1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/Type.h" 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 45 "Clang max alignment greater than what LLVM supports?"); 46 47 void CodeGenFunction::EmitDecl(const Decl &D) { 48 switch (D.getKind()) { 49 case Decl::BuiltinTemplate: 50 case Decl::TranslationUnit: 51 case Decl::ExternCContext: 52 case Decl::Namespace: 53 case Decl::UnresolvedUsingTypename: 54 case Decl::ClassTemplateSpecialization: 55 case Decl::ClassTemplatePartialSpecialization: 56 case Decl::VarTemplateSpecialization: 57 case Decl::VarTemplatePartialSpecialization: 58 case Decl::TemplateTypeParm: 59 case Decl::UnresolvedUsingValue: 60 case Decl::NonTypeTemplateParm: 61 case Decl::CXXDeductionGuide: 62 case Decl::CXXMethod: 63 case Decl::CXXConstructor: 64 case Decl::CXXDestructor: 65 case Decl::CXXConversion: 66 case Decl::Field: 67 case Decl::MSProperty: 68 case Decl::IndirectField: 69 case Decl::ObjCIvar: 70 case Decl::ObjCAtDefsField: 71 case Decl::ParmVar: 72 case Decl::ImplicitParam: 73 case Decl::ClassTemplate: 74 case Decl::VarTemplate: 75 case Decl::FunctionTemplate: 76 case Decl::TypeAliasTemplate: 77 case Decl::TemplateTemplateParm: 78 case Decl::ObjCMethod: 79 case Decl::ObjCCategory: 80 case Decl::ObjCProtocol: 81 case Decl::ObjCInterface: 82 case Decl::ObjCCategoryImpl: 83 case Decl::ObjCImplementation: 84 case Decl::ObjCProperty: 85 case Decl::ObjCCompatibleAlias: 86 case Decl::PragmaComment: 87 case Decl::PragmaDetectMismatch: 88 case Decl::AccessSpec: 89 case Decl::LinkageSpec: 90 case Decl::Export: 91 case Decl::ObjCPropertyImpl: 92 case Decl::FileScopeAsm: 93 case Decl::Friend: 94 case Decl::FriendTemplate: 95 case Decl::Block: 96 case Decl::Captured: 97 case Decl::ClassScopeFunctionSpecialization: 98 case Decl::UsingShadow: 99 case Decl::ConstructorUsingShadow: 100 case Decl::ObjCTypeParam: 101 case Decl::Binding: 102 llvm_unreachable("Declaration should not be in declstmts!"); 103 case Decl::Record: // struct/union/class X; 104 case Decl::CXXRecord: // struct/union/class X; [C++] 105 if (CGDebugInfo *DI = getDebugInfo()) 106 if (cast<RecordDecl>(D).getDefinition()) 107 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D))); 108 return; 109 case Decl::Enum: // enum X; 110 if (CGDebugInfo *DI = getDebugInfo()) 111 if (cast<EnumDecl>(D).getDefinition()) 112 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D))); 113 return; 114 case Decl::Function: // void X(); 115 case Decl::EnumConstant: // enum ? { X = ? } 116 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 117 case Decl::Label: // __label__ x; 118 case Decl::Import: 119 case Decl::MSGuid: // __declspec(uuid("...")) 120 case Decl::TemplateParamObject: 121 case Decl::OMPThreadPrivate: 122 case Decl::OMPAllocate: 123 case Decl::OMPCapturedExpr: 124 case Decl::OMPRequires: 125 case Decl::Empty: 126 case Decl::Concept: 127 case Decl::LifetimeExtendedTemporary: 128 case Decl::RequiresExprBody: 129 // None of these decls require codegen support. 130 return; 131 132 case Decl::NamespaceAlias: 133 if (CGDebugInfo *DI = getDebugInfo()) 134 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 135 return; 136 case Decl::Using: // using X; [C++] 137 if (CGDebugInfo *DI = getDebugInfo()) 138 DI->EmitUsingDecl(cast<UsingDecl>(D)); 139 return; 140 case Decl::UsingPack: 141 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 142 EmitDecl(*Using); 143 return; 144 case Decl::UsingDirective: // using namespace X; [C++] 145 if (CGDebugInfo *DI = getDebugInfo()) 146 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 147 return; 148 case Decl::Var: 149 case Decl::Decomposition: { 150 const VarDecl &VD = cast<VarDecl>(D); 151 assert(VD.isLocalVarDecl() && 152 "Should not see file-scope variables inside a function!"); 153 EmitVarDecl(VD); 154 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 155 for (auto *B : DD->bindings()) 156 if (auto *HD = B->getHoldingVar()) 157 EmitVarDecl(*HD); 158 return; 159 } 160 161 case Decl::OMPDeclareReduction: 162 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 163 164 case Decl::OMPDeclareMapper: 165 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 166 167 case Decl::Typedef: // typedef int X; 168 case Decl::TypeAlias: { // using X = int; [C++0x] 169 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType(); 170 if (CGDebugInfo *DI = getDebugInfo()) 171 DI->EmitAndRetainType(Ty); 172 if (Ty->isVariablyModifiedType()) 173 EmitVariablyModifiedType(Ty); 174 return; 175 } 176 } 177 } 178 179 /// EmitVarDecl - This method handles emission of any variable declaration 180 /// inside a function, including static vars etc. 181 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 182 if (D.hasExternalStorage()) 183 // Don't emit it now, allow it to be emitted lazily on its first use. 184 return; 185 186 // Some function-scope variable does not have static storage but still 187 // needs to be emitted like a static variable, e.g. a function-scope 188 // variable in constant address space in OpenCL. 189 if (D.getStorageDuration() != SD_Automatic) { 190 // Static sampler variables translated to function calls. 191 if (D.getType()->isSamplerT()) 192 return; 193 194 llvm::GlobalValue::LinkageTypes Linkage = 195 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 196 197 // FIXME: We need to force the emission/use of a guard variable for 198 // some variables even if we can constant-evaluate them because 199 // we can't guarantee every translation unit will constant-evaluate them. 200 201 return EmitStaticVarDecl(D, Linkage); 202 } 203 204 if (D.getType().getAddressSpace() == LangAS::opencl_local) 205 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 206 207 assert(D.hasLocalStorage()); 208 return EmitAutoVarDecl(D); 209 } 210 211 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 212 if (CGM.getLangOpts().CPlusPlus) 213 return CGM.getMangledName(&D).str(); 214 215 // If this isn't C++, we don't need a mangled name, just a pretty one. 216 assert(!D.isExternallyVisible() && "name shouldn't matter"); 217 std::string ContextName; 218 const DeclContext *DC = D.getDeclContext(); 219 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 220 DC = cast<DeclContext>(CD->getNonClosureContext()); 221 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 222 ContextName = std::string(CGM.getMangledName(FD)); 223 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 224 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 225 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 226 ContextName = OMD->getSelector().getAsString(); 227 else 228 llvm_unreachable("Unknown context for static var decl"); 229 230 ContextName += "." + D.getNameAsString(); 231 return ContextName; 232 } 233 234 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 235 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 236 // In general, we don't always emit static var decls once before we reference 237 // them. It is possible to reference them before emitting the function that 238 // contains them, and it is possible to emit the containing function multiple 239 // times. 240 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 241 return ExistingGV; 242 243 QualType Ty = D.getType(); 244 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 245 246 // Use the label if the variable is renamed with the asm-label extension. 247 std::string Name; 248 if (D.hasAttr<AsmLabelAttr>()) 249 Name = std::string(getMangledName(&D)); 250 else 251 Name = getStaticDeclName(*this, D); 252 253 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 254 LangAS AS = GetGlobalVarAddressSpace(&D); 255 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 256 257 // OpenCL variables in local address space and CUDA shared 258 // variables cannot have an initializer. 259 llvm::Constant *Init = nullptr; 260 if (Ty.getAddressSpace() == LangAS::opencl_local || 261 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 262 Init = llvm::UndefValue::get(LTy); 263 else 264 Init = EmitNullConstant(Ty); 265 266 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 267 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 268 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 269 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 270 271 if (supportsCOMDAT() && GV->isWeakForLinker()) 272 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 273 274 if (D.getTLSKind()) 275 setTLSMode(GV, D); 276 277 setGVProperties(GV, &D); 278 279 // Make sure the result is of the correct type. 280 LangAS ExpectedAS = Ty.getAddressSpace(); 281 llvm::Constant *Addr = GV; 282 if (AS != ExpectedAS) { 283 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 284 *this, GV, AS, ExpectedAS, 285 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 286 } 287 288 setStaticLocalDeclAddress(&D, Addr); 289 290 // Ensure that the static local gets initialized by making sure the parent 291 // function gets emitted eventually. 292 const Decl *DC = cast<Decl>(D.getDeclContext()); 293 294 // We can't name blocks or captured statements directly, so try to emit their 295 // parents. 296 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 297 DC = DC->getNonClosureContext(); 298 // FIXME: Ensure that global blocks get emitted. 299 if (!DC) 300 return Addr; 301 } 302 303 GlobalDecl GD; 304 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 305 GD = GlobalDecl(CD, Ctor_Base); 306 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 307 GD = GlobalDecl(DD, Dtor_Base); 308 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 309 GD = GlobalDecl(FD); 310 else { 311 // Don't do anything for Obj-C method decls or global closures. We should 312 // never defer them. 313 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 314 } 315 if (GD.getDecl()) { 316 // Disable emission of the parent function for the OpenMP device codegen. 317 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 318 (void)GetAddrOfGlobal(GD); 319 } 320 321 return Addr; 322 } 323 324 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 325 /// global variable that has already been created for it. If the initializer 326 /// has a different type than GV does, this may free GV and return a different 327 /// one. Otherwise it just returns GV. 328 llvm::GlobalVariable * 329 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 330 llvm::GlobalVariable *GV) { 331 ConstantEmitter emitter(*this); 332 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 333 334 // If constant emission failed, then this should be a C++ static 335 // initializer. 336 if (!Init) { 337 if (!getLangOpts().CPlusPlus) 338 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 339 else if (HaveInsertPoint()) { 340 // Since we have a static initializer, this global variable can't 341 // be constant. 342 GV->setConstant(false); 343 344 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 345 } 346 return GV; 347 } 348 349 // The initializer may differ in type from the global. Rewrite 350 // the global to match the initializer. (We have to do this 351 // because some types, like unions, can't be completely represented 352 // in the LLVM type system.) 353 if (GV->getValueType() != Init->getType()) { 354 llvm::GlobalVariable *OldGV = GV; 355 356 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 357 OldGV->isConstant(), 358 OldGV->getLinkage(), Init, "", 359 /*InsertBefore*/ OldGV, 360 OldGV->getThreadLocalMode(), 361 CGM.getContext().getTargetAddressSpace(D.getType())); 362 GV->setVisibility(OldGV->getVisibility()); 363 GV->setDSOLocal(OldGV->isDSOLocal()); 364 GV->setComdat(OldGV->getComdat()); 365 366 // Steal the name of the old global 367 GV->takeName(OldGV); 368 369 // Replace all uses of the old global with the new global 370 llvm::Constant *NewPtrForOldDecl = 371 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 372 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 373 374 // Erase the old global, since it is no longer used. 375 OldGV->eraseFromParent(); 376 } 377 378 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 379 GV->setInitializer(Init); 380 381 emitter.finalize(GV); 382 383 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 384 HaveInsertPoint()) { 385 // We have a constant initializer, but a nontrivial destructor. We still 386 // need to perform a guarded "initialization" in order to register the 387 // destructor. 388 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 389 } 390 391 return GV; 392 } 393 394 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 395 llvm::GlobalValue::LinkageTypes Linkage) { 396 // Check to see if we already have a global variable for this 397 // declaration. This can happen when double-emitting function 398 // bodies, e.g. with complete and base constructors. 399 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 400 CharUnits alignment = getContext().getDeclAlign(&D); 401 402 // Store into LocalDeclMap before generating initializer to handle 403 // circular references. 404 setAddrOfLocalVar(&D, Address(addr, alignment)); 405 406 // We can't have a VLA here, but we can have a pointer to a VLA, 407 // even though that doesn't really make any sense. 408 // Make sure to evaluate VLA bounds now so that we have them for later. 409 if (D.getType()->isVariablyModifiedType()) 410 EmitVariablyModifiedType(D.getType()); 411 412 // Save the type in case adding the initializer forces a type change. 413 llvm::Type *expectedType = addr->getType(); 414 415 llvm::GlobalVariable *var = 416 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 417 418 // CUDA's local and local static __shared__ variables should not 419 // have any non-empty initializers. This is ensured by Sema. 420 // Whatever initializer such variable may have when it gets here is 421 // a no-op and should not be emitted. 422 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 423 D.hasAttr<CUDASharedAttr>(); 424 // If this value has an initializer, emit it. 425 if (D.getInit() && !isCudaSharedVar) 426 var = AddInitializerToStaticVarDecl(D, var); 427 428 var->setAlignment(alignment.getAsAlign()); 429 430 if (D.hasAttr<AnnotateAttr>()) 431 CGM.AddGlobalAnnotations(&D, var); 432 433 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 434 var->addAttribute("bss-section", SA->getName()); 435 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 436 var->addAttribute("data-section", SA->getName()); 437 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 438 var->addAttribute("rodata-section", SA->getName()); 439 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 440 var->addAttribute("relro-section", SA->getName()); 441 442 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 443 var->setSection(SA->getName()); 444 445 if (D.hasAttr<UsedAttr>()) 446 CGM.addUsedGlobal(var); 447 448 // We may have to cast the constant because of the initializer 449 // mismatch above. 450 // 451 // FIXME: It is really dangerous to store this in the map; if anyone 452 // RAUW's the GV uses of this constant will be invalid. 453 llvm::Constant *castedAddr = 454 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 455 if (var != castedAddr) 456 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 457 CGM.setStaticLocalDeclAddress(&D, castedAddr); 458 459 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 460 461 // Emit global variable debug descriptor for static vars. 462 CGDebugInfo *DI = getDebugInfo(); 463 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 464 DI->setLocation(D.getLocation()); 465 DI->EmitGlobalVariable(var, &D); 466 } 467 } 468 469 namespace { 470 struct DestroyObject final : EHScopeStack::Cleanup { 471 DestroyObject(Address addr, QualType type, 472 CodeGenFunction::Destroyer *destroyer, 473 bool useEHCleanupForArray) 474 : addr(addr), type(type), destroyer(destroyer), 475 useEHCleanupForArray(useEHCleanupForArray) {} 476 477 Address addr; 478 QualType type; 479 CodeGenFunction::Destroyer *destroyer; 480 bool useEHCleanupForArray; 481 482 void Emit(CodeGenFunction &CGF, Flags flags) override { 483 // Don't use an EH cleanup recursively from an EH cleanup. 484 bool useEHCleanupForArray = 485 flags.isForNormalCleanup() && this->useEHCleanupForArray; 486 487 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 488 } 489 }; 490 491 template <class Derived> 492 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 493 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 494 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 495 496 llvm::Value *NRVOFlag; 497 Address Loc; 498 QualType Ty; 499 500 void Emit(CodeGenFunction &CGF, Flags flags) override { 501 // Along the exceptions path we always execute the dtor. 502 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 503 504 llvm::BasicBlock *SkipDtorBB = nullptr; 505 if (NRVO) { 506 // If we exited via NRVO, we skip the destructor call. 507 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 508 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 509 llvm::Value *DidNRVO = 510 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 511 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 512 CGF.EmitBlock(RunDtorBB); 513 } 514 515 static_cast<Derived *>(this)->emitDestructorCall(CGF); 516 517 if (NRVO) CGF.EmitBlock(SkipDtorBB); 518 } 519 520 virtual ~DestroyNRVOVariable() = default; 521 }; 522 523 struct DestroyNRVOVariableCXX final 524 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 525 DestroyNRVOVariableCXX(Address addr, QualType type, 526 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 527 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 528 Dtor(Dtor) {} 529 530 const CXXDestructorDecl *Dtor; 531 532 void emitDestructorCall(CodeGenFunction &CGF) { 533 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 534 /*ForVirtualBase=*/false, 535 /*Delegating=*/false, Loc, Ty); 536 } 537 }; 538 539 struct DestroyNRVOVariableC final 540 : DestroyNRVOVariable<DestroyNRVOVariableC> { 541 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 542 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 543 544 void emitDestructorCall(CodeGenFunction &CGF) { 545 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 546 } 547 }; 548 549 struct CallStackRestore final : EHScopeStack::Cleanup { 550 Address Stack; 551 CallStackRestore(Address Stack) : Stack(Stack) {} 552 void Emit(CodeGenFunction &CGF, Flags flags) override { 553 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 554 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 555 CGF.Builder.CreateCall(F, V); 556 } 557 }; 558 559 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 560 const VarDecl &Var; 561 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 562 563 void Emit(CodeGenFunction &CGF, Flags flags) override { 564 // Compute the address of the local variable, in case it's a 565 // byref or something. 566 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 567 Var.getType(), VK_LValue, SourceLocation()); 568 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 569 SourceLocation()); 570 CGF.EmitExtendGCLifetime(value); 571 } 572 }; 573 574 struct CallCleanupFunction final : EHScopeStack::Cleanup { 575 llvm::Constant *CleanupFn; 576 const CGFunctionInfo &FnInfo; 577 const VarDecl &Var; 578 579 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 580 const VarDecl *Var) 581 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 582 583 void Emit(CodeGenFunction &CGF, Flags flags) override { 584 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 585 Var.getType(), VK_LValue, SourceLocation()); 586 // Compute the address of the local variable, in case it's a byref 587 // or something. 588 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 589 590 // In some cases, the type of the function argument will be different from 591 // the type of the pointer. An example of this is 592 // void f(void* arg); 593 // __attribute__((cleanup(f))) void *g; 594 // 595 // To fix this we insert a bitcast here. 596 QualType ArgTy = FnInfo.arg_begin()->type; 597 llvm::Value *Arg = 598 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 599 600 CallArgList Args; 601 Args.add(RValue::get(Arg), 602 CGF.getContext().getPointerType(Var.getType())); 603 auto Callee = CGCallee::forDirect(CleanupFn); 604 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 605 } 606 }; 607 } // end anonymous namespace 608 609 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 610 /// variable with lifetime. 611 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 612 Address addr, 613 Qualifiers::ObjCLifetime lifetime) { 614 switch (lifetime) { 615 case Qualifiers::OCL_None: 616 llvm_unreachable("present but none"); 617 618 case Qualifiers::OCL_ExplicitNone: 619 // nothing to do 620 break; 621 622 case Qualifiers::OCL_Strong: { 623 CodeGenFunction::Destroyer *destroyer = 624 (var.hasAttr<ObjCPreciseLifetimeAttr>() 625 ? CodeGenFunction::destroyARCStrongPrecise 626 : CodeGenFunction::destroyARCStrongImprecise); 627 628 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 629 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 630 cleanupKind & EHCleanup); 631 break; 632 } 633 case Qualifiers::OCL_Autoreleasing: 634 // nothing to do 635 break; 636 637 case Qualifiers::OCL_Weak: 638 // __weak objects always get EH cleanups; otherwise, exceptions 639 // could cause really nasty crashes instead of mere leaks. 640 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 641 CodeGenFunction::destroyARCWeak, 642 /*useEHCleanup*/ true); 643 break; 644 } 645 } 646 647 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 648 if (const Expr *e = dyn_cast<Expr>(s)) { 649 // Skip the most common kinds of expressions that make 650 // hierarchy-walking expensive. 651 s = e = e->IgnoreParenCasts(); 652 653 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 654 return (ref->getDecl() == &var); 655 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 656 const BlockDecl *block = be->getBlockDecl(); 657 for (const auto &I : block->captures()) { 658 if (I.getVariable() == &var) 659 return true; 660 } 661 } 662 } 663 664 for (const Stmt *SubStmt : s->children()) 665 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 666 if (SubStmt && isAccessedBy(var, SubStmt)) 667 return true; 668 669 return false; 670 } 671 672 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 673 if (!decl) return false; 674 if (!isa<VarDecl>(decl)) return false; 675 const VarDecl *var = cast<VarDecl>(decl); 676 return isAccessedBy(*var, e); 677 } 678 679 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 680 const LValue &destLV, const Expr *init) { 681 bool needsCast = false; 682 683 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 684 switch (castExpr->getCastKind()) { 685 // Look through casts that don't require representation changes. 686 case CK_NoOp: 687 case CK_BitCast: 688 case CK_BlockPointerToObjCPointerCast: 689 needsCast = true; 690 break; 691 692 // If we find an l-value to r-value cast from a __weak variable, 693 // emit this operation as a copy or move. 694 case CK_LValueToRValue: { 695 const Expr *srcExpr = castExpr->getSubExpr(); 696 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 697 return false; 698 699 // Emit the source l-value. 700 LValue srcLV = CGF.EmitLValue(srcExpr); 701 702 // Handle a formal type change to avoid asserting. 703 auto srcAddr = srcLV.getAddress(CGF); 704 if (needsCast) { 705 srcAddr = CGF.Builder.CreateElementBitCast( 706 srcAddr, destLV.getAddress(CGF).getElementType()); 707 } 708 709 // If it was an l-value, use objc_copyWeak. 710 if (srcExpr->getValueKind() == VK_LValue) { 711 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 712 } else { 713 assert(srcExpr->getValueKind() == VK_XValue); 714 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 715 } 716 return true; 717 } 718 719 // Stop at anything else. 720 default: 721 return false; 722 } 723 724 init = castExpr->getSubExpr(); 725 } 726 return false; 727 } 728 729 static void drillIntoBlockVariable(CodeGenFunction &CGF, 730 LValue &lvalue, 731 const VarDecl *var) { 732 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 733 } 734 735 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 736 SourceLocation Loc) { 737 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 738 return; 739 740 auto Nullability = LHS.getType()->getNullability(getContext()); 741 if (!Nullability || *Nullability != NullabilityKind::NonNull) 742 return; 743 744 // Check if the right hand side of the assignment is nonnull, if the left 745 // hand side must be nonnull. 746 SanitizerScope SanScope(this); 747 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 748 llvm::Constant *StaticData[] = { 749 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 750 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 751 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 752 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 753 SanitizerHandler::TypeMismatch, StaticData, RHS); 754 } 755 756 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 757 LValue lvalue, bool capturedByInit) { 758 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 759 if (!lifetime) { 760 llvm::Value *value = EmitScalarExpr(init); 761 if (capturedByInit) 762 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 763 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 764 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 765 return; 766 } 767 768 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 769 init = DIE->getExpr(); 770 771 // If we're emitting a value with lifetime, we have to do the 772 // initialization *before* we leave the cleanup scopes. 773 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(init)) 774 init = EWC->getSubExpr(); 775 CodeGenFunction::RunCleanupsScope Scope(*this); 776 777 // We have to maintain the illusion that the variable is 778 // zero-initialized. If the variable might be accessed in its 779 // initializer, zero-initialize before running the initializer, then 780 // actually perform the initialization with an assign. 781 bool accessedByInit = false; 782 if (lifetime != Qualifiers::OCL_ExplicitNone) 783 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 784 if (accessedByInit) { 785 LValue tempLV = lvalue; 786 // Drill down to the __block object if necessary. 787 if (capturedByInit) { 788 // We can use a simple GEP for this because it can't have been 789 // moved yet. 790 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 791 cast<VarDecl>(D), 792 /*follow*/ false)); 793 } 794 795 auto ty = 796 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 797 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 798 799 // If __weak, we want to use a barrier under certain conditions. 800 if (lifetime == Qualifiers::OCL_Weak) 801 EmitARCInitWeak(tempLV.getAddress(*this), zero); 802 803 // Otherwise just do a simple store. 804 else 805 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 806 } 807 808 // Emit the initializer. 809 llvm::Value *value = nullptr; 810 811 switch (lifetime) { 812 case Qualifiers::OCL_None: 813 llvm_unreachable("present but none"); 814 815 case Qualifiers::OCL_Strong: { 816 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 817 value = EmitARCRetainScalarExpr(init); 818 break; 819 } 820 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 821 // that we omit the retain, and causes non-autoreleased return values to be 822 // immediately released. 823 LLVM_FALLTHROUGH; 824 } 825 826 case Qualifiers::OCL_ExplicitNone: 827 value = EmitARCUnsafeUnretainedScalarExpr(init); 828 break; 829 830 case Qualifiers::OCL_Weak: { 831 // If it's not accessed by the initializer, try to emit the 832 // initialization with a copy or move. 833 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 834 return; 835 } 836 837 // No way to optimize a producing initializer into this. It's not 838 // worth optimizing for, because the value will immediately 839 // disappear in the common case. 840 value = EmitScalarExpr(init); 841 842 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 843 if (accessedByInit) 844 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 845 else 846 EmitARCInitWeak(lvalue.getAddress(*this), value); 847 return; 848 } 849 850 case Qualifiers::OCL_Autoreleasing: 851 value = EmitARCRetainAutoreleaseScalarExpr(init); 852 break; 853 } 854 855 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 856 857 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 858 859 // If the variable might have been accessed by its initializer, we 860 // might have to initialize with a barrier. We have to do this for 861 // both __weak and __strong, but __weak got filtered out above. 862 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 863 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 864 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 865 EmitARCRelease(oldValue, ARCImpreciseLifetime); 866 return; 867 } 868 869 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 870 } 871 872 /// Decide whether we can emit the non-zero parts of the specified initializer 873 /// with equal or fewer than NumStores scalar stores. 874 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 875 unsigned &NumStores) { 876 // Zero and Undef never requires any extra stores. 877 if (isa<llvm::ConstantAggregateZero>(Init) || 878 isa<llvm::ConstantPointerNull>(Init) || 879 isa<llvm::UndefValue>(Init)) 880 return true; 881 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 882 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 883 isa<llvm::ConstantExpr>(Init)) 884 return Init->isNullValue() || NumStores--; 885 886 // See if we can emit each element. 887 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 888 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 889 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 890 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 891 return false; 892 } 893 return true; 894 } 895 896 if (llvm::ConstantDataSequential *CDS = 897 dyn_cast<llvm::ConstantDataSequential>(Init)) { 898 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 899 llvm::Constant *Elt = CDS->getElementAsConstant(i); 900 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 901 return false; 902 } 903 return true; 904 } 905 906 // Anything else is hard and scary. 907 return false; 908 } 909 910 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 911 /// the scalar stores that would be required. 912 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 913 llvm::Constant *Init, Address Loc, 914 bool isVolatile, CGBuilderTy &Builder) { 915 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 916 "called emitStoresForInitAfterBZero for zero or undef value."); 917 918 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 919 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 920 isa<llvm::ConstantExpr>(Init)) { 921 Builder.CreateStore(Init, Loc, isVolatile); 922 return; 923 } 924 925 if (llvm::ConstantDataSequential *CDS = 926 dyn_cast<llvm::ConstantDataSequential>(Init)) { 927 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 928 llvm::Constant *Elt = CDS->getElementAsConstant(i); 929 930 // If necessary, get a pointer to the element and emit it. 931 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 932 emitStoresForInitAfterBZero( 933 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 934 Builder); 935 } 936 return; 937 } 938 939 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 940 "Unknown value type!"); 941 942 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 943 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 944 945 // If necessary, get a pointer to the element and emit it. 946 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 947 emitStoresForInitAfterBZero(CGM, Elt, 948 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 949 isVolatile, Builder); 950 } 951 } 952 953 /// Decide whether we should use bzero plus some stores to initialize a local 954 /// variable instead of using a memcpy from a constant global. It is beneficial 955 /// to use bzero if the global is all zeros, or mostly zeros and large. 956 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 957 uint64_t GlobalSize) { 958 // If a global is all zeros, always use a bzero. 959 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 960 961 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 962 // do it if it will require 6 or fewer scalar stores. 963 // TODO: Should budget depends on the size? Avoiding a large global warrants 964 // plopping in more stores. 965 unsigned StoreBudget = 6; 966 uint64_t SizeLimit = 32; 967 968 return GlobalSize > SizeLimit && 969 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 970 } 971 972 /// Decide whether we should use memset to initialize a local variable instead 973 /// of using a memcpy from a constant global. Assumes we've already decided to 974 /// not user bzero. 975 /// FIXME We could be more clever, as we are for bzero above, and generate 976 /// memset followed by stores. It's unclear that's worth the effort. 977 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 978 uint64_t GlobalSize, 979 const llvm::DataLayout &DL) { 980 uint64_t SizeLimit = 32; 981 if (GlobalSize <= SizeLimit) 982 return nullptr; 983 return llvm::isBytewiseValue(Init, DL); 984 } 985 986 /// Decide whether we want to split a constant structure or array store into a 987 /// sequence of its fields' stores. This may cost us code size and compilation 988 /// speed, but plays better with store optimizations. 989 static bool shouldSplitConstantStore(CodeGenModule &CGM, 990 uint64_t GlobalByteSize) { 991 // Don't break things that occupy more than one cacheline. 992 uint64_t ByteSizeLimit = 64; 993 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 994 return false; 995 if (GlobalByteSize <= ByteSizeLimit) 996 return true; 997 return false; 998 } 999 1000 enum class IsPattern { No, Yes }; 1001 1002 /// Generate a constant filled with either a pattern or zeroes. 1003 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 1004 llvm::Type *Ty) { 1005 if (isPattern == IsPattern::Yes) 1006 return initializationPatternFor(CGM, Ty); 1007 else 1008 return llvm::Constant::getNullValue(Ty); 1009 } 1010 1011 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1012 llvm::Constant *constant); 1013 1014 /// Helper function for constWithPadding() to deal with padding in structures. 1015 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1016 IsPattern isPattern, 1017 llvm::StructType *STy, 1018 llvm::Constant *constant) { 1019 const llvm::DataLayout &DL = CGM.getDataLayout(); 1020 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1021 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1022 unsigned SizeSoFar = 0; 1023 SmallVector<llvm::Constant *, 8> Values; 1024 bool NestedIntact = true; 1025 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1026 unsigned CurOff = Layout->getElementOffset(i); 1027 if (SizeSoFar < CurOff) { 1028 assert(!STy->isPacked()); 1029 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1030 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1031 } 1032 llvm::Constant *CurOp; 1033 if (constant->isZeroValue()) 1034 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1035 else 1036 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1037 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1038 if (CurOp != NewOp) 1039 NestedIntact = false; 1040 Values.push_back(NewOp); 1041 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1042 } 1043 unsigned TotalSize = Layout->getSizeInBytes(); 1044 if (SizeSoFar < TotalSize) { 1045 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1046 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1047 } 1048 if (NestedIntact && Values.size() == STy->getNumElements()) 1049 return constant; 1050 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1051 } 1052 1053 /// Replace all padding bytes in a given constant with either a pattern byte or 1054 /// 0x00. 1055 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1056 llvm::Constant *constant) { 1057 llvm::Type *OrigTy = constant->getType(); 1058 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1059 return constStructWithPadding(CGM, isPattern, STy, constant); 1060 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1061 llvm::SmallVector<llvm::Constant *, 8> Values; 1062 uint64_t Size = ArrayTy->getNumElements(); 1063 if (!Size) 1064 return constant; 1065 llvm::Type *ElemTy = ArrayTy->getElementType(); 1066 bool ZeroInitializer = constant->isNullValue(); 1067 llvm::Constant *OpValue, *PaddedOp; 1068 if (ZeroInitializer) { 1069 OpValue = llvm::Constant::getNullValue(ElemTy); 1070 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1071 } 1072 for (unsigned Op = 0; Op != Size; ++Op) { 1073 if (!ZeroInitializer) { 1074 OpValue = constant->getAggregateElement(Op); 1075 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1076 } 1077 Values.push_back(PaddedOp); 1078 } 1079 auto *NewElemTy = Values[0]->getType(); 1080 if (NewElemTy == ElemTy) 1081 return constant; 1082 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1083 return llvm::ConstantArray::get(NewArrayTy, Values); 1084 } 1085 // FIXME: Add handling for tail padding in vectors. Vectors don't 1086 // have padding between or inside elements, but the total amount of 1087 // data can be less than the allocated size. 1088 return constant; 1089 } 1090 1091 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1092 llvm::Constant *Constant, 1093 CharUnits Align) { 1094 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1095 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1096 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1097 return CC->getNameAsString(); 1098 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1099 return CD->getNameAsString(); 1100 return std::string(getMangledName(FD)); 1101 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1102 return OM->getNameAsString(); 1103 } else if (isa<BlockDecl>(DC)) { 1104 return "<block>"; 1105 } else if (isa<CapturedDecl>(DC)) { 1106 return "<captured>"; 1107 } else { 1108 llvm_unreachable("expected a function or method"); 1109 } 1110 }; 1111 1112 // Form a simple per-variable cache of these values in case we find we 1113 // want to reuse them. 1114 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1115 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1116 auto *Ty = Constant->getType(); 1117 bool isConstant = true; 1118 llvm::GlobalVariable *InsertBefore = nullptr; 1119 unsigned AS = 1120 getContext().getTargetAddressSpace(getStringLiteralAddressSpace()); 1121 std::string Name; 1122 if (D.hasGlobalStorage()) 1123 Name = getMangledName(&D).str() + ".const"; 1124 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1125 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1126 else 1127 llvm_unreachable("local variable has no parent function or method"); 1128 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1129 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1130 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1131 GV->setAlignment(Align.getAsAlign()); 1132 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1133 CacheEntry = GV; 1134 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1135 CacheEntry->setAlignment(Align.getAsAlign()); 1136 } 1137 1138 return Address(CacheEntry, Align); 1139 } 1140 1141 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1142 const VarDecl &D, 1143 CGBuilderTy &Builder, 1144 llvm::Constant *Constant, 1145 CharUnits Align) { 1146 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1147 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1148 SrcPtr.getAddressSpace()); 1149 if (SrcPtr.getType() != BP) 1150 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1151 return SrcPtr; 1152 } 1153 1154 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1155 Address Loc, bool isVolatile, 1156 CGBuilderTy &Builder, 1157 llvm::Constant *constant) { 1158 auto *Ty = constant->getType(); 1159 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1160 if (!ConstantSize) 1161 return; 1162 1163 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1164 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1165 if (canDoSingleStore) { 1166 Builder.CreateStore(constant, Loc, isVolatile); 1167 return; 1168 } 1169 1170 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1171 1172 // If the initializer is all or mostly the same, codegen with bzero / memset 1173 // then do a few stores afterward. 1174 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1175 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal, 1176 isVolatile); 1177 1178 bool valueAlreadyCorrect = 1179 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1180 if (!valueAlreadyCorrect) { 1181 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1182 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); 1183 } 1184 return; 1185 } 1186 1187 // If the initializer is a repeated byte pattern, use memset. 1188 llvm::Value *Pattern = 1189 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1190 if (Pattern) { 1191 uint64_t Value = 0x00; 1192 if (!isa<llvm::UndefValue>(Pattern)) { 1193 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1194 assert(AP.getBitWidth() <= 8); 1195 Value = AP.getLimitedValue(); 1196 } 1197 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, 1198 isVolatile); 1199 return; 1200 } 1201 1202 // If the initializer is small, use a handful of stores. 1203 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1204 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1205 // FIXME: handle the case when STy != Loc.getElementType(). 1206 if (STy == Loc.getElementType()) { 1207 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1208 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1209 emitStoresForConstant( 1210 CGM, D, EltPtr, isVolatile, Builder, 1211 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1212 } 1213 return; 1214 } 1215 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1216 // FIXME: handle the case when ATy != Loc.getElementType(). 1217 if (ATy == Loc.getElementType()) { 1218 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1219 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1220 emitStoresForConstant( 1221 CGM, D, EltPtr, isVolatile, Builder, 1222 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i))); 1223 } 1224 return; 1225 } 1226 } 1227 } 1228 1229 // Copy from a global. 1230 Builder.CreateMemCpy(Loc, 1231 createUnnamedGlobalForMemcpyFrom( 1232 CGM, D, Builder, constant, Loc.getAlignment()), 1233 SizeVal, isVolatile); 1234 } 1235 1236 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1237 Address Loc, bool isVolatile, 1238 CGBuilderTy &Builder) { 1239 llvm::Type *ElTy = Loc.getElementType(); 1240 llvm::Constant *constant = 1241 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1242 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1243 } 1244 1245 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1246 Address Loc, bool isVolatile, 1247 CGBuilderTy &Builder) { 1248 llvm::Type *ElTy = Loc.getElementType(); 1249 llvm::Constant *constant = constWithPadding( 1250 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1251 assert(!isa<llvm::UndefValue>(constant)); 1252 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); 1253 } 1254 1255 static bool containsUndef(llvm::Constant *constant) { 1256 auto *Ty = constant->getType(); 1257 if (isa<llvm::UndefValue>(constant)) 1258 return true; 1259 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1260 for (llvm::Use &Op : constant->operands()) 1261 if (containsUndef(cast<llvm::Constant>(Op))) 1262 return true; 1263 return false; 1264 } 1265 1266 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1267 llvm::Constant *constant) { 1268 auto *Ty = constant->getType(); 1269 if (isa<llvm::UndefValue>(constant)) 1270 return patternOrZeroFor(CGM, isPattern, Ty); 1271 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1272 return constant; 1273 if (!containsUndef(constant)) 1274 return constant; 1275 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1276 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1277 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1278 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1279 } 1280 if (Ty->isStructTy()) 1281 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1282 if (Ty->isArrayTy()) 1283 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1284 assert(Ty->isVectorTy()); 1285 return llvm::ConstantVector::get(Values); 1286 } 1287 1288 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1289 /// variable declaration with auto, register, or no storage class specifier. 1290 /// These turn into simple stack objects, or GlobalValues depending on target. 1291 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1292 AutoVarEmission emission = EmitAutoVarAlloca(D); 1293 EmitAutoVarInit(emission); 1294 EmitAutoVarCleanups(emission); 1295 } 1296 1297 /// Emit a lifetime.begin marker if some criteria are satisfied. 1298 /// \return a pointer to the temporary size Value if a marker was emitted, null 1299 /// otherwise 1300 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1301 llvm::Value *Addr) { 1302 if (!ShouldEmitLifetimeMarkers) 1303 return nullptr; 1304 1305 assert(Addr->getType()->getPointerAddressSpace() == 1306 CGM.getDataLayout().getAllocaAddrSpace() && 1307 "Pointer should be in alloca address space"); 1308 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1309 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1310 llvm::CallInst *C = 1311 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1312 C->setDoesNotThrow(); 1313 return SizeV; 1314 } 1315 1316 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1317 assert(Addr->getType()->getPointerAddressSpace() == 1318 CGM.getDataLayout().getAllocaAddrSpace() && 1319 "Pointer should be in alloca address space"); 1320 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1321 llvm::CallInst *C = 1322 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1323 C->setDoesNotThrow(); 1324 } 1325 1326 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1327 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1328 // For each dimension stores its QualType and corresponding 1329 // size-expression Value. 1330 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1331 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1332 1333 // Break down the array into individual dimensions. 1334 QualType Type1D = D.getType(); 1335 while (getContext().getAsVariableArrayType(Type1D)) { 1336 auto VlaSize = getVLAElements1D(Type1D); 1337 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1338 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1339 else { 1340 // Generate a locally unique name for the size expression. 1341 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1342 SmallString<12> Buffer; 1343 StringRef NameRef = Name.toStringRef(Buffer); 1344 auto &Ident = getContext().Idents.getOwn(NameRef); 1345 VLAExprNames.push_back(&Ident); 1346 auto SizeExprAddr = 1347 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1348 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1349 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1350 Type1D.getUnqualifiedType()); 1351 } 1352 Type1D = VlaSize.Type; 1353 } 1354 1355 if (!EmitDebugInfo) 1356 return; 1357 1358 // Register each dimension's size-expression with a DILocalVariable, 1359 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1360 // to describe this array. 1361 unsigned NameIdx = 0; 1362 for (auto &VlaSize : Dimensions) { 1363 llvm::Metadata *MD; 1364 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1365 MD = llvm::ConstantAsMetadata::get(C); 1366 else { 1367 // Create an artificial VarDecl to generate debug info for. 1368 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1369 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1370 auto QT = getContext().getIntTypeForBitwidth( 1371 VlaExprTy->getScalarSizeInBits(), false); 1372 auto *ArtificialDecl = VarDecl::Create( 1373 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1374 D.getLocation(), D.getLocation(), NameIdent, QT, 1375 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1376 ArtificialDecl->setImplicit(); 1377 1378 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1379 Builder); 1380 } 1381 assert(MD && "No Size expression debug node created"); 1382 DI->registerVLASizeExpression(VlaSize.Type, MD); 1383 } 1384 } 1385 1386 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1387 /// local variable. Does not emit initialization or destruction. 1388 CodeGenFunction::AutoVarEmission 1389 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1390 QualType Ty = D.getType(); 1391 assert( 1392 Ty.getAddressSpace() == LangAS::Default || 1393 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1394 1395 AutoVarEmission emission(D); 1396 1397 bool isEscapingByRef = D.isEscapingByref(); 1398 emission.IsEscapingByRef = isEscapingByRef; 1399 1400 CharUnits alignment = getContext().getDeclAlign(&D); 1401 1402 // If the type is variably-modified, emit all the VLA sizes for it. 1403 if (Ty->isVariablyModifiedType()) 1404 EmitVariablyModifiedType(Ty); 1405 1406 auto *DI = getDebugInfo(); 1407 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1408 1409 Address address = Address::invalid(); 1410 Address AllocaAddr = Address::invalid(); 1411 Address OpenMPLocalAddr = Address::invalid(); 1412 if (CGM.getLangOpts().OpenMPIRBuilder) 1413 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D); 1414 else 1415 OpenMPLocalAddr = 1416 getLangOpts().OpenMP 1417 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1418 : Address::invalid(); 1419 1420 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1421 1422 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1423 address = OpenMPLocalAddr; 1424 } else if (Ty->isConstantSizeType()) { 1425 // If this value is an array or struct with a statically determinable 1426 // constant initializer, there are optimizations we can do. 1427 // 1428 // TODO: We should constant-evaluate the initializer of any variable, 1429 // as long as it is initialized by a constant expression. Currently, 1430 // isConstantInitializer produces wrong answers for structs with 1431 // reference or bitfield members, and a few other cases, and checking 1432 // for POD-ness protects us from some of these. 1433 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1434 (D.isConstexpr() || 1435 ((Ty.isPODType(getContext()) || 1436 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1437 D.getInit()->isConstantInitializer(getContext(), false)))) { 1438 1439 // If the variable's a const type, and it's neither an NRVO 1440 // candidate nor a __block variable and has no mutable members, 1441 // emit it as a global instead. 1442 // Exception is if a variable is located in non-constant address space 1443 // in OpenCL. 1444 if ((!getLangOpts().OpenCL || 1445 Ty.getAddressSpace() == LangAS::opencl_constant) && 1446 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1447 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1448 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1449 1450 // Signal this condition to later callbacks. 1451 emission.Addr = Address::invalid(); 1452 assert(emission.wasEmittedAsGlobal()); 1453 return emission; 1454 } 1455 1456 // Otherwise, tell the initialization code that we're in this case. 1457 emission.IsConstantAggregate = true; 1458 } 1459 1460 // A normal fixed sized variable becomes an alloca in the entry block, 1461 // unless: 1462 // - it's an NRVO variable. 1463 // - we are compiling OpenMP and it's an OpenMP local variable. 1464 if (NRVO) { 1465 // The named return value optimization: allocate this variable in the 1466 // return slot, so that we can elide the copy when returning this 1467 // variable (C++0x [class.copy]p34). 1468 address = ReturnValue; 1469 1470 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1471 const auto *RD = RecordTy->getDecl(); 1472 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1473 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1474 RD->isNonTrivialToPrimitiveDestroy()) { 1475 // Create a flag that is used to indicate when the NRVO was applied 1476 // to this variable. Set it to zero to indicate that NRVO was not 1477 // applied. 1478 llvm::Value *Zero = Builder.getFalse(); 1479 Address NRVOFlag = 1480 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1481 EnsureInsertPoint(); 1482 Builder.CreateStore(Zero, NRVOFlag); 1483 1484 // Record the NRVO flag for this variable. 1485 NRVOFlags[&D] = NRVOFlag.getPointer(); 1486 emission.NRVOFlag = NRVOFlag.getPointer(); 1487 } 1488 } 1489 } else { 1490 CharUnits allocaAlignment; 1491 llvm::Type *allocaTy; 1492 if (isEscapingByRef) { 1493 auto &byrefInfo = getBlockByrefInfo(&D); 1494 allocaTy = byrefInfo.Type; 1495 allocaAlignment = byrefInfo.ByrefAlignment; 1496 } else { 1497 allocaTy = ConvertTypeForMem(Ty); 1498 allocaAlignment = alignment; 1499 } 1500 1501 // Create the alloca. Note that we set the name separately from 1502 // building the instruction so that it's there even in no-asserts 1503 // builds. 1504 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1505 /*ArraySize=*/nullptr, &AllocaAddr); 1506 1507 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1508 // the catch parameter starts in the catchpad instruction, and we can't 1509 // insert code in those basic blocks. 1510 bool IsMSCatchParam = 1511 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1512 1513 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1514 // if we don't have a valid insertion point (?). 1515 if (HaveInsertPoint() && !IsMSCatchParam) { 1516 // If there's a jump into the lifetime of this variable, its lifetime 1517 // gets broken up into several regions in IR, which requires more work 1518 // to handle correctly. For now, just omit the intrinsics; this is a 1519 // rare case, and it's better to just be conservatively correct. 1520 // PR28267. 1521 // 1522 // We have to do this in all language modes if there's a jump past the 1523 // declaration. We also have to do it in C if there's a jump to an 1524 // earlier point in the current block because non-VLA lifetimes begin as 1525 // soon as the containing block is entered, not when its variables 1526 // actually come into scope; suppressing the lifetime annotations 1527 // completely in this case is unnecessarily pessimistic, but again, this 1528 // is rare. 1529 if (!Bypasses.IsBypassed(&D) && 1530 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1531 llvm::TypeSize size = 1532 CGM.getDataLayout().getTypeAllocSize(allocaTy); 1533 emission.SizeForLifetimeMarkers = 1534 size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer()) 1535 : EmitLifetimeStart(size.getFixedSize(), 1536 AllocaAddr.getPointer()); 1537 } 1538 } else { 1539 assert(!emission.useLifetimeMarkers()); 1540 } 1541 } 1542 } else { 1543 EnsureInsertPoint(); 1544 1545 if (!DidCallStackSave) { 1546 // Save the stack. 1547 Address Stack = 1548 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1549 1550 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1551 llvm::Value *V = Builder.CreateCall(F); 1552 Builder.CreateStore(V, Stack); 1553 1554 DidCallStackSave = true; 1555 1556 // Push a cleanup block and restore the stack there. 1557 // FIXME: in general circumstances, this should be an EH cleanup. 1558 pushStackRestore(NormalCleanup, Stack); 1559 } 1560 1561 auto VlaSize = getVLASize(Ty); 1562 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1563 1564 // Allocate memory for the array. 1565 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1566 &AllocaAddr); 1567 1568 // If we have debug info enabled, properly describe the VLA dimensions for 1569 // this type by registering the vla size expression for each of the 1570 // dimensions. 1571 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1572 } 1573 1574 setAddrOfLocalVar(&D, address); 1575 emission.Addr = address; 1576 emission.AllocaAddr = AllocaAddr; 1577 1578 // Emit debug info for local var declaration. 1579 if (EmitDebugInfo && HaveInsertPoint()) { 1580 Address DebugAddr = address; 1581 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1582 DI->setLocation(D.getLocation()); 1583 1584 // If NRVO, use a pointer to the return address. 1585 if (UsePointerValue) 1586 DebugAddr = ReturnValuePointer; 1587 1588 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1589 UsePointerValue); 1590 } 1591 1592 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1593 EmitVarAnnotations(&D, address.getPointer()); 1594 1595 // Make sure we call @llvm.lifetime.end. 1596 if (emission.useLifetimeMarkers()) 1597 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1598 emission.getOriginalAllocatedAddress(), 1599 emission.getSizeForLifetimeMarkers()); 1600 1601 return emission; 1602 } 1603 1604 static bool isCapturedBy(const VarDecl &, const Expr *); 1605 1606 /// Determines whether the given __block variable is potentially 1607 /// captured by the given statement. 1608 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1609 if (const Expr *E = dyn_cast<Expr>(S)) 1610 return isCapturedBy(Var, E); 1611 for (const Stmt *SubStmt : S->children()) 1612 if (isCapturedBy(Var, SubStmt)) 1613 return true; 1614 return false; 1615 } 1616 1617 /// Determines whether the given __block variable is potentially 1618 /// captured by the given expression. 1619 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1620 // Skip the most common kinds of expressions that make 1621 // hierarchy-walking expensive. 1622 E = E->IgnoreParenCasts(); 1623 1624 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1625 const BlockDecl *Block = BE->getBlockDecl(); 1626 for (const auto &I : Block->captures()) { 1627 if (I.getVariable() == &Var) 1628 return true; 1629 } 1630 1631 // No need to walk into the subexpressions. 1632 return false; 1633 } 1634 1635 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1636 const CompoundStmt *CS = SE->getSubStmt(); 1637 for (const auto *BI : CS->body()) 1638 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1639 if (isCapturedBy(Var, BIE)) 1640 return true; 1641 } 1642 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1643 // special case declarations 1644 for (const auto *I : DS->decls()) { 1645 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1646 const Expr *Init = VD->getInit(); 1647 if (Init && isCapturedBy(Var, Init)) 1648 return true; 1649 } 1650 } 1651 } 1652 else 1653 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1654 // Later, provide code to poke into statements for capture analysis. 1655 return true; 1656 return false; 1657 } 1658 1659 for (const Stmt *SubStmt : E->children()) 1660 if (isCapturedBy(Var, SubStmt)) 1661 return true; 1662 1663 return false; 1664 } 1665 1666 /// Determine whether the given initializer is trivial in the sense 1667 /// that it requires no code to be generated. 1668 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1669 if (!Init) 1670 return true; 1671 1672 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1673 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1674 if (Constructor->isTrivial() && 1675 Constructor->isDefaultConstructor() && 1676 !Construct->requiresZeroInitialization()) 1677 return true; 1678 1679 return false; 1680 } 1681 1682 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1683 const VarDecl &D, 1684 Address Loc) { 1685 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1686 CharUnits Size = getContext().getTypeSizeInChars(type); 1687 bool isVolatile = type.isVolatileQualified(); 1688 if (!Size.isZero()) { 1689 switch (trivialAutoVarInit) { 1690 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1691 llvm_unreachable("Uninitialized handled by caller"); 1692 case LangOptions::TrivialAutoVarInitKind::Zero: 1693 if (CGM.stopAutoInit()) 1694 return; 1695 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1696 break; 1697 case LangOptions::TrivialAutoVarInitKind::Pattern: 1698 if (CGM.stopAutoInit()) 1699 return; 1700 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1701 break; 1702 } 1703 return; 1704 } 1705 1706 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1707 // them, so emit a memcpy with the VLA size to initialize each element. 1708 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1709 // will catch that code, but there exists code which generates zero-sized 1710 // VLAs. Be nice and initialize whatever they requested. 1711 const auto *VlaType = getContext().getAsVariableArrayType(type); 1712 if (!VlaType) 1713 return; 1714 auto VlaSize = getVLASize(VlaType); 1715 auto SizeVal = VlaSize.NumElts; 1716 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1717 switch (trivialAutoVarInit) { 1718 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1719 llvm_unreachable("Uninitialized handled by caller"); 1720 1721 case LangOptions::TrivialAutoVarInitKind::Zero: 1722 if (CGM.stopAutoInit()) 1723 return; 1724 if (!EltSize.isOne()) 1725 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1726 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1727 isVolatile); 1728 break; 1729 1730 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1731 if (CGM.stopAutoInit()) 1732 return; 1733 llvm::Type *ElTy = Loc.getElementType(); 1734 llvm::Constant *Constant = constWithPadding( 1735 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1736 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1737 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1738 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1739 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1740 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1741 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1742 "vla.iszerosized"); 1743 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1744 EmitBlock(SetupBB); 1745 if (!EltSize.isOne()) 1746 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1747 llvm::Value *BaseSizeInChars = 1748 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1749 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1750 llvm::Value *End = 1751 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); 1752 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1753 EmitBlock(LoopBB); 1754 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1755 Cur->addIncoming(Begin.getPointer(), OriginBB); 1756 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1757 Builder.CreateMemCpy(Address(Cur, CurAlign), 1758 createUnnamedGlobalForMemcpyFrom( 1759 CGM, D, Builder, Constant, ConstantAlign), 1760 BaseSizeInChars, isVolatile); 1761 llvm::Value *Next = 1762 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1763 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1764 Builder.CreateCondBr(Done, ContBB, LoopBB); 1765 Cur->addIncoming(Next, LoopBB); 1766 EmitBlock(ContBB); 1767 } break; 1768 } 1769 } 1770 1771 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1772 assert(emission.Variable && "emission was not valid!"); 1773 1774 // If this was emitted as a global constant, we're done. 1775 if (emission.wasEmittedAsGlobal()) return; 1776 1777 const VarDecl &D = *emission.Variable; 1778 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1779 QualType type = D.getType(); 1780 1781 // If this local has an initializer, emit it now. 1782 const Expr *Init = D.getInit(); 1783 1784 // If we are at an unreachable point, we don't need to emit the initializer 1785 // unless it contains a label. 1786 if (!HaveInsertPoint()) { 1787 if (!Init || !ContainsLabel(Init)) return; 1788 EnsureInsertPoint(); 1789 } 1790 1791 // Initialize the structure of a __block variable. 1792 if (emission.IsEscapingByRef) 1793 emitByrefStructureInit(emission); 1794 1795 // Initialize the variable here if it doesn't have a initializer and it is a 1796 // C struct that is non-trivial to initialize or an array containing such a 1797 // struct. 1798 if (!Init && 1799 type.isNonTrivialToPrimitiveDefaultInitialize() == 1800 QualType::PDIK_Struct) { 1801 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1802 if (emission.IsEscapingByRef) 1803 drillIntoBlockVariable(*this, Dst, &D); 1804 defaultInitNonTrivialCStructVar(Dst); 1805 return; 1806 } 1807 1808 // Check whether this is a byref variable that's potentially 1809 // captured and moved by its own initializer. If so, we'll need to 1810 // emit the initializer first, then copy into the variable. 1811 bool capturedByInit = 1812 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1813 1814 bool locIsByrefHeader = !capturedByInit; 1815 const Address Loc = 1816 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1817 1818 // Note: constexpr already initializes everything correctly. 1819 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1820 (D.isConstexpr() 1821 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1822 : (D.getAttr<UninitializedAttr>() 1823 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1824 : getContext().getLangOpts().getTrivialAutoVarInit())); 1825 1826 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1827 if (trivialAutoVarInit == 1828 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1829 return; 1830 1831 // Only initialize a __block's storage: we always initialize the header. 1832 if (emission.IsEscapingByRef && !locIsByrefHeader) 1833 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1834 1835 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1836 }; 1837 1838 if (isTrivialInitializer(Init)) 1839 return initializeWhatIsTechnicallyUninitialized(Loc); 1840 1841 llvm::Constant *constant = nullptr; 1842 if (emission.IsConstantAggregate || 1843 D.mightBeUsableInConstantExpressions(getContext())) { 1844 assert(!capturedByInit && "constant init contains a capturing block?"); 1845 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1846 if (constant && !constant->isZeroValue() && 1847 (trivialAutoVarInit != 1848 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1849 IsPattern isPattern = 1850 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1851 ? IsPattern::Yes 1852 : IsPattern::No; 1853 // C guarantees that brace-init with fewer initializers than members in 1854 // the aggregate will initialize the rest of the aggregate as-if it were 1855 // static initialization. In turn static initialization guarantees that 1856 // padding is initialized to zero bits. We could instead pattern-init if D 1857 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1858 // behavior. 1859 constant = constWithPadding(CGM, IsPattern::No, 1860 replaceUndef(CGM, isPattern, constant)); 1861 } 1862 } 1863 1864 if (!constant) { 1865 initializeWhatIsTechnicallyUninitialized(Loc); 1866 LValue lv = MakeAddrLValue(Loc, type); 1867 lv.setNonGC(true); 1868 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1869 } 1870 1871 if (!emission.IsConstantAggregate) { 1872 // For simple scalar/complex initialization, store the value directly. 1873 LValue lv = MakeAddrLValue(Loc, type); 1874 lv.setNonGC(true); 1875 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1876 } 1877 1878 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1879 emitStoresForConstant( 1880 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1881 type.isVolatileQualified(), Builder, constant); 1882 } 1883 1884 /// Emit an expression as an initializer for an object (variable, field, etc.) 1885 /// at the given location. The expression is not necessarily the normal 1886 /// initializer for the object, and the address is not necessarily 1887 /// its normal location. 1888 /// 1889 /// \param init the initializing expression 1890 /// \param D the object to act as if we're initializing 1891 /// \param lvalue the lvalue to initialize 1892 /// \param capturedByInit true if \p D is a __block variable 1893 /// whose address is potentially changed by the initializer 1894 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1895 LValue lvalue, bool capturedByInit) { 1896 QualType type = D->getType(); 1897 1898 if (type->isReferenceType()) { 1899 RValue rvalue = EmitReferenceBindingToExpr(init); 1900 if (capturedByInit) 1901 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1902 EmitStoreThroughLValue(rvalue, lvalue, true); 1903 return; 1904 } 1905 switch (getEvaluationKind(type)) { 1906 case TEK_Scalar: 1907 EmitScalarInit(init, D, lvalue, capturedByInit); 1908 return; 1909 case TEK_Complex: { 1910 ComplexPairTy complex = EmitComplexExpr(init); 1911 if (capturedByInit) 1912 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1913 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1914 return; 1915 } 1916 case TEK_Aggregate: 1917 if (type->isAtomicType()) { 1918 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1919 } else { 1920 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1921 if (isa<VarDecl>(D)) 1922 Overlap = AggValueSlot::DoesNotOverlap; 1923 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1924 Overlap = getOverlapForFieldInit(FD); 1925 // TODO: how can we delay here if D is captured by its initializer? 1926 EmitAggExpr(init, AggValueSlot::forLValue( 1927 lvalue, *this, AggValueSlot::IsDestructed, 1928 AggValueSlot::DoesNotNeedGCBarriers, 1929 AggValueSlot::IsNotAliased, Overlap)); 1930 } 1931 return; 1932 } 1933 llvm_unreachable("bad evaluation kind"); 1934 } 1935 1936 /// Enter a destroy cleanup for the given local variable. 1937 void CodeGenFunction::emitAutoVarTypeCleanup( 1938 const CodeGenFunction::AutoVarEmission &emission, 1939 QualType::DestructionKind dtorKind) { 1940 assert(dtorKind != QualType::DK_none); 1941 1942 // Note that for __block variables, we want to destroy the 1943 // original stack object, not the possibly forwarded object. 1944 Address addr = emission.getObjectAddress(*this); 1945 1946 const VarDecl *var = emission.Variable; 1947 QualType type = var->getType(); 1948 1949 CleanupKind cleanupKind = NormalAndEHCleanup; 1950 CodeGenFunction::Destroyer *destroyer = nullptr; 1951 1952 switch (dtorKind) { 1953 case QualType::DK_none: 1954 llvm_unreachable("no cleanup for trivially-destructible variable"); 1955 1956 case QualType::DK_cxx_destructor: 1957 // If there's an NRVO flag on the emission, we need a different 1958 // cleanup. 1959 if (emission.NRVOFlag) { 1960 assert(!type->isArrayType()); 1961 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1962 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1963 emission.NRVOFlag); 1964 return; 1965 } 1966 break; 1967 1968 case QualType::DK_objc_strong_lifetime: 1969 // Suppress cleanups for pseudo-strong variables. 1970 if (var->isARCPseudoStrong()) return; 1971 1972 // Otherwise, consider whether to use an EH cleanup or not. 1973 cleanupKind = getARCCleanupKind(); 1974 1975 // Use the imprecise destroyer by default. 1976 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1977 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1978 break; 1979 1980 case QualType::DK_objc_weak_lifetime: 1981 break; 1982 1983 case QualType::DK_nontrivial_c_struct: 1984 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1985 if (emission.NRVOFlag) { 1986 assert(!type->isArrayType()); 1987 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 1988 emission.NRVOFlag, type); 1989 return; 1990 } 1991 break; 1992 } 1993 1994 // If we haven't chosen a more specific destroyer, use the default. 1995 if (!destroyer) destroyer = getDestroyer(dtorKind); 1996 1997 // Use an EH cleanup in array destructors iff the destructor itself 1998 // is being pushed as an EH cleanup. 1999 bool useEHCleanup = (cleanupKind & EHCleanup); 2000 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 2001 useEHCleanup); 2002 } 2003 2004 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 2005 assert(emission.Variable && "emission was not valid!"); 2006 2007 // If this was emitted as a global constant, we're done. 2008 if (emission.wasEmittedAsGlobal()) return; 2009 2010 // If we don't have an insertion point, we're done. Sema prevents 2011 // us from jumping into any of these scopes anyway. 2012 if (!HaveInsertPoint()) return; 2013 2014 const VarDecl &D = *emission.Variable; 2015 2016 // Check the type for a cleanup. 2017 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2018 emitAutoVarTypeCleanup(emission, dtorKind); 2019 2020 // In GC mode, honor objc_precise_lifetime. 2021 if (getLangOpts().getGC() != LangOptions::NonGC && 2022 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2023 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2024 } 2025 2026 // Handle the cleanup attribute. 2027 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2028 const FunctionDecl *FD = CA->getFunctionDecl(); 2029 2030 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2031 assert(F && "Could not find function!"); 2032 2033 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2034 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2035 } 2036 2037 // If this is a block variable, call _Block_object_destroy 2038 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2039 // mode. 2040 if (emission.IsEscapingByRef && 2041 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2042 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2043 if (emission.Variable->getType().isObjCGCWeak()) 2044 Flags |= BLOCK_FIELD_IS_WEAK; 2045 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2046 /*LoadBlockVarAddr*/ false, 2047 cxxDestructorCanThrow(emission.Variable->getType())); 2048 } 2049 } 2050 2051 CodeGenFunction::Destroyer * 2052 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2053 switch (kind) { 2054 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2055 case QualType::DK_cxx_destructor: 2056 return destroyCXXObject; 2057 case QualType::DK_objc_strong_lifetime: 2058 return destroyARCStrongPrecise; 2059 case QualType::DK_objc_weak_lifetime: 2060 return destroyARCWeak; 2061 case QualType::DK_nontrivial_c_struct: 2062 return destroyNonTrivialCStruct; 2063 } 2064 llvm_unreachable("Unknown DestructionKind"); 2065 } 2066 2067 /// pushEHDestroy - Push the standard destructor for the given type as 2068 /// an EH-only cleanup. 2069 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2070 Address addr, QualType type) { 2071 assert(dtorKind && "cannot push destructor for trivial type"); 2072 assert(needsEHCleanup(dtorKind)); 2073 2074 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2075 } 2076 2077 /// pushDestroy - Push the standard destructor for the given type as 2078 /// at least a normal cleanup. 2079 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2080 Address addr, QualType type) { 2081 assert(dtorKind && "cannot push destructor for trivial type"); 2082 2083 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2084 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2085 cleanupKind & EHCleanup); 2086 } 2087 2088 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2089 QualType type, Destroyer *destroyer, 2090 bool useEHCleanupForArray) { 2091 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2092 destroyer, useEHCleanupForArray); 2093 } 2094 2095 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2096 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2097 } 2098 2099 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind, 2100 Address addr, QualType type, 2101 Destroyer *destroyer, 2102 bool useEHCleanupForArray) { 2103 // If we're not in a conditional branch, we don't need to bother generating a 2104 // conditional cleanup. 2105 if (!isInConditionalBranch()) { 2106 // Push an EH-only cleanup for the object now. 2107 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2108 // around in case a temporary's destructor throws an exception. 2109 if (cleanupKind & EHCleanup) 2110 EHStack.pushCleanup<DestroyObject>( 2111 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2112 destroyer, useEHCleanupForArray); 2113 2114 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>( 2115 cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray); 2116 } 2117 2118 // Otherwise, we should only destroy the object if it's been initialized. 2119 // Re-use the active flag and saved address across both the EH and end of 2120 // scope cleanups. 2121 2122 using SavedType = typename DominatingValue<Address>::saved_type; 2123 using ConditionalCleanupType = 2124 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType, 2125 Destroyer *, bool>; 2126 2127 Address ActiveFlag = createCleanupActiveFlag(); 2128 SavedType SavedAddr = saveValueInCond(addr); 2129 2130 if (cleanupKind & EHCleanup) { 2131 EHStack.pushCleanup<ConditionalCleanupType>( 2132 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type, 2133 destroyer, useEHCleanupForArray); 2134 initFullExprCleanupWithFlag(ActiveFlag); 2135 } 2136 2137 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>( 2138 cleanupKind, ActiveFlag, SavedAddr, type, destroyer, 2139 useEHCleanupForArray); 2140 } 2141 2142 /// emitDestroy - Immediately perform the destruction of the given 2143 /// object. 2144 /// 2145 /// \param addr - the address of the object; a type* 2146 /// \param type - the type of the object; if an array type, all 2147 /// objects are destroyed in reverse order 2148 /// \param destroyer - the function to call to destroy individual 2149 /// elements 2150 /// \param useEHCleanupForArray - whether an EH cleanup should be 2151 /// used when destroying array elements, in case one of the 2152 /// destructions throws an exception 2153 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2154 Destroyer *destroyer, 2155 bool useEHCleanupForArray) { 2156 const ArrayType *arrayType = getContext().getAsArrayType(type); 2157 if (!arrayType) 2158 return destroyer(*this, addr, type); 2159 2160 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2161 2162 CharUnits elementAlign = 2163 addr.getAlignment() 2164 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2165 2166 // Normally we have to check whether the array is zero-length. 2167 bool checkZeroLength = true; 2168 2169 // But if the array length is constant, we can suppress that. 2170 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2171 // ...and if it's constant zero, we can just skip the entire thing. 2172 if (constLength->isZero()) return; 2173 checkZeroLength = false; 2174 } 2175 2176 llvm::Value *begin = addr.getPointer(); 2177 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 2178 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2179 checkZeroLength, useEHCleanupForArray); 2180 } 2181 2182 /// emitArrayDestroy - Destroys all the elements of the given array, 2183 /// beginning from last to first. The array cannot be zero-length. 2184 /// 2185 /// \param begin - a type* denoting the first element of the array 2186 /// \param end - a type* denoting one past the end of the array 2187 /// \param elementType - the element type of the array 2188 /// \param destroyer - the function to call to destroy elements 2189 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2190 /// the remaining elements in case the destruction of a single 2191 /// element throws 2192 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2193 llvm::Value *end, 2194 QualType elementType, 2195 CharUnits elementAlign, 2196 Destroyer *destroyer, 2197 bool checkZeroLength, 2198 bool useEHCleanup) { 2199 assert(!elementType->isArrayType()); 2200 2201 // The basic structure here is a do-while loop, because we don't 2202 // need to check for the zero-element case. 2203 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2204 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2205 2206 if (checkZeroLength) { 2207 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2208 "arraydestroy.isempty"); 2209 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2210 } 2211 2212 // Enter the loop body, making that address the current address. 2213 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2214 EmitBlock(bodyBB); 2215 llvm::PHINode *elementPast = 2216 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2217 elementPast->addIncoming(end, entryBB); 2218 2219 // Shift the address back by one element. 2220 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2221 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2222 "arraydestroy.element"); 2223 2224 if (useEHCleanup) 2225 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2226 destroyer); 2227 2228 // Perform the actual destruction there. 2229 destroyer(*this, Address(element, elementAlign), elementType); 2230 2231 if (useEHCleanup) 2232 PopCleanupBlock(); 2233 2234 // Check whether we've reached the end. 2235 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2236 Builder.CreateCondBr(done, doneBB, bodyBB); 2237 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2238 2239 // Done. 2240 EmitBlock(doneBB); 2241 } 2242 2243 /// Perform partial array destruction as if in an EH cleanup. Unlike 2244 /// emitArrayDestroy, the element type here may still be an array type. 2245 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2246 llvm::Value *begin, llvm::Value *end, 2247 QualType type, CharUnits elementAlign, 2248 CodeGenFunction::Destroyer *destroyer) { 2249 // If the element type is itself an array, drill down. 2250 unsigned arrayDepth = 0; 2251 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2252 // VLAs don't require a GEP index to walk into. 2253 if (!isa<VariableArrayType>(arrayType)) 2254 arrayDepth++; 2255 type = arrayType->getElementType(); 2256 } 2257 2258 if (arrayDepth) { 2259 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2260 2261 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2262 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2263 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2264 } 2265 2266 // Destroy the array. We don't ever need an EH cleanup because we 2267 // assume that we're in an EH cleanup ourselves, so a throwing 2268 // destructor causes an immediate terminate. 2269 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2270 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2271 } 2272 2273 namespace { 2274 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2275 /// array destroy where the end pointer is regularly determined and 2276 /// does not need to be loaded from a local. 2277 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2278 llvm::Value *ArrayBegin; 2279 llvm::Value *ArrayEnd; 2280 QualType ElementType; 2281 CodeGenFunction::Destroyer *Destroyer; 2282 CharUnits ElementAlign; 2283 public: 2284 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2285 QualType elementType, CharUnits elementAlign, 2286 CodeGenFunction::Destroyer *destroyer) 2287 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2288 ElementType(elementType), Destroyer(destroyer), 2289 ElementAlign(elementAlign) {} 2290 2291 void Emit(CodeGenFunction &CGF, Flags flags) override { 2292 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2293 ElementType, ElementAlign, Destroyer); 2294 } 2295 }; 2296 2297 /// IrregularPartialArrayDestroy - a cleanup which performs a 2298 /// partial array destroy where the end pointer is irregularly 2299 /// determined and must be loaded from a local. 2300 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2301 llvm::Value *ArrayBegin; 2302 Address ArrayEndPointer; 2303 QualType ElementType; 2304 CodeGenFunction::Destroyer *Destroyer; 2305 CharUnits ElementAlign; 2306 public: 2307 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2308 Address arrayEndPointer, 2309 QualType elementType, 2310 CharUnits elementAlign, 2311 CodeGenFunction::Destroyer *destroyer) 2312 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2313 ElementType(elementType), Destroyer(destroyer), 2314 ElementAlign(elementAlign) {} 2315 2316 void Emit(CodeGenFunction &CGF, Flags flags) override { 2317 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2318 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2319 ElementType, ElementAlign, Destroyer); 2320 } 2321 }; 2322 } // end anonymous namespace 2323 2324 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2325 /// already-constructed elements of the given array. The cleanup 2326 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2327 /// 2328 /// \param elementType - the immediate element type of the array; 2329 /// possibly still an array type 2330 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2331 Address arrayEndPointer, 2332 QualType elementType, 2333 CharUnits elementAlign, 2334 Destroyer *destroyer) { 2335 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2336 arrayBegin, arrayEndPointer, 2337 elementType, elementAlign, 2338 destroyer); 2339 } 2340 2341 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2342 /// already-constructed elements of the given array. The cleanup 2343 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2344 /// 2345 /// \param elementType - the immediate element type of the array; 2346 /// possibly still an array type 2347 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2348 llvm::Value *arrayEnd, 2349 QualType elementType, 2350 CharUnits elementAlign, 2351 Destroyer *destroyer) { 2352 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2353 arrayBegin, arrayEnd, 2354 elementType, elementAlign, 2355 destroyer); 2356 } 2357 2358 /// Lazily declare the @llvm.lifetime.start intrinsic. 2359 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2360 if (LifetimeStartFn) 2361 return LifetimeStartFn; 2362 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2363 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2364 return LifetimeStartFn; 2365 } 2366 2367 /// Lazily declare the @llvm.lifetime.end intrinsic. 2368 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2369 if (LifetimeEndFn) 2370 return LifetimeEndFn; 2371 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2372 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2373 return LifetimeEndFn; 2374 } 2375 2376 namespace { 2377 /// A cleanup to perform a release of an object at the end of a 2378 /// function. This is used to balance out the incoming +1 of a 2379 /// ns_consumed argument when we can't reasonably do that just by 2380 /// not doing the initial retain for a __block argument. 2381 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2382 ConsumeARCParameter(llvm::Value *param, 2383 ARCPreciseLifetime_t precise) 2384 : Param(param), Precise(precise) {} 2385 2386 llvm::Value *Param; 2387 ARCPreciseLifetime_t Precise; 2388 2389 void Emit(CodeGenFunction &CGF, Flags flags) override { 2390 CGF.EmitARCRelease(Param, Precise); 2391 } 2392 }; 2393 } // end anonymous namespace 2394 2395 /// Emit an alloca (or GlobalValue depending on target) 2396 /// for the specified parameter and set up LocalDeclMap. 2397 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2398 unsigned ArgNo) { 2399 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2400 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2401 "Invalid argument to EmitParmDecl"); 2402 2403 Arg.getAnyValue()->setName(D.getName()); 2404 2405 QualType Ty = D.getType(); 2406 2407 // Use better IR generation for certain implicit parameters. 2408 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2409 // The only implicit argument a block has is its literal. 2410 // This may be passed as an inalloca'ed value on Windows x86. 2411 if (BlockInfo) { 2412 llvm::Value *V = Arg.isIndirect() 2413 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2414 : Arg.getDirectValue(); 2415 setBlockContextParameter(IPD, ArgNo, V); 2416 return; 2417 } 2418 } 2419 2420 Address DeclPtr = Address::invalid(); 2421 bool DoStore = false; 2422 bool IsScalar = hasScalarEvaluationKind(Ty); 2423 // If we already have a pointer to the argument, reuse the input pointer. 2424 if (Arg.isIndirect()) { 2425 DeclPtr = Arg.getIndirectAddress(); 2426 // If we have a prettier pointer type at this point, bitcast to that. 2427 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2428 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2429 if (DeclPtr.getType() != IRTy) 2430 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2431 // Indirect argument is in alloca address space, which may be different 2432 // from the default address space. 2433 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2434 auto *V = DeclPtr.getPointer(); 2435 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2436 auto DestLangAS = 2437 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2438 if (SrcLangAS != DestLangAS) { 2439 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2440 CGM.getDataLayout().getAllocaAddrSpace()); 2441 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2442 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2443 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2444 *this, V, SrcLangAS, DestLangAS, T, true), 2445 DeclPtr.getAlignment()); 2446 } 2447 2448 // Push a destructor cleanup for this parameter if the ABI requires it. 2449 // Don't push a cleanup in a thunk for a method that will also emit a 2450 // cleanup. 2451 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && 2452 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2453 if (QualType::DestructionKind DtorKind = 2454 D.needsDestruction(getContext())) { 2455 assert((DtorKind == QualType::DK_cxx_destructor || 2456 DtorKind == QualType::DK_nontrivial_c_struct) && 2457 "unexpected destructor type"); 2458 pushDestroy(DtorKind, DeclPtr, Ty); 2459 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2460 EHStack.stable_begin(); 2461 } 2462 } 2463 } else { 2464 // Check if the parameter address is controlled by OpenMP runtime. 2465 Address OpenMPLocalAddr = 2466 getLangOpts().OpenMP 2467 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2468 : Address::invalid(); 2469 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2470 DeclPtr = OpenMPLocalAddr; 2471 } else { 2472 // Otherwise, create a temporary to hold the value. 2473 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2474 D.getName() + ".addr"); 2475 } 2476 DoStore = true; 2477 } 2478 2479 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2480 2481 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2482 if (IsScalar) { 2483 Qualifiers qs = Ty.getQualifiers(); 2484 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2485 // We honor __attribute__((ns_consumed)) for types with lifetime. 2486 // For __strong, it's handled by just skipping the initial retain; 2487 // otherwise we have to balance out the initial +1 with an extra 2488 // cleanup to do the release at the end of the function. 2489 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2490 2491 // If a parameter is pseudo-strong then we can omit the implicit retain. 2492 if (D.isARCPseudoStrong()) { 2493 assert(lt == Qualifiers::OCL_Strong && 2494 "pseudo-strong variable isn't strong?"); 2495 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2496 lt = Qualifiers::OCL_ExplicitNone; 2497 } 2498 2499 // Load objects passed indirectly. 2500 if (Arg.isIndirect() && !ArgVal) 2501 ArgVal = Builder.CreateLoad(DeclPtr); 2502 2503 if (lt == Qualifiers::OCL_Strong) { 2504 if (!isConsumed) { 2505 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2506 // use objc_storeStrong(&dest, value) for retaining the 2507 // object. But first, store a null into 'dest' because 2508 // objc_storeStrong attempts to release its old value. 2509 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2510 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2511 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2512 DoStore = false; 2513 } 2514 else 2515 // Don't use objc_retainBlock for block pointers, because we 2516 // don't want to Block_copy something just because we got it 2517 // as a parameter. 2518 ArgVal = EmitARCRetainNonBlock(ArgVal); 2519 } 2520 } else { 2521 // Push the cleanup for a consumed parameter. 2522 if (isConsumed) { 2523 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2524 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2525 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2526 precise); 2527 } 2528 2529 if (lt == Qualifiers::OCL_Weak) { 2530 EmitARCInitWeak(DeclPtr, ArgVal); 2531 DoStore = false; // The weak init is a store, no need to do two. 2532 } 2533 } 2534 2535 // Enter the cleanup scope. 2536 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2537 } 2538 } 2539 2540 // Store the initial value into the alloca. 2541 if (DoStore) 2542 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2543 2544 setAddrOfLocalVar(&D, DeclPtr); 2545 2546 // Emit debug info for param declarations in non-thunk functions. 2547 if (CGDebugInfo *DI = getDebugInfo()) { 2548 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) { 2549 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 2550 } 2551 } 2552 2553 if (D.hasAttr<AnnotateAttr>()) 2554 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2555 2556 // We can only check return value nullability if all arguments to the 2557 // function satisfy their nullability preconditions. This makes it necessary 2558 // to emit null checks for args in the function body itself. 2559 if (requiresReturnValueNullabilityCheck()) { 2560 auto Nullability = Ty->getNullability(getContext()); 2561 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2562 SanitizerScope SanScope(this); 2563 RetValNullabilityPrecondition = 2564 Builder.CreateAnd(RetValNullabilityPrecondition, 2565 Builder.CreateIsNotNull(Arg.getAnyValue())); 2566 } 2567 } 2568 } 2569 2570 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2571 CodeGenFunction *CGF) { 2572 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2573 return; 2574 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2575 } 2576 2577 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2578 CodeGenFunction *CGF) { 2579 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2580 (!LangOpts.EmitAllDecls && !D->isUsed())) 2581 return; 2582 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2583 } 2584 2585 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2586 getOpenMPRuntime().processRequiresDirective(D); 2587 } 2588