1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Type.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 void CodeGenFunction::EmitDecl(const Decl &D) { 42 switch (D.getKind()) { 43 case Decl::BuiltinTemplate: 44 case Decl::TranslationUnit: 45 case Decl::ExternCContext: 46 case Decl::Namespace: 47 case Decl::UnresolvedUsingTypename: 48 case Decl::ClassTemplateSpecialization: 49 case Decl::ClassTemplatePartialSpecialization: 50 case Decl::VarTemplateSpecialization: 51 case Decl::VarTemplatePartialSpecialization: 52 case Decl::TemplateTypeParm: 53 case Decl::UnresolvedUsingValue: 54 case Decl::NonTypeTemplateParm: 55 case Decl::CXXDeductionGuide: 56 case Decl::CXXMethod: 57 case Decl::CXXConstructor: 58 case Decl::CXXDestructor: 59 case Decl::CXXConversion: 60 case Decl::Field: 61 case Decl::MSProperty: 62 case Decl::IndirectField: 63 case Decl::ObjCIvar: 64 case Decl::ObjCAtDefsField: 65 case Decl::ParmVar: 66 case Decl::ImplicitParam: 67 case Decl::ClassTemplate: 68 case Decl::VarTemplate: 69 case Decl::FunctionTemplate: 70 case Decl::TypeAliasTemplate: 71 case Decl::TemplateTemplateParm: 72 case Decl::ObjCMethod: 73 case Decl::ObjCCategory: 74 case Decl::ObjCProtocol: 75 case Decl::ObjCInterface: 76 case Decl::ObjCCategoryImpl: 77 case Decl::ObjCImplementation: 78 case Decl::ObjCProperty: 79 case Decl::ObjCCompatibleAlias: 80 case Decl::PragmaComment: 81 case Decl::PragmaDetectMismatch: 82 case Decl::AccessSpec: 83 case Decl::LinkageSpec: 84 case Decl::Export: 85 case Decl::ObjCPropertyImpl: 86 case Decl::FileScopeAsm: 87 case Decl::Friend: 88 case Decl::FriendTemplate: 89 case Decl::Block: 90 case Decl::Captured: 91 case Decl::ClassScopeFunctionSpecialization: 92 case Decl::UsingShadow: 93 case Decl::ConstructorUsingShadow: 94 case Decl::ObjCTypeParam: 95 case Decl::Binding: 96 llvm_unreachable("Declaration should not be in declstmts!"); 97 case Decl::Function: // void X(); 98 case Decl::Record: // struct/union/class X; 99 case Decl::Enum: // enum X; 100 case Decl::EnumConstant: // enum ? { X = ? } 101 case Decl::CXXRecord: // struct/union/class X; [C++] 102 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 103 case Decl::Label: // __label__ x; 104 case Decl::Import: 105 case Decl::OMPThreadPrivate: 106 case Decl::OMPCapturedExpr: 107 case Decl::Empty: 108 // None of these decls require codegen support. 109 return; 110 111 case Decl::NamespaceAlias: 112 if (CGDebugInfo *DI = getDebugInfo()) 113 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 114 return; 115 case Decl::Using: // using X; [C++] 116 if (CGDebugInfo *DI = getDebugInfo()) 117 DI->EmitUsingDecl(cast<UsingDecl>(D)); 118 return; 119 case Decl::UsingPack: 120 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 121 EmitDecl(*Using); 122 return; 123 case Decl::UsingDirective: // using namespace X; [C++] 124 if (CGDebugInfo *DI = getDebugInfo()) 125 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 126 return; 127 case Decl::Var: 128 case Decl::Decomposition: { 129 const VarDecl &VD = cast<VarDecl>(D); 130 assert(VD.isLocalVarDecl() && 131 "Should not see file-scope variables inside a function!"); 132 EmitVarDecl(VD); 133 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 134 for (auto *B : DD->bindings()) 135 if (auto *HD = B->getHoldingVar()) 136 EmitVarDecl(*HD); 137 return; 138 } 139 140 case Decl::OMPDeclareReduction: 141 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 142 143 case Decl::Typedef: // typedef int X; 144 case Decl::TypeAlias: { // using X = int; [C++0x] 145 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 146 QualType Ty = TD.getUnderlyingType(); 147 148 if (Ty->isVariablyModifiedType()) 149 EmitVariablyModifiedType(Ty); 150 } 151 } 152 } 153 154 /// EmitVarDecl - This method handles emission of any variable declaration 155 /// inside a function, including static vars etc. 156 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 157 if (D.hasExternalStorage()) 158 // Don't emit it now, allow it to be emitted lazily on its first use. 159 return; 160 161 // Some function-scope variable does not have static storage but still 162 // needs to be emitted like a static variable, e.g. a function-scope 163 // variable in constant address space in OpenCL. 164 if (D.getStorageDuration() != SD_Automatic) { 165 // Static sampler variables translated to function calls. 166 if (D.getType()->isSamplerT()) 167 return; 168 169 llvm::GlobalValue::LinkageTypes Linkage = 170 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 171 172 // FIXME: We need to force the emission/use of a guard variable for 173 // some variables even if we can constant-evaluate them because 174 // we can't guarantee every translation unit will constant-evaluate them. 175 176 return EmitStaticVarDecl(D, Linkage); 177 } 178 179 if (D.getType().getAddressSpace() == LangAS::opencl_local) 180 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 181 182 assert(D.hasLocalStorage()); 183 return EmitAutoVarDecl(D); 184 } 185 186 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 187 if (CGM.getLangOpts().CPlusPlus) 188 return CGM.getMangledName(&D).str(); 189 190 // If this isn't C++, we don't need a mangled name, just a pretty one. 191 assert(!D.isExternallyVisible() && "name shouldn't matter"); 192 std::string ContextName; 193 const DeclContext *DC = D.getDeclContext(); 194 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 195 DC = cast<DeclContext>(CD->getNonClosureContext()); 196 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 197 ContextName = CGM.getMangledName(FD); 198 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 199 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 200 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 201 ContextName = OMD->getSelector().getAsString(); 202 else 203 llvm_unreachable("Unknown context for static var decl"); 204 205 ContextName += "." + D.getNameAsString(); 206 return ContextName; 207 } 208 209 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 210 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 211 // In general, we don't always emit static var decls once before we reference 212 // them. It is possible to reference them before emitting the function that 213 // contains them, and it is possible to emit the containing function multiple 214 // times. 215 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 216 return ExistingGV; 217 218 QualType Ty = D.getType(); 219 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 220 221 // Use the label if the variable is renamed with the asm-label extension. 222 std::string Name; 223 if (D.hasAttr<AsmLabelAttr>()) 224 Name = getMangledName(&D); 225 else 226 Name = getStaticDeclName(*this, D); 227 228 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 229 LangAS AS = GetGlobalVarAddressSpace(&D); 230 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 231 232 // Local address space cannot have an initializer. 233 llvm::Constant *Init = nullptr; 234 if (Ty.getAddressSpace() != LangAS::opencl_local) 235 Init = EmitNullConstant(Ty); 236 else 237 Init = llvm::UndefValue::get(LTy); 238 239 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 240 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 241 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 242 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 243 setGVProperties(GV, &D); 244 245 if (supportsCOMDAT() && GV->isWeakForLinker()) 246 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 247 248 if (D.getTLSKind()) 249 setTLSMode(GV, D); 250 251 if (D.isExternallyVisible()) { 252 if (D.hasAttr<DLLImportAttr>()) 253 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 254 else if (D.hasAttr<DLLExportAttr>()) 255 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 256 } 257 258 // Make sure the result is of the correct type. 259 LangAS ExpectedAS = Ty.getAddressSpace(); 260 llvm::Constant *Addr = GV; 261 if (AS != ExpectedAS) { 262 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 263 *this, GV, AS, ExpectedAS, 264 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 265 } 266 267 setStaticLocalDeclAddress(&D, Addr); 268 269 // Ensure that the static local gets initialized by making sure the parent 270 // function gets emitted eventually. 271 const Decl *DC = cast<Decl>(D.getDeclContext()); 272 273 // We can't name blocks or captured statements directly, so try to emit their 274 // parents. 275 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 276 DC = DC->getNonClosureContext(); 277 // FIXME: Ensure that global blocks get emitted. 278 if (!DC) 279 return Addr; 280 } 281 282 GlobalDecl GD; 283 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 284 GD = GlobalDecl(CD, Ctor_Base); 285 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 286 GD = GlobalDecl(DD, Dtor_Base); 287 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 288 GD = GlobalDecl(FD); 289 else { 290 // Don't do anything for Obj-C method decls or global closures. We should 291 // never defer them. 292 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 293 } 294 if (GD.getDecl()) 295 (void)GetAddrOfGlobal(GD); 296 297 return Addr; 298 } 299 300 /// hasNontrivialDestruction - Determine whether a type's destruction is 301 /// non-trivial. If so, and the variable uses static initialization, we must 302 /// register its destructor to run on exit. 303 static bool hasNontrivialDestruction(QualType T) { 304 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 305 return RD && !RD->hasTrivialDestructor(); 306 } 307 308 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 309 /// global variable that has already been created for it. If the initializer 310 /// has a different type than GV does, this may free GV and return a different 311 /// one. Otherwise it just returns GV. 312 llvm::GlobalVariable * 313 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 314 llvm::GlobalVariable *GV) { 315 ConstantEmitter emitter(*this); 316 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 317 318 // If constant emission failed, then this should be a C++ static 319 // initializer. 320 if (!Init) { 321 if (!getLangOpts().CPlusPlus) 322 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 323 else if (HaveInsertPoint()) { 324 // Since we have a static initializer, this global variable can't 325 // be constant. 326 GV->setConstant(false); 327 328 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 329 } 330 return GV; 331 } 332 333 // The initializer may differ in type from the global. Rewrite 334 // the global to match the initializer. (We have to do this 335 // because some types, like unions, can't be completely represented 336 // in the LLVM type system.) 337 if (GV->getType()->getElementType() != Init->getType()) { 338 llvm::GlobalVariable *OldGV = GV; 339 340 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 341 OldGV->isConstant(), 342 OldGV->getLinkage(), Init, "", 343 /*InsertBefore*/ OldGV, 344 OldGV->getThreadLocalMode(), 345 CGM.getContext().getTargetAddressSpace(D.getType())); 346 GV->setVisibility(OldGV->getVisibility()); 347 GV->setDSOLocal(OldGV->isDSOLocal()); 348 GV->setComdat(OldGV->getComdat()); 349 350 // Steal the name of the old global 351 GV->takeName(OldGV); 352 353 // Replace all uses of the old global with the new global 354 llvm::Constant *NewPtrForOldDecl = 355 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 356 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 357 358 // Erase the old global, since it is no longer used. 359 OldGV->eraseFromParent(); 360 } 361 362 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 363 GV->setInitializer(Init); 364 365 emitter.finalize(GV); 366 367 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 368 // We have a constant initializer, but a nontrivial destructor. We still 369 // need to perform a guarded "initialization" in order to register the 370 // destructor. 371 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 372 } 373 374 return GV; 375 } 376 377 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 378 llvm::GlobalValue::LinkageTypes Linkage) { 379 // Check to see if we already have a global variable for this 380 // declaration. This can happen when double-emitting function 381 // bodies, e.g. with complete and base constructors. 382 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 383 CharUnits alignment = getContext().getDeclAlign(&D); 384 385 // Store into LocalDeclMap before generating initializer to handle 386 // circular references. 387 setAddrOfLocalVar(&D, Address(addr, alignment)); 388 389 // We can't have a VLA here, but we can have a pointer to a VLA, 390 // even though that doesn't really make any sense. 391 // Make sure to evaluate VLA bounds now so that we have them for later. 392 if (D.getType()->isVariablyModifiedType()) 393 EmitVariablyModifiedType(D.getType()); 394 395 // Save the type in case adding the initializer forces a type change. 396 llvm::Type *expectedType = addr->getType(); 397 398 llvm::GlobalVariable *var = 399 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 400 401 // CUDA's local and local static __shared__ variables should not 402 // have any non-empty initializers. This is ensured by Sema. 403 // Whatever initializer such variable may have when it gets here is 404 // a no-op and should not be emitted. 405 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 406 D.hasAttr<CUDASharedAttr>(); 407 // If this value has an initializer, emit it. 408 if (D.getInit() && !isCudaSharedVar) 409 var = AddInitializerToStaticVarDecl(D, var); 410 411 var->setAlignment(alignment.getQuantity()); 412 413 if (D.hasAttr<AnnotateAttr>()) 414 CGM.AddGlobalAnnotations(&D, var); 415 416 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 417 var->addAttribute("bss-section", SA->getName()); 418 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 419 var->addAttribute("data-section", SA->getName()); 420 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 421 var->addAttribute("rodata-section", SA->getName()); 422 423 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 424 var->setSection(SA->getName()); 425 426 if (D.hasAttr<UsedAttr>()) 427 CGM.addUsedGlobal(var); 428 429 // We may have to cast the constant because of the initializer 430 // mismatch above. 431 // 432 // FIXME: It is really dangerous to store this in the map; if anyone 433 // RAUW's the GV uses of this constant will be invalid. 434 llvm::Constant *castedAddr = 435 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 436 if (var != castedAddr) 437 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 438 CGM.setStaticLocalDeclAddress(&D, castedAddr); 439 440 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 441 442 // Emit global variable debug descriptor for static vars. 443 CGDebugInfo *DI = getDebugInfo(); 444 if (DI && 445 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 446 DI->setLocation(D.getLocation()); 447 DI->EmitGlobalVariable(var, &D); 448 } 449 } 450 451 namespace { 452 struct DestroyObject final : EHScopeStack::Cleanup { 453 DestroyObject(Address addr, QualType type, 454 CodeGenFunction::Destroyer *destroyer, 455 bool useEHCleanupForArray) 456 : addr(addr), type(type), destroyer(destroyer), 457 useEHCleanupForArray(useEHCleanupForArray) {} 458 459 Address addr; 460 QualType type; 461 CodeGenFunction::Destroyer *destroyer; 462 bool useEHCleanupForArray; 463 464 void Emit(CodeGenFunction &CGF, Flags flags) override { 465 // Don't use an EH cleanup recursively from an EH cleanup. 466 bool useEHCleanupForArray = 467 flags.isForNormalCleanup() && this->useEHCleanupForArray; 468 469 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 470 } 471 }; 472 473 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 474 DestroyNRVOVariable(Address addr, 475 const CXXDestructorDecl *Dtor, 476 llvm::Value *NRVOFlag) 477 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 478 479 const CXXDestructorDecl *Dtor; 480 llvm::Value *NRVOFlag; 481 Address Loc; 482 483 void Emit(CodeGenFunction &CGF, Flags flags) override { 484 // Along the exceptions path we always execute the dtor. 485 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 486 487 llvm::BasicBlock *SkipDtorBB = nullptr; 488 if (NRVO) { 489 // If we exited via NRVO, we skip the destructor call. 490 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 491 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 492 llvm::Value *DidNRVO = 493 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 494 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 495 CGF.EmitBlock(RunDtorBB); 496 } 497 498 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 499 /*ForVirtualBase=*/false, 500 /*Delegating=*/false, 501 Loc); 502 503 if (NRVO) CGF.EmitBlock(SkipDtorBB); 504 } 505 }; 506 507 struct CallStackRestore final : EHScopeStack::Cleanup { 508 Address Stack; 509 CallStackRestore(Address Stack) : Stack(Stack) {} 510 void Emit(CodeGenFunction &CGF, Flags flags) override { 511 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 512 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 513 CGF.Builder.CreateCall(F, V); 514 } 515 }; 516 517 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 518 const VarDecl &Var; 519 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 520 521 void Emit(CodeGenFunction &CGF, Flags flags) override { 522 // Compute the address of the local variable, in case it's a 523 // byref or something. 524 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 525 Var.getType(), VK_LValue, SourceLocation()); 526 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 527 SourceLocation()); 528 CGF.EmitExtendGCLifetime(value); 529 } 530 }; 531 532 struct CallCleanupFunction final : EHScopeStack::Cleanup { 533 llvm::Constant *CleanupFn; 534 const CGFunctionInfo &FnInfo; 535 const VarDecl &Var; 536 537 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 538 const VarDecl *Var) 539 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 540 541 void Emit(CodeGenFunction &CGF, Flags flags) override { 542 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 543 Var.getType(), VK_LValue, SourceLocation()); 544 // Compute the address of the local variable, in case it's a byref 545 // or something. 546 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 547 548 // In some cases, the type of the function argument will be different from 549 // the type of the pointer. An example of this is 550 // void f(void* arg); 551 // __attribute__((cleanup(f))) void *g; 552 // 553 // To fix this we insert a bitcast here. 554 QualType ArgTy = FnInfo.arg_begin()->type; 555 llvm::Value *Arg = 556 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 557 558 CallArgList Args; 559 Args.add(RValue::get(Arg), 560 CGF.getContext().getPointerType(Var.getType())); 561 auto Callee = CGCallee::forDirect(CleanupFn); 562 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 563 } 564 }; 565 } // end anonymous namespace 566 567 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 568 /// variable with lifetime. 569 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 570 Address addr, 571 Qualifiers::ObjCLifetime lifetime) { 572 switch (lifetime) { 573 case Qualifiers::OCL_None: 574 llvm_unreachable("present but none"); 575 576 case Qualifiers::OCL_ExplicitNone: 577 // nothing to do 578 break; 579 580 case Qualifiers::OCL_Strong: { 581 CodeGenFunction::Destroyer *destroyer = 582 (var.hasAttr<ObjCPreciseLifetimeAttr>() 583 ? CodeGenFunction::destroyARCStrongPrecise 584 : CodeGenFunction::destroyARCStrongImprecise); 585 586 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 587 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 588 cleanupKind & EHCleanup); 589 break; 590 } 591 case Qualifiers::OCL_Autoreleasing: 592 // nothing to do 593 break; 594 595 case Qualifiers::OCL_Weak: 596 // __weak objects always get EH cleanups; otherwise, exceptions 597 // could cause really nasty crashes instead of mere leaks. 598 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 599 CodeGenFunction::destroyARCWeak, 600 /*useEHCleanup*/ true); 601 break; 602 } 603 } 604 605 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 606 if (const Expr *e = dyn_cast<Expr>(s)) { 607 // Skip the most common kinds of expressions that make 608 // hierarchy-walking expensive. 609 s = e = e->IgnoreParenCasts(); 610 611 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 612 return (ref->getDecl() == &var); 613 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 614 const BlockDecl *block = be->getBlockDecl(); 615 for (const auto &I : block->captures()) { 616 if (I.getVariable() == &var) 617 return true; 618 } 619 } 620 } 621 622 for (const Stmt *SubStmt : s->children()) 623 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 624 if (SubStmt && isAccessedBy(var, SubStmt)) 625 return true; 626 627 return false; 628 } 629 630 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 631 if (!decl) return false; 632 if (!isa<VarDecl>(decl)) return false; 633 const VarDecl *var = cast<VarDecl>(decl); 634 return isAccessedBy(*var, e); 635 } 636 637 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 638 const LValue &destLV, const Expr *init) { 639 bool needsCast = false; 640 641 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 642 switch (castExpr->getCastKind()) { 643 // Look through casts that don't require representation changes. 644 case CK_NoOp: 645 case CK_BitCast: 646 case CK_BlockPointerToObjCPointerCast: 647 needsCast = true; 648 break; 649 650 // If we find an l-value to r-value cast from a __weak variable, 651 // emit this operation as a copy or move. 652 case CK_LValueToRValue: { 653 const Expr *srcExpr = castExpr->getSubExpr(); 654 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 655 return false; 656 657 // Emit the source l-value. 658 LValue srcLV = CGF.EmitLValue(srcExpr); 659 660 // Handle a formal type change to avoid asserting. 661 auto srcAddr = srcLV.getAddress(); 662 if (needsCast) { 663 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 664 destLV.getAddress().getElementType()); 665 } 666 667 // If it was an l-value, use objc_copyWeak. 668 if (srcExpr->getValueKind() == VK_LValue) { 669 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 670 } else { 671 assert(srcExpr->getValueKind() == VK_XValue); 672 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 673 } 674 return true; 675 } 676 677 // Stop at anything else. 678 default: 679 return false; 680 } 681 682 init = castExpr->getSubExpr(); 683 } 684 return false; 685 } 686 687 static void drillIntoBlockVariable(CodeGenFunction &CGF, 688 LValue &lvalue, 689 const VarDecl *var) { 690 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 691 } 692 693 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 694 SourceLocation Loc) { 695 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 696 return; 697 698 auto Nullability = LHS.getType()->getNullability(getContext()); 699 if (!Nullability || *Nullability != NullabilityKind::NonNull) 700 return; 701 702 // Check if the right hand side of the assignment is nonnull, if the left 703 // hand side must be nonnull. 704 SanitizerScope SanScope(this); 705 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 706 llvm::Constant *StaticData[] = { 707 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 708 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 709 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 710 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 711 SanitizerHandler::TypeMismatch, StaticData, RHS); 712 } 713 714 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 715 LValue lvalue, bool capturedByInit) { 716 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 717 if (!lifetime) { 718 llvm::Value *value = EmitScalarExpr(init); 719 if (capturedByInit) 720 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 721 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 722 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 723 return; 724 } 725 726 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 727 init = DIE->getExpr(); 728 729 // If we're emitting a value with lifetime, we have to do the 730 // initialization *before* we leave the cleanup scopes. 731 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 732 enterFullExpression(ewc); 733 init = ewc->getSubExpr(); 734 } 735 CodeGenFunction::RunCleanupsScope Scope(*this); 736 737 // We have to maintain the illusion that the variable is 738 // zero-initialized. If the variable might be accessed in its 739 // initializer, zero-initialize before running the initializer, then 740 // actually perform the initialization with an assign. 741 bool accessedByInit = false; 742 if (lifetime != Qualifiers::OCL_ExplicitNone) 743 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 744 if (accessedByInit) { 745 LValue tempLV = lvalue; 746 // Drill down to the __block object if necessary. 747 if (capturedByInit) { 748 // We can use a simple GEP for this because it can't have been 749 // moved yet. 750 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 751 cast<VarDecl>(D), 752 /*follow*/ false)); 753 } 754 755 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 756 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 757 758 // If __weak, we want to use a barrier under certain conditions. 759 if (lifetime == Qualifiers::OCL_Weak) 760 EmitARCInitWeak(tempLV.getAddress(), zero); 761 762 // Otherwise just do a simple store. 763 else 764 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 765 } 766 767 // Emit the initializer. 768 llvm::Value *value = nullptr; 769 770 switch (lifetime) { 771 case Qualifiers::OCL_None: 772 llvm_unreachable("present but none"); 773 774 case Qualifiers::OCL_ExplicitNone: 775 value = EmitARCUnsafeUnretainedScalarExpr(init); 776 break; 777 778 case Qualifiers::OCL_Strong: { 779 value = EmitARCRetainScalarExpr(init); 780 break; 781 } 782 783 case Qualifiers::OCL_Weak: { 784 // If it's not accessed by the initializer, try to emit the 785 // initialization with a copy or move. 786 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 787 return; 788 } 789 790 // No way to optimize a producing initializer into this. It's not 791 // worth optimizing for, because the value will immediately 792 // disappear in the common case. 793 value = EmitScalarExpr(init); 794 795 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 796 if (accessedByInit) 797 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 798 else 799 EmitARCInitWeak(lvalue.getAddress(), value); 800 return; 801 } 802 803 case Qualifiers::OCL_Autoreleasing: 804 value = EmitARCRetainAutoreleaseScalarExpr(init); 805 break; 806 } 807 808 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 809 810 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 811 812 // If the variable might have been accessed by its initializer, we 813 // might have to initialize with a barrier. We have to do this for 814 // both __weak and __strong, but __weak got filtered out above. 815 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 816 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 817 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 818 EmitARCRelease(oldValue, ARCImpreciseLifetime); 819 return; 820 } 821 822 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 823 } 824 825 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 826 /// non-zero parts of the specified initializer with equal or fewer than 827 /// NumStores scalar stores. 828 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 829 unsigned &NumStores) { 830 // Zero and Undef never requires any extra stores. 831 if (isa<llvm::ConstantAggregateZero>(Init) || 832 isa<llvm::ConstantPointerNull>(Init) || 833 isa<llvm::UndefValue>(Init)) 834 return true; 835 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 836 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 837 isa<llvm::ConstantExpr>(Init)) 838 return Init->isNullValue() || NumStores--; 839 840 // See if we can emit each element. 841 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 842 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 843 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 844 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 845 return false; 846 } 847 return true; 848 } 849 850 if (llvm::ConstantDataSequential *CDS = 851 dyn_cast<llvm::ConstantDataSequential>(Init)) { 852 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 853 llvm::Constant *Elt = CDS->getElementAsConstant(i); 854 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 855 return false; 856 } 857 return true; 858 } 859 860 // Anything else is hard and scary. 861 return false; 862 } 863 864 /// emitStoresForInitAfterMemset - For inits that 865 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 866 /// stores that would be required. 867 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 868 bool isVolatile, CGBuilderTy &Builder) { 869 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 870 "called emitStoresForInitAfterMemset for zero or undef value."); 871 872 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 873 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 874 isa<llvm::ConstantExpr>(Init)) { 875 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 876 return; 877 } 878 879 if (llvm::ConstantDataSequential *CDS = 880 dyn_cast<llvm::ConstantDataSequential>(Init)) { 881 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 882 llvm::Constant *Elt = CDS->getElementAsConstant(i); 883 884 // If necessary, get a pointer to the element and emit it. 885 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 886 emitStoresForInitAfterMemset( 887 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 888 isVolatile, Builder); 889 } 890 return; 891 } 892 893 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 894 "Unknown value type!"); 895 896 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 897 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 898 899 // If necessary, get a pointer to the element and emit it. 900 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 901 emitStoresForInitAfterMemset( 902 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 903 isVolatile, Builder); 904 } 905 } 906 907 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 908 /// plus some stores to initialize a local variable instead of using a memcpy 909 /// from a constant global. It is beneficial to use memset if the global is all 910 /// zeros, or mostly zeros and large. 911 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 912 uint64_t GlobalSize) { 913 // If a global is all zeros, always use a memset. 914 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 915 916 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 917 // do it if it will require 6 or fewer scalar stores. 918 // TODO: Should budget depends on the size? Avoiding a large global warrants 919 // plopping in more stores. 920 unsigned StoreBudget = 6; 921 uint64_t SizeLimit = 32; 922 923 return GlobalSize > SizeLimit && 924 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 925 } 926 927 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 928 /// variable declaration with auto, register, or no storage class specifier. 929 /// These turn into simple stack objects, or GlobalValues depending on target. 930 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 931 AutoVarEmission emission = EmitAutoVarAlloca(D); 932 EmitAutoVarInit(emission); 933 EmitAutoVarCleanups(emission); 934 } 935 936 /// Emit a lifetime.begin marker if some criteria are satisfied. 937 /// \return a pointer to the temporary size Value if a marker was emitted, null 938 /// otherwise 939 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 940 llvm::Value *Addr) { 941 if (!ShouldEmitLifetimeMarkers) 942 return nullptr; 943 944 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 945 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 946 llvm::CallInst *C = 947 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 948 C->setDoesNotThrow(); 949 return SizeV; 950 } 951 952 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 953 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 954 llvm::CallInst *C = 955 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 956 C->setDoesNotThrow(); 957 } 958 959 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 960 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 961 // For each dimension stores its QualType and corresponding 962 // size-expression Value. 963 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 964 965 // Break down the array into individual dimensions. 966 QualType Type1D = D.getType(); 967 while (getContext().getAsVariableArrayType(Type1D)) { 968 auto VlaSize = getVLAElements1D(Type1D); 969 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 970 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 971 else { 972 auto SizeExprAddr = 973 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), "vla_expr"); 974 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 975 Dimensions.emplace_back(SizeExprAddr.getPointer(), 976 Type1D.getUnqualifiedType()); 977 } 978 Type1D = VlaSize.Type; 979 } 980 981 if (!EmitDebugInfo) 982 return; 983 984 // Register each dimension's size-expression with a DILocalVariable, 985 // so that it can be used by CGDebugInfo when instantiating a DISubrange 986 // to describe this array. 987 for (auto &VlaSize : Dimensions) { 988 llvm::Metadata *MD; 989 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 990 MD = llvm::ConstantAsMetadata::get(C); 991 else { 992 // Create an artificial VarDecl to generate debug info for. 993 IdentifierInfo &NameIdent = getContext().Idents.getOwn( 994 cast<llvm::AllocaInst>(VlaSize.NumElts)->getName()); 995 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 996 auto QT = getContext().getIntTypeForBitwidth( 997 VlaExprTy->getScalarSizeInBits(), false); 998 auto *ArtificialDecl = VarDecl::Create( 999 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1000 D.getLocation(), D.getLocation(), &NameIdent, QT, 1001 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1002 1003 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1004 Builder); 1005 } 1006 assert(MD && "No Size expression debug node created"); 1007 DI->registerVLASizeExpression(VlaSize.Type, MD); 1008 } 1009 } 1010 1011 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1012 /// local variable. Does not emit initialization or destruction. 1013 CodeGenFunction::AutoVarEmission 1014 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1015 QualType Ty = D.getType(); 1016 assert( 1017 Ty.getAddressSpace() == LangAS::Default || 1018 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1019 1020 AutoVarEmission emission(D); 1021 1022 bool isByRef = D.hasAttr<BlocksAttr>(); 1023 emission.IsByRef = isByRef; 1024 1025 CharUnits alignment = getContext().getDeclAlign(&D); 1026 1027 // If the type is variably-modified, emit all the VLA sizes for it. 1028 if (Ty->isVariablyModifiedType()) 1029 EmitVariablyModifiedType(Ty); 1030 1031 auto *DI = getDebugInfo(); 1032 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1033 codegenoptions::LimitedDebugInfo; 1034 1035 Address address = Address::invalid(); 1036 if (Ty->isConstantSizeType()) { 1037 bool NRVO = getLangOpts().ElideConstructors && 1038 D.isNRVOVariable(); 1039 1040 // If this value is an array or struct with a statically determinable 1041 // constant initializer, there are optimizations we can do. 1042 // 1043 // TODO: We should constant-evaluate the initializer of any variable, 1044 // as long as it is initialized by a constant expression. Currently, 1045 // isConstantInitializer produces wrong answers for structs with 1046 // reference or bitfield members, and a few other cases, and checking 1047 // for POD-ness protects us from some of these. 1048 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1049 (D.isConstexpr() || 1050 ((Ty.isPODType(getContext()) || 1051 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1052 D.getInit()->isConstantInitializer(getContext(), false)))) { 1053 1054 // If the variable's a const type, and it's neither an NRVO 1055 // candidate nor a __block variable and has no mutable members, 1056 // emit it as a global instead. 1057 // Exception is if a variable is located in non-constant address space 1058 // in OpenCL. 1059 if ((!getLangOpts().OpenCL || 1060 Ty.getAddressSpace() == LangAS::opencl_constant) && 1061 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 1062 CGM.isTypeConstant(Ty, true))) { 1063 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1064 1065 // Signal this condition to later callbacks. 1066 emission.Addr = Address::invalid(); 1067 assert(emission.wasEmittedAsGlobal()); 1068 return emission; 1069 } 1070 1071 // Otherwise, tell the initialization code that we're in this case. 1072 emission.IsConstantAggregate = true; 1073 } 1074 1075 // A normal fixed sized variable becomes an alloca in the entry block, 1076 // unless it's an NRVO variable. 1077 1078 if (NRVO) { 1079 // The named return value optimization: allocate this variable in the 1080 // return slot, so that we can elide the copy when returning this 1081 // variable (C++0x [class.copy]p34). 1082 address = ReturnValue; 1083 1084 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1085 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 1086 // Create a flag that is used to indicate when the NRVO was applied 1087 // to this variable. Set it to zero to indicate that NRVO was not 1088 // applied. 1089 llvm::Value *Zero = Builder.getFalse(); 1090 Address NRVOFlag = 1091 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1092 EnsureInsertPoint(); 1093 Builder.CreateStore(Zero, NRVOFlag); 1094 1095 // Record the NRVO flag for this variable. 1096 NRVOFlags[&D] = NRVOFlag.getPointer(); 1097 emission.NRVOFlag = NRVOFlag.getPointer(); 1098 } 1099 } 1100 } else { 1101 CharUnits allocaAlignment; 1102 llvm::Type *allocaTy; 1103 if (isByRef) { 1104 auto &byrefInfo = getBlockByrefInfo(&D); 1105 allocaTy = byrefInfo.Type; 1106 allocaAlignment = byrefInfo.ByrefAlignment; 1107 } else { 1108 allocaTy = ConvertTypeForMem(Ty); 1109 allocaAlignment = alignment; 1110 } 1111 1112 // Create the alloca. Note that we set the name separately from 1113 // building the instruction so that it's there even in no-asserts 1114 // builds. 1115 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName()); 1116 1117 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1118 // the catch parameter starts in the catchpad instruction, and we can't 1119 // insert code in those basic blocks. 1120 bool IsMSCatchParam = 1121 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1122 1123 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1124 // if we don't have a valid insertion point (?). 1125 if (HaveInsertPoint() && !IsMSCatchParam) { 1126 // If there's a jump into the lifetime of this variable, its lifetime 1127 // gets broken up into several regions in IR, which requires more work 1128 // to handle correctly. For now, just omit the intrinsics; this is a 1129 // rare case, and it's better to just be conservatively correct. 1130 // PR28267. 1131 // 1132 // We have to do this in all language modes if there's a jump past the 1133 // declaration. We also have to do it in C if there's a jump to an 1134 // earlier point in the current block because non-VLA lifetimes begin as 1135 // soon as the containing block is entered, not when its variables 1136 // actually come into scope; suppressing the lifetime annotations 1137 // completely in this case is unnecessarily pessimistic, but again, this 1138 // is rare. 1139 if (!Bypasses.IsBypassed(&D) && 1140 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1141 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1142 emission.SizeForLifetimeMarkers = 1143 EmitLifetimeStart(size, address.getPointer()); 1144 } 1145 } else { 1146 assert(!emission.useLifetimeMarkers()); 1147 } 1148 } 1149 } else { 1150 EnsureInsertPoint(); 1151 1152 if (!DidCallStackSave) { 1153 // Save the stack. 1154 Address Stack = 1155 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1156 1157 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1158 llvm::Value *V = Builder.CreateCall(F); 1159 Builder.CreateStore(V, Stack); 1160 1161 DidCallStackSave = true; 1162 1163 // Push a cleanup block and restore the stack there. 1164 // FIXME: in general circumstances, this should be an EH cleanup. 1165 pushStackRestore(NormalCleanup, Stack); 1166 } 1167 1168 auto VlaSize = getVLASize(Ty); 1169 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1170 1171 // Allocate memory for the array. 1172 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts); 1173 1174 // If we have debug info enabled, properly describe the VLA dimensions for 1175 // this type by registering the vla size expression for each of the 1176 // dimensions. 1177 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1178 } 1179 1180 setAddrOfLocalVar(&D, address); 1181 emission.Addr = address; 1182 1183 // Emit debug info for local var declaration. 1184 if (EmitDebugInfo && HaveInsertPoint()) { 1185 DI->setLocation(D.getLocation()); 1186 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1187 } 1188 1189 if (D.hasAttr<AnnotateAttr>()) 1190 EmitVarAnnotations(&D, address.getPointer()); 1191 1192 // Make sure we call @llvm.lifetime.end. 1193 if (emission.useLifetimeMarkers()) 1194 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1195 emission.getAllocatedAddress(), 1196 emission.getSizeForLifetimeMarkers()); 1197 1198 return emission; 1199 } 1200 1201 /// Determines whether the given __block variable is potentially 1202 /// captured by the given expression. 1203 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1204 // Skip the most common kinds of expressions that make 1205 // hierarchy-walking expensive. 1206 e = e->IgnoreParenCasts(); 1207 1208 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1209 const BlockDecl *block = be->getBlockDecl(); 1210 for (const auto &I : block->captures()) { 1211 if (I.getVariable() == &var) 1212 return true; 1213 } 1214 1215 // No need to walk into the subexpressions. 1216 return false; 1217 } 1218 1219 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1220 const CompoundStmt *CS = SE->getSubStmt(); 1221 for (const auto *BI : CS->body()) 1222 if (const auto *E = dyn_cast<Expr>(BI)) { 1223 if (isCapturedBy(var, E)) 1224 return true; 1225 } 1226 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1227 // special case declarations 1228 for (const auto *I : DS->decls()) { 1229 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1230 const Expr *Init = VD->getInit(); 1231 if (Init && isCapturedBy(var, Init)) 1232 return true; 1233 } 1234 } 1235 } 1236 else 1237 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1238 // Later, provide code to poke into statements for capture analysis. 1239 return true; 1240 return false; 1241 } 1242 1243 for (const Stmt *SubStmt : e->children()) 1244 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1245 return true; 1246 1247 return false; 1248 } 1249 1250 /// \brief Determine whether the given initializer is trivial in the sense 1251 /// that it requires no code to be generated. 1252 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1253 if (!Init) 1254 return true; 1255 1256 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1257 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1258 if (Constructor->isTrivial() && 1259 Constructor->isDefaultConstructor() && 1260 !Construct->requiresZeroInitialization()) 1261 return true; 1262 1263 return false; 1264 } 1265 1266 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1267 assert(emission.Variable && "emission was not valid!"); 1268 1269 // If this was emitted as a global constant, we're done. 1270 if (emission.wasEmittedAsGlobal()) return; 1271 1272 const VarDecl &D = *emission.Variable; 1273 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1274 QualType type = D.getType(); 1275 1276 // If this local has an initializer, emit it now. 1277 const Expr *Init = D.getInit(); 1278 1279 // If we are at an unreachable point, we don't need to emit the initializer 1280 // unless it contains a label. 1281 if (!HaveInsertPoint()) { 1282 if (!Init || !ContainsLabel(Init)) return; 1283 EnsureInsertPoint(); 1284 } 1285 1286 // Initialize the structure of a __block variable. 1287 if (emission.IsByRef) 1288 emitByrefStructureInit(emission); 1289 1290 if (isTrivialInitializer(Init)) 1291 return; 1292 1293 // Check whether this is a byref variable that's potentially 1294 // captured and moved by its own initializer. If so, we'll need to 1295 // emit the initializer first, then copy into the variable. 1296 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1297 1298 Address Loc = 1299 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1300 1301 llvm::Constant *constant = nullptr; 1302 if (emission.IsConstantAggregate || D.isConstexpr()) { 1303 assert(!capturedByInit && "constant init contains a capturing block?"); 1304 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1305 } 1306 1307 if (!constant) { 1308 LValue lv = MakeAddrLValue(Loc, type); 1309 lv.setNonGC(true); 1310 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1311 } 1312 1313 if (!emission.IsConstantAggregate) { 1314 // For simple scalar/complex initialization, store the value directly. 1315 LValue lv = MakeAddrLValue(Loc, type); 1316 lv.setNonGC(true); 1317 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1318 } 1319 1320 // If this is a simple aggregate initialization, we can optimize it 1321 // in various ways. 1322 bool isVolatile = type.isVolatileQualified(); 1323 1324 llvm::Value *SizeVal = 1325 llvm::ConstantInt::get(IntPtrTy, 1326 getContext().getTypeSizeInChars(type).getQuantity()); 1327 1328 llvm::Type *BP = AllocaInt8PtrTy; 1329 if (Loc.getType() != BP) 1330 Loc = Builder.CreateBitCast(Loc, BP); 1331 1332 // If the initializer is all or mostly zeros, codegen with memset then do 1333 // a few stores afterward. 1334 if (shouldUseMemSetPlusStoresToInitialize(constant, 1335 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1336 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1337 isVolatile); 1338 // Zero and undef don't require a stores. 1339 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1340 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1341 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1342 isVolatile, Builder); 1343 } 1344 } else { 1345 // Otherwise, create a temporary global with the initializer then 1346 // memcpy from the global to the alloca. 1347 std::string Name = getStaticDeclName(CGM, D); 1348 unsigned AS = 0; 1349 if (getLangOpts().OpenCL) { 1350 AS = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 1351 BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS); 1352 } 1353 llvm::GlobalVariable *GV = 1354 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1355 llvm::GlobalValue::PrivateLinkage, 1356 constant, Name, nullptr, 1357 llvm::GlobalValue::NotThreadLocal, AS); 1358 GV->setAlignment(Loc.getAlignment().getQuantity()); 1359 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1360 1361 Address SrcPtr = Address(GV, Loc.getAlignment()); 1362 if (SrcPtr.getType() != BP) 1363 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1364 1365 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1366 } 1367 } 1368 1369 /// Emit an expression as an initializer for a variable at the given 1370 /// location. The expression is not necessarily the normal 1371 /// initializer for the variable, and the address is not necessarily 1372 /// its normal location. 1373 /// 1374 /// \param init the initializing expression 1375 /// \param var the variable to act as if we're initializing 1376 /// \param loc the address to initialize; its type is a pointer 1377 /// to the LLVM mapping of the variable's type 1378 /// \param alignment the alignment of the address 1379 /// \param capturedByInit true if the variable is a __block variable 1380 /// whose address is potentially changed by the initializer 1381 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1382 LValue lvalue, bool capturedByInit) { 1383 QualType type = D->getType(); 1384 1385 if (type->isReferenceType()) { 1386 RValue rvalue = EmitReferenceBindingToExpr(init); 1387 if (capturedByInit) 1388 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1389 EmitStoreThroughLValue(rvalue, lvalue, true); 1390 return; 1391 } 1392 switch (getEvaluationKind(type)) { 1393 case TEK_Scalar: 1394 EmitScalarInit(init, D, lvalue, capturedByInit); 1395 return; 1396 case TEK_Complex: { 1397 ComplexPairTy complex = EmitComplexExpr(init); 1398 if (capturedByInit) 1399 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1400 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1401 return; 1402 } 1403 case TEK_Aggregate: 1404 if (type->isAtomicType()) { 1405 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1406 } else { 1407 // TODO: how can we delay here if D is captured by its initializer? 1408 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1409 AggValueSlot::IsDestructed, 1410 AggValueSlot::DoesNotNeedGCBarriers, 1411 AggValueSlot::IsNotAliased)); 1412 } 1413 return; 1414 } 1415 llvm_unreachable("bad evaluation kind"); 1416 } 1417 1418 /// Enter a destroy cleanup for the given local variable. 1419 void CodeGenFunction::emitAutoVarTypeCleanup( 1420 const CodeGenFunction::AutoVarEmission &emission, 1421 QualType::DestructionKind dtorKind) { 1422 assert(dtorKind != QualType::DK_none); 1423 1424 // Note that for __block variables, we want to destroy the 1425 // original stack object, not the possibly forwarded object. 1426 Address addr = emission.getObjectAddress(*this); 1427 1428 const VarDecl *var = emission.Variable; 1429 QualType type = var->getType(); 1430 1431 CleanupKind cleanupKind = NormalAndEHCleanup; 1432 CodeGenFunction::Destroyer *destroyer = nullptr; 1433 1434 switch (dtorKind) { 1435 case QualType::DK_none: 1436 llvm_unreachable("no cleanup for trivially-destructible variable"); 1437 1438 case QualType::DK_cxx_destructor: 1439 // If there's an NRVO flag on the emission, we need a different 1440 // cleanup. 1441 if (emission.NRVOFlag) { 1442 assert(!type->isArrayType()); 1443 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1444 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1445 dtor, emission.NRVOFlag); 1446 return; 1447 } 1448 break; 1449 1450 case QualType::DK_objc_strong_lifetime: 1451 // Suppress cleanups for pseudo-strong variables. 1452 if (var->isARCPseudoStrong()) return; 1453 1454 // Otherwise, consider whether to use an EH cleanup or not. 1455 cleanupKind = getARCCleanupKind(); 1456 1457 // Use the imprecise destroyer by default. 1458 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1459 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1460 break; 1461 1462 case QualType::DK_objc_weak_lifetime: 1463 break; 1464 } 1465 1466 // If we haven't chosen a more specific destroyer, use the default. 1467 if (!destroyer) destroyer = getDestroyer(dtorKind); 1468 1469 // Use an EH cleanup in array destructors iff the destructor itself 1470 // is being pushed as an EH cleanup. 1471 bool useEHCleanup = (cleanupKind & EHCleanup); 1472 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1473 useEHCleanup); 1474 } 1475 1476 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1477 assert(emission.Variable && "emission was not valid!"); 1478 1479 // If this was emitted as a global constant, we're done. 1480 if (emission.wasEmittedAsGlobal()) return; 1481 1482 // If we don't have an insertion point, we're done. Sema prevents 1483 // us from jumping into any of these scopes anyway. 1484 if (!HaveInsertPoint()) return; 1485 1486 const VarDecl &D = *emission.Variable; 1487 1488 // Check the type for a cleanup. 1489 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1490 emitAutoVarTypeCleanup(emission, dtorKind); 1491 1492 // In GC mode, honor objc_precise_lifetime. 1493 if (getLangOpts().getGC() != LangOptions::NonGC && 1494 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1495 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1496 } 1497 1498 // Handle the cleanup attribute. 1499 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1500 const FunctionDecl *FD = CA->getFunctionDecl(); 1501 1502 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1503 assert(F && "Could not find function!"); 1504 1505 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1506 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1507 } 1508 1509 // If this is a block variable, call _Block_object_destroy 1510 // (on the unforwarded address). 1511 if (emission.IsByRef) 1512 enterByrefCleanup(emission); 1513 } 1514 1515 CodeGenFunction::Destroyer * 1516 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1517 switch (kind) { 1518 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1519 case QualType::DK_cxx_destructor: 1520 return destroyCXXObject; 1521 case QualType::DK_objc_strong_lifetime: 1522 return destroyARCStrongPrecise; 1523 case QualType::DK_objc_weak_lifetime: 1524 return destroyARCWeak; 1525 } 1526 llvm_unreachable("Unknown DestructionKind"); 1527 } 1528 1529 /// pushEHDestroy - Push the standard destructor for the given type as 1530 /// an EH-only cleanup. 1531 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1532 Address addr, QualType type) { 1533 assert(dtorKind && "cannot push destructor for trivial type"); 1534 assert(needsEHCleanup(dtorKind)); 1535 1536 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1537 } 1538 1539 /// pushDestroy - Push the standard destructor for the given type as 1540 /// at least a normal cleanup. 1541 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1542 Address addr, QualType type) { 1543 assert(dtorKind && "cannot push destructor for trivial type"); 1544 1545 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1546 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1547 cleanupKind & EHCleanup); 1548 } 1549 1550 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1551 QualType type, Destroyer *destroyer, 1552 bool useEHCleanupForArray) { 1553 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1554 destroyer, useEHCleanupForArray); 1555 } 1556 1557 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1558 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1559 } 1560 1561 void CodeGenFunction::pushLifetimeExtendedDestroy( 1562 CleanupKind cleanupKind, Address addr, QualType type, 1563 Destroyer *destroyer, bool useEHCleanupForArray) { 1564 assert(!isInConditionalBranch() && 1565 "performing lifetime extension from within conditional"); 1566 1567 // Push an EH-only cleanup for the object now. 1568 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1569 // around in case a temporary's destructor throws an exception. 1570 if (cleanupKind & EHCleanup) 1571 EHStack.pushCleanup<DestroyObject>( 1572 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1573 destroyer, useEHCleanupForArray); 1574 1575 // Remember that we need to push a full cleanup for the object at the 1576 // end of the full-expression. 1577 pushCleanupAfterFullExpr<DestroyObject>( 1578 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1579 } 1580 1581 /// emitDestroy - Immediately perform the destruction of the given 1582 /// object. 1583 /// 1584 /// \param addr - the address of the object; a type* 1585 /// \param type - the type of the object; if an array type, all 1586 /// objects are destroyed in reverse order 1587 /// \param destroyer - the function to call to destroy individual 1588 /// elements 1589 /// \param useEHCleanupForArray - whether an EH cleanup should be 1590 /// used when destroying array elements, in case one of the 1591 /// destructions throws an exception 1592 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1593 Destroyer *destroyer, 1594 bool useEHCleanupForArray) { 1595 const ArrayType *arrayType = getContext().getAsArrayType(type); 1596 if (!arrayType) 1597 return destroyer(*this, addr, type); 1598 1599 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1600 1601 CharUnits elementAlign = 1602 addr.getAlignment() 1603 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1604 1605 // Normally we have to check whether the array is zero-length. 1606 bool checkZeroLength = true; 1607 1608 // But if the array length is constant, we can suppress that. 1609 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1610 // ...and if it's constant zero, we can just skip the entire thing. 1611 if (constLength->isZero()) return; 1612 checkZeroLength = false; 1613 } 1614 1615 llvm::Value *begin = addr.getPointer(); 1616 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1617 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1618 checkZeroLength, useEHCleanupForArray); 1619 } 1620 1621 /// emitArrayDestroy - Destroys all the elements of the given array, 1622 /// beginning from last to first. The array cannot be zero-length. 1623 /// 1624 /// \param begin - a type* denoting the first element of the array 1625 /// \param end - a type* denoting one past the end of the array 1626 /// \param elementType - the element type of the array 1627 /// \param destroyer - the function to call to destroy elements 1628 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1629 /// the remaining elements in case the destruction of a single 1630 /// element throws 1631 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1632 llvm::Value *end, 1633 QualType elementType, 1634 CharUnits elementAlign, 1635 Destroyer *destroyer, 1636 bool checkZeroLength, 1637 bool useEHCleanup) { 1638 assert(!elementType->isArrayType()); 1639 1640 // The basic structure here is a do-while loop, because we don't 1641 // need to check for the zero-element case. 1642 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1643 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1644 1645 if (checkZeroLength) { 1646 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1647 "arraydestroy.isempty"); 1648 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1649 } 1650 1651 // Enter the loop body, making that address the current address. 1652 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1653 EmitBlock(bodyBB); 1654 llvm::PHINode *elementPast = 1655 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1656 elementPast->addIncoming(end, entryBB); 1657 1658 // Shift the address back by one element. 1659 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1660 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1661 "arraydestroy.element"); 1662 1663 if (useEHCleanup) 1664 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1665 destroyer); 1666 1667 // Perform the actual destruction there. 1668 destroyer(*this, Address(element, elementAlign), elementType); 1669 1670 if (useEHCleanup) 1671 PopCleanupBlock(); 1672 1673 // Check whether we've reached the end. 1674 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1675 Builder.CreateCondBr(done, doneBB, bodyBB); 1676 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1677 1678 // Done. 1679 EmitBlock(doneBB); 1680 } 1681 1682 /// Perform partial array destruction as if in an EH cleanup. Unlike 1683 /// emitArrayDestroy, the element type here may still be an array type. 1684 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1685 llvm::Value *begin, llvm::Value *end, 1686 QualType type, CharUnits elementAlign, 1687 CodeGenFunction::Destroyer *destroyer) { 1688 // If the element type is itself an array, drill down. 1689 unsigned arrayDepth = 0; 1690 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1691 // VLAs don't require a GEP index to walk into. 1692 if (!isa<VariableArrayType>(arrayType)) 1693 arrayDepth++; 1694 type = arrayType->getElementType(); 1695 } 1696 1697 if (arrayDepth) { 1698 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1699 1700 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1701 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1702 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1703 } 1704 1705 // Destroy the array. We don't ever need an EH cleanup because we 1706 // assume that we're in an EH cleanup ourselves, so a throwing 1707 // destructor causes an immediate terminate. 1708 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1709 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1710 } 1711 1712 namespace { 1713 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1714 /// array destroy where the end pointer is regularly determined and 1715 /// does not need to be loaded from a local. 1716 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1717 llvm::Value *ArrayBegin; 1718 llvm::Value *ArrayEnd; 1719 QualType ElementType; 1720 CodeGenFunction::Destroyer *Destroyer; 1721 CharUnits ElementAlign; 1722 public: 1723 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1724 QualType elementType, CharUnits elementAlign, 1725 CodeGenFunction::Destroyer *destroyer) 1726 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1727 ElementType(elementType), Destroyer(destroyer), 1728 ElementAlign(elementAlign) {} 1729 1730 void Emit(CodeGenFunction &CGF, Flags flags) override { 1731 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1732 ElementType, ElementAlign, Destroyer); 1733 } 1734 }; 1735 1736 /// IrregularPartialArrayDestroy - a cleanup which performs a 1737 /// partial array destroy where the end pointer is irregularly 1738 /// determined and must be loaded from a local. 1739 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1740 llvm::Value *ArrayBegin; 1741 Address ArrayEndPointer; 1742 QualType ElementType; 1743 CodeGenFunction::Destroyer *Destroyer; 1744 CharUnits ElementAlign; 1745 public: 1746 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1747 Address arrayEndPointer, 1748 QualType elementType, 1749 CharUnits elementAlign, 1750 CodeGenFunction::Destroyer *destroyer) 1751 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1752 ElementType(elementType), Destroyer(destroyer), 1753 ElementAlign(elementAlign) {} 1754 1755 void Emit(CodeGenFunction &CGF, Flags flags) override { 1756 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1757 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1758 ElementType, ElementAlign, Destroyer); 1759 } 1760 }; 1761 } // end anonymous namespace 1762 1763 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1764 /// already-constructed elements of the given array. The cleanup 1765 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1766 /// 1767 /// \param elementType - the immediate element type of the array; 1768 /// possibly still an array type 1769 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1770 Address arrayEndPointer, 1771 QualType elementType, 1772 CharUnits elementAlign, 1773 Destroyer *destroyer) { 1774 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1775 arrayBegin, arrayEndPointer, 1776 elementType, elementAlign, 1777 destroyer); 1778 } 1779 1780 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1781 /// already-constructed elements of the given array. The cleanup 1782 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1783 /// 1784 /// \param elementType - the immediate element type of the array; 1785 /// possibly still an array type 1786 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1787 llvm::Value *arrayEnd, 1788 QualType elementType, 1789 CharUnits elementAlign, 1790 Destroyer *destroyer) { 1791 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1792 arrayBegin, arrayEnd, 1793 elementType, elementAlign, 1794 destroyer); 1795 } 1796 1797 /// Lazily declare the @llvm.lifetime.start intrinsic. 1798 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1799 if (LifetimeStartFn) 1800 return LifetimeStartFn; 1801 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1802 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 1803 return LifetimeStartFn; 1804 } 1805 1806 /// Lazily declare the @llvm.lifetime.end intrinsic. 1807 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1808 if (LifetimeEndFn) 1809 return LifetimeEndFn; 1810 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1811 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 1812 return LifetimeEndFn; 1813 } 1814 1815 namespace { 1816 /// A cleanup to perform a release of an object at the end of a 1817 /// function. This is used to balance out the incoming +1 of a 1818 /// ns_consumed argument when we can't reasonably do that just by 1819 /// not doing the initial retain for a __block argument. 1820 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1821 ConsumeARCParameter(llvm::Value *param, 1822 ARCPreciseLifetime_t precise) 1823 : Param(param), Precise(precise) {} 1824 1825 llvm::Value *Param; 1826 ARCPreciseLifetime_t Precise; 1827 1828 void Emit(CodeGenFunction &CGF, Flags flags) override { 1829 CGF.EmitARCRelease(Param, Precise); 1830 } 1831 }; 1832 } // end anonymous namespace 1833 1834 /// Emit an alloca (or GlobalValue depending on target) 1835 /// for the specified parameter and set up LocalDeclMap. 1836 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1837 unsigned ArgNo) { 1838 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1839 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1840 "Invalid argument to EmitParmDecl"); 1841 1842 Arg.getAnyValue()->setName(D.getName()); 1843 1844 QualType Ty = D.getType(); 1845 1846 // Use better IR generation for certain implicit parameters. 1847 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1848 // The only implicit argument a block has is its literal. 1849 // We assume this is always passed directly. 1850 if (BlockInfo) { 1851 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1852 return; 1853 } 1854 } 1855 1856 Address DeclPtr = Address::invalid(); 1857 bool DoStore = false; 1858 bool IsScalar = hasScalarEvaluationKind(Ty); 1859 // If we already have a pointer to the argument, reuse the input pointer. 1860 if (Arg.isIndirect()) { 1861 DeclPtr = Arg.getIndirectAddress(); 1862 // If we have a prettier pointer type at this point, bitcast to that. 1863 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1864 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1865 if (DeclPtr.getType() != IRTy) 1866 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1867 1868 // Push a destructor cleanup for this parameter if the ABI requires it. 1869 // Don't push a cleanup in a thunk for a method that will also emit a 1870 // cleanup. 1871 if (!IsScalar && !CurFuncIsThunk && 1872 getContext().isParamDestroyedInCallee(Ty)) { 1873 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1874 if (RD && RD->hasNonTrivialDestructor()) 1875 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1876 } 1877 } else { 1878 // Otherwise, create a temporary to hold the value. 1879 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1880 D.getName() + ".addr"); 1881 DoStore = true; 1882 } 1883 1884 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1885 1886 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1887 if (IsScalar) { 1888 Qualifiers qs = Ty.getQualifiers(); 1889 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1890 // We honor __attribute__((ns_consumed)) for types with lifetime. 1891 // For __strong, it's handled by just skipping the initial retain; 1892 // otherwise we have to balance out the initial +1 with an extra 1893 // cleanup to do the release at the end of the function. 1894 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1895 1896 // 'self' is always formally __strong, but if this is not an 1897 // init method then we don't want to retain it. 1898 if (D.isARCPseudoStrong()) { 1899 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1900 assert(&D == method->getSelfDecl()); 1901 assert(lt == Qualifiers::OCL_Strong); 1902 assert(qs.hasConst()); 1903 assert(method->getMethodFamily() != OMF_init); 1904 (void) method; 1905 lt = Qualifiers::OCL_ExplicitNone; 1906 } 1907 1908 // Load objects passed indirectly. 1909 if (Arg.isIndirect() && !ArgVal) 1910 ArgVal = Builder.CreateLoad(DeclPtr); 1911 1912 if (lt == Qualifiers::OCL_Strong) { 1913 if (!isConsumed) { 1914 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1915 // use objc_storeStrong(&dest, value) for retaining the 1916 // object. But first, store a null into 'dest' because 1917 // objc_storeStrong attempts to release its old value. 1918 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1919 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1920 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1921 DoStore = false; 1922 } 1923 else 1924 // Don't use objc_retainBlock for block pointers, because we 1925 // don't want to Block_copy something just because we got it 1926 // as a parameter. 1927 ArgVal = EmitARCRetainNonBlock(ArgVal); 1928 } 1929 } else { 1930 // Push the cleanup for a consumed parameter. 1931 if (isConsumed) { 1932 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1933 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1934 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1935 precise); 1936 } 1937 1938 if (lt == Qualifiers::OCL_Weak) { 1939 EmitARCInitWeak(DeclPtr, ArgVal); 1940 DoStore = false; // The weak init is a store, no need to do two. 1941 } 1942 } 1943 1944 // Enter the cleanup scope. 1945 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1946 } 1947 } 1948 1949 // Store the initial value into the alloca. 1950 if (DoStore) 1951 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1952 1953 setAddrOfLocalVar(&D, DeclPtr); 1954 1955 // Emit debug info for param declaration. 1956 if (CGDebugInfo *DI = getDebugInfo()) { 1957 if (CGM.getCodeGenOpts().getDebugInfo() >= 1958 codegenoptions::LimitedDebugInfo) { 1959 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1960 } 1961 } 1962 1963 if (D.hasAttr<AnnotateAttr>()) 1964 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1965 1966 // We can only check return value nullability if all arguments to the 1967 // function satisfy their nullability preconditions. This makes it necessary 1968 // to emit null checks for args in the function body itself. 1969 if (requiresReturnValueNullabilityCheck()) { 1970 auto Nullability = Ty->getNullability(getContext()); 1971 if (Nullability && *Nullability == NullabilityKind::NonNull) { 1972 SanitizerScope SanScope(this); 1973 RetValNullabilityPrecondition = 1974 Builder.CreateAnd(RetValNullabilityPrecondition, 1975 Builder.CreateIsNotNull(Arg.getAnyValue())); 1976 } 1977 } 1978 } 1979 1980 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 1981 CodeGenFunction *CGF) { 1982 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 1983 return; 1984 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 1985 } 1986