementType; 1675 CodeGenFunction::Destroyer *Destroyer; 1676 CharUnits ElementAlign; 1677 public: 1678 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1679 QualType elementType, CharUnits elementAlign, 1680 CodeGenFunction::Destroyer *destroyer) 1681 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1682 ElementType(elementType), Destroyer(destroyer), 1683 ElementAlign(elementAlign) {} 1684 1685 void Emit(CodeGenFunction &CGF, Flags flags) override { 1686 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1687 ElementType, ElementAlign, Destroyer); 1688 } 1689 }; 1690 1691 /// IrregularPartialArrayDestroy - a cleanup which performs a 1692 /// partial array destroy where the end pointer is irregularly 1693 /// determined and must be loaded from a local. 1694 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1695 llvm::Value *ArrayBegin; 1696 Address ArrayEndPointer; 1697 QualType ElementType; 1698 CodeGenFunction::Destroyer *Destroyer; 1699 CharUnits ElementAlign; 1700 public: 1701 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1702 Address arrayEndPointer, 1703 QualType elementType, 1704 CharUnits elementAlign, 1705 CodeGenFunction::Destroyer *destroyer) 1706 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1707 ElementType(elementType), Destroyer(destroyer), 1708 ElementAlign(elementAlign) {} 1709 1710 void Emit(CodeGenFunction &CGF, Flags flags) override { 1711 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1712 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1713 ElementType, ElementAlign, Destroyer); 1714 } 1715 }; 1716 } // end anonymous namespace 1717 1718 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1719 /// already-constructed elements of the given array. The cleanup 1720 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1721 /// 1722 /// \param elementType - the immediate element type of the array; 1723 /// possibly still an array type 1724 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1725 Address arrayEndPointer, 1726 QualType elementType, 1727 CharUnits elementAlign, 1728 Destroyer *destroyer) { 1729 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1730 arrayBegin, arrayEndPointer, 1731 elementType, elementAlign, 1732 destroyer); 1733 } 1734 1735 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1736 /// already-constructed elements of the given array. The cleanup 1737 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1738 /// 1739 /// \param elementType - the immediate element type of the array; 1740 /// possibly still an array type 1741 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1742 llvm::Value *arrayEnd, 1743 QualType elementType, 1744 CharUnits elementAlign, 1745 Destroyer *destroyer) { 1746 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1747 arrayBegin, arrayEnd, 1748 elementType, elementAlign, 1749 destroyer); 1750 } 1751 1752 /// Lazily declare the @llvm.lifetime.start intrinsic. 1753 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1754 if (LifetimeStartFn) 1755 return LifetimeStartFn; 1756 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1757 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 1758 return LifetimeStartFn; 1759 } 1760 1761 /// Lazily declare the @llvm.lifetime.end intrinsic. 1762 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1763 if (LifetimeEndFn) 1764 return LifetimeEndFn; 1765 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1766 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 1767 return LifetimeEndFn; 1768 } 1769 1770 namespace { 1771 /// A cleanup to perform a release of an object at the end of a 1772 /// function. This is used to balance out the incoming +1 of a 1773 /// ns_consumed argument when we can't reasonably do that just by 1774 /// not doing the initial retain for a __block argument. 1775 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1776 ConsumeARCParameter(llvm::Value *param, 1777 ARCPreciseLifetime_t precise) 1778 : Param(param), Precise(precise) {} 1779 1780 llvm::Value *Param; 1781 ARCPreciseLifetime_t Precise; 1782 1783 void Emit(CodeGenFunction &CGF, Flags flags) override { 1784 CGF.EmitARCRelease(Param, Precise); 1785 } 1786 }; 1787 } // end anonymous namespace 1788 1789 /// Emit an alloca (or GlobalValue depending on target) 1790 /// for the specified parameter and set up LocalDeclMap. 1791 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1792 unsigned ArgNo) { 1793 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1794 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1795 "Invalid argument to EmitParmDecl"); 1796 1797 Arg.getAnyValue()->setName(D.getName()); 1798 1799 QualType Ty = D.getType(); 1800 1801 // Use better IR generation for certain implicit parameters. 1802 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1803 // The only implicit argument a block has is its literal. 1804 // We assume this is always passed directly. 1805 if (BlockInfo) { 1806 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1807 return; 1808 } 1809 1810 // Apply any prologue 'this' adjustments required by the ABI. Be careful to 1811 // handle the case where 'this' is passed indirectly as part of an inalloca 1812 // struct. 1813 if (const CXXMethodDecl *MD = 1814 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1815 if (MD->isVirtual() && IPD == CXXABIThisDecl) { 1816 llvm::Value *This = Arg.isIndirect() 1817 ? Builder.CreateLoad(Arg.getIndirectAddress()) 1818 : Arg.getDirectValue(); 1819 This = CGM.getCXXABI().adjustThisParameterInVirtualFunctionPrologue( 1820 *this, CurGD, This); 1821 if (Arg.isIndirect()) 1822 Builder.CreateStore(This, Arg.getIndirectAddress()); 1823 else 1824 Arg = ParamValue::forDirect(This); 1825 } 1826 } 1827 } 1828 1829 Address DeclPtr = Address::invalid(); 1830 bool DoStore = false; 1831 bool IsScalar = hasScalarEvaluationKind(Ty); 1832 // If we already have a pointer to the argument, reuse the input pointer. 1833 if (Arg.isIndirect()) { 1834 DeclPtr = Arg.getIndirectAddress(); 1835 // If we have a prettier pointer type at this point, bitcast to that. 1836 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1837 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1838 if (DeclPtr.getType() != IRTy) 1839 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1840 1841 // Push a destructor cleanup for this parameter if the ABI requires it. 1842 // Don't push a cleanup in a thunk for a method that will also emit a 1843 // cleanup. 1844 if (!IsScalar && !CurFuncIsThunk && 1845 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1846 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1847 if (RD && RD->hasNonTrivialDestructor()) 1848 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1849 } 1850 } else { 1851 // Otherwise, create a temporary to hold the value. 1852 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1853 D.getName() + ".addr"); 1854 DoStore = true; 1855 } 1856 1857 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1858 1859 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1860 if (IsScalar) { 1861 Qualifiers qs = Ty.getQualifiers(); 1862 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1863 // We honor __attribute__((ns_consumed)) for types with lifetime. 1864 // For __strong, it's handled by just skipping the initial retain; 1865 // otherwise we have to balance out the initial +1 with an extra 1866 // cleanup to do the release at the end of the function. 1867 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1868 1869 // 'self' is always formally __strong, but if this is not an 1870 // init method then we don't want to retain it. 1871 if (D.isARCPseudoStrong()) { 1872 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1873 assert(&D == method->getSelfDecl()); 1874 assert(lt == Qualifiers::OCL_Strong); 1875 assert(qs.hasConst()); 1876 assert(method->getMethodFamily() != OMF_init); 1877 (void) method; 1878 lt = Qualifiers::OCL_ExplicitNone; 1879 } 1880 1881 if (lt == Qualifiers::OCL_Strong) { 1882 if (!isConsumed) { 1883 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1884 // use objc_storeStrong(&dest, value) for retaining the 1885 // object. But first, store a null into 'dest' because 1886 // objc_storeStrong attempts to release its old value. 1887 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1888 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1889 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1890 DoStore = false; 1891 } 1892 else 1893 // Don't use objc_retainBlock for block pointers, because we 1894 // don't want to Block_copy something just because we got it 1895 // as a parameter. 1896 ArgVal = EmitARCRetainNonBlock(ArgVal); 1897 } 1898 } else { 1899 // Push the cleanup for a consumed parameter. 1900 if (isConsumed) { 1901 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1902 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1903 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1904 precise); 1905 } 1906 1907 if (lt == Qualifiers::OCL_Weak) { 1908 EmitARCInitWeak(DeclPtr, ArgVal); 1909 DoStore = false; // The weak init is a store, no need to do two. 1910 } 1911 } 1912 1913 // Enter the cleanup scope. 1914 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1915 } 1916 } 1917 1918 // Store the initial value into the alloca. 1919 if (DoStore) 1920 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1921 1922 setAddrOfLocalVar(&D, DeclPtr); 1923 1924 // Emit debug info for param declaration. 1925 if (CGDebugInfo *DI = getDebugInfo()) { 1926 if (CGM.getCodeGenOpts().getDebugInfo() >= 1927 codegenoptions::LimitedDebugInfo) { 1928 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1929 } 1930 } 1931 1932 if (D.hasAttr<AnnotateAttr>()) 1933 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1934 1935 // We can only check return value nullability if all arguments to the 1936 // function satisfy their nullability preconditions. This makes it necessary 1937 // to emit null checks for args in the function body itself. 1938 if (requiresReturnValueNullabilityCheck()) { 1939 auto Nullability = Ty->getNullability(getContext()); 1940 if (Nullability && *Nullability == NullabilityKind::NonNull) { 1941 SanitizerScope SanScope(this); 1942 RetValNullabilityPrecondition = 1943 Builder.CreateAnd(RetValNullabilityPrecondition, 1944 Builder.CreateIsNotNull(Arg.getAnyValue())); 1945 } 1946 } 1947 } 1948 1949 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 1950 CodeGenFunction *CGF) { 1951 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 1952 return; 1953 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 1954 } 1955