1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/DeclOpenMP.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Type.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 void CodeGenFunction::EmitDecl(const Decl &D) { 42 switch (D.getKind()) { 43 case Decl::BuiltinTemplate: 44 case Decl::TranslationUnit: 45 case Decl::ExternCContext: 46 case Decl::Namespace: 47 case Decl::UnresolvedUsingTypename: 48 case Decl::ClassTemplateSpecialization: 49 case Decl::ClassTemplatePartialSpecialization: 50 case Decl::VarTemplateSpecialization: 51 case Decl::VarTemplatePartialSpecialization: 52 case Decl::TemplateTypeParm: 53 case Decl::UnresolvedUsingValue: 54 case Decl::NonTypeTemplateParm: 55 case Decl::CXXDeductionGuide: 56 case Decl::CXXMethod: 57 case Decl::CXXConstructor: 58 case Decl::CXXDestructor: 59 case Decl::CXXConversion: 60 case Decl::Field: 61 case Decl::MSProperty: 62 case Decl::IndirectField: 63 case Decl::ObjCIvar: 64 case Decl::ObjCAtDefsField: 65 case Decl::ParmVar: 66 case Decl::ImplicitParam: 67 case Decl::ClassTemplate: 68 case Decl::VarTemplate: 69 case Decl::FunctionTemplate: 70 case Decl::TypeAliasTemplate: 71 case Decl::TemplateTemplateParm: 72 case Decl::ObjCMethod: 73 case Decl::ObjCCategory: 74 case Decl::ObjCProtocol: 75 case Decl::ObjCInterface: 76 case Decl::ObjCCategoryImpl: 77 case Decl::ObjCImplementation: 78 case Decl::ObjCProperty: 79 case Decl::ObjCCompatibleAlias: 80 case Decl::PragmaComment: 81 case Decl::PragmaDetectMismatch: 82 case Decl::AccessSpec: 83 case Decl::LinkageSpec: 84 case Decl::Export: 85 case Decl::ObjCPropertyImpl: 86 case Decl::FileScopeAsm: 87 case Decl::Friend: 88 case Decl::FriendTemplate: 89 case Decl::Block: 90 case Decl::Captured: 91 case Decl::ClassScopeFunctionSpecialization: 92 case Decl::UsingShadow: 93 case Decl::ConstructorUsingShadow: 94 case Decl::ObjCTypeParam: 95 case Decl::Binding: 96 llvm_unreachable("Declaration should not be in declstmts!"); 97 case Decl::Function: // void X(); 98 case Decl::Record: // struct/union/class X; 99 case Decl::Enum: // enum X; 100 case Decl::EnumConstant: // enum ? { X = ? } 101 case Decl::CXXRecord: // struct/union/class X; [C++] 102 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 103 case Decl::Label: // __label__ x; 104 case Decl::Import: 105 case Decl::OMPThreadPrivate: 106 case Decl::OMPCapturedExpr: 107 case Decl::OMPRequires: 108 case Decl::Empty: 109 // None of these decls require codegen support. 110 return; 111 112 case Decl::NamespaceAlias: 113 if (CGDebugInfo *DI = getDebugInfo()) 114 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 115 return; 116 case Decl::Using: // using X; [C++] 117 if (CGDebugInfo *DI = getDebugInfo()) 118 DI->EmitUsingDecl(cast<UsingDecl>(D)); 119 return; 120 case Decl::UsingPack: 121 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 122 EmitDecl(*Using); 123 return; 124 case Decl::UsingDirective: // using namespace X; [C++] 125 if (CGDebugInfo *DI = getDebugInfo()) 126 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 127 return; 128 case Decl::Var: 129 case Decl::Decomposition: { 130 const VarDecl &VD = cast<VarDecl>(D); 131 assert(VD.isLocalVarDecl() && 132 "Should not see file-scope variables inside a function!"); 133 EmitVarDecl(VD); 134 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 135 for (auto *B : DD->bindings()) 136 if (auto *HD = B->getHoldingVar()) 137 EmitVarDecl(*HD); 138 return; 139 } 140 141 case Decl::OMPDeclareReduction: 142 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 143 144 case Decl::Typedef: // typedef int X; 145 case Decl::TypeAlias: { // using X = int; [C++0x] 146 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 147 QualType Ty = TD.getUnderlyingType(); 148 149 if (Ty->isVariablyModifiedType()) 150 EmitVariablyModifiedType(Ty); 151 } 152 } 153 } 154 155 /// EmitVarDecl - This method handles emission of any variable declaration 156 /// inside a function, including static vars etc. 157 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 158 if (D.hasExternalStorage()) 159 // Don't emit it now, allow it to be emitted lazily on its first use. 160 return; 161 162 // Some function-scope variable does not have static storage but still 163 // needs to be emitted like a static variable, e.g. a function-scope 164 // variable in constant address space in OpenCL. 165 if (D.getStorageDuration() != SD_Automatic) { 166 // Static sampler variables translated to function calls. 167 if (D.getType()->isSamplerT()) 168 return; 169 170 llvm::GlobalValue::LinkageTypes Linkage = 171 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 172 173 // FIXME: We need to force the emission/use of a guard variable for 174 // some variables even if we can constant-evaluate them because 175 // we can't guarantee every translation unit will constant-evaluate them. 176 177 return EmitStaticVarDecl(D, Linkage); 178 } 179 180 if (D.getType().getAddressSpace() == LangAS::opencl_local) 181 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 182 183 assert(D.hasLocalStorage()); 184 return EmitAutoVarDecl(D); 185 } 186 187 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 188 if (CGM.getLangOpts().CPlusPlus) 189 return CGM.getMangledName(&D).str(); 190 191 // If this isn't C++, we don't need a mangled name, just a pretty one. 192 assert(!D.isExternallyVisible() && "name shouldn't matter"); 193 std::string ContextName; 194 const DeclContext *DC = D.getDeclContext(); 195 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 196 DC = cast<DeclContext>(CD->getNonClosureContext()); 197 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 198 ContextName = CGM.getMangledName(FD); 199 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 200 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 201 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 202 ContextName = OMD->getSelector().getAsString(); 203 else 204 llvm_unreachable("Unknown context for static var decl"); 205 206 ContextName += "." + D.getNameAsString(); 207 return ContextName; 208 } 209 210 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 211 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 212 // In general, we don't always emit static var decls once before we reference 213 // them. It is possible to reference them before emitting the function that 214 // contains them, and it is possible to emit the containing function multiple 215 // times. 216 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 217 return ExistingGV; 218 219 QualType Ty = D.getType(); 220 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 221 222 // Use the label if the variable is renamed with the asm-label extension. 223 std::string Name; 224 if (D.hasAttr<AsmLabelAttr>()) 225 Name = getMangledName(&D); 226 else 227 Name = getStaticDeclName(*this, D); 228 229 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 230 LangAS AS = GetGlobalVarAddressSpace(&D); 231 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 232 233 // OpenCL variables in local address space and CUDA shared 234 // variables cannot have an initializer. 235 llvm::Constant *Init = nullptr; 236 if (Ty.getAddressSpace() == LangAS::opencl_local || 237 D.hasAttr<CUDASharedAttr>()) 238 Init = llvm::UndefValue::get(LTy); 239 else 240 Init = EmitNullConstant(Ty); 241 242 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 243 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 244 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 245 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 246 247 if (supportsCOMDAT() && GV->isWeakForLinker()) 248 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 249 250 if (D.getTLSKind()) 251 setTLSMode(GV, D); 252 253 setGVProperties(GV, &D); 254 255 // Make sure the result is of the correct type. 256 LangAS ExpectedAS = Ty.getAddressSpace(); 257 llvm::Constant *Addr = GV; 258 if (AS != ExpectedAS) { 259 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 260 *this, GV, AS, ExpectedAS, 261 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 262 } 263 264 setStaticLocalDeclAddress(&D, Addr); 265 266 // Ensure that the static local gets initialized by making sure the parent 267 // function gets emitted eventually. 268 const Decl *DC = cast<Decl>(D.getDeclContext()); 269 270 // We can't name blocks or captured statements directly, so try to emit their 271 // parents. 272 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 273 DC = DC->getNonClosureContext(); 274 // FIXME: Ensure that global blocks get emitted. 275 if (!DC) 276 return Addr; 277 } 278 279 GlobalDecl GD; 280 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 281 GD = GlobalDecl(CD, Ctor_Base); 282 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 283 GD = GlobalDecl(DD, Dtor_Base); 284 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 285 GD = GlobalDecl(FD); 286 else { 287 // Don't do anything for Obj-C method decls or global closures. We should 288 // never defer them. 289 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 290 } 291 if (GD.getDecl()) { 292 // Disable emission of the parent function for the OpenMP device codegen. 293 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 294 (void)GetAddrOfGlobal(GD); 295 } 296 297 return Addr; 298 } 299 300 /// hasNontrivialDestruction - Determine whether a type's destruction is 301 /// non-trivial. If so, and the variable uses static initialization, we must 302 /// register its destructor to run on exit. 303 static bool hasNontrivialDestruction(QualType T) { 304 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 305 return RD && !RD->hasTrivialDestructor(); 306 } 307 308 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 309 /// global variable that has already been created for it. If the initializer 310 /// has a different type than GV does, this may free GV and return a different 311 /// one. Otherwise it just returns GV. 312 llvm::GlobalVariable * 313 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 314 llvm::GlobalVariable *GV) { 315 ConstantEmitter emitter(*this); 316 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 317 318 // If constant emission failed, then this should be a C++ static 319 // initializer. 320 if (!Init) { 321 if (!getLangOpts().CPlusPlus) 322 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 323 else if (HaveInsertPoint()) { 324 // Since we have a static initializer, this global variable can't 325 // be constant. 326 GV->setConstant(false); 327 328 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 329 } 330 return GV; 331 } 332 333 // The initializer may differ in type from the global. Rewrite 334 // the global to match the initializer. (We have to do this 335 // because some types, like unions, can't be completely represented 336 // in the LLVM type system.) 337 if (GV->getType()->getElementType() != Init->getType()) { 338 llvm::GlobalVariable *OldGV = GV; 339 340 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 341 OldGV->isConstant(), 342 OldGV->getLinkage(), Init, "", 343 /*InsertBefore*/ OldGV, 344 OldGV->getThreadLocalMode(), 345 CGM.getContext().getTargetAddressSpace(D.getType())); 346 GV->setVisibility(OldGV->getVisibility()); 347 GV->setDSOLocal(OldGV->isDSOLocal()); 348 GV->setComdat(OldGV->getComdat()); 349 350 // Steal the name of the old global 351 GV->takeName(OldGV); 352 353 // Replace all uses of the old global with the new global 354 llvm::Constant *NewPtrForOldDecl = 355 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 356 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 357 358 // Erase the old global, since it is no longer used. 359 OldGV->eraseFromParent(); 360 } 361 362 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 363 GV->setInitializer(Init); 364 365 emitter.finalize(GV); 366 367 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 368 // We have a constant initializer, but a nontrivial destructor. We still 369 // need to perform a guarded "initialization" in order to register the 370 // destructor. 371 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 372 } 373 374 return GV; 375 } 376 377 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 378 llvm::GlobalValue::LinkageTypes Linkage) { 379 // Check to see if we already have a global variable for this 380 // declaration. This can happen when double-emitting function 381 // bodies, e.g. with complete and base constructors. 382 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 383 CharUnits alignment = getContext().getDeclAlign(&D); 384 385 // Store into LocalDeclMap before generating initializer to handle 386 // circular references. 387 setAddrOfLocalVar(&D, Address(addr, alignment)); 388 389 // We can't have a VLA here, but we can have a pointer to a VLA, 390 // even though that doesn't really make any sense. 391 // Make sure to evaluate VLA bounds now so that we have them for later. 392 if (D.getType()->isVariablyModifiedType()) 393 EmitVariablyModifiedType(D.getType()); 394 395 // Save the type in case adding the initializer forces a type change. 396 llvm::Type *expectedType = addr->getType(); 397 398 llvm::GlobalVariable *var = 399 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 400 401 // CUDA's local and local static __shared__ variables should not 402 // have any non-empty initializers. This is ensured by Sema. 403 // Whatever initializer such variable may have when it gets here is 404 // a no-op and should not be emitted. 405 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 406 D.hasAttr<CUDASharedAttr>(); 407 // If this value has an initializer, emit it. 408 if (D.getInit() && !isCudaSharedVar) 409 var = AddInitializerToStaticVarDecl(D, var); 410 411 var->setAlignment(alignment.getQuantity()); 412 413 if (D.hasAttr<AnnotateAttr>()) 414 CGM.AddGlobalAnnotations(&D, var); 415 416 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 417 var->addAttribute("bss-section", SA->getName()); 418 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 419 var->addAttribute("data-section", SA->getName()); 420 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 421 var->addAttribute("rodata-section", SA->getName()); 422 423 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 424 var->setSection(SA->getName()); 425 426 if (D.hasAttr<UsedAttr>()) 427 CGM.addUsedGlobal(var); 428 429 // We may have to cast the constant because of the initializer 430 // mismatch above. 431 // 432 // FIXME: It is really dangerous to store this in the map; if anyone 433 // RAUW's the GV uses of this constant will be invalid. 434 llvm::Constant *castedAddr = 435 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 436 if (var != castedAddr) 437 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 438 CGM.setStaticLocalDeclAddress(&D, castedAddr); 439 440 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 441 442 // Emit global variable debug descriptor for static vars. 443 CGDebugInfo *DI = getDebugInfo(); 444 if (DI && 445 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 446 DI->setLocation(D.getLocation()); 447 DI->EmitGlobalVariable(var, &D); 448 } 449 } 450 451 namespace { 452 struct DestroyObject final : EHScopeStack::Cleanup { 453 DestroyObject(Address addr, QualType type, 454 CodeGenFunction::Destroyer *destroyer, 455 bool useEHCleanupForArray) 456 : addr(addr), type(type), destroyer(destroyer), 457 useEHCleanupForArray(useEHCleanupForArray) {} 458 459 Address addr; 460 QualType type; 461 CodeGenFunction::Destroyer *destroyer; 462 bool useEHCleanupForArray; 463 464 void Emit(CodeGenFunction &CGF, Flags flags) override { 465 // Don't use an EH cleanup recursively from an EH cleanup. 466 bool useEHCleanupForArray = 467 flags.isForNormalCleanup() && this->useEHCleanupForArray; 468 469 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 470 } 471 }; 472 473 template <class Derived> 474 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 475 DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) 476 : NRVOFlag(NRVOFlag), Loc(addr) {} 477 478 llvm::Value *NRVOFlag; 479 Address Loc; 480 481 void Emit(CodeGenFunction &CGF, Flags flags) override { 482 // Along the exceptions path we always execute the dtor. 483 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 484 485 llvm::BasicBlock *SkipDtorBB = nullptr; 486 if (NRVO) { 487 // If we exited via NRVO, we skip the destructor call. 488 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 489 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 490 llvm::Value *DidNRVO = 491 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 492 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 493 CGF.EmitBlock(RunDtorBB); 494 } 495 496 static_cast<Derived *>(this)->emitDestructorCall(CGF); 497 498 if (NRVO) CGF.EmitBlock(SkipDtorBB); 499 } 500 501 virtual ~DestroyNRVOVariable() = default; 502 }; 503 504 struct DestroyNRVOVariableCXX final 505 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 506 DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, 507 llvm::Value *NRVOFlag) 508 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), 509 Dtor(Dtor) {} 510 511 const CXXDestructorDecl *Dtor; 512 513 void emitDestructorCall(CodeGenFunction &CGF) { 514 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 515 /*ForVirtualBase=*/false, 516 /*Delegating=*/false, Loc); 517 } 518 }; 519 520 struct DestroyNRVOVariableC final 521 : DestroyNRVOVariable<DestroyNRVOVariableC> { 522 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 523 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} 524 525 QualType Ty; 526 527 void emitDestructorCall(CodeGenFunction &CGF) { 528 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 529 } 530 }; 531 532 struct CallStackRestore final : EHScopeStack::Cleanup { 533 Address Stack; 534 CallStackRestore(Address Stack) : Stack(Stack) {} 535 void Emit(CodeGenFunction &CGF, Flags flags) override { 536 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 537 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 538 CGF.Builder.CreateCall(F, V); 539 } 540 }; 541 542 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 543 const VarDecl &Var; 544 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 545 546 void Emit(CodeGenFunction &CGF, Flags flags) override { 547 // Compute the address of the local variable, in case it's a 548 // byref or something. 549 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 550 Var.getType(), VK_LValue, SourceLocation()); 551 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 552 SourceLocation()); 553 CGF.EmitExtendGCLifetime(value); 554 } 555 }; 556 557 struct CallCleanupFunction final : EHScopeStack::Cleanup { 558 llvm::Constant *CleanupFn; 559 const CGFunctionInfo &FnInfo; 560 const VarDecl &Var; 561 562 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 563 const VarDecl *Var) 564 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 565 566 void Emit(CodeGenFunction &CGF, Flags flags) override { 567 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 568 Var.getType(), VK_LValue, SourceLocation()); 569 // Compute the address of the local variable, in case it's a byref 570 // or something. 571 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 572 573 // In some cases, the type of the function argument will be different from 574 // the type of the pointer. An example of this is 575 // void f(void* arg); 576 // __attribute__((cleanup(f))) void *g; 577 // 578 // To fix this we insert a bitcast here. 579 QualType ArgTy = FnInfo.arg_begin()->type; 580 llvm::Value *Arg = 581 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 582 583 CallArgList Args; 584 Args.add(RValue::get(Arg), 585 CGF.getContext().getPointerType(Var.getType())); 586 auto Callee = CGCallee::forDirect(CleanupFn); 587 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 588 } 589 }; 590 } // end anonymous namespace 591 592 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 593 /// variable with lifetime. 594 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 595 Address addr, 596 Qualifiers::ObjCLifetime lifetime) { 597 switch (lifetime) { 598 case Qualifiers::OCL_None: 599 llvm_unreachable("present but none"); 600 601 case Qualifiers::OCL_ExplicitNone: 602 // nothing to do 603 break; 604 605 case Qualifiers::OCL_Strong: { 606 CodeGenFunction::Destroyer *destroyer = 607 (var.hasAttr<ObjCPreciseLifetimeAttr>() 608 ? CodeGenFunction::destroyARCStrongPrecise 609 : CodeGenFunction::destroyARCStrongImprecise); 610 611 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 612 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 613 cleanupKind & EHCleanup); 614 break; 615 } 616 case Qualifiers::OCL_Autoreleasing: 617 // nothing to do 618 break; 619 620 case Qualifiers::OCL_Weak: 621 // __weak objects always get EH cleanups; otherwise, exceptions 622 // could cause really nasty crashes instead of mere leaks. 623 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 624 CodeGenFunction::destroyARCWeak, 625 /*useEHCleanup*/ true); 626 break; 627 } 628 } 629 630 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 631 if (const Expr *e = dyn_cast<Expr>(s)) { 632 // Skip the most common kinds of expressions that make 633 // hierarchy-walking expensive. 634 s = e = e->IgnoreParenCasts(); 635 636 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 637 return (ref->getDecl() == &var); 638 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 639 const BlockDecl *block = be->getBlockDecl(); 640 for (const auto &I : block->captures()) { 641 if (I.getVariable() == &var) 642 return true; 643 } 644 } 645 } 646 647 for (const Stmt *SubStmt : s->children()) 648 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 649 if (SubStmt && isAccessedBy(var, SubStmt)) 650 return true; 651 652 return false; 653 } 654 655 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 656 if (!decl) return false; 657 if (!isa<VarDecl>(decl)) return false; 658 const VarDecl *var = cast<VarDecl>(decl); 659 return isAccessedBy(*var, e); 660 } 661 662 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 663 const LValue &destLV, const Expr *init) { 664 bool needsCast = false; 665 666 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 667 switch (castExpr->getCastKind()) { 668 // Look through casts that don't require representation changes. 669 case CK_NoOp: 670 case CK_BitCast: 671 case CK_BlockPointerToObjCPointerCast: 672 needsCast = true; 673 break; 674 675 // If we find an l-value to r-value cast from a __weak variable, 676 // emit this operation as a copy or move. 677 case CK_LValueToRValue: { 678 const Expr *srcExpr = castExpr->getSubExpr(); 679 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 680 return false; 681 682 // Emit the source l-value. 683 LValue srcLV = CGF.EmitLValue(srcExpr); 684 685 // Handle a formal type change to avoid asserting. 686 auto srcAddr = srcLV.getAddress(); 687 if (needsCast) { 688 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 689 destLV.getAddress().getElementType()); 690 } 691 692 // If it was an l-value, use objc_copyWeak. 693 if (srcExpr->getValueKind() == VK_LValue) { 694 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 695 } else { 696 assert(srcExpr->getValueKind() == VK_XValue); 697 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 698 } 699 return true; 700 } 701 702 // Stop at anything else. 703 default: 704 return false; 705 } 706 707 init = castExpr->getSubExpr(); 708 } 709 return false; 710 } 711 712 static void drillIntoBlockVariable(CodeGenFunction &CGF, 713 LValue &lvalue, 714 const VarDecl *var) { 715 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 716 } 717 718 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 719 SourceLocation Loc) { 720 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 721 return; 722 723 auto Nullability = LHS.getType()->getNullability(getContext()); 724 if (!Nullability || *Nullability != NullabilityKind::NonNull) 725 return; 726 727 // Check if the right hand side of the assignment is nonnull, if the left 728 // hand side must be nonnull. 729 SanitizerScope SanScope(this); 730 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 731 llvm::Constant *StaticData[] = { 732 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 733 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 734 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 735 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 736 SanitizerHandler::TypeMismatch, StaticData, RHS); 737 } 738 739 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 740 LValue lvalue, bool capturedByInit) { 741 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 742 if (!lifetime) { 743 llvm::Value *value = EmitScalarExpr(init); 744 if (capturedByInit) 745 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 746 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 747 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 748 return; 749 } 750 751 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 752 init = DIE->getExpr(); 753 754 // If we're emitting a value with lifetime, we have to do the 755 // initialization *before* we leave the cleanup scopes. 756 if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { 757 enterFullExpression(fe); 758 init = fe->getSubExpr(); 759 } 760 CodeGenFunction::RunCleanupsScope Scope(*this); 761 762 // We have to maintain the illusion that the variable is 763 // zero-initialized. If the variable might be accessed in its 764 // initializer, zero-initialize before running the initializer, then 765 // actually perform the initialization with an assign. 766 bool accessedByInit = false; 767 if (lifetime != Qualifiers::OCL_ExplicitNone) 768 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 769 if (accessedByInit) { 770 LValue tempLV = lvalue; 771 // Drill down to the __block object if necessary. 772 if (capturedByInit) { 773 // We can use a simple GEP for this because it can't have been 774 // moved yet. 775 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 776 cast<VarDecl>(D), 777 /*follow*/ false)); 778 } 779 780 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 781 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 782 783 // If __weak, we want to use a barrier under certain conditions. 784 if (lifetime == Qualifiers::OCL_Weak) 785 EmitARCInitWeak(tempLV.getAddress(), zero); 786 787 // Otherwise just do a simple store. 788 else 789 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 790 } 791 792 // Emit the initializer. 793 llvm::Value *value = nullptr; 794 795 switch (lifetime) { 796 case Qualifiers::OCL_None: 797 llvm_unreachable("present but none"); 798 799 case Qualifiers::OCL_Strong: { 800 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 801 value = EmitARCRetainScalarExpr(init); 802 break; 803 } 804 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 805 // that we omit the retain, and causes non-autoreleased return values to be 806 // immediately released. 807 LLVM_FALLTHROUGH; 808 } 809 810 case Qualifiers::OCL_ExplicitNone: 811 value = EmitARCUnsafeUnretainedScalarExpr(init); 812 break; 813 814 case Qualifiers::OCL_Weak: { 815 // If it's not accessed by the initializer, try to emit the 816 // initialization with a copy or move. 817 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 818 return; 819 } 820 821 // No way to optimize a producing initializer into this. It's not 822 // worth optimizing for, because the value will immediately 823 // disappear in the common case. 824 value = EmitScalarExpr(init); 825 826 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 827 if (accessedByInit) 828 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 829 else 830 EmitARCInitWeak(lvalue.getAddress(), value); 831 return; 832 } 833 834 case Qualifiers::OCL_Autoreleasing: 835 value = EmitARCRetainAutoreleaseScalarExpr(init); 836 break; 837 } 838 839 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 840 841 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 842 843 // If the variable might have been accessed by its initializer, we 844 // might have to initialize with a barrier. We have to do this for 845 // both __weak and __strong, but __weak got filtered out above. 846 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 847 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 848 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 849 EmitARCRelease(oldValue, ARCImpreciseLifetime); 850 return; 851 } 852 853 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 854 } 855 856 /// Decide whether we can emit the non-zero parts of the specified initializer 857 /// with equal or fewer than NumStores scalar stores. 858 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 859 unsigned &NumStores) { 860 // Zero and Undef never requires any extra stores. 861 if (isa<llvm::ConstantAggregateZero>(Init) || 862 isa<llvm::ConstantPointerNull>(Init) || 863 isa<llvm::UndefValue>(Init)) 864 return true; 865 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 866 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 867 isa<llvm::ConstantExpr>(Init)) 868 return Init->isNullValue() || NumStores--; 869 870 // See if we can emit each element. 871 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 872 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 873 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 874 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 875 return false; 876 } 877 return true; 878 } 879 880 if (llvm::ConstantDataSequential *CDS = 881 dyn_cast<llvm::ConstantDataSequential>(Init)) { 882 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 883 llvm::Constant *Elt = CDS->getElementAsConstant(i); 884 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 885 return false; 886 } 887 return true; 888 } 889 890 // Anything else is hard and scary. 891 return false; 892 } 893 894 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 895 /// the scalar stores that would be required. 896 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 897 llvm::Constant *Init, Address Loc, 898 bool isVolatile, CGBuilderTy &Builder) { 899 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 900 "called emitStoresForInitAfterBZero for zero or undef value."); 901 902 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 903 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 904 isa<llvm::ConstantExpr>(Init)) { 905 Builder.CreateStore(Init, Loc, isVolatile); 906 return; 907 } 908 909 if (llvm::ConstantDataSequential *CDS = 910 dyn_cast<llvm::ConstantDataSequential>(Init)) { 911 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 912 llvm::Constant *Elt = CDS->getElementAsConstant(i); 913 914 // If necessary, get a pointer to the element and emit it. 915 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 916 emitStoresForInitAfterBZero( 917 CGM, Elt, 918 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 919 isVolatile, Builder); 920 } 921 return; 922 } 923 924 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 925 "Unknown value type!"); 926 927 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 928 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 929 930 // If necessary, get a pointer to the element and emit it. 931 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 932 emitStoresForInitAfterBZero( 933 CGM, Elt, 934 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), 935 isVolatile, Builder); 936 } 937 } 938 939 /// Decide whether we should use bzero plus some stores to initialize a local 940 /// variable instead of using a memcpy from a constant global. It is beneficial 941 /// to use bzero if the global is all zeros, or mostly zeros and large. 942 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 943 uint64_t GlobalSize) { 944 // If a global is all zeros, always use a bzero. 945 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 946 947 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 948 // do it if it will require 6 or fewer scalar stores. 949 // TODO: Should budget depends on the size? Avoiding a large global warrants 950 // plopping in more stores. 951 unsigned StoreBudget = 6; 952 uint64_t SizeLimit = 32; 953 954 return GlobalSize > SizeLimit && 955 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 956 } 957 958 /// Decide whether we should use memset to initialize a local variable instead 959 /// of using a memcpy from a constant global. Assumes we've already decided to 960 /// not user bzero. 961 /// FIXME We could be more clever, as we are for bzero above, and generate 962 /// memset followed by stores. It's unclear that's worth the effort. 963 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 964 uint64_t GlobalSize) { 965 uint64_t SizeLimit = 32; 966 if (GlobalSize <= SizeLimit) 967 return nullptr; 968 return llvm::isBytewiseValue(Init); 969 } 970 971 static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) { 972 // The following value is a guaranteed unmappable pointer value and has a 973 // repeated byte-pattern which makes it easier to synthesize. We use it for 974 // pointers as well as integers so that aggregates are likely to be 975 // initialized with this repeated value. 976 constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull; 977 // For 32-bit platforms it's a bit trickier because, across systems, only the 978 // zero page can reasonably be expected to be unmapped, and even then we need 979 // a very low address. We use a smaller value, and that value sadly doesn't 980 // have a repeated byte-pattern. We don't use it for integers. 981 constexpr uint32_t SmallValue = 0x000000AA; 982 // Floating-point values are initialized as NaNs because they propagate. Using 983 // a repeated byte pattern means that it will be easier to initialize 984 // all-floating-point aggregates and arrays with memset. Further, aggregates 985 // which mix integral and a few floats might also initialize with memset 986 // followed by a handful of stores for the floats. Using fairly unique NaNs 987 // also means they'll be easier to distinguish in a crash. 988 constexpr bool NegativeNaN = true; 989 constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull; 990 if (Ty->isIntOrIntVectorTy()) { 991 unsigned BitWidth = cast<llvm::IntegerType>( 992 Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) 993 ->getBitWidth(); 994 if (BitWidth <= 64) 995 return llvm::ConstantInt::get(Ty, LargeValue); 996 return llvm::ConstantInt::get( 997 Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue))); 998 } 999 if (Ty->isPtrOrPtrVectorTy()) { 1000 auto *PtrTy = cast<llvm::PointerType>( 1001 Ty->isVectorTy() ? Ty->getVectorElementType() : Ty); 1002 unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth( 1003 PtrTy->getAddressSpace()); 1004 llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth); 1005 uint64_t IntValue; 1006 switch (PtrWidth) { 1007 default: 1008 llvm_unreachable("pattern initialization of unsupported pointer width"); 1009 case 64: 1010 IntValue = LargeValue; 1011 break; 1012 case 32: 1013 IntValue = SmallValue; 1014 break; 1015 } 1016 auto *Int = llvm::ConstantInt::get(IntTy, IntValue); 1017 return llvm::ConstantExpr::getIntToPtr(Int, PtrTy); 1018 } 1019 if (Ty->isFPOrFPVectorTy()) { 1020 unsigned BitWidth = llvm::APFloat::semanticsSizeInBits( 1021 (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) 1022 ->getFltSemantics()); 1023 llvm::APInt Payload(64, NaNPayload); 1024 if (BitWidth >= 64) 1025 Payload = llvm::APInt::getSplat(BitWidth, Payload); 1026 return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload); 1027 } 1028 if (Ty->isArrayTy()) { 1029 // Note: this doesn't touch tail padding (at the end of an object, before 1030 // the next array object). It is instead handled by replaceUndef. 1031 auto *ArrTy = cast<llvm::ArrayType>(Ty); 1032 llvm::SmallVector<llvm::Constant *, 8> Element( 1033 ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType())); 1034 return llvm::ConstantArray::get(ArrTy, Element); 1035 } 1036 1037 // Note: this doesn't touch struct padding. It will initialize as much union 1038 // padding as is required for the largest type in the union. Padding is 1039 // instead handled by replaceUndef. Stores to structs with volatile members 1040 // don't have a volatile qualifier when initialized according to C++. This is 1041 // fine because stack-based volatiles don't really have volatile semantics 1042 // anyways, and the initialization shouldn't be observable. 1043 auto *StructTy = cast<llvm::StructType>(Ty); 1044 llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements()); 1045 for (unsigned El = 0; El != Struct.size(); ++El) 1046 Struct[El] = patternFor(CGM, StructTy->getElementType(El)); 1047 return llvm::ConstantStruct::get(StructTy, Struct); 1048 } 1049 1050 static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D, 1051 CGBuilderTy &Builder, 1052 llvm::Constant *Constant, 1053 CharUnits Align) { 1054 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1055 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1056 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1057 return CC->getNameAsString(); 1058 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1059 return CD->getNameAsString(); 1060 return CGM.getMangledName(FD); 1061 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1062 return OM->getNameAsString(); 1063 } else if (isa<BlockDecl>(DC)) { 1064 return "<block>"; 1065 } else if (isa<CapturedDecl>(DC)) { 1066 return "<captured>"; 1067 } else { 1068 llvm::llvm_unreachable_internal("expected a function or method"); 1069 } 1070 }; 1071 1072 auto *Ty = Constant->getType(); 1073 bool isConstant = true; 1074 llvm::GlobalVariable *InsertBefore = nullptr; 1075 unsigned AS = CGM.getContext().getTargetAddressSpace( 1076 CGM.getStringLiteralAddressSpace()); 1077 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1078 CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1079 Constant, 1080 "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." + 1081 D.getName(), 1082 InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1083 GV->setAlignment(Align.getQuantity()); 1084 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1085 1086 Address SrcPtr = Address(GV, Align); 1087 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS); 1088 if (SrcPtr.getType() != BP) 1089 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1090 return SrcPtr; 1091 } 1092 1093 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1094 Address Loc, bool isVolatile, 1095 CGBuilderTy &Builder, 1096 llvm::Constant *constant) { 1097 auto *Ty = constant->getType(); 1098 bool isScalar = Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy() || 1099 Ty->isFPOrFPVectorTy(); 1100 if (isScalar) { 1101 Builder.CreateStore(constant, Loc, isVolatile); 1102 return; 1103 } 1104 1105 auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1106 auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext()); 1107 1108 // If the initializer is all or mostly the same, codegen with bzero / memset 1109 // then do a few stores afterward. 1110 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1111 auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize); 1112 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1113 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1114 isVolatile); 1115 1116 bool valueAlreadyCorrect = 1117 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1118 if (!valueAlreadyCorrect) { 1119 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1120 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1121 } 1122 return; 1123 } 1124 1125 llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize); 1126 if (Pattern) { 1127 uint64_t Value = 0x00; 1128 if (!isa<llvm::UndefValue>(Pattern)) { 1129 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1130 assert(AP.getBitWidth() <= 8); 1131 Value = AP.getLimitedValue(); 1132 } 1133 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal, 1134 isVolatile); 1135 return; 1136 } 1137 1138 Builder.CreateMemCpy( 1139 Loc, 1140 createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()), 1141 SizeVal, isVolatile); 1142 } 1143 1144 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1145 Address Loc, bool isVolatile, 1146 CGBuilderTy &Builder) { 1147 llvm::Type *ElTy = Loc.getElementType(); 1148 llvm::Constant *constant = llvm::Constant::getNullValue(ElTy); 1149 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1150 } 1151 1152 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1153 Address Loc, bool isVolatile, 1154 CGBuilderTy &Builder) { 1155 llvm::Type *ElTy = Loc.getElementType(); 1156 llvm::Constant *constant = patternFor(CGM, ElTy); 1157 assert(!isa<llvm::UndefValue>(constant)); 1158 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1159 } 1160 1161 static bool containsUndef(llvm::Constant *constant) { 1162 auto *Ty = constant->getType(); 1163 if (isa<llvm::UndefValue>(constant)) 1164 return true; 1165 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1166 for (llvm::Use &Op : constant->operands()) 1167 if (containsUndef(cast<llvm::Constant>(Op))) 1168 return true; 1169 return false; 1170 } 1171 1172 static llvm::Constant *replaceUndef(llvm::Constant *constant) { 1173 // FIXME: when doing pattern initialization, replace undef with 0xAA instead. 1174 // FIXME: also replace padding between values by creating a new struct type 1175 // which has no padding. 1176 auto *Ty = constant->getType(); 1177 if (isa<llvm::UndefValue>(constant)) 1178 return llvm::Constant::getNullValue(Ty); 1179 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1180 return constant; 1181 if (!containsUndef(constant)) 1182 return constant; 1183 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1184 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1185 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1186 Values[Op] = replaceUndef(OpValue); 1187 } 1188 if (Ty->isStructTy()) 1189 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1190 if (Ty->isArrayTy()) 1191 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1192 assert(Ty->isVectorTy()); 1193 return llvm::ConstantVector::get(Values); 1194 } 1195 1196 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1197 /// variable declaration with auto, register, or no storage class specifier. 1198 /// These turn into simple stack objects, or GlobalValues depending on target. 1199 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1200 AutoVarEmission emission = EmitAutoVarAlloca(D); 1201 EmitAutoVarInit(emission); 1202 EmitAutoVarCleanups(emission); 1203 } 1204 1205 /// Emit a lifetime.begin marker if some criteria are satisfied. 1206 /// \return a pointer to the temporary size Value if a marker was emitted, null 1207 /// otherwise 1208 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1209 llvm::Value *Addr) { 1210 if (!ShouldEmitLifetimeMarkers) 1211 return nullptr; 1212 1213 assert(Addr->getType()->getPointerAddressSpace() == 1214 CGM.getDataLayout().getAllocaAddrSpace() && 1215 "Pointer should be in alloca address space"); 1216 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1217 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1218 llvm::CallInst *C = 1219 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1220 C->setDoesNotThrow(); 1221 return SizeV; 1222 } 1223 1224 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1225 assert(Addr->getType()->getPointerAddressSpace() == 1226 CGM.getDataLayout().getAllocaAddrSpace() && 1227 "Pointer should be in alloca address space"); 1228 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1229 llvm::CallInst *C = 1230 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1231 C->setDoesNotThrow(); 1232 } 1233 1234 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1235 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1236 // For each dimension stores its QualType and corresponding 1237 // size-expression Value. 1238 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1239 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1240 1241 // Break down the array into individual dimensions. 1242 QualType Type1D = D.getType(); 1243 while (getContext().getAsVariableArrayType(Type1D)) { 1244 auto VlaSize = getVLAElements1D(Type1D); 1245 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1246 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1247 else { 1248 // Generate a locally unique name for the size expression. 1249 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1250 SmallString<12> Buffer; 1251 StringRef NameRef = Name.toStringRef(Buffer); 1252 auto &Ident = getContext().Idents.getOwn(NameRef); 1253 VLAExprNames.push_back(&Ident); 1254 auto SizeExprAddr = 1255 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1256 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1257 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1258 Type1D.getUnqualifiedType()); 1259 } 1260 Type1D = VlaSize.Type; 1261 } 1262 1263 if (!EmitDebugInfo) 1264 return; 1265 1266 // Register each dimension's size-expression with a DILocalVariable, 1267 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1268 // to describe this array. 1269 unsigned NameIdx = 0; 1270 for (auto &VlaSize : Dimensions) { 1271 llvm::Metadata *MD; 1272 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1273 MD = llvm::ConstantAsMetadata::get(C); 1274 else { 1275 // Create an artificial VarDecl to generate debug info for. 1276 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1277 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1278 auto QT = getContext().getIntTypeForBitwidth( 1279 VlaExprTy->getScalarSizeInBits(), false); 1280 auto *ArtificialDecl = VarDecl::Create( 1281 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1282 D.getLocation(), D.getLocation(), NameIdent, QT, 1283 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1284 ArtificialDecl->setImplicit(); 1285 1286 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1287 Builder); 1288 } 1289 assert(MD && "No Size expression debug node created"); 1290 DI->registerVLASizeExpression(VlaSize.Type, MD); 1291 } 1292 } 1293 1294 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1295 /// local variable. Does not emit initialization or destruction. 1296 CodeGenFunction::AutoVarEmission 1297 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1298 QualType Ty = D.getType(); 1299 assert( 1300 Ty.getAddressSpace() == LangAS::Default || 1301 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1302 1303 AutoVarEmission emission(D); 1304 1305 bool isEscapingByRef = D.isEscapingByref(); 1306 emission.IsEscapingByRef = isEscapingByRef; 1307 1308 CharUnits alignment = getContext().getDeclAlign(&D); 1309 1310 // If the type is variably-modified, emit all the VLA sizes for it. 1311 if (Ty->isVariablyModifiedType()) 1312 EmitVariablyModifiedType(Ty); 1313 1314 auto *DI = getDebugInfo(); 1315 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1316 codegenoptions::LimitedDebugInfo; 1317 1318 Address address = Address::invalid(); 1319 Address AllocaAddr = Address::invalid(); 1320 if (Ty->isConstantSizeType()) { 1321 bool NRVO = getLangOpts().ElideConstructors && 1322 D.isNRVOVariable(); 1323 1324 // If this value is an array or struct with a statically determinable 1325 // constant initializer, there are optimizations we can do. 1326 // 1327 // TODO: We should constant-evaluate the initializer of any variable, 1328 // as long as it is initialized by a constant expression. Currently, 1329 // isConstantInitializer produces wrong answers for structs with 1330 // reference or bitfield members, and a few other cases, and checking 1331 // for POD-ness protects us from some of these. 1332 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1333 (D.isConstexpr() || 1334 ((Ty.isPODType(getContext()) || 1335 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1336 D.getInit()->isConstantInitializer(getContext(), false)))) { 1337 1338 // If the variable's a const type, and it's neither an NRVO 1339 // candidate nor a __block variable and has no mutable members, 1340 // emit it as a global instead. 1341 // Exception is if a variable is located in non-constant address space 1342 // in OpenCL. 1343 if ((!getLangOpts().OpenCL || 1344 Ty.getAddressSpace() == LangAS::opencl_constant) && 1345 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1346 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1347 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1348 1349 // Signal this condition to later callbacks. 1350 emission.Addr = Address::invalid(); 1351 assert(emission.wasEmittedAsGlobal()); 1352 return emission; 1353 } 1354 1355 // Otherwise, tell the initialization code that we're in this case. 1356 emission.IsConstantAggregate = true; 1357 } 1358 1359 // A normal fixed sized variable becomes an alloca in the entry block, 1360 // unless: 1361 // - it's an NRVO variable. 1362 // - we are compiling OpenMP and it's an OpenMP local variable. 1363 1364 Address OpenMPLocalAddr = 1365 getLangOpts().OpenMP 1366 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1367 : Address::invalid(); 1368 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1369 address = OpenMPLocalAddr; 1370 } else if (NRVO) { 1371 // The named return value optimization: allocate this variable in the 1372 // return slot, so that we can elide the copy when returning this 1373 // variable (C++0x [class.copy]p34). 1374 address = ReturnValue; 1375 1376 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1377 const auto *RD = RecordTy->getDecl(); 1378 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1379 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1380 RD->isNonTrivialToPrimitiveDestroy()) { 1381 // Create a flag that is used to indicate when the NRVO was applied 1382 // to this variable. Set it to zero to indicate that NRVO was not 1383 // applied. 1384 llvm::Value *Zero = Builder.getFalse(); 1385 Address NRVOFlag = 1386 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1387 EnsureInsertPoint(); 1388 Builder.CreateStore(Zero, NRVOFlag); 1389 1390 // Record the NRVO flag for this variable. 1391 NRVOFlags[&D] = NRVOFlag.getPointer(); 1392 emission.NRVOFlag = NRVOFlag.getPointer(); 1393 } 1394 } 1395 } else { 1396 CharUnits allocaAlignment; 1397 llvm::Type *allocaTy; 1398 if (isEscapingByRef) { 1399 auto &byrefInfo = getBlockByrefInfo(&D); 1400 allocaTy = byrefInfo.Type; 1401 allocaAlignment = byrefInfo.ByrefAlignment; 1402 } else { 1403 allocaTy = ConvertTypeForMem(Ty); 1404 allocaAlignment = alignment; 1405 } 1406 1407 // Create the alloca. Note that we set the name separately from 1408 // building the instruction so that it's there even in no-asserts 1409 // builds. 1410 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1411 /*ArraySize=*/nullptr, &AllocaAddr); 1412 1413 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1414 // the catch parameter starts in the catchpad instruction, and we can't 1415 // insert code in those basic blocks. 1416 bool IsMSCatchParam = 1417 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1418 1419 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1420 // if we don't have a valid insertion point (?). 1421 if (HaveInsertPoint() && !IsMSCatchParam) { 1422 // If there's a jump into the lifetime of this variable, its lifetime 1423 // gets broken up into several regions in IR, which requires more work 1424 // to handle correctly. For now, just omit the intrinsics; this is a 1425 // rare case, and it's better to just be conservatively correct. 1426 // PR28267. 1427 // 1428 // We have to do this in all language modes if there's a jump past the 1429 // declaration. We also have to do it in C if there's a jump to an 1430 // earlier point in the current block because non-VLA lifetimes begin as 1431 // soon as the containing block is entered, not when its variables 1432 // actually come into scope; suppressing the lifetime annotations 1433 // completely in this case is unnecessarily pessimistic, but again, this 1434 // is rare. 1435 if (!Bypasses.IsBypassed(&D) && 1436 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1437 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1438 emission.SizeForLifetimeMarkers = 1439 EmitLifetimeStart(size, AllocaAddr.getPointer()); 1440 } 1441 } else { 1442 assert(!emission.useLifetimeMarkers()); 1443 } 1444 } 1445 } else { 1446 EnsureInsertPoint(); 1447 1448 if (!DidCallStackSave) { 1449 // Save the stack. 1450 Address Stack = 1451 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1452 1453 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1454 llvm::Value *V = Builder.CreateCall(F); 1455 Builder.CreateStore(V, Stack); 1456 1457 DidCallStackSave = true; 1458 1459 // Push a cleanup block and restore the stack there. 1460 // FIXME: in general circumstances, this should be an EH cleanup. 1461 pushStackRestore(NormalCleanup, Stack); 1462 } 1463 1464 auto VlaSize = getVLASize(Ty); 1465 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1466 1467 // Allocate memory for the array. 1468 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1469 &AllocaAddr); 1470 1471 // If we have debug info enabled, properly describe the VLA dimensions for 1472 // this type by registering the vla size expression for each of the 1473 // dimensions. 1474 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1475 } 1476 1477 setAddrOfLocalVar(&D, address); 1478 emission.Addr = address; 1479 emission.AllocaAddr = AllocaAddr; 1480 1481 // Emit debug info for local var declaration. 1482 if (EmitDebugInfo && HaveInsertPoint()) { 1483 DI->setLocation(D.getLocation()); 1484 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1485 } 1486 1487 if (D.hasAttr<AnnotateAttr>()) 1488 EmitVarAnnotations(&D, address.getPointer()); 1489 1490 // Make sure we call @llvm.lifetime.end. 1491 if (emission.useLifetimeMarkers()) 1492 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1493 emission.getOriginalAllocatedAddress(), 1494 emission.getSizeForLifetimeMarkers()); 1495 1496 return emission; 1497 } 1498 1499 static bool isCapturedBy(const VarDecl &, const Expr *); 1500 1501 /// Determines whether the given __block variable is potentially 1502 /// captured by the given statement. 1503 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1504 if (const Expr *E = dyn_cast<Expr>(S)) 1505 return isCapturedBy(Var, E); 1506 for (const Stmt *SubStmt : S->children()) 1507 if (isCapturedBy(Var, SubStmt)) 1508 return true; 1509 return false; 1510 } 1511 1512 /// Determines whether the given __block variable is potentially 1513 /// captured by the given expression. 1514 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1515 // Skip the most common kinds of expressions that make 1516 // hierarchy-walking expensive. 1517 E = E->IgnoreParenCasts(); 1518 1519 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1520 const BlockDecl *Block = BE->getBlockDecl(); 1521 for (const auto &I : Block->captures()) { 1522 if (I.getVariable() == &Var) 1523 return true; 1524 } 1525 1526 // No need to walk into the subexpressions. 1527 return false; 1528 } 1529 1530 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1531 const CompoundStmt *CS = SE->getSubStmt(); 1532 for (const auto *BI : CS->body()) 1533 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1534 if (isCapturedBy(Var, BIE)) 1535 return true; 1536 } 1537 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1538 // special case declarations 1539 for (const auto *I : DS->decls()) { 1540 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1541 const Expr *Init = VD->getInit(); 1542 if (Init && isCapturedBy(Var, Init)) 1543 return true; 1544 } 1545 } 1546 } 1547 else 1548 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1549 // Later, provide code to poke into statements for capture analysis. 1550 return true; 1551 return false; 1552 } 1553 1554 for (const Stmt *SubStmt : E->children()) 1555 if (isCapturedBy(Var, SubStmt)) 1556 return true; 1557 1558 return false; 1559 } 1560 1561 /// Determine whether the given initializer is trivial in the sense 1562 /// that it requires no code to be generated. 1563 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1564 if (!Init) 1565 return true; 1566 1567 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1568 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1569 if (Constructor->isTrivial() && 1570 Constructor->isDefaultConstructor() && 1571 !Construct->requiresZeroInitialization()) 1572 return true; 1573 1574 return false; 1575 } 1576 1577 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1578 assert(emission.Variable && "emission was not valid!"); 1579 1580 // If this was emitted as a global constant, we're done. 1581 if (emission.wasEmittedAsGlobal()) return; 1582 1583 const VarDecl &D = *emission.Variable; 1584 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1585 QualType type = D.getType(); 1586 1587 bool isVolatile = type.isVolatileQualified(); 1588 1589 // If this local has an initializer, emit it now. 1590 const Expr *Init = D.getInit(); 1591 1592 // If we are at an unreachable point, we don't need to emit the initializer 1593 // unless it contains a label. 1594 if (!HaveInsertPoint()) { 1595 if (!Init || !ContainsLabel(Init)) return; 1596 EnsureInsertPoint(); 1597 } 1598 1599 // Initialize the structure of a __block variable. 1600 if (emission.IsEscapingByRef) 1601 emitByrefStructureInit(emission); 1602 1603 // Initialize the variable here if it doesn't have a initializer and it is a 1604 // C struct that is non-trivial to initialize or an array containing such a 1605 // struct. 1606 if (!Init && 1607 type.isNonTrivialToPrimitiveDefaultInitialize() == 1608 QualType::PDIK_Struct) { 1609 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1610 if (emission.IsEscapingByRef) 1611 drillIntoBlockVariable(*this, Dst, &D); 1612 defaultInitNonTrivialCStructVar(Dst); 1613 return; 1614 } 1615 1616 // Check whether this is a byref variable that's potentially 1617 // captured and moved by its own initializer. If so, we'll need to 1618 // emit the initializer first, then copy into the variable. 1619 bool capturedByInit = 1620 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1621 1622 Address Loc = 1623 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1624 1625 // Note: constexpr already initializes everything correctly. 1626 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1627 (D.isConstexpr() 1628 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1629 : (D.getAttr<UninitializedAttr>() 1630 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1631 : getContext().getLangOpts().getTrivialAutoVarInit())); 1632 1633 auto initializeWhatIsTechnicallyUninitialized = [&]() { 1634 if (trivialAutoVarInit == 1635 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1636 return; 1637 1638 CharUnits Size = getContext().getTypeSizeInChars(type); 1639 if (!Size.isZero()) { 1640 switch (trivialAutoVarInit) { 1641 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1642 llvm_unreachable("Uninitialized handled above"); 1643 case LangOptions::TrivialAutoVarInitKind::Zero: 1644 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1645 break; 1646 case LangOptions::TrivialAutoVarInitKind::Pattern: 1647 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1648 break; 1649 } 1650 return; 1651 } 1652 1653 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1654 // them, so emit a memcpy with the VLA size to initialize each element. 1655 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1656 // will catch that code, but there exists code which generates zero-sized 1657 // VLAs. Be nice and initialize whatever they requested. 1658 const VariableArrayType *VlaType = 1659 dyn_cast_or_null<VariableArrayType>(getContext().getAsArrayType(type)); 1660 if (!VlaType) 1661 return; 1662 auto VlaSize = getVLASize(VlaType); 1663 auto SizeVal = VlaSize.NumElts; 1664 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1665 switch (trivialAutoVarInit) { 1666 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1667 llvm_unreachable("Uninitialized handled above"); 1668 1669 case LangOptions::TrivialAutoVarInitKind::Zero: 1670 if (!EltSize.isOne()) 1671 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1672 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1673 isVolatile); 1674 break; 1675 1676 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1677 llvm::Type *ElTy = Loc.getElementType(); 1678 llvm::Constant *Constant = patternFor(CGM, ElTy); 1679 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1680 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1681 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1682 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1683 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1684 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1685 "vla.iszerosized"); 1686 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1687 EmitBlock(SetupBB); 1688 if (!EltSize.isOne()) 1689 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1690 llvm::Value *BaseSizeInChars = 1691 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1692 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1693 llvm::Value *End = 1694 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1695 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1696 EmitBlock(LoopBB); 1697 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1698 Cur->addIncoming(Begin.getPointer(), OriginBB); 1699 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1700 Builder.CreateMemCpy( 1701 Address(Cur, CurAlign), 1702 createUnnamedGlobalFrom(CGM, D, Builder, Constant, ConstantAlign), 1703 BaseSizeInChars, isVolatile); 1704 llvm::Value *Next = 1705 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1706 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1707 Builder.CreateCondBr(Done, ContBB, LoopBB); 1708 Cur->addIncoming(Next, LoopBB); 1709 EmitBlock(ContBB); 1710 } break; 1711 } 1712 }; 1713 1714 if (isTrivialInitializer(Init)) { 1715 initializeWhatIsTechnicallyUninitialized(); 1716 return; 1717 } 1718 1719 llvm::Constant *constant = nullptr; 1720 if (emission.IsConstantAggregate || D.isConstexpr()) { 1721 assert(!capturedByInit && "constant init contains a capturing block?"); 1722 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1723 if (constant && trivialAutoVarInit != 1724 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1725 constant = replaceUndef(constant); 1726 } 1727 1728 if (!constant) { 1729 initializeWhatIsTechnicallyUninitialized(); 1730 LValue lv = MakeAddrLValue(Loc, type); 1731 lv.setNonGC(true); 1732 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1733 } 1734 1735 if (!emission.IsConstantAggregate) { 1736 // For simple scalar/complex initialization, store the value directly. 1737 LValue lv = MakeAddrLValue(Loc, type); 1738 lv.setNonGC(true); 1739 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1740 } 1741 1742 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1743 if (Loc.getType() != BP) 1744 Loc = Builder.CreateBitCast(Loc, BP); 1745 1746 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1747 } 1748 1749 /// Emit an expression as an initializer for an object (variable, field, etc.) 1750 /// at the given location. The expression is not necessarily the normal 1751 /// initializer for the object, and the address is not necessarily 1752 /// its normal location. 1753 /// 1754 /// \param init the initializing expression 1755 /// \param D the object to act as if we're initializing 1756 /// \param loc the address to initialize; its type is a pointer 1757 /// to the LLVM mapping of the object's type 1758 /// \param alignment the alignment of the address 1759 /// \param capturedByInit true if \p D is a __block variable 1760 /// whose address is potentially changed by the initializer 1761 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1762 LValue lvalue, bool capturedByInit) { 1763 QualType type = D->getType(); 1764 1765 if (type->isReferenceType()) { 1766 RValue rvalue = EmitReferenceBindingToExpr(init); 1767 if (capturedByInit) 1768 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1769 EmitStoreThroughLValue(rvalue, lvalue, true); 1770 return; 1771 } 1772 switch (getEvaluationKind(type)) { 1773 case TEK_Scalar: 1774 EmitScalarInit(init, D, lvalue, capturedByInit); 1775 return; 1776 case TEK_Complex: { 1777 ComplexPairTy complex = EmitComplexExpr(init); 1778 if (capturedByInit) 1779 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1780 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1781 return; 1782 } 1783 case TEK_Aggregate: 1784 if (type->isAtomicType()) { 1785 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1786 } else { 1787 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1788 if (isa<VarDecl>(D)) 1789 Overlap = AggValueSlot::DoesNotOverlap; 1790 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1791 Overlap = overlapForFieldInit(FD); 1792 // TODO: how can we delay here if D is captured by its initializer? 1793 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1794 AggValueSlot::IsDestructed, 1795 AggValueSlot::DoesNotNeedGCBarriers, 1796 AggValueSlot::IsNotAliased, 1797 Overlap)); 1798 } 1799 return; 1800 } 1801 llvm_unreachable("bad evaluation kind"); 1802 } 1803 1804 /// Enter a destroy cleanup for the given local variable. 1805 void CodeGenFunction::emitAutoVarTypeCleanup( 1806 const CodeGenFunction::AutoVarEmission &emission, 1807 QualType::DestructionKind dtorKind) { 1808 assert(dtorKind != QualType::DK_none); 1809 1810 // Note that for __block variables, we want to destroy the 1811 // original stack object, not the possibly forwarded object. 1812 Address addr = emission.getObjectAddress(*this); 1813 1814 const VarDecl *var = emission.Variable; 1815 QualType type = var->getType(); 1816 1817 CleanupKind cleanupKind = NormalAndEHCleanup; 1818 CodeGenFunction::Destroyer *destroyer = nullptr; 1819 1820 switch (dtorKind) { 1821 case QualType::DK_none: 1822 llvm_unreachable("no cleanup for trivially-destructible variable"); 1823 1824 case QualType::DK_cxx_destructor: 1825 // If there's an NRVO flag on the emission, we need a different 1826 // cleanup. 1827 if (emission.NRVOFlag) { 1828 assert(!type->isArrayType()); 1829 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1830 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, 1831 emission.NRVOFlag); 1832 return; 1833 } 1834 break; 1835 1836 case QualType::DK_objc_strong_lifetime: 1837 // Suppress cleanups for pseudo-strong variables. 1838 if (var->isARCPseudoStrong()) return; 1839 1840 // Otherwise, consider whether to use an EH cleanup or not. 1841 cleanupKind = getARCCleanupKind(); 1842 1843 // Use the imprecise destroyer by default. 1844 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1845 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1846 break; 1847 1848 case QualType::DK_objc_weak_lifetime: 1849 break; 1850 1851 case QualType::DK_nontrivial_c_struct: 1852 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1853 if (emission.NRVOFlag) { 1854 assert(!type->isArrayType()); 1855 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1856 emission.NRVOFlag, type); 1857 return; 1858 } 1859 break; 1860 } 1861 1862 // If we haven't chosen a more specific destroyer, use the default. 1863 if (!destroyer) destroyer = getDestroyer(dtorKind); 1864 1865 // Use an EH cleanup in array destructors iff the destructor itself 1866 // is being pushed as an EH cleanup. 1867 bool useEHCleanup = (cleanupKind & EHCleanup); 1868 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1869 useEHCleanup); 1870 } 1871 1872 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1873 assert(emission.Variable && "emission was not valid!"); 1874 1875 // If this was emitted as a global constant, we're done. 1876 if (emission.wasEmittedAsGlobal()) return; 1877 1878 // If we don't have an insertion point, we're done. Sema prevents 1879 // us from jumping into any of these scopes anyway. 1880 if (!HaveInsertPoint()) return; 1881 1882 const VarDecl &D = *emission.Variable; 1883 1884 // Check the type for a cleanup. 1885 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1886 emitAutoVarTypeCleanup(emission, dtorKind); 1887 1888 // In GC mode, honor objc_precise_lifetime. 1889 if (getLangOpts().getGC() != LangOptions::NonGC && 1890 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1891 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1892 } 1893 1894 // Handle the cleanup attribute. 1895 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1896 const FunctionDecl *FD = CA->getFunctionDecl(); 1897 1898 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1899 assert(F && "Could not find function!"); 1900 1901 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1902 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1903 } 1904 1905 // If this is a block variable, call _Block_object_destroy 1906 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 1907 // mode. 1908 if (emission.IsEscapingByRef && 1909 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 1910 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 1911 if (emission.Variable->getType().isObjCGCWeak()) 1912 Flags |= BLOCK_FIELD_IS_WEAK; 1913 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 1914 /*LoadBlockVarAddr*/ false, 1915 cxxDestructorCanThrow(emission.Variable->getType())); 1916 } 1917 } 1918 1919 CodeGenFunction::Destroyer * 1920 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1921 switch (kind) { 1922 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1923 case QualType::DK_cxx_destructor: 1924 return destroyCXXObject; 1925 case QualType::DK_objc_strong_lifetime: 1926 return destroyARCStrongPrecise; 1927 case QualType::DK_objc_weak_lifetime: 1928 return destroyARCWeak; 1929 case QualType::DK_nontrivial_c_struct: 1930 return destroyNonTrivialCStruct; 1931 } 1932 llvm_unreachable("Unknown DestructionKind"); 1933 } 1934 1935 /// pushEHDestroy - Push the standard destructor for the given type as 1936 /// an EH-only cleanup. 1937 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1938 Address addr, QualType type) { 1939 assert(dtorKind && "cannot push destructor for trivial type"); 1940 assert(needsEHCleanup(dtorKind)); 1941 1942 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1943 } 1944 1945 /// pushDestroy - Push the standard destructor for the given type as 1946 /// at least a normal cleanup. 1947 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1948 Address addr, QualType type) { 1949 assert(dtorKind && "cannot push destructor for trivial type"); 1950 1951 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1952 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1953 cleanupKind & EHCleanup); 1954 } 1955 1956 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1957 QualType type, Destroyer *destroyer, 1958 bool useEHCleanupForArray) { 1959 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1960 destroyer, useEHCleanupForArray); 1961 } 1962 1963 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1964 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1965 } 1966 1967 void CodeGenFunction::pushLifetimeExtendedDestroy( 1968 CleanupKind cleanupKind, Address addr, QualType type, 1969 Destroyer *destroyer, bool useEHCleanupForArray) { 1970 // Push an EH-only cleanup for the object now. 1971 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1972 // around in case a temporary's destructor throws an exception. 1973 if (cleanupKind & EHCleanup) 1974 EHStack.pushCleanup<DestroyObject>( 1975 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1976 destroyer, useEHCleanupForArray); 1977 1978 // Remember that we need to push a full cleanup for the object at the 1979 // end of the full-expression. 1980 pushCleanupAfterFullExpr<DestroyObject>( 1981 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1982 } 1983 1984 /// emitDestroy - Immediately perform the destruction of the given 1985 /// object. 1986 /// 1987 /// \param addr - the address of the object; a type* 1988 /// \param type - the type of the object; if an array type, all 1989 /// objects are destroyed in reverse order 1990 /// \param destroyer - the function to call to destroy individual 1991 /// elements 1992 /// \param useEHCleanupForArray - whether an EH cleanup should be 1993 /// used when destroying array elements, in case one of the 1994 /// destructions throws an exception 1995 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1996 Destroyer *destroyer, 1997 bool useEHCleanupForArray) { 1998 const ArrayType *arrayType = getContext().getAsArrayType(type); 1999 if (!arrayType) 2000 return destroyer(*this, addr, type); 2001 2002 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2003 2004 CharUnits elementAlign = 2005 addr.getAlignment() 2006 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2007 2008 // Normally we have to check whether the array is zero-length. 2009 bool checkZeroLength = true; 2010 2011 // But if the array length is constant, we can suppress that. 2012 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2013 // ...and if it's constant zero, we can just skip the entire thing. 2014 if (constLength->isZero()) return; 2015 checkZeroLength = false; 2016 } 2017 2018 llvm::Value *begin = addr.getPointer(); 2019 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2020 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2021 checkZeroLength, useEHCleanupForArray); 2022 } 2023 2024 /// emitArrayDestroy - Destroys all the elements of the given array, 2025 /// beginning from last to first. The array cannot be zero-length. 2026 /// 2027 /// \param begin - a type* denoting the first element of the array 2028 /// \param end - a type* denoting one past the end of the array 2029 /// \param elementType - the element type of the array 2030 /// \param destroyer - the function to call to destroy elements 2031 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2032 /// the remaining elements in case the destruction of a single 2033 /// element throws 2034 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2035 llvm::Value *end, 2036 QualType elementType, 2037 CharUnits elementAlign, 2038 Destroyer *destroyer, 2039 bool checkZeroLength, 2040 bool useEHCleanup) { 2041 assert(!elementType->isArrayType()); 2042 2043 // The basic structure here is a do-while loop, because we don't 2044 // need to check for the zero-element case. 2045 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2046 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2047 2048 if (checkZeroLength) { 2049 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2050 "arraydestroy.isempty"); 2051 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2052 } 2053 2054 // Enter the loop body, making that address the current address. 2055 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2056 EmitBlock(bodyBB); 2057 llvm::PHINode *elementPast = 2058 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2059 elementPast->addIncoming(end, entryBB); 2060 2061 // Shift the address back by one element. 2062 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2063 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2064 "arraydestroy.element"); 2065 2066 if (useEHCleanup) 2067 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2068 destroyer); 2069 2070 // Perform the actual destruction there. 2071 destroyer(*this, Address(element, elementAlign), elementType); 2072 2073 if (useEHCleanup) 2074 PopCleanupBlock(); 2075 2076 // Check whether we've reached the end. 2077 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2078 Builder.CreateCondBr(done, doneBB, bodyBB); 2079 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2080 2081 // Done. 2082 EmitBlock(doneBB); 2083 } 2084 2085 /// Perform partial array destruction as if in an EH cleanup. Unlike 2086 /// emitArrayDestroy, the element type here may still be an array type. 2087 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2088 llvm::Value *begin, llvm::Value *end, 2089 QualType type, CharUnits elementAlign, 2090 CodeGenFunction::Destroyer *destroyer) { 2091 // If the element type is itself an array, drill down. 2092 unsigned arrayDepth = 0; 2093 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2094 // VLAs don't require a GEP index to walk into. 2095 if (!isa<VariableArrayType>(arrayType)) 2096 arrayDepth++; 2097 type = arrayType->getElementType(); 2098 } 2099 2100 if (arrayDepth) { 2101 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2102 2103 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2104 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2105 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2106 } 2107 2108 // Destroy the array. We don't ever need an EH cleanup because we 2109 // assume that we're in an EH cleanup ourselves, so a throwing 2110 // destructor causes an immediate terminate. 2111 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2112 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2113 } 2114 2115 namespace { 2116 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2117 /// array destroy where the end pointer is regularly determined and 2118 /// does not need to be loaded from a local. 2119 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2120 llvm::Value *ArrayBegin; 2121 llvm::Value *ArrayEnd; 2122 QualType ElementType; 2123 CodeGenFunction::Destroyer *Destroyer; 2124 CharUnits ElementAlign; 2125 public: 2126 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2127 QualType elementType, CharUnits elementAlign, 2128 CodeGenFunction::Destroyer *destroyer) 2129 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2130 ElementType(elementType), Destroyer(destroyer), 2131 ElementAlign(elementAlign) {} 2132 2133 void Emit(CodeGenFunction &CGF, Flags flags) override { 2134 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2135 ElementType, ElementAlign, Destroyer); 2136 } 2137 }; 2138 2139 /// IrregularPartialArrayDestroy - a cleanup which performs a 2140 /// partial array destroy where the end pointer is irregularly 2141 /// determined and must be loaded from a local. 2142 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2143 llvm::Value *ArrayBegin; 2144 Address ArrayEndPointer; 2145 QualType ElementType; 2146 CodeGenFunction::Destroyer *Destroyer; 2147 CharUnits ElementAlign; 2148 public: 2149 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2150 Address arrayEndPointer, 2151 QualType elementType, 2152 CharUnits elementAlign, 2153 CodeGenFunction::Destroyer *destroyer) 2154 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2155 ElementType(elementType), Destroyer(destroyer), 2156 ElementAlign(elementAlign) {} 2157 2158 void Emit(CodeGenFunction &CGF, Flags flags) override { 2159 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2160 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2161 ElementType, ElementAlign, Destroyer); 2162 } 2163 }; 2164 } // end anonymous namespace 2165 2166 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2167 /// already-constructed elements of the given array. The cleanup 2168 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2169 /// 2170 /// \param elementType - the immediate element type of the array; 2171 /// possibly still an array type 2172 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2173 Address arrayEndPointer, 2174 QualType elementType, 2175 CharUnits elementAlign, 2176 Destroyer *destroyer) { 2177 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2178 arrayBegin, arrayEndPointer, 2179 elementType, elementAlign, 2180 destroyer); 2181 } 2182 2183 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2184 /// already-constructed elements of the given array. The cleanup 2185 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2186 /// 2187 /// \param elementType - the immediate element type of the array; 2188 /// possibly still an array type 2189 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2190 llvm::Value *arrayEnd, 2191 QualType elementType, 2192 CharUnits elementAlign, 2193 Destroyer *destroyer) { 2194 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2195 arrayBegin, arrayEnd, 2196 elementType, elementAlign, 2197 destroyer); 2198 } 2199 2200 /// Lazily declare the @llvm.lifetime.start intrinsic. 2201 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 2202 if (LifetimeStartFn) 2203 return LifetimeStartFn; 2204 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2205 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2206 return LifetimeStartFn; 2207 } 2208 2209 /// Lazily declare the @llvm.lifetime.end intrinsic. 2210 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 2211 if (LifetimeEndFn) 2212 return LifetimeEndFn; 2213 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2214 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2215 return LifetimeEndFn; 2216 } 2217 2218 namespace { 2219 /// A cleanup to perform a release of an object at the end of a 2220 /// function. This is used to balance out the incoming +1 of a 2221 /// ns_consumed argument when we can't reasonably do that just by 2222 /// not doing the initial retain for a __block argument. 2223 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2224 ConsumeARCParameter(llvm::Value *param, 2225 ARCPreciseLifetime_t precise) 2226 : Param(param), Precise(precise) {} 2227 2228 llvm::Value *Param; 2229 ARCPreciseLifetime_t Precise; 2230 2231 void Emit(CodeGenFunction &CGF, Flags flags) override { 2232 CGF.EmitARCRelease(Param, Precise); 2233 } 2234 }; 2235 } // end anonymous namespace 2236 2237 /// Emit an alloca (or GlobalValue depending on target) 2238 /// for the specified parameter and set up LocalDeclMap. 2239 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2240 unsigned ArgNo) { 2241 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2242 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2243 "Invalid argument to EmitParmDecl"); 2244 2245 Arg.getAnyValue()->setName(D.getName()); 2246 2247 QualType Ty = D.getType(); 2248 2249 // Use better IR generation for certain implicit parameters. 2250 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2251 // The only implicit argument a block has is its literal. 2252 // This may be passed as an inalloca'ed value on Windows x86. 2253 if (BlockInfo) { 2254 llvm::Value *V = Arg.isIndirect() 2255 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2256 : Arg.getDirectValue(); 2257 setBlockContextParameter(IPD, ArgNo, V); 2258 return; 2259 } 2260 } 2261 2262 Address DeclPtr = Address::invalid(); 2263 bool DoStore = false; 2264 bool IsScalar = hasScalarEvaluationKind(Ty); 2265 // If we already have a pointer to the argument, reuse the input pointer. 2266 if (Arg.isIndirect()) { 2267 DeclPtr = Arg.getIndirectAddress(); 2268 // If we have a prettier pointer type at this point, bitcast to that. 2269 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2270 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2271 if (DeclPtr.getType() != IRTy) 2272 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2273 // Indirect argument is in alloca address space, which may be different 2274 // from the default address space. 2275 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2276 auto *V = DeclPtr.getPointer(); 2277 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2278 auto DestLangAS = 2279 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2280 if (SrcLangAS != DestLangAS) { 2281 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2282 CGM.getDataLayout().getAllocaAddrSpace()); 2283 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2284 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2285 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2286 *this, V, SrcLangAS, DestLangAS, T, true), 2287 DeclPtr.getAlignment()); 2288 } 2289 2290 // Push a destructor cleanup for this parameter if the ABI requires it. 2291 // Don't push a cleanup in a thunk for a method that will also emit a 2292 // cleanup. 2293 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2294 Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2295 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 2296 assert((DtorKind == QualType::DK_cxx_destructor || 2297 DtorKind == QualType::DK_nontrivial_c_struct) && 2298 "unexpected destructor type"); 2299 pushDestroy(DtorKind, DeclPtr, Ty); 2300 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2301 EHStack.stable_begin(); 2302 } 2303 } 2304 } else { 2305 // Check if the parameter address is controlled by OpenMP runtime. 2306 Address OpenMPLocalAddr = 2307 getLangOpts().OpenMP 2308 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2309 : Address::invalid(); 2310 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2311 DeclPtr = OpenMPLocalAddr; 2312 } else { 2313 // Otherwise, create a temporary to hold the value. 2314 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2315 D.getName() + ".addr"); 2316 } 2317 DoStore = true; 2318 } 2319 2320 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2321 2322 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2323 if (IsScalar) { 2324 Qualifiers qs = Ty.getQualifiers(); 2325 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2326 // We honor __attribute__((ns_consumed)) for types with lifetime. 2327 // For __strong, it's handled by just skipping the initial retain; 2328 // otherwise we have to balance out the initial +1 with an extra 2329 // cleanup to do the release at the end of the function. 2330 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2331 2332 // If a parameter is pseudo-strong then we can omit the implicit retain. 2333 if (D.isARCPseudoStrong()) { 2334 assert(lt == Qualifiers::OCL_Strong && 2335 "pseudo-strong variable isn't strong?"); 2336 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2337 lt = Qualifiers::OCL_ExplicitNone; 2338 } 2339 2340 // Load objects passed indirectly. 2341 if (Arg.isIndirect() && !ArgVal) 2342 ArgVal = Builder.CreateLoad(DeclPtr); 2343 2344 if (lt == Qualifiers::OCL_Strong) { 2345 if (!isConsumed) { 2346 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2347 // use objc_storeStrong(&dest, value) for retaining the 2348 // object. But first, store a null into 'dest' because 2349 // objc_storeStrong attempts to release its old value. 2350 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2351 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2352 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2353 DoStore = false; 2354 } 2355 else 2356 // Don't use objc_retainBlock for block pointers, because we 2357 // don't want to Block_copy something just because we got it 2358 // as a parameter. 2359 ArgVal = EmitARCRetainNonBlock(ArgVal); 2360 } 2361 } else { 2362 // Push the cleanup for a consumed parameter. 2363 if (isConsumed) { 2364 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2365 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2366 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2367 precise); 2368 } 2369 2370 if (lt == Qualifiers::OCL_Weak) { 2371 EmitARCInitWeak(DeclPtr, ArgVal); 2372 DoStore = false; // The weak init is a store, no need to do two. 2373 } 2374 } 2375 2376 // Enter the cleanup scope. 2377 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2378 } 2379 } 2380 2381 // Store the initial value into the alloca. 2382 if (DoStore) 2383 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2384 2385 setAddrOfLocalVar(&D, DeclPtr); 2386 2387 // Emit debug info for param declaration. 2388 if (CGDebugInfo *DI = getDebugInfo()) { 2389 if (CGM.getCodeGenOpts().getDebugInfo() >= 2390 codegenoptions::LimitedDebugInfo) { 2391 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2392 } 2393 } 2394 2395 if (D.hasAttr<AnnotateAttr>()) 2396 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2397 2398 // We can only check return value nullability if all arguments to the 2399 // function satisfy their nullability preconditions. This makes it necessary 2400 // to emit null checks for args in the function body itself. 2401 if (requiresReturnValueNullabilityCheck()) { 2402 auto Nullability = Ty->getNullability(getContext()); 2403 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2404 SanitizerScope SanScope(this); 2405 RetValNullabilityPrecondition = 2406 Builder.CreateAnd(RetValNullabilityPrecondition, 2407 Builder.CreateIsNotNull(Arg.getAnyValue())); 2408 } 2409 } 2410 } 2411 2412 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2413 CodeGenFunction *CGF) { 2414 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2415 return; 2416 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2417 } 2418 2419 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2420 getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D); 2421 } 2422