1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclOpenMP.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Type.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 void CodeGenFunction::EmitDecl(const Decl &D) { 39 switch (D.getKind()) { 40 case Decl::BuiltinTemplate: 41 case Decl::TranslationUnit: 42 case Decl::ExternCContext: 43 case Decl::Namespace: 44 case Decl::UnresolvedUsingTypename: 45 case Decl::ClassTemplateSpecialization: 46 case Decl::ClassTemplatePartialSpecialization: 47 case Decl::VarTemplateSpecialization: 48 case Decl::VarTemplatePartialSpecialization: 49 case Decl::TemplateTypeParm: 50 case Decl::UnresolvedUsingValue: 51 case Decl::NonTypeTemplateParm: 52 case Decl::CXXMethod: 53 case Decl::CXXConstructor: 54 case Decl::CXXDestructor: 55 case Decl::CXXConversion: 56 case Decl::Field: 57 case Decl::MSProperty: 58 case Decl::IndirectField: 59 case Decl::ObjCIvar: 60 case Decl::ObjCAtDefsField: 61 case Decl::ParmVar: 62 case Decl::ImplicitParam: 63 case Decl::ClassTemplate: 64 case Decl::VarTemplate: 65 case Decl::FunctionTemplate: 66 case Decl::TypeAliasTemplate: 67 case Decl::TemplateTemplateParm: 68 case Decl::ObjCMethod: 69 case Decl::ObjCCategory: 70 case Decl::ObjCProtocol: 71 case Decl::ObjCInterface: 72 case Decl::ObjCCategoryImpl: 73 case Decl::ObjCImplementation: 74 case Decl::ObjCProperty: 75 case Decl::ObjCCompatibleAlias: 76 case Decl::PragmaComment: 77 case Decl::PragmaDetectMismatch: 78 case Decl::AccessSpec: 79 case Decl::LinkageSpec: 80 case Decl::ObjCPropertyImpl: 81 case Decl::FileScopeAsm: 82 case Decl::Friend: 83 case Decl::FriendTemplate: 84 case Decl::Block: 85 case Decl::Captured: 86 case Decl::ClassScopeFunctionSpecialization: 87 case Decl::UsingShadow: 88 case Decl::ObjCTypeParam: 89 llvm_unreachable("Declaration should not be in declstmts!"); 90 case Decl::Function: // void X(); 91 case Decl::Record: // struct/union/class X; 92 case Decl::Enum: // enum X; 93 case Decl::EnumConstant: // enum ? { X = ? } 94 case Decl::CXXRecord: // struct/union/class X; [C++] 95 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 96 case Decl::Label: // __label__ x; 97 case Decl::Import: 98 case Decl::OMPThreadPrivate: 99 case Decl::OMPCapturedExpr: 100 case Decl::Empty: 101 // None of these decls require codegen support. 102 return; 103 104 case Decl::NamespaceAlias: 105 if (CGDebugInfo *DI = getDebugInfo()) 106 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 107 return; 108 case Decl::Using: // using X; [C++] 109 if (CGDebugInfo *DI = getDebugInfo()) 110 DI->EmitUsingDecl(cast<UsingDecl>(D)); 111 return; 112 case Decl::UsingDirective: // using namespace X; [C++] 113 if (CGDebugInfo *DI = getDebugInfo()) 114 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 115 return; 116 case Decl::Var: { 117 const VarDecl &VD = cast<VarDecl>(D); 118 assert(VD.isLocalVarDecl() && 119 "Should not see file-scope variables inside a function!"); 120 return EmitVarDecl(VD); 121 } 122 123 case Decl::OMPDeclareReduction: 124 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 125 126 case Decl::Typedef: // typedef int X; 127 case Decl::TypeAlias: { // using X = int; [C++0x] 128 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 129 QualType Ty = TD.getUnderlyingType(); 130 131 if (Ty->isVariablyModifiedType()) 132 EmitVariablyModifiedType(Ty); 133 } 134 } 135 } 136 137 /// EmitVarDecl - This method handles emission of any variable declaration 138 /// inside a function, including static vars etc. 139 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 140 if (D.isStaticLocal()) { 141 llvm::GlobalValue::LinkageTypes Linkage = 142 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 143 144 // FIXME: We need to force the emission/use of a guard variable for 145 // some variables even if we can constant-evaluate them because 146 // we can't guarantee every translation unit will constant-evaluate them. 147 148 return EmitStaticVarDecl(D, Linkage); 149 } 150 151 if (D.hasExternalStorage()) 152 // Don't emit it now, allow it to be emitted lazily on its first use. 153 return; 154 155 if (D.getType().getAddressSpace() == LangAS::opencl_local) 156 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 157 158 assert(D.hasLocalStorage()); 159 return EmitAutoVarDecl(D); 160 } 161 162 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 163 if (CGM.getLangOpts().CPlusPlus) 164 return CGM.getMangledName(&D).str(); 165 166 // If this isn't C++, we don't need a mangled name, just a pretty one. 167 assert(!D.isExternallyVisible() && "name shouldn't matter"); 168 std::string ContextName; 169 const DeclContext *DC = D.getDeclContext(); 170 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 171 DC = cast<DeclContext>(CD->getNonClosureContext()); 172 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 173 ContextName = CGM.getMangledName(FD); 174 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 175 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 176 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 177 ContextName = OMD->getSelector().getAsString(); 178 else 179 llvm_unreachable("Unknown context for static var decl"); 180 181 ContextName += "." + D.getNameAsString(); 182 return ContextName; 183 } 184 185 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 186 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 187 // In general, we don't always emit static var decls once before we reference 188 // them. It is possible to reference them before emitting the function that 189 // contains them, and it is possible to emit the containing function multiple 190 // times. 191 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 192 return ExistingGV; 193 194 QualType Ty = D.getType(); 195 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 196 197 // Use the label if the variable is renamed with the asm-label extension. 198 std::string Name; 199 if (D.hasAttr<AsmLabelAttr>()) 200 Name = getMangledName(&D); 201 else 202 Name = getStaticDeclName(*this, D); 203 204 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 205 unsigned AddrSpace = 206 GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty)); 207 208 // Local address space cannot have an initializer. 209 llvm::Constant *Init = nullptr; 210 if (Ty.getAddressSpace() != LangAS::opencl_local) 211 Init = EmitNullConstant(Ty); 212 else 213 Init = llvm::UndefValue::get(LTy); 214 215 llvm::GlobalVariable *GV = 216 new llvm::GlobalVariable(getModule(), LTy, 217 Ty.isConstant(getContext()), Linkage, 218 Init, Name, nullptr, 219 llvm::GlobalVariable::NotThreadLocal, 220 AddrSpace); 221 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 222 setGlobalVisibility(GV, &D); 223 224 if (supportsCOMDAT() && GV->isWeakForLinker()) 225 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 226 227 if (D.getTLSKind()) 228 setTLSMode(GV, D); 229 230 if (D.isExternallyVisible()) { 231 if (D.hasAttr<DLLImportAttr>()) 232 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 233 else if (D.hasAttr<DLLExportAttr>()) 234 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 235 } 236 237 // Make sure the result is of the correct type. 238 unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty); 239 llvm::Constant *Addr = GV; 240 if (AddrSpace != ExpectedAddrSpace) { 241 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 242 Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 243 } 244 245 setStaticLocalDeclAddress(&D, Addr); 246 247 // Ensure that the static local gets initialized by making sure the parent 248 // function gets emitted eventually. 249 const Decl *DC = cast<Decl>(D.getDeclContext()); 250 251 // We can't name blocks or captured statements directly, so try to emit their 252 // parents. 253 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 254 DC = DC->getNonClosureContext(); 255 // FIXME: Ensure that global blocks get emitted. 256 if (!DC) 257 return Addr; 258 } 259 260 GlobalDecl GD; 261 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 262 GD = GlobalDecl(CD, Ctor_Base); 263 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 264 GD = GlobalDecl(DD, Dtor_Base); 265 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 266 GD = GlobalDecl(FD); 267 else { 268 // Don't do anything for Obj-C method decls or global closures. We should 269 // never defer them. 270 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 271 } 272 if (GD.getDecl()) 273 (void)GetAddrOfGlobal(GD); 274 275 return Addr; 276 } 277 278 /// hasNontrivialDestruction - Determine whether a type's destruction is 279 /// non-trivial. If so, and the variable uses static initialization, we must 280 /// register its destructor to run on exit. 281 static bool hasNontrivialDestruction(QualType T) { 282 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 283 return RD && !RD->hasTrivialDestructor(); 284 } 285 286 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 287 /// global variable that has already been created for it. If the initializer 288 /// has a different type than GV does, this may free GV and return a different 289 /// one. Otherwise it just returns GV. 290 llvm::GlobalVariable * 291 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 292 llvm::GlobalVariable *GV) { 293 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 294 295 // If constant emission failed, then this should be a C++ static 296 // initializer. 297 if (!Init) { 298 if (!getLangOpts().CPlusPlus) 299 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 300 else if (Builder.GetInsertBlock()) { 301 // Since we have a static initializer, this global variable can't 302 // be constant. 303 GV->setConstant(false); 304 305 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 306 } 307 return GV; 308 } 309 310 // The initializer may differ in type from the global. Rewrite 311 // the global to match the initializer. (We have to do this 312 // because some types, like unions, can't be completely represented 313 // in the LLVM type system.) 314 if (GV->getType()->getElementType() != Init->getType()) { 315 llvm::GlobalVariable *OldGV = GV; 316 317 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 318 OldGV->isConstant(), 319 OldGV->getLinkage(), Init, "", 320 /*InsertBefore*/ OldGV, 321 OldGV->getThreadLocalMode(), 322 CGM.getContext().getTargetAddressSpace(D.getType())); 323 GV->setVisibility(OldGV->getVisibility()); 324 GV->setComdat(OldGV->getComdat()); 325 326 // Steal the name of the old global 327 GV->takeName(OldGV); 328 329 // Replace all uses of the old global with the new global 330 llvm::Constant *NewPtrForOldDecl = 331 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 332 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 333 334 // Erase the old global, since it is no longer used. 335 OldGV->eraseFromParent(); 336 } 337 338 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 339 GV->setInitializer(Init); 340 341 if (hasNontrivialDestruction(D.getType())) { 342 // We have a constant initializer, but a nontrivial destructor. We still 343 // need to perform a guarded "initialization" in order to register the 344 // destructor. 345 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 346 } 347 348 return GV; 349 } 350 351 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 352 llvm::GlobalValue::LinkageTypes Linkage) { 353 // Check to see if we already have a global variable for this 354 // declaration. This can happen when double-emitting function 355 // bodies, e.g. with complete and base constructors. 356 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 357 CharUnits alignment = getContext().getDeclAlign(&D); 358 359 // Store into LocalDeclMap before generating initializer to handle 360 // circular references. 361 setAddrOfLocalVar(&D, Address(addr, alignment)); 362 363 // We can't have a VLA here, but we can have a pointer to a VLA, 364 // even though that doesn't really make any sense. 365 // Make sure to evaluate VLA bounds now so that we have them for later. 366 if (D.getType()->isVariablyModifiedType()) 367 EmitVariablyModifiedType(D.getType()); 368 369 // Save the type in case adding the initializer forces a type change. 370 llvm::Type *expectedType = addr->getType(); 371 372 llvm::GlobalVariable *var = 373 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 374 // If this value has an initializer, emit it. 375 if (D.getInit()) 376 var = AddInitializerToStaticVarDecl(D, var); 377 378 var->setAlignment(alignment.getQuantity()); 379 380 if (D.hasAttr<AnnotateAttr>()) 381 CGM.AddGlobalAnnotations(&D, var); 382 383 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 384 var->setSection(SA->getName()); 385 386 if (D.hasAttr<UsedAttr>()) 387 CGM.addUsedGlobal(var); 388 389 // We may have to cast the constant because of the initializer 390 // mismatch above. 391 // 392 // FIXME: It is really dangerous to store this in the map; if anyone 393 // RAUW's the GV uses of this constant will be invalid. 394 llvm::Constant *castedAddr = 395 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 396 if (var != castedAddr) 397 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 398 CGM.setStaticLocalDeclAddress(&D, castedAddr); 399 400 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 401 402 // Emit global variable debug descriptor for static vars. 403 CGDebugInfo *DI = getDebugInfo(); 404 if (DI && 405 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 406 DI->setLocation(D.getLocation()); 407 DI->EmitGlobalVariable(var, &D); 408 } 409 } 410 411 namespace { 412 struct DestroyObject final : EHScopeStack::Cleanup { 413 DestroyObject(Address addr, QualType type, 414 CodeGenFunction::Destroyer *destroyer, 415 bool useEHCleanupForArray) 416 : addr(addr), type(type), destroyer(destroyer), 417 useEHCleanupForArray(useEHCleanupForArray) {} 418 419 Address addr; 420 QualType type; 421 CodeGenFunction::Destroyer *destroyer; 422 bool useEHCleanupForArray; 423 424 void Emit(CodeGenFunction &CGF, Flags flags) override { 425 // Don't use an EH cleanup recursively from an EH cleanup. 426 bool useEHCleanupForArray = 427 flags.isForNormalCleanup() && this->useEHCleanupForArray; 428 429 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 430 } 431 }; 432 433 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 434 DestroyNRVOVariable(Address addr, 435 const CXXDestructorDecl *Dtor, 436 llvm::Value *NRVOFlag) 437 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 438 439 const CXXDestructorDecl *Dtor; 440 llvm::Value *NRVOFlag; 441 Address Loc; 442 443 void Emit(CodeGenFunction &CGF, Flags flags) override { 444 // Along the exceptions path we always execute the dtor. 445 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 446 447 llvm::BasicBlock *SkipDtorBB = nullptr; 448 if (NRVO) { 449 // If we exited via NRVO, we skip the destructor call. 450 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 451 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 452 llvm::Value *DidNRVO = 453 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 454 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 455 CGF.EmitBlock(RunDtorBB); 456 } 457 458 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 459 /*ForVirtualBase=*/false, 460 /*Delegating=*/false, 461 Loc); 462 463 if (NRVO) CGF.EmitBlock(SkipDtorBB); 464 } 465 }; 466 467 struct CallStackRestore final : EHScopeStack::Cleanup { 468 Address Stack; 469 CallStackRestore(Address Stack) : Stack(Stack) {} 470 void Emit(CodeGenFunction &CGF, Flags flags) override { 471 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 472 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 473 CGF.Builder.CreateCall(F, V); 474 } 475 }; 476 477 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 478 const VarDecl &Var; 479 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 480 481 void Emit(CodeGenFunction &CGF, Flags flags) override { 482 // Compute the address of the local variable, in case it's a 483 // byref or something. 484 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 485 Var.getType(), VK_LValue, SourceLocation()); 486 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 487 SourceLocation()); 488 CGF.EmitExtendGCLifetime(value); 489 } 490 }; 491 492 struct CallCleanupFunction final : EHScopeStack::Cleanup { 493 llvm::Constant *CleanupFn; 494 const CGFunctionInfo &FnInfo; 495 const VarDecl &Var; 496 497 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 498 const VarDecl *Var) 499 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 500 501 void Emit(CodeGenFunction &CGF, Flags flags) override { 502 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 503 Var.getType(), VK_LValue, SourceLocation()); 504 // Compute the address of the local variable, in case it's a byref 505 // or something. 506 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 507 508 // In some cases, the type of the function argument will be different from 509 // the type of the pointer. An example of this is 510 // void f(void* arg); 511 // __attribute__((cleanup(f))) void *g; 512 // 513 // To fix this we insert a bitcast here. 514 QualType ArgTy = FnInfo.arg_begin()->type; 515 llvm::Value *Arg = 516 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 517 518 CallArgList Args; 519 Args.add(RValue::get(Arg), 520 CGF.getContext().getPointerType(Var.getType())); 521 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 522 } 523 }; 524 525 /// A cleanup to call @llvm.lifetime.end. 526 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 527 llvm::Value *Addr; 528 llvm::Value *Size; 529 public: 530 CallLifetimeEnd(Address addr, llvm::Value *size) 531 : Addr(addr.getPointer()), Size(size) {} 532 533 void Emit(CodeGenFunction &CGF, Flags flags) override { 534 CGF.EmitLifetimeEnd(Size, Addr); 535 } 536 }; 537 } // end anonymous namespace 538 539 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 540 /// variable with lifetime. 541 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 542 Address addr, 543 Qualifiers::ObjCLifetime lifetime) { 544 switch (lifetime) { 545 case Qualifiers::OCL_None: 546 llvm_unreachable("present but none"); 547 548 case Qualifiers::OCL_ExplicitNone: 549 // nothing to do 550 break; 551 552 case Qualifiers::OCL_Strong: { 553 CodeGenFunction::Destroyer *destroyer = 554 (var.hasAttr<ObjCPreciseLifetimeAttr>() 555 ? CodeGenFunction::destroyARCStrongPrecise 556 : CodeGenFunction::destroyARCStrongImprecise); 557 558 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 559 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 560 cleanupKind & EHCleanup); 561 break; 562 } 563 case Qualifiers::OCL_Autoreleasing: 564 // nothing to do 565 break; 566 567 case Qualifiers::OCL_Weak: 568 // __weak objects always get EH cleanups; otherwise, exceptions 569 // could cause really nasty crashes instead of mere leaks. 570 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 571 CodeGenFunction::destroyARCWeak, 572 /*useEHCleanup*/ true); 573 break; 574 } 575 } 576 577 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 578 if (const Expr *e = dyn_cast<Expr>(s)) { 579 // Skip the most common kinds of expressions that make 580 // hierarchy-walking expensive. 581 s = e = e->IgnoreParenCasts(); 582 583 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 584 return (ref->getDecl() == &var); 585 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 586 const BlockDecl *block = be->getBlockDecl(); 587 for (const auto &I : block->captures()) { 588 if (I.getVariable() == &var) 589 return true; 590 } 591 } 592 } 593 594 for (const Stmt *SubStmt : s->children()) 595 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 596 if (SubStmt && isAccessedBy(var, SubStmt)) 597 return true; 598 599 return false; 600 } 601 602 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 603 if (!decl) return false; 604 if (!isa<VarDecl>(decl)) return false; 605 const VarDecl *var = cast<VarDecl>(decl); 606 return isAccessedBy(*var, e); 607 } 608 609 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 610 const LValue &destLV, const Expr *init) { 611 bool needsCast = false; 612 613 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 614 switch (castExpr->getCastKind()) { 615 // Look through casts that don't require representation changes. 616 case CK_NoOp: 617 case CK_BitCast: 618 case CK_BlockPointerToObjCPointerCast: 619 needsCast = true; 620 break; 621 622 // If we find an l-value to r-value cast from a __weak variable, 623 // emit this operation as a copy or move. 624 case CK_LValueToRValue: { 625 const Expr *srcExpr = castExpr->getSubExpr(); 626 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 627 return false; 628 629 // Emit the source l-value. 630 LValue srcLV = CGF.EmitLValue(srcExpr); 631 632 // Handle a formal type change to avoid asserting. 633 auto srcAddr = srcLV.getAddress(); 634 if (needsCast) { 635 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 636 destLV.getAddress().getElementType()); 637 } 638 639 // If it was an l-value, use objc_copyWeak. 640 if (srcExpr->getValueKind() == VK_LValue) { 641 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 642 } else { 643 assert(srcExpr->getValueKind() == VK_XValue); 644 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 645 } 646 return true; 647 } 648 649 // Stop at anything else. 650 default: 651 return false; 652 } 653 654 init = castExpr->getSubExpr(); 655 } 656 return false; 657 } 658 659 static void drillIntoBlockVariable(CodeGenFunction &CGF, 660 LValue &lvalue, 661 const VarDecl *var) { 662 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 663 } 664 665 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 666 LValue lvalue, bool capturedByInit) { 667 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 668 if (!lifetime) { 669 llvm::Value *value = EmitScalarExpr(init); 670 if (capturedByInit) 671 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 672 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 673 return; 674 } 675 676 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 677 init = DIE->getExpr(); 678 679 // If we're emitting a value with lifetime, we have to do the 680 // initialization *before* we leave the cleanup scopes. 681 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 682 enterFullExpression(ewc); 683 init = ewc->getSubExpr(); 684 } 685 CodeGenFunction::RunCleanupsScope Scope(*this); 686 687 // We have to maintain the illusion that the variable is 688 // zero-initialized. If the variable might be accessed in its 689 // initializer, zero-initialize before running the initializer, then 690 // actually perform the initialization with an assign. 691 bool accessedByInit = false; 692 if (lifetime != Qualifiers::OCL_ExplicitNone) 693 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 694 if (accessedByInit) { 695 LValue tempLV = lvalue; 696 // Drill down to the __block object if necessary. 697 if (capturedByInit) { 698 // We can use a simple GEP for this because it can't have been 699 // moved yet. 700 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 701 cast<VarDecl>(D), 702 /*follow*/ false)); 703 } 704 705 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 706 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 707 708 // If __weak, we want to use a barrier under certain conditions. 709 if (lifetime == Qualifiers::OCL_Weak) 710 EmitARCInitWeak(tempLV.getAddress(), zero); 711 712 // Otherwise just do a simple store. 713 else 714 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 715 } 716 717 // Emit the initializer. 718 llvm::Value *value = nullptr; 719 720 switch (lifetime) { 721 case Qualifiers::OCL_None: 722 llvm_unreachable("present but none"); 723 724 case Qualifiers::OCL_ExplicitNone: 725 value = EmitARCUnsafeUnretainedScalarExpr(init); 726 break; 727 728 case Qualifiers::OCL_Strong: { 729 value = EmitARCRetainScalarExpr(init); 730 break; 731 } 732 733 case Qualifiers::OCL_Weak: { 734 // If it's not accessed by the initializer, try to emit the 735 // initialization with a copy or move. 736 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 737 return; 738 } 739 740 // No way to optimize a producing initializer into this. It's not 741 // worth optimizing for, because the value will immediately 742 // disappear in the common case. 743 value = EmitScalarExpr(init); 744 745 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 746 if (accessedByInit) 747 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 748 else 749 EmitARCInitWeak(lvalue.getAddress(), value); 750 return; 751 } 752 753 case Qualifiers::OCL_Autoreleasing: 754 value = EmitARCRetainAutoreleaseScalarExpr(init); 755 break; 756 } 757 758 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 759 760 // If the variable might have been accessed by its initializer, we 761 // might have to initialize with a barrier. We have to do this for 762 // both __weak and __strong, but __weak got filtered out above. 763 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 764 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 765 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 766 EmitARCRelease(oldValue, ARCImpreciseLifetime); 767 return; 768 } 769 770 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 771 } 772 773 /// EmitScalarInit - Initialize the given lvalue with the given object. 774 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 775 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 776 if (!lifetime) 777 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 778 779 switch (lifetime) { 780 case Qualifiers::OCL_None: 781 llvm_unreachable("present but none"); 782 783 case Qualifiers::OCL_ExplicitNone: 784 // nothing to do 785 break; 786 787 case Qualifiers::OCL_Strong: 788 init = EmitARCRetain(lvalue.getType(), init); 789 break; 790 791 case Qualifiers::OCL_Weak: 792 // Initialize and then skip the primitive store. 793 EmitARCInitWeak(lvalue.getAddress(), init); 794 return; 795 796 case Qualifiers::OCL_Autoreleasing: 797 init = EmitARCRetainAutorelease(lvalue.getType(), init); 798 break; 799 } 800 801 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 802 } 803 804 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 805 /// non-zero parts of the specified initializer with equal or fewer than 806 /// NumStores scalar stores. 807 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 808 unsigned &NumStores) { 809 // Zero and Undef never requires any extra stores. 810 if (isa<llvm::ConstantAggregateZero>(Init) || 811 isa<llvm::ConstantPointerNull>(Init) || 812 isa<llvm::UndefValue>(Init)) 813 return true; 814 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 815 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 816 isa<llvm::ConstantExpr>(Init)) 817 return Init->isNullValue() || NumStores--; 818 819 // See if we can emit each element. 820 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 821 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 822 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 823 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 824 return false; 825 } 826 return true; 827 } 828 829 if (llvm::ConstantDataSequential *CDS = 830 dyn_cast<llvm::ConstantDataSequential>(Init)) { 831 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 832 llvm::Constant *Elt = CDS->getElementAsConstant(i); 833 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 834 return false; 835 } 836 return true; 837 } 838 839 // Anything else is hard and scary. 840 return false; 841 } 842 843 /// emitStoresForInitAfterMemset - For inits that 844 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 845 /// stores that would be required. 846 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 847 bool isVolatile, CGBuilderTy &Builder) { 848 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 849 "called emitStoresForInitAfterMemset for zero or undef value."); 850 851 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 852 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 853 isa<llvm::ConstantExpr>(Init)) { 854 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 855 return; 856 } 857 858 if (llvm::ConstantDataSequential *CDS = 859 dyn_cast<llvm::ConstantDataSequential>(Init)) { 860 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 861 llvm::Constant *Elt = CDS->getElementAsConstant(i); 862 863 // If necessary, get a pointer to the element and emit it. 864 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 865 emitStoresForInitAfterMemset( 866 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 867 isVolatile, Builder); 868 } 869 return; 870 } 871 872 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 873 "Unknown value type!"); 874 875 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 876 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 877 878 // If necessary, get a pointer to the element and emit it. 879 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 880 emitStoresForInitAfterMemset( 881 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 882 isVolatile, Builder); 883 } 884 } 885 886 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 887 /// plus some stores to initialize a local variable instead of using a memcpy 888 /// from a constant global. It is beneficial to use memset if the global is all 889 /// zeros, or mostly zeros and large. 890 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 891 uint64_t GlobalSize) { 892 // If a global is all zeros, always use a memset. 893 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 894 895 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 896 // do it if it will require 6 or fewer scalar stores. 897 // TODO: Should budget depends on the size? Avoiding a large global warrants 898 // plopping in more stores. 899 unsigned StoreBudget = 6; 900 uint64_t SizeLimit = 32; 901 902 return GlobalSize > SizeLimit && 903 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 904 } 905 906 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 907 /// variable declaration with auto, register, or no storage class specifier. 908 /// These turn into simple stack objects, or GlobalValues depending on target. 909 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 910 AutoVarEmission emission = EmitAutoVarAlloca(D); 911 EmitAutoVarInit(emission); 912 EmitAutoVarCleanups(emission); 913 } 914 915 /// Emit a lifetime.begin marker if some criteria are satisfied. 916 /// \return a pointer to the temporary size Value if a marker was emitted, null 917 /// otherwise 918 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 919 llvm::Value *Addr) { 920 // For now, only in optimized builds. 921 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 922 return nullptr; 923 924 // Disable lifetime markers in msan builds. 925 // FIXME: Remove this when msan works with lifetime markers. 926 if (getLangOpts().Sanitize.has(SanitizerKind::Memory)) 927 return nullptr; 928 929 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 930 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 931 llvm::CallInst *C = 932 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 933 C->setDoesNotThrow(); 934 return SizeV; 935 } 936 937 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 938 Addr = Builder.CreateBitCast(Addr, Int8PtrTy); 939 llvm::CallInst *C = 940 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 941 C->setDoesNotThrow(); 942 } 943 944 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 945 /// local variable. Does not emit initialization or destruction. 946 CodeGenFunction::AutoVarEmission 947 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 948 QualType Ty = D.getType(); 949 950 AutoVarEmission emission(D); 951 952 bool isByRef = D.hasAttr<BlocksAttr>(); 953 emission.IsByRef = isByRef; 954 955 CharUnits alignment = getContext().getDeclAlign(&D); 956 957 // If the type is variably-modified, emit all the VLA sizes for it. 958 if (Ty->isVariablyModifiedType()) 959 EmitVariablyModifiedType(Ty); 960 961 Address address = Address::invalid(); 962 if (Ty->isConstantSizeType()) { 963 bool NRVO = getLangOpts().ElideConstructors && 964 D.isNRVOVariable(); 965 966 // If this value is an array or struct with a statically determinable 967 // constant initializer, there are optimizations we can do. 968 // 969 // TODO: We should constant-evaluate the initializer of any variable, 970 // as long as it is initialized by a constant expression. Currently, 971 // isConstantInitializer produces wrong answers for structs with 972 // reference or bitfield members, and a few other cases, and checking 973 // for POD-ness protects us from some of these. 974 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 975 (D.isConstexpr() || 976 ((Ty.isPODType(getContext()) || 977 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 978 D.getInit()->isConstantInitializer(getContext(), false)))) { 979 980 // If the variable's a const type, and it's neither an NRVO 981 // candidate nor a __block variable and has no mutable members, 982 // emit it as a global instead. 983 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 984 CGM.isTypeConstant(Ty, true)) { 985 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 986 987 // Signal this condition to later callbacks. 988 emission.Addr = Address::invalid(); 989 assert(emission.wasEmittedAsGlobal()); 990 return emission; 991 } 992 993 // Otherwise, tell the initialization code that we're in this case. 994 emission.IsConstantAggregate = true; 995 } 996 997 // A normal fixed sized variable becomes an alloca in the entry block, 998 // unless it's an NRVO variable. 999 1000 if (NRVO) { 1001 // The named return value optimization: allocate this variable in the 1002 // return slot, so that we can elide the copy when returning this 1003 // variable (C++0x [class.copy]p34). 1004 address = ReturnValue; 1005 1006 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1007 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 1008 // Create a flag that is used to indicate when the NRVO was applied 1009 // to this variable. Set it to zero to indicate that NRVO was not 1010 // applied. 1011 llvm::Value *Zero = Builder.getFalse(); 1012 Address NRVOFlag = 1013 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1014 EnsureInsertPoint(); 1015 Builder.CreateStore(Zero, NRVOFlag); 1016 1017 // Record the NRVO flag for this variable. 1018 NRVOFlags[&D] = NRVOFlag.getPointer(); 1019 emission.NRVOFlag = NRVOFlag.getPointer(); 1020 } 1021 } 1022 } else { 1023 CharUnits allocaAlignment; 1024 llvm::Type *allocaTy; 1025 if (isByRef) { 1026 auto &byrefInfo = getBlockByrefInfo(&D); 1027 allocaTy = byrefInfo.Type; 1028 allocaAlignment = byrefInfo.ByrefAlignment; 1029 } else { 1030 allocaTy = ConvertTypeForMem(Ty); 1031 allocaAlignment = alignment; 1032 } 1033 1034 // Create the alloca. Note that we set the name separately from 1035 // building the instruction so that it's there even in no-asserts 1036 // builds. 1037 address = CreateTempAlloca(allocaTy, allocaAlignment); 1038 address.getPointer()->setName(D.getName()); 1039 1040 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1041 // the catch parameter starts in the catchpad instruction, and we can't 1042 // insert code in those basic blocks. 1043 bool IsMSCatchParam = 1044 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1045 1046 // Emit a lifetime intrinsic if meaningful. There's no point 1047 // in doing this if we don't have a valid insertion point (?). 1048 if (HaveInsertPoint() && !IsMSCatchParam) { 1049 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1050 emission.SizeForLifetimeMarkers = 1051 EmitLifetimeStart(size, address.getPointer()); 1052 } else { 1053 assert(!emission.useLifetimeMarkers()); 1054 } 1055 } 1056 } else { 1057 EnsureInsertPoint(); 1058 1059 if (!DidCallStackSave) { 1060 // Save the stack. 1061 Address Stack = 1062 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1063 1064 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1065 llvm::Value *V = Builder.CreateCall(F); 1066 Builder.CreateStore(V, Stack); 1067 1068 DidCallStackSave = true; 1069 1070 // Push a cleanup block and restore the stack there. 1071 // FIXME: in general circumstances, this should be an EH cleanup. 1072 pushStackRestore(NormalCleanup, Stack); 1073 } 1074 1075 llvm::Value *elementCount; 1076 QualType elementType; 1077 std::tie(elementCount, elementType) = getVLASize(Ty); 1078 1079 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1080 1081 // Allocate memory for the array. 1082 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 1083 vla->setAlignment(alignment.getQuantity()); 1084 1085 address = Address(vla, alignment); 1086 } 1087 1088 setAddrOfLocalVar(&D, address); 1089 emission.Addr = address; 1090 1091 // Emit debug info for local var declaration. 1092 if (HaveInsertPoint()) 1093 if (CGDebugInfo *DI = getDebugInfo()) { 1094 if (CGM.getCodeGenOpts().getDebugInfo() >= 1095 codegenoptions::LimitedDebugInfo) { 1096 DI->setLocation(D.getLocation()); 1097 DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1098 } 1099 } 1100 1101 if (D.hasAttr<AnnotateAttr>()) 1102 EmitVarAnnotations(&D, address.getPointer()); 1103 1104 return emission; 1105 } 1106 1107 /// Determines whether the given __block variable is potentially 1108 /// captured by the given expression. 1109 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1110 // Skip the most common kinds of expressions that make 1111 // hierarchy-walking expensive. 1112 e = e->IgnoreParenCasts(); 1113 1114 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1115 const BlockDecl *block = be->getBlockDecl(); 1116 for (const auto &I : block->captures()) { 1117 if (I.getVariable() == &var) 1118 return true; 1119 } 1120 1121 // No need to walk into the subexpressions. 1122 return false; 1123 } 1124 1125 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1126 const CompoundStmt *CS = SE->getSubStmt(); 1127 for (const auto *BI : CS->body()) 1128 if (const auto *E = dyn_cast<Expr>(BI)) { 1129 if (isCapturedBy(var, E)) 1130 return true; 1131 } 1132 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1133 // special case declarations 1134 for (const auto *I : DS->decls()) { 1135 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1136 const Expr *Init = VD->getInit(); 1137 if (Init && isCapturedBy(var, Init)) 1138 return true; 1139 } 1140 } 1141 } 1142 else 1143 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1144 // Later, provide code to poke into statements for capture analysis. 1145 return true; 1146 return false; 1147 } 1148 1149 for (const Stmt *SubStmt : e->children()) 1150 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1151 return true; 1152 1153 return false; 1154 } 1155 1156 /// \brief Determine whether the given initializer is trivial in the sense 1157 /// that it requires no code to be generated. 1158 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1159 if (!Init) 1160 return true; 1161 1162 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1163 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1164 if (Constructor->isTrivial() && 1165 Constructor->isDefaultConstructor() && 1166 !Construct->requiresZeroInitialization()) 1167 return true; 1168 1169 return false; 1170 } 1171 1172 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1173 assert(emission.Variable && "emission was not valid!"); 1174 1175 // If this was emitted as a global constant, we're done. 1176 if (emission.wasEmittedAsGlobal()) return; 1177 1178 const VarDecl &D = *emission.Variable; 1179 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1180 QualType type = D.getType(); 1181 1182 // If this local has an initializer, emit it now. 1183 const Expr *Init = D.getInit(); 1184 1185 // If we are at an unreachable point, we don't need to emit the initializer 1186 // unless it contains a label. 1187 if (!HaveInsertPoint()) { 1188 if (!Init || !ContainsLabel(Init)) return; 1189 EnsureInsertPoint(); 1190 } 1191 1192 // Initialize the structure of a __block variable. 1193 if (emission.IsByRef) 1194 emitByrefStructureInit(emission); 1195 1196 if (isTrivialInitializer(Init)) 1197 return; 1198 1199 // Check whether this is a byref variable that's potentially 1200 // captured and moved by its own initializer. If so, we'll need to 1201 // emit the initializer first, then copy into the variable. 1202 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1203 1204 Address Loc = 1205 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1206 1207 llvm::Constant *constant = nullptr; 1208 if (emission.IsConstantAggregate || D.isConstexpr()) { 1209 assert(!capturedByInit && "constant init contains a capturing block?"); 1210 constant = CGM.EmitConstantInit(D, this); 1211 } 1212 1213 if (!constant) { 1214 LValue lv = MakeAddrLValue(Loc, type); 1215 lv.setNonGC(true); 1216 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1217 } 1218 1219 if (!emission.IsConstantAggregate) { 1220 // For simple scalar/complex initialization, store the value directly. 1221 LValue lv = MakeAddrLValue(Loc, type); 1222 lv.setNonGC(true); 1223 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1224 } 1225 1226 // If this is a simple aggregate initialization, we can optimize it 1227 // in various ways. 1228 bool isVolatile = type.isVolatileQualified(); 1229 1230 llvm::Value *SizeVal = 1231 llvm::ConstantInt::get(IntPtrTy, 1232 getContext().getTypeSizeInChars(type).getQuantity()); 1233 1234 llvm::Type *BP = Int8PtrTy; 1235 if (Loc.getType() != BP) 1236 Loc = Builder.CreateBitCast(Loc, BP); 1237 1238 // If the initializer is all or mostly zeros, codegen with memset then do 1239 // a few stores afterward. 1240 if (shouldUseMemSetPlusStoresToInitialize(constant, 1241 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1242 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1243 isVolatile); 1244 // Zero and undef don't require a stores. 1245 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1246 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1247 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1248 isVolatile, Builder); 1249 } 1250 } else { 1251 // Otherwise, create a temporary global with the initializer then 1252 // memcpy from the global to the alloca. 1253 std::string Name = getStaticDeclName(CGM, D); 1254 llvm::GlobalVariable *GV = 1255 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1256 llvm::GlobalValue::PrivateLinkage, 1257 constant, Name); 1258 GV->setAlignment(Loc.getAlignment().getQuantity()); 1259 GV->setUnnamedAddr(true); 1260 1261 Address SrcPtr = Address(GV, Loc.getAlignment()); 1262 if (SrcPtr.getType() != BP) 1263 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1264 1265 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1266 } 1267 } 1268 1269 /// Emit an expression as an initializer for a variable at the given 1270 /// location. The expression is not necessarily the normal 1271 /// initializer for the variable, and the address is not necessarily 1272 /// its normal location. 1273 /// 1274 /// \param init the initializing expression 1275 /// \param var the variable to act as if we're initializing 1276 /// \param loc the address to initialize; its type is a pointer 1277 /// to the LLVM mapping of the variable's type 1278 /// \param alignment the alignment of the address 1279 /// \param capturedByInit true if the variable is a __block variable 1280 /// whose address is potentially changed by the initializer 1281 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1282 LValue lvalue, bool capturedByInit) { 1283 QualType type = D->getType(); 1284 1285 if (type->isReferenceType()) { 1286 RValue rvalue = EmitReferenceBindingToExpr(init); 1287 if (capturedByInit) 1288 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1289 EmitStoreThroughLValue(rvalue, lvalue, true); 1290 return; 1291 } 1292 switch (getEvaluationKind(type)) { 1293 case TEK_Scalar: 1294 EmitScalarInit(init, D, lvalue, capturedByInit); 1295 return; 1296 case TEK_Complex: { 1297 ComplexPairTy complex = EmitComplexExpr(init); 1298 if (capturedByInit) 1299 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1300 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1301 return; 1302 } 1303 case TEK_Aggregate: 1304 if (type->isAtomicType()) { 1305 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1306 } else { 1307 // TODO: how can we delay here if D is captured by its initializer? 1308 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1309 AggValueSlot::IsDestructed, 1310 AggValueSlot::DoesNotNeedGCBarriers, 1311 AggValueSlot::IsNotAliased)); 1312 } 1313 return; 1314 } 1315 llvm_unreachable("bad evaluation kind"); 1316 } 1317 1318 /// Enter a destroy cleanup for the given local variable. 1319 void CodeGenFunction::emitAutoVarTypeCleanup( 1320 const CodeGenFunction::AutoVarEmission &emission, 1321 QualType::DestructionKind dtorKind) { 1322 assert(dtorKind != QualType::DK_none); 1323 1324 // Note that for __block variables, we want to destroy the 1325 // original stack object, not the possibly forwarded object. 1326 Address addr = emission.getObjectAddress(*this); 1327 1328 const VarDecl *var = emission.Variable; 1329 QualType type = var->getType(); 1330 1331 CleanupKind cleanupKind = NormalAndEHCleanup; 1332 CodeGenFunction::Destroyer *destroyer = nullptr; 1333 1334 switch (dtorKind) { 1335 case QualType::DK_none: 1336 llvm_unreachable("no cleanup for trivially-destructible variable"); 1337 1338 case QualType::DK_cxx_destructor: 1339 // If there's an NRVO flag on the emission, we need a different 1340 // cleanup. 1341 if (emission.NRVOFlag) { 1342 assert(!type->isArrayType()); 1343 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1344 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1345 dtor, emission.NRVOFlag); 1346 return; 1347 } 1348 break; 1349 1350 case QualType::DK_objc_strong_lifetime: 1351 // Suppress cleanups for pseudo-strong variables. 1352 if (var->isARCPseudoStrong()) return; 1353 1354 // Otherwise, consider whether to use an EH cleanup or not. 1355 cleanupKind = getARCCleanupKind(); 1356 1357 // Use the imprecise destroyer by default. 1358 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1359 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1360 break; 1361 1362 case QualType::DK_objc_weak_lifetime: 1363 break; 1364 } 1365 1366 // If we haven't chosen a more specific destroyer, use the default. 1367 if (!destroyer) destroyer = getDestroyer(dtorKind); 1368 1369 // Use an EH cleanup in array destructors iff the destructor itself 1370 // is being pushed as an EH cleanup. 1371 bool useEHCleanup = (cleanupKind & EHCleanup); 1372 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1373 useEHCleanup); 1374 } 1375 1376 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1377 assert(emission.Variable && "emission was not valid!"); 1378 1379 // If this was emitted as a global constant, we're done. 1380 if (emission.wasEmittedAsGlobal()) return; 1381 1382 // If we don't have an insertion point, we're done. Sema prevents 1383 // us from jumping into any of these scopes anyway. 1384 if (!HaveInsertPoint()) return; 1385 1386 const VarDecl &D = *emission.Variable; 1387 1388 // Make sure we call @llvm.lifetime.end. This needs to happen 1389 // *last*, so the cleanup needs to be pushed *first*. 1390 if (emission.useLifetimeMarkers()) { 1391 EHStack.pushCleanup<CallLifetimeEnd>(NormalAndEHCleanup, 1392 emission.getAllocatedAddress(), 1393 emission.getSizeForLifetimeMarkers()); 1394 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin()); 1395 cleanup.setLifetimeMarker(); 1396 } 1397 1398 // Check the type for a cleanup. 1399 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1400 emitAutoVarTypeCleanup(emission, dtorKind); 1401 1402 // In GC mode, honor objc_precise_lifetime. 1403 if (getLangOpts().getGC() != LangOptions::NonGC && 1404 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1405 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1406 } 1407 1408 // Handle the cleanup attribute. 1409 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1410 const FunctionDecl *FD = CA->getFunctionDecl(); 1411 1412 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1413 assert(F && "Could not find function!"); 1414 1415 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1416 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1417 } 1418 1419 // If this is a block variable, call _Block_object_destroy 1420 // (on the unforwarded address). 1421 if (emission.IsByRef) 1422 enterByrefCleanup(emission); 1423 } 1424 1425 CodeGenFunction::Destroyer * 1426 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1427 switch (kind) { 1428 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1429 case QualType::DK_cxx_destructor: 1430 return destroyCXXObject; 1431 case QualType::DK_objc_strong_lifetime: 1432 return destroyARCStrongPrecise; 1433 case QualType::DK_objc_weak_lifetime: 1434 return destroyARCWeak; 1435 } 1436 llvm_unreachable("Unknown DestructionKind"); 1437 } 1438 1439 /// pushEHDestroy - Push the standard destructor for the given type as 1440 /// an EH-only cleanup. 1441 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1442 Address addr, QualType type) { 1443 assert(dtorKind && "cannot push destructor for trivial type"); 1444 assert(needsEHCleanup(dtorKind)); 1445 1446 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1447 } 1448 1449 /// pushDestroy - Push the standard destructor for the given type as 1450 /// at least a normal cleanup. 1451 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1452 Address addr, QualType type) { 1453 assert(dtorKind && "cannot push destructor for trivial type"); 1454 1455 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1456 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1457 cleanupKind & EHCleanup); 1458 } 1459 1460 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1461 QualType type, Destroyer *destroyer, 1462 bool useEHCleanupForArray) { 1463 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1464 destroyer, useEHCleanupForArray); 1465 } 1466 1467 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1468 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1469 } 1470 1471 void CodeGenFunction::pushLifetimeExtendedDestroy( 1472 CleanupKind cleanupKind, Address addr, QualType type, 1473 Destroyer *destroyer, bool useEHCleanupForArray) { 1474 assert(!isInConditionalBranch() && 1475 "performing lifetime extension from within conditional"); 1476 1477 // Push an EH-only cleanup for the object now. 1478 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1479 // around in case a temporary's destructor throws an exception. 1480 if (cleanupKind & EHCleanup) 1481 EHStack.pushCleanup<DestroyObject>( 1482 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1483 destroyer, useEHCleanupForArray); 1484 1485 // Remember that we need to push a full cleanup for the object at the 1486 // end of the full-expression. 1487 pushCleanupAfterFullExpr<DestroyObject>( 1488 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1489 } 1490 1491 /// emitDestroy - Immediately perform the destruction of the given 1492 /// object. 1493 /// 1494 /// \param addr - the address of the object; a type* 1495 /// \param type - the type of the object; if an array type, all 1496 /// objects are destroyed in reverse order 1497 /// \param destroyer - the function to call to destroy individual 1498 /// elements 1499 /// \param useEHCleanupForArray - whether an EH cleanup should be 1500 /// used when destroying array elements, in case one of the 1501 /// destructions throws an exception 1502 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1503 Destroyer *destroyer, 1504 bool useEHCleanupForArray) { 1505 const ArrayType *arrayType = getContext().getAsArrayType(type); 1506 if (!arrayType) 1507 return destroyer(*this, addr, type); 1508 1509 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1510 1511 CharUnits elementAlign = 1512 addr.getAlignment() 1513 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1514 1515 // Normally we have to check whether the array is zero-length. 1516 bool checkZeroLength = true; 1517 1518 // But if the array length is constant, we can suppress that. 1519 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1520 // ...and if it's constant zero, we can just skip the entire thing. 1521 if (constLength->isZero()) return; 1522 checkZeroLength = false; 1523 } 1524 1525 llvm::Value *begin = addr.getPointer(); 1526 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1527 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1528 checkZeroLength, useEHCleanupForArray); 1529 } 1530 1531 /// emitArrayDestroy - Destroys all the elements of the given array, 1532 /// beginning from last to first. The array cannot be zero-length. 1533 /// 1534 /// \param begin - a type* denoting the first element of the array 1535 /// \param end - a type* denoting one past the end of the array 1536 /// \param elementType - the element type of the array 1537 /// \param destroyer - the function to call to destroy elements 1538 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1539 /// the remaining elements in case the destruction of a single 1540 /// element throws 1541 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1542 llvm::Value *end, 1543 QualType elementType, 1544 CharUnits elementAlign, 1545 Destroyer *destroyer, 1546 bool checkZeroLength, 1547 bool useEHCleanup) { 1548 assert(!elementType->isArrayType()); 1549 1550 // The basic structure here is a do-while loop, because we don't 1551 // need to check for the zero-element case. 1552 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1553 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1554 1555 if (checkZeroLength) { 1556 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1557 "arraydestroy.isempty"); 1558 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1559 } 1560 1561 // Enter the loop body, making that address the current address. 1562 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1563 EmitBlock(bodyBB); 1564 llvm::PHINode *elementPast = 1565 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1566 elementPast->addIncoming(end, entryBB); 1567 1568 // Shift the address back by one element. 1569 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1570 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1571 "arraydestroy.element"); 1572 1573 if (useEHCleanup) 1574 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1575 destroyer); 1576 1577 // Perform the actual destruction there. 1578 destroyer(*this, Address(element, elementAlign), elementType); 1579 1580 if (useEHCleanup) 1581 PopCleanupBlock(); 1582 1583 // Check whether we've reached the end. 1584 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1585 Builder.CreateCondBr(done, doneBB, bodyBB); 1586 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1587 1588 // Done. 1589 EmitBlock(doneBB); 1590 } 1591 1592 /// Perform partial array destruction as if in an EH cleanup. Unlike 1593 /// emitArrayDestroy, the element type here may still be an array type. 1594 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1595 llvm::Value *begin, llvm::Value *end, 1596 QualType type, CharUnits elementAlign, 1597 CodeGenFunction::Destroyer *destroyer) { 1598 // If the element type is itself an array, drill down. 1599 unsigned arrayDepth = 0; 1600 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1601 // VLAs don't require a GEP index to walk into. 1602 if (!isa<VariableArrayType>(arrayType)) 1603 arrayDepth++; 1604 type = arrayType->getElementType(); 1605 } 1606 1607 if (arrayDepth) { 1608 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1609 1610 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1611 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1612 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1613 } 1614 1615 // Destroy the array. We don't ever need an EH cleanup because we 1616 // assume that we're in an EH cleanup ourselves, so a throwing 1617 // destructor causes an immediate terminate. 1618 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1619 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1620 } 1621 1622 namespace { 1623 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1624 /// array destroy where the end pointer is regularly determined and 1625 /// does not need to be loaded from a local. 1626 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1627 llvm::Value *ArrayBegin; 1628 llvm::Value *ArrayEnd; 1629 QualType ElementType; 1630 CodeGenFunction::Destroyer *Destroyer; 1631 CharUnits ElementAlign; 1632 public: 1633 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1634 QualType elementType, CharUnits elementAlign, 1635 CodeGenFunction::Destroyer *destroyer) 1636 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1637 ElementType(elementType), Destroyer(destroyer), 1638 ElementAlign(elementAlign) {} 1639 1640 void Emit(CodeGenFunction &CGF, Flags flags) override { 1641 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1642 ElementType, ElementAlign, Destroyer); 1643 } 1644 }; 1645 1646 /// IrregularPartialArrayDestroy - a cleanup which performs a 1647 /// partial array destroy where the end pointer is irregularly 1648 /// determined and must be loaded from a local. 1649 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1650 llvm::Value *ArrayBegin; 1651 Address ArrayEndPointer; 1652 QualType ElementType; 1653 CodeGenFunction::Destroyer *Destroyer; 1654 CharUnits ElementAlign; 1655 public: 1656 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1657 Address arrayEndPointer, 1658 QualType elementType, 1659 CharUnits elementAlign, 1660 CodeGenFunction::Destroyer *destroyer) 1661 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1662 ElementType(elementType), Destroyer(destroyer), 1663 ElementAlign(elementAlign) {} 1664 1665 void Emit(CodeGenFunction &CGF, Flags flags) override { 1666 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1667 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1668 ElementType, ElementAlign, Destroyer); 1669 } 1670 }; 1671 } // end anonymous namespace 1672 1673 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1674 /// already-constructed elements of the given array. The cleanup 1675 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1676 /// 1677 /// \param elementType - the immediate element type of the array; 1678 /// possibly still an array type 1679 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1680 Address arrayEndPointer, 1681 QualType elementType, 1682 CharUnits elementAlign, 1683 Destroyer *destroyer) { 1684 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1685 arrayBegin, arrayEndPointer, 1686 elementType, elementAlign, 1687 destroyer); 1688 } 1689 1690 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1691 /// already-constructed elements of the given array. The cleanup 1692 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1693 /// 1694 /// \param elementType - the immediate element type of the array; 1695 /// possibly still an array type 1696 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1697 llvm::Value *arrayEnd, 1698 QualType elementType, 1699 CharUnits elementAlign, 1700 Destroyer *destroyer) { 1701 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1702 arrayBegin, arrayEnd, 1703 elementType, elementAlign, 1704 destroyer); 1705 } 1706 1707 /// Lazily declare the @llvm.lifetime.start intrinsic. 1708 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1709 if (LifetimeStartFn) return LifetimeStartFn; 1710 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1711 llvm::Intrinsic::lifetime_start); 1712 return LifetimeStartFn; 1713 } 1714 1715 /// Lazily declare the @llvm.lifetime.end intrinsic. 1716 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1717 if (LifetimeEndFn) return LifetimeEndFn; 1718 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1719 llvm::Intrinsic::lifetime_end); 1720 return LifetimeEndFn; 1721 } 1722 1723 namespace { 1724 /// A cleanup to perform a release of an object at the end of a 1725 /// function. This is used to balance out the incoming +1 of a 1726 /// ns_consumed argument when we can't reasonably do that just by 1727 /// not doing the initial retain for a __block argument. 1728 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1729 ConsumeARCParameter(llvm::Value *param, 1730 ARCPreciseLifetime_t precise) 1731 : Param(param), Precise(precise) {} 1732 1733 llvm::Value *Param; 1734 ARCPreciseLifetime_t Precise; 1735 1736 void Emit(CodeGenFunction &CGF, Flags flags) override { 1737 CGF.EmitARCRelease(Param, Precise); 1738 } 1739 }; 1740 } // end anonymous namespace 1741 1742 /// Emit an alloca (or GlobalValue depending on target) 1743 /// for the specified parameter and set up LocalDeclMap. 1744 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1745 unsigned ArgNo) { 1746 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1747 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1748 "Invalid argument to EmitParmDecl"); 1749 1750 Arg.getAnyValue()->setName(D.getName()); 1751 1752 QualType Ty = D.getType(); 1753 1754 // Use better IR generation for certain implicit parameters. 1755 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1756 // The only implicit argument a block has is its literal. 1757 // We assume this is always passed directly. 1758 if (BlockInfo) { 1759 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1760 return; 1761 } 1762 } 1763 1764 Address DeclPtr = Address::invalid(); 1765 bool DoStore = false; 1766 bool IsScalar = hasScalarEvaluationKind(Ty); 1767 // If we already have a pointer to the argument, reuse the input pointer. 1768 if (Arg.isIndirect()) { 1769 DeclPtr = Arg.getIndirectAddress(); 1770 // If we have a prettier pointer type at this point, bitcast to that. 1771 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1772 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1773 if (DeclPtr.getType() != IRTy) 1774 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1775 1776 // Push a destructor cleanup for this parameter if the ABI requires it. 1777 // Don't push a cleanup in a thunk for a method that will also emit a 1778 // cleanup. 1779 if (!IsScalar && !CurFuncIsThunk && 1780 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1781 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1782 if (RD && RD->hasNonTrivialDestructor()) 1783 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1784 } 1785 } else { 1786 // Otherwise, create a temporary to hold the value. 1787 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1788 D.getName() + ".addr"); 1789 DoStore = true; 1790 } 1791 1792 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1793 1794 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1795 if (IsScalar) { 1796 Qualifiers qs = Ty.getQualifiers(); 1797 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1798 // We honor __attribute__((ns_consumed)) for types with lifetime. 1799 // For __strong, it's handled by just skipping the initial retain; 1800 // otherwise we have to balance out the initial +1 with an extra 1801 // cleanup to do the release at the end of the function. 1802 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1803 1804 // 'self' is always formally __strong, but if this is not an 1805 // init method then we don't want to retain it. 1806 if (D.isARCPseudoStrong()) { 1807 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1808 assert(&D == method->getSelfDecl()); 1809 assert(lt == Qualifiers::OCL_Strong); 1810 assert(qs.hasConst()); 1811 assert(method->getMethodFamily() != OMF_init); 1812 (void) method; 1813 lt = Qualifiers::OCL_ExplicitNone; 1814 } 1815 1816 if (lt == Qualifiers::OCL_Strong) { 1817 if (!isConsumed) { 1818 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1819 // use objc_storeStrong(&dest, value) for retaining the 1820 // object. But first, store a null into 'dest' because 1821 // objc_storeStrong attempts to release its old value. 1822 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1823 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1824 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1825 DoStore = false; 1826 } 1827 else 1828 // Don't use objc_retainBlock for block pointers, because we 1829 // don't want to Block_copy something just because we got it 1830 // as a parameter. 1831 ArgVal = EmitARCRetainNonBlock(ArgVal); 1832 } 1833 } else { 1834 // Push the cleanup for a consumed parameter. 1835 if (isConsumed) { 1836 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1837 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1838 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1839 precise); 1840 } 1841 1842 if (lt == Qualifiers::OCL_Weak) { 1843 EmitARCInitWeak(DeclPtr, ArgVal); 1844 DoStore = false; // The weak init is a store, no need to do two. 1845 } 1846 } 1847 1848 // Enter the cleanup scope. 1849 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1850 } 1851 } 1852 1853 // Store the initial value into the alloca. 1854 if (DoStore) 1855 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1856 1857 setAddrOfLocalVar(&D, DeclPtr); 1858 1859 // Emit debug info for param declaration. 1860 if (CGDebugInfo *DI = getDebugInfo()) { 1861 if (CGM.getCodeGenOpts().getDebugInfo() >= 1862 codegenoptions::LimitedDebugInfo) { 1863 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1864 } 1865 } 1866 1867 if (D.hasAttr<AnnotateAttr>()) 1868 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1869 } 1870 1871 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 1872 CodeGenFunction *CGF) { 1873 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 1874 return; 1875 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 1876 } 1877 1878