1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Type.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 void CodeGenFunction::EmitDecl(const Decl &D) { 42 switch (D.getKind()) { 43 case Decl::BuiltinTemplate: 44 case Decl::TranslationUnit: 45 case Decl::ExternCContext: 46 case Decl::Namespace: 47 case Decl::UnresolvedUsingTypename: 48 case Decl::ClassTemplateSpecialization: 49 case Decl::ClassTemplatePartialSpecialization: 50 case Decl::VarTemplateSpecialization: 51 case Decl::VarTemplatePartialSpecialization: 52 case Decl::TemplateTypeParm: 53 case Decl::UnresolvedUsingValue: 54 case Decl::NonTypeTemplateParm: 55 case Decl::CXXDeductionGuide: 56 case Decl::CXXMethod: 57 case Decl::CXXConstructor: 58 case Decl::CXXDestructor: 59 case Decl::CXXConversion: 60 case Decl::Field: 61 case Decl::MSProperty: 62 case Decl::IndirectField: 63 case Decl::ObjCIvar: 64 case Decl::ObjCAtDefsField: 65 case Decl::ParmVar: 66 case Decl::ImplicitParam: 67 case Decl::ClassTemplate: 68 case Decl::VarTemplate: 69 case Decl::FunctionTemplate: 70 case Decl::TypeAliasTemplate: 71 case Decl::TemplateTemplateParm: 72 case Decl::ObjCMethod: 73 case Decl::ObjCCategory: 74 case Decl::ObjCProtocol: 75 case Decl::ObjCInterface: 76 case Decl::ObjCCategoryImpl: 77 case Decl::ObjCImplementation: 78 case Decl::ObjCProperty: 79 case Decl::ObjCCompatibleAlias: 80 case Decl::PragmaComment: 81 case Decl::PragmaDetectMismatch: 82 case Decl::AccessSpec: 83 case Decl::LinkageSpec: 84 case Decl::Export: 85 case Decl::ObjCPropertyImpl: 86 case Decl::FileScopeAsm: 87 case Decl::Friend: 88 case Decl::FriendTemplate: 89 case Decl::Block: 90 case Decl::Captured: 91 case Decl::ClassScopeFunctionSpecialization: 92 case Decl::UsingShadow: 93 case Decl::ConstructorUsingShadow: 94 case Decl::ObjCTypeParam: 95 case Decl::Binding: 96 llvm_unreachable("Declaration should not be in declstmts!"); 97 case Decl::Function: // void X(); 98 case Decl::Record: // struct/union/class X; 99 case Decl::Enum: // enum X; 100 case Decl::EnumConstant: // enum ? { X = ? } 101 case Decl::CXXRecord: // struct/union/class X; [C++] 102 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 103 case Decl::Label: // __label__ x; 104 case Decl::Import: 105 case Decl::OMPThreadPrivate: 106 case Decl::OMPCapturedExpr: 107 case Decl::Empty: 108 // None of these decls require codegen support. 109 return; 110 111 case Decl::NamespaceAlias: 112 if (CGDebugInfo *DI = getDebugInfo()) 113 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 114 return; 115 case Decl::Using: // using X; [C++] 116 if (CGDebugInfo *DI = getDebugInfo()) 117 DI->EmitUsingDecl(cast<UsingDecl>(D)); 118 return; 119 case Decl::UsingPack: 120 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 121 EmitDecl(*Using); 122 return; 123 case Decl::UsingDirective: // using namespace X; [C++] 124 if (CGDebugInfo *DI = getDebugInfo()) 125 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 126 return; 127 case Decl::Var: 128 case Decl::Decomposition: { 129 const VarDecl &VD = cast<VarDecl>(D); 130 assert(VD.isLocalVarDecl() && 131 "Should not see file-scope variables inside a function!"); 132 EmitVarDecl(VD); 133 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 134 for (auto *B : DD->bindings()) 135 if (auto *HD = B->getHoldingVar()) 136 EmitVarDecl(*HD); 137 return; 138 } 139 140 case Decl::OMPDeclareReduction: 141 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 142 143 case Decl::Typedef: // typedef int X; 144 case Decl::TypeAlias: { // using X = int; [C++0x] 145 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 146 QualType Ty = TD.getUnderlyingType(); 147 148 if (Ty->isVariablyModifiedType()) 149 EmitVariablyModifiedType(Ty); 150 } 151 } 152 } 153 154 /// EmitVarDecl - This method handles emission of any variable declaration 155 /// inside a function, including static vars etc. 156 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 157 if (D.hasExternalStorage()) 158 // Don't emit it now, allow it to be emitted lazily on its first use. 159 return; 160 161 // Some function-scope variable does not have static storage but still 162 // needs to be emitted like a static variable, e.g. a function-scope 163 // variable in constant address space in OpenCL. 164 if (D.getStorageDuration() != SD_Automatic) { 165 llvm::GlobalValue::LinkageTypes Linkage = 166 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 167 168 // FIXME: We need to force the emission/use of a guard variable for 169 // some variables even if we can constant-evaluate them because 170 // we can't guarantee every translation unit will constant-evaluate them. 171 172 return EmitStaticVarDecl(D, Linkage); 173 } 174 175 if (D.getType().getAddressSpace() == LangAS::opencl_local) 176 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 177 178 assert(D.hasLocalStorage()); 179 return EmitAutoVarDecl(D); 180 } 181 182 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 183 if (CGM.getLangOpts().CPlusPlus) 184 return CGM.getMangledName(&D).str(); 185 186 // If this isn't C++, we don't need a mangled name, just a pretty one. 187 assert(!D.isExternallyVisible() && "name shouldn't matter"); 188 std::string ContextName; 189 const DeclContext *DC = D.getDeclContext(); 190 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 191 DC = cast<DeclContext>(CD->getNonClosureContext()); 192 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 193 ContextName = CGM.getMangledName(FD); 194 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 195 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 196 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 197 ContextName = OMD->getSelector().getAsString(); 198 else 199 llvm_unreachable("Unknown context for static var decl"); 200 201 ContextName += "." + D.getNameAsString(); 202 return ContextName; 203 } 204 205 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 206 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 207 // In general, we don't always emit static var decls once before we reference 208 // them. It is possible to reference them before emitting the function that 209 // contains them, and it is possible to emit the containing function multiple 210 // times. 211 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 212 return ExistingGV; 213 214 QualType Ty = D.getType(); 215 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 216 217 // Use the label if the variable is renamed with the asm-label extension. 218 std::string Name; 219 if (D.hasAttr<AsmLabelAttr>()) 220 Name = getMangledName(&D); 221 else 222 Name = getStaticDeclName(*this, D); 223 224 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 225 unsigned AS = GetGlobalVarAddressSpace(&D); 226 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 227 228 // Local address space cannot have an initializer. 229 llvm::Constant *Init = nullptr; 230 if (Ty.getAddressSpace() != LangAS::opencl_local) 231 Init = EmitNullConstant(Ty); 232 else 233 Init = llvm::UndefValue::get(LTy); 234 235 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 236 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 237 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 238 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 239 setGlobalVisibility(GV, &D); 240 241 if (supportsCOMDAT() && GV->isWeakForLinker()) 242 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 243 244 if (D.getTLSKind()) 245 setTLSMode(GV, D); 246 247 if (D.isExternallyVisible()) { 248 if (D.hasAttr<DLLImportAttr>()) 249 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 250 else if (D.hasAttr<DLLExportAttr>()) 251 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 252 } 253 254 // Make sure the result is of the correct type. 255 unsigned ExpectedAS = Ty.getAddressSpace(); 256 llvm::Constant *Addr = GV; 257 if (AS != ExpectedAS) { 258 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 259 *this, GV, AS, ExpectedAS, 260 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 261 } 262 263 setStaticLocalDeclAddress(&D, Addr); 264 265 // Ensure that the static local gets initialized by making sure the parent 266 // function gets emitted eventually. 267 const Decl *DC = cast<Decl>(D.getDeclContext()); 268 269 // We can't name blocks or captured statements directly, so try to emit their 270 // parents. 271 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 272 DC = DC->getNonClosureContext(); 273 // FIXME: Ensure that global blocks get emitted. 274 if (!DC) 275 return Addr; 276 } 277 278 GlobalDecl GD; 279 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 280 GD = GlobalDecl(CD, Ctor_Base); 281 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 282 GD = GlobalDecl(DD, Dtor_Base); 283 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 284 GD = GlobalDecl(FD); 285 else { 286 // Don't do anything for Obj-C method decls or global closures. We should 287 // never defer them. 288 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 289 } 290 if (GD.getDecl()) 291 (void)GetAddrOfGlobal(GD); 292 293 return Addr; 294 } 295 296 /// hasNontrivialDestruction - Determine whether a type's destruction is 297 /// non-trivial. If so, and the variable uses static initialization, we must 298 /// register its destructor to run on exit. 299 static bool hasNontrivialDestruction(QualType T) { 300 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 301 return RD && !RD->hasTrivialDestructor(); 302 } 303 304 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 305 /// global variable that has already been created for it. If the initializer 306 /// has a different type than GV does, this may free GV and return a different 307 /// one. Otherwise it just returns GV. 308 llvm::GlobalVariable * 309 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 310 llvm::GlobalVariable *GV) { 311 ConstantEmitter emitter(*this); 312 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 313 314 // If constant emission failed, then this should be a C++ static 315 // initializer. 316 if (!Init) { 317 if (!getLangOpts().CPlusPlus) 318 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 319 else if (HaveInsertPoint()) { 320 // Since we have a static initializer, this global variable can't 321 // be constant. 322 GV->setConstant(false); 323 324 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 325 } 326 return GV; 327 } 328 329 // The initializer may differ in type from the global. Rewrite 330 // the global to match the initializer. (We have to do this 331 // because some types, like unions, can't be completely represented 332 // in the LLVM type system.) 333 if (GV->getType()->getElementType() != Init->getType()) { 334 llvm::GlobalVariable *OldGV = GV; 335 336 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 337 OldGV->isConstant(), 338 OldGV->getLinkage(), Init, "", 339 /*InsertBefore*/ OldGV, 340 OldGV->getThreadLocalMode(), 341 CGM.getContext().getTargetAddressSpace(D.getType())); 342 GV->setVisibility(OldGV->getVisibility()); 343 GV->setComdat(OldGV->getComdat()); 344 345 // Steal the name of the old global 346 GV->takeName(OldGV); 347 348 // Replace all uses of the old global with the new global 349 llvm::Constant *NewPtrForOldDecl = 350 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 351 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 352 353 // Erase the old global, since it is no longer used. 354 OldGV->eraseFromParent(); 355 } 356 357 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 358 GV->setInitializer(Init); 359 360 emitter.finalize(GV); 361 362 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 363 // We have a constant initializer, but a nontrivial destructor. We still 364 // need to perform a guarded "initialization" in order to register the 365 // destructor. 366 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 367 } 368 369 return GV; 370 } 371 372 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 373 llvm::GlobalValue::LinkageTypes Linkage) { 374 // Check to see if we already have a global variable for this 375 // declaration. This can happen when double-emitting function 376 // bodies, e.g. with complete and base constructors. 377 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 378 CharUnits alignment = getContext().getDeclAlign(&D); 379 380 // Store into LocalDeclMap before generating initializer to handle 381 // circular references. 382 setAddrOfLocalVar(&D, Address(addr, alignment)); 383 384 // We can't have a VLA here, but we can have a pointer to a VLA, 385 // even though that doesn't really make any sense. 386 // Make sure to evaluate VLA bounds now so that we have them for later. 387 if (D.getType()->isVariablyModifiedType()) 388 EmitVariablyModifiedType(D.getType()); 389 390 // Save the type in case adding the initializer forces a type change. 391 llvm::Type *expectedType = addr->getType(); 392 393 llvm::GlobalVariable *var = 394 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 395 396 // CUDA's local and local static __shared__ variables should not 397 // have any non-empty initializers. This is ensured by Sema. 398 // Whatever initializer such variable may have when it gets here is 399 // a no-op and should not be emitted. 400 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 401 D.hasAttr<CUDASharedAttr>(); 402 // If this value has an initializer, emit it. 403 if (D.getInit() && !isCudaSharedVar) 404 var = AddInitializerToStaticVarDecl(D, var); 405 406 var->setAlignment(alignment.getQuantity()); 407 408 if (D.hasAttr<AnnotateAttr>()) 409 CGM.AddGlobalAnnotations(&D, var); 410 411 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 412 var->addAttribute("bss-section", SA->getName()); 413 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 414 var->addAttribute("data-section", SA->getName()); 415 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 416 var->addAttribute("rodata-section", SA->getName()); 417 418 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 419 var->setSection(SA->getName()); 420 421 if (D.hasAttr<UsedAttr>()) 422 CGM.addUsedGlobal(var); 423 424 // We may have to cast the constant because of the initializer 425 // mismatch above. 426 // 427 // FIXME: It is really dangerous to store this in the map; if anyone 428 // RAUW's the GV uses of this constant will be invalid. 429 llvm::Constant *castedAddr = 430 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 431 if (var != castedAddr) 432 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 433 CGM.setStaticLocalDeclAddress(&D, castedAddr); 434 435 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 436 437 // Emit global variable debug descriptor for static vars. 438 CGDebugInfo *DI = getDebugInfo(); 439 if (DI && 440 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 441 DI->setLocation(D.getLocation()); 442 DI->EmitGlobalVariable(var, &D); 443 } 444 } 445 446 namespace { 447 struct DestroyObject final : EHScopeStack::Cleanup { 448 DestroyObject(Address addr, QualType type, 449 CodeGenFunction::Destroyer *destroyer, 450 bool useEHCleanupForArray) 451 : addr(addr), type(type), destroyer(destroyer), 452 useEHCleanupForArray(useEHCleanupForArray) {} 453 454 Address addr; 455 QualType type; 456 CodeGenFunction::Destroyer *destroyer; 457 bool useEHCleanupForArray; 458 459 void Emit(CodeGenFunction &CGF, Flags flags) override { 460 // Don't use an EH cleanup recursively from an EH cleanup. 461 bool useEHCleanupForArray = 462 flags.isForNormalCleanup() && this->useEHCleanupForArray; 463 464 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 465 } 466 }; 467 468 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 469 DestroyNRVOVariable(Address addr, 470 const CXXDestructorDecl *Dtor, 471 llvm::Value *NRVOFlag) 472 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 473 474 const CXXDestructorDecl *Dtor; 475 llvm::Value *NRVOFlag; 476 Address Loc; 477 478 void Emit(CodeGenFunction &CGF, Flags flags) override { 479 // Along the exceptions path we always execute the dtor. 480 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 481 482 llvm::BasicBlock *SkipDtorBB = nullptr; 483 if (NRVO) { 484 // If we exited via NRVO, we skip the destructor call. 485 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 486 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 487 llvm::Value *DidNRVO = 488 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 489 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 490 CGF.EmitBlock(RunDtorBB); 491 } 492 493 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 494 /*ForVirtualBase=*/false, 495 /*Delegating=*/false, 496 Loc); 497 498 if (NRVO) CGF.EmitBlock(SkipDtorBB); 499 } 500 }; 501 502 struct CallStackRestore final : EHScopeStack::Cleanup { 503 Address Stack; 504 CallStackRestore(Address Stack) : Stack(Stack) {} 505 void Emit(CodeGenFunction &CGF, Flags flags) override { 506 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 507 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 508 CGF.Builder.CreateCall(F, V); 509 } 510 }; 511 512 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 513 const VarDecl &Var; 514 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 515 516 void Emit(CodeGenFunction &CGF, Flags flags) override { 517 // Compute the address of the local variable, in case it's a 518 // byref or something. 519 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 520 Var.getType(), VK_LValue, SourceLocation()); 521 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 522 SourceLocation()); 523 CGF.EmitExtendGCLifetime(value); 524 } 525 }; 526 527 struct CallCleanupFunction final : EHScopeStack::Cleanup { 528 llvm::Constant *CleanupFn; 529 const CGFunctionInfo &FnInfo; 530 const VarDecl &Var; 531 532 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 533 const VarDecl *Var) 534 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 535 536 void Emit(CodeGenFunction &CGF, Flags flags) override { 537 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 538 Var.getType(), VK_LValue, SourceLocation()); 539 // Compute the address of the local variable, in case it's a byref 540 // or something. 541 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 542 543 // In some cases, the type of the function argument will be different from 544 // the type of the pointer. An example of this is 545 // void f(void* arg); 546 // __attribute__((cleanup(f))) void *g; 547 // 548 // To fix this we insert a bitcast here. 549 QualType ArgTy = FnInfo.arg_begin()->type; 550 llvm::Value *Arg = 551 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 552 553 CallArgList Args; 554 Args.add(RValue::get(Arg), 555 CGF.getContext().getPointerType(Var.getType())); 556 auto Callee = CGCallee::forDirect(CleanupFn); 557 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 558 } 559 }; 560 } // end anonymous namespace 561 562 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 563 /// variable with lifetime. 564 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 565 Address addr, 566 Qualifiers::ObjCLifetime lifetime) { 567 switch (lifetime) { 568 case Qualifiers::OCL_None: 569 llvm_unreachable("present but none"); 570 571 case Qualifiers::OCL_ExplicitNone: 572 // nothing to do 573 break; 574 575 case Qualifiers::OCL_Strong: { 576 CodeGenFunction::Destroyer *destroyer = 577 (var.hasAttr<ObjCPreciseLifetimeAttr>() 578 ? CodeGenFunction::destroyARCStrongPrecise 579 : CodeGenFunction::destroyARCStrongImprecise); 580 581 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 582 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 583 cleanupKind & EHCleanup); 584 break; 585 } 586 case Qualifiers::OCL_Autoreleasing: 587 // nothing to do 588 break; 589 590 case Qualifiers::OCL_Weak: 591 // __weak objects always get EH cleanups; otherwise, exceptions 592 // could cause really nasty crashes instead of mere leaks. 593 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 594 CodeGenFunction::destroyARCWeak, 595 /*useEHCleanup*/ true); 596 break; 597 } 598 } 599 600 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 601 if (const Expr *e = dyn_cast<Expr>(s)) { 602 // Skip the most common kinds of expressions that make 603 // hierarchy-walking expensive. 604 s = e = e->IgnoreParenCasts(); 605 606 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 607 return (ref->getDecl() == &var); 608 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 609 const BlockDecl *block = be->getBlockDecl(); 610 for (const auto &I : block->captures()) { 611 if (I.getVariable() == &var) 612 return true; 613 } 614 } 615 } 616 617 for (const Stmt *SubStmt : s->children()) 618 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 619 if (SubStmt && isAccessedBy(var, SubStmt)) 620 return true; 621 622 return false; 623 } 624 625 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 626 if (!decl) return false; 627 if (!isa<VarDecl>(decl)) return false; 628 const VarDecl *var = cast<VarDecl>(decl); 629 return isAccessedBy(*var, e); 630 } 631 632 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 633 const LValue &destLV, const Expr *init) { 634 bool needsCast = false; 635 636 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 637 switch (castExpr->getCastKind()) { 638 // Look through casts that don't require representation changes. 639 case CK_NoOp: 640 case CK_BitCast: 641 case CK_BlockPointerToObjCPointerCast: 642 needsCast = true; 643 break; 644 645 // If we find an l-value to r-value cast from a __weak variable, 646 // emit this operation as a copy or move. 647 case CK_LValueToRValue: { 648 const Expr *srcExpr = castExpr->getSubExpr(); 649 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 650 return false; 651 652 // Emit the source l-value. 653 LValue srcLV = CGF.EmitLValue(srcExpr); 654 655 // Handle a formal type change to avoid asserting. 656 auto srcAddr = srcLV.getAddress(); 657 if (needsCast) { 658 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 659 destLV.getAddress().getElementType()); 660 } 661 662 // If it was an l-value, use objc_copyWeak. 663 if (srcExpr->getValueKind() == VK_LValue) { 664 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 665 } else { 666 assert(srcExpr->getValueKind() == VK_XValue); 667 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 668 } 669 return true; 670 } 671 672 // Stop at anything else. 673 default: 674 return false; 675 } 676 677 init = castExpr->getSubExpr(); 678 } 679 return false; 680 } 681 682 static void drillIntoBlockVariable(CodeGenFunction &CGF, 683 LValue &lvalue, 684 const VarDecl *var) { 685 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 686 } 687 688 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 689 SourceLocation Loc) { 690 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 691 return; 692 693 auto Nullability = LHS.getType()->getNullability(getContext()); 694 if (!Nullability || *Nullability != NullabilityKind::NonNull) 695 return; 696 697 // Check if the right hand side of the assignment is nonnull, if the left 698 // hand side must be nonnull. 699 SanitizerScope SanScope(this); 700 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 701 llvm::Constant *StaticData[] = { 702 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 703 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 704 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 705 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 706 SanitizerHandler::TypeMismatch, StaticData, RHS); 707 } 708 709 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 710 LValue lvalue, bool capturedByInit) { 711 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 712 if (!lifetime) { 713 llvm::Value *value = EmitScalarExpr(init); 714 if (capturedByInit) 715 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 716 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 717 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 718 return; 719 } 720 721 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 722 init = DIE->getExpr(); 723 724 // If we're emitting a value with lifetime, we have to do the 725 // initialization *before* we leave the cleanup scopes. 726 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 727 enterFullExpression(ewc); 728 init = ewc->getSubExpr(); 729 } 730 CodeGenFunction::RunCleanupsScope Scope(*this); 731 732 // We have to maintain the illusion that the variable is 733 // zero-initialized. If the variable might be accessed in its 734 // initializer, zero-initialize before running the initializer, then 735 // actually perform the initialization with an assign. 736 bool accessedByInit = false; 737 if (lifetime != Qualifiers::OCL_ExplicitNone) 738 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 739 if (accessedByInit) { 740 LValue tempLV = lvalue; 741 // Drill down to the __block object if necessary. 742 if (capturedByInit) { 743 // We can use a simple GEP for this because it can't have been 744 // moved yet. 745 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 746 cast<VarDecl>(D), 747 /*follow*/ false)); 748 } 749 750 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 751 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 752 753 // If __weak, we want to use a barrier under certain conditions. 754 if (lifetime == Qualifiers::OCL_Weak) 755 EmitARCInitWeak(tempLV.getAddress(), zero); 756 757 // Otherwise just do a simple store. 758 else 759 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 760 } 761 762 // Emit the initializer. 763 llvm::Value *value = nullptr; 764 765 switch (lifetime) { 766 case Qualifiers::OCL_None: 767 llvm_unreachable("present but none"); 768 769 case Qualifiers::OCL_ExplicitNone: 770 value = EmitARCUnsafeUnretainedScalarExpr(init); 771 break; 772 773 case Qualifiers::OCL_Strong: { 774 value = EmitARCRetainScalarExpr(init); 775 break; 776 } 777 778 case Qualifiers::OCL_Weak: { 779 // If it's not accessed by the initializer, try to emit the 780 // initialization with a copy or move. 781 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 782 return; 783 } 784 785 // No way to optimize a producing initializer into this. It's not 786 // worth optimizing for, because the value will immediately 787 // disappear in the common case. 788 value = EmitScalarExpr(init); 789 790 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 791 if (accessedByInit) 792 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 793 else 794 EmitARCInitWeak(lvalue.getAddress(), value); 795 return; 796 } 797 798 case Qualifiers::OCL_Autoreleasing: 799 value = EmitARCRetainAutoreleaseScalarExpr(init); 800 break; 801 } 802 803 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 804 805 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 806 807 // If the variable might have been accessed by its initializer, we 808 // might have to initialize with a barrier. We have to do this for 809 // both __weak and __strong, but __weak got filtered out above. 810 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 811 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 812 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 813 EmitARCRelease(oldValue, ARCImpreciseLifetime); 814 return; 815 } 816 817 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 818 } 819 820 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 821 /// non-zero parts of the specified initializer with equal or fewer than 822 /// NumStores scalar stores. 823 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 824 unsigned &NumStores) { 825 // Zero and Undef never requires any extra stores. 826 if (isa<llvm::ConstantAggregateZero>(Init) || 827 isa<llvm::ConstantPointerNull>(Init) || 828 isa<llvm::UndefValue>(Init)) 829 return true; 830 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 831 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 832 isa<llvm::ConstantExpr>(Init)) 833 return Init->isNullValue() || NumStores--; 834 835 // See if we can emit each element. 836 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 837 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 838 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 839 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 840 return false; 841 } 842 return true; 843 } 844 845 if (llvm::ConstantDataSequential *CDS = 846 dyn_cast<llvm::ConstantDataSequential>(Init)) { 847 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 848 llvm::Constant *Elt = CDS->getElementAsConstant(i); 849 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 850 return false; 851 } 852 return true; 853 } 854 855 // Anything else is hard and scary. 856 return false; 857 } 858 859 /// emitStoresForInitAfterMemset - For inits that 860 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 861 /// stores that would be required. 862 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 863 bool isVolatile, CGBuilderTy &Builder) { 864 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 865 "called emitStoresForInitAfterMemset for zero or undef value."); 866 867 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 868 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 869 isa<llvm::ConstantExpr>(Init)) { 870 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 871 return; 872 } 873 874 if (llvm::ConstantDataSequential *CDS = 875 dyn_cast<llvm::ConstantDataSequential>(Init)) { 876 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 877 llvm::Constant *Elt = CDS->getElementAsConstant(i); 878 879 // If necessary, get a pointer to the element and emit it. 880 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 881 emitStoresForInitAfterMemset( 882 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 883 isVolatile, Builder); 884 } 885 return; 886 } 887 888 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 889 "Unknown value type!"); 890 891 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 892 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 893 894 // If necessary, get a pointer to the element and emit it. 895 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 896 emitStoresForInitAfterMemset( 897 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 898 isVolatile, Builder); 899 } 900 } 901 902 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 903 /// plus some stores to initialize a local variable instead of using a memcpy 904 /// from a constant global. It is beneficial to use memset if the global is all 905 /// zeros, or mostly zeros and large. 906 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 907 uint64_t GlobalSize) { 908 // If a global is all zeros, always use a memset. 909 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 910 911 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 912 // do it if it will require 6 or fewer scalar stores. 913 // TODO: Should budget depends on the size? Avoiding a large global warrants 914 // plopping in more stores. 915 unsigned StoreBudget = 6; 916 uint64_t SizeLimit = 32; 917 918 return GlobalSize > SizeLimit && 919 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 920 } 921 922 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 923 /// variable declaration with auto, register, or no storage class specifier. 924 /// These turn into simple stack objects, or GlobalValues depending on target. 925 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 926 AutoVarEmission emission = EmitAutoVarAlloca(D); 927 EmitAutoVarInit(emission); 928 EmitAutoVarCleanups(emission); 929 } 930 931 /// Emit a lifetime.begin marker if some criteria are satisfied. 932 /// \return a pointer to the temporary size Value if a marker was emitted, null 933 /// otherwise 934 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 935 llvm::Value *Addr) { 936 if (!ShouldEmitLifetimeMarkers) 937 return nullptr; 938 939 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 940 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 941 llvm::CallInst *C = 942 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 943 C->setDoesNotThrow(); 944 return SizeV; 945 } 946 947 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 948 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 949 llvm::CallInst *C = 950 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 951 C->setDoesNotThrow(); 952 } 953 954 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 955 /// local variable. Does not emit initialization or destruction. 956 CodeGenFunction::AutoVarEmission 957 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 958 QualType Ty = D.getType(); 959 assert(Ty.getAddressSpace() == LangAS::Default); 960 961 AutoVarEmission emission(D); 962 963 bool isByRef = D.hasAttr<BlocksAttr>(); 964 emission.IsByRef = isByRef; 965 966 CharUnits alignment = getContext().getDeclAlign(&D); 967 968 // If the type is variably-modified, emit all the VLA sizes for it. 969 if (Ty->isVariablyModifiedType()) 970 EmitVariablyModifiedType(Ty); 971 972 Address address = Address::invalid(); 973 if (Ty->isConstantSizeType()) { 974 bool NRVO = getLangOpts().ElideConstructors && 975 D.isNRVOVariable(); 976 977 // If this value is an array or struct with a statically determinable 978 // constant initializer, there are optimizations we can do. 979 // 980 // TODO: We should constant-evaluate the initializer of any variable, 981 // as long as it is initialized by a constant expression. Currently, 982 // isConstantInitializer produces wrong answers for structs with 983 // reference or bitfield members, and a few other cases, and checking 984 // for POD-ness protects us from some of these. 985 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 986 (D.isConstexpr() || 987 ((Ty.isPODType(getContext()) || 988 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 989 D.getInit()->isConstantInitializer(getContext(), false)))) { 990 991 // If the variable's a const type, and it's neither an NRVO 992 // candidate nor a __block variable and has no mutable members, 993 // emit it as a global instead. 994 // Exception is if a variable is located in non-constant address space 995 // in OpenCL. 996 if ((!getLangOpts().OpenCL || 997 Ty.getAddressSpace() == LangAS::opencl_constant) && 998 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 999 CGM.isTypeConstant(Ty, true))) { 1000 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1001 1002 // Signal this condition to later callbacks. 1003 emission.Addr = Address::invalid(); 1004 assert(emission.wasEmittedAsGlobal()); 1005 return emission; 1006 } 1007 1008 // Otherwise, tell the initialization code that we're in this case. 1009 emission.IsConstantAggregate = true; 1010 } 1011 1012 // A normal fixed sized variable becomes an alloca in the entry block, 1013 // unless it's an NRVO variable. 1014 1015 if (NRVO) { 1016 // The named return value optimization: allocate this variable in the 1017 // return slot, so that we can elide the copy when returning this 1018 // variable (C++0x [class.copy]p34). 1019 address = ReturnValue; 1020 1021 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1022 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 1023 // Create a flag that is used to indicate when the NRVO was applied 1024 // to this variable. Set it to zero to indicate that NRVO was not 1025 // applied. 1026 llvm::Value *Zero = Builder.getFalse(); 1027 Address NRVOFlag = 1028 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1029 EnsureInsertPoint(); 1030 Builder.CreateStore(Zero, NRVOFlag); 1031 1032 // Record the NRVO flag for this variable. 1033 NRVOFlags[&D] = NRVOFlag.getPointer(); 1034 emission.NRVOFlag = NRVOFlag.getPointer(); 1035 } 1036 } 1037 } else { 1038 CharUnits allocaAlignment; 1039 llvm::Type *allocaTy; 1040 if (isByRef) { 1041 auto &byrefInfo = getBlockByrefInfo(&D); 1042 allocaTy = byrefInfo.Type; 1043 allocaAlignment = byrefInfo.ByrefAlignment; 1044 } else { 1045 allocaTy = ConvertTypeForMem(Ty); 1046 allocaAlignment = alignment; 1047 } 1048 1049 // Create the alloca. Note that we set the name separately from 1050 // building the instruction so that it's there even in no-asserts 1051 // builds. 1052 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName()); 1053 1054 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1055 // the catch parameter starts in the catchpad instruction, and we can't 1056 // insert code in those basic blocks. 1057 bool IsMSCatchParam = 1058 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1059 1060 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1061 // if we don't have a valid insertion point (?). 1062 if (HaveInsertPoint() && !IsMSCatchParam) { 1063 // If there's a jump into the lifetime of this variable, its lifetime 1064 // gets broken up into several regions in IR, which requires more work 1065 // to handle correctly. For now, just omit the intrinsics; this is a 1066 // rare case, and it's better to just be conservatively correct. 1067 // PR28267. 1068 // 1069 // We have to do this in all language modes if there's a jump past the 1070 // declaration. We also have to do it in C if there's a jump to an 1071 // earlier point in the current block because non-VLA lifetimes begin as 1072 // soon as the containing block is entered, not when its variables 1073 // actually come into scope; suppressing the lifetime annotations 1074 // completely in this case is unnecessarily pessimistic, but again, this 1075 // is rare. 1076 if (!Bypasses.IsBypassed(&D) && 1077 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1078 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1079 emission.SizeForLifetimeMarkers = 1080 EmitLifetimeStart(size, address.getPointer()); 1081 } 1082 } else { 1083 assert(!emission.useLifetimeMarkers()); 1084 } 1085 } 1086 } else { 1087 EnsureInsertPoint(); 1088 1089 if (!DidCallStackSave) { 1090 // Save the stack. 1091 Address Stack = 1092 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1093 1094 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1095 llvm::Value *V = Builder.CreateCall(F); 1096 Builder.CreateStore(V, Stack); 1097 1098 DidCallStackSave = true; 1099 1100 // Push a cleanup block and restore the stack there. 1101 // FIXME: in general circumstances, this should be an EH cleanup. 1102 pushStackRestore(NormalCleanup, Stack); 1103 } 1104 1105 llvm::Value *elementCount; 1106 QualType elementType; 1107 std::tie(elementCount, elementType) = getVLASize(Ty); 1108 1109 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 1110 1111 // Allocate memory for the array. 1112 address = CreateTempAlloca(llvmTy, alignment, "vla", elementCount); 1113 } 1114 1115 setAddrOfLocalVar(&D, address); 1116 emission.Addr = address; 1117 1118 // Emit debug info for local var declaration. 1119 if (HaveInsertPoint()) 1120 if (CGDebugInfo *DI = getDebugInfo()) { 1121 if (CGM.getCodeGenOpts().getDebugInfo() >= 1122 codegenoptions::LimitedDebugInfo) { 1123 DI->setLocation(D.getLocation()); 1124 DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1125 } 1126 } 1127 1128 if (D.hasAttr<AnnotateAttr>()) 1129 EmitVarAnnotations(&D, address.getPointer()); 1130 1131 // Make sure we call @llvm.lifetime.end. 1132 if (emission.useLifetimeMarkers()) 1133 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1134 emission.getAllocatedAddress(), 1135 emission.getSizeForLifetimeMarkers()); 1136 1137 return emission; 1138 } 1139 1140 /// Determines whether the given __block variable is potentially 1141 /// captured by the given expression. 1142 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1143 // Skip the most common kinds of expressions that make 1144 // hierarchy-walking expensive. 1145 e = e->IgnoreParenCasts(); 1146 1147 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1148 const BlockDecl *block = be->getBlockDecl(); 1149 for (const auto &I : block->captures()) { 1150 if (I.getVariable() == &var) 1151 return true; 1152 } 1153 1154 // No need to walk into the subexpressions. 1155 return false; 1156 } 1157 1158 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1159 const CompoundStmt *CS = SE->getSubStmt(); 1160 for (const auto *BI : CS->body()) 1161 if (const auto *E = dyn_cast<Expr>(BI)) { 1162 if (isCapturedBy(var, E)) 1163 return true; 1164 } 1165 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1166 // special case declarations 1167 for (const auto *I : DS->decls()) { 1168 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1169 const Expr *Init = VD->getInit(); 1170 if (Init && isCapturedBy(var, Init)) 1171 return true; 1172 } 1173 } 1174 } 1175 else 1176 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1177 // Later, provide code to poke into statements for capture analysis. 1178 return true; 1179 return false; 1180 } 1181 1182 for (const Stmt *SubStmt : e->children()) 1183 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1184 return true; 1185 1186 return false; 1187 } 1188 1189 /// \brief Determine whether the given initializer is trivial in the sense 1190 /// that it requires no code to be generated. 1191 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1192 if (!Init) 1193 return true; 1194 1195 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1196 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1197 if (Constructor->isTrivial() && 1198 Constructor->isDefaultConstructor() && 1199 !Construct->requiresZeroInitialization()) 1200 return true; 1201 1202 return false; 1203 } 1204 1205 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1206 assert(emission.Variable && "emission was not valid!"); 1207 1208 // If this was emitted as a global constant, we're done. 1209 if (emission.wasEmittedAsGlobal()) return; 1210 1211 const VarDecl &D = *emission.Variable; 1212 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1213 QualType type = D.getType(); 1214 1215 // If this local has an initializer, emit it now. 1216 const Expr *Init = D.getInit(); 1217 1218 // If we are at an unreachable point, we don't need to emit the initializer 1219 // unless it contains a label. 1220 if (!HaveInsertPoint()) { 1221 if (!Init || !ContainsLabel(Init)) return; 1222 EnsureInsertPoint(); 1223 } 1224 1225 // Initialize the structure of a __block variable. 1226 if (emission.IsByRef) 1227 emitByrefStructureInit(emission); 1228 1229 if (isTrivialInitializer(Init)) 1230 return; 1231 1232 // Check whether this is a byref variable that's potentially 1233 // captured and moved by its own initializer. If so, we'll need to 1234 // emit the initializer first, then copy into the variable. 1235 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1236 1237 Address Loc = 1238 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1239 1240 llvm::Constant *constant = nullptr; 1241 if (emission.IsConstantAggregate || D.isConstexpr()) { 1242 assert(!capturedByInit && "constant init contains a capturing block?"); 1243 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1244 } 1245 1246 if (!constant) { 1247 LValue lv = MakeAddrLValue(Loc, type); 1248 lv.setNonGC(true); 1249 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1250 } 1251 1252 if (!emission.IsConstantAggregate) { 1253 // For simple scalar/complex initialization, store the value directly. 1254 LValue lv = MakeAddrLValue(Loc, type); 1255 lv.setNonGC(true); 1256 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1257 } 1258 1259 // If this is a simple aggregate initialization, we can optimize it 1260 // in various ways. 1261 bool isVolatile = type.isVolatileQualified(); 1262 1263 llvm::Value *SizeVal = 1264 llvm::ConstantInt::get(IntPtrTy, 1265 getContext().getTypeSizeInChars(type).getQuantity()); 1266 1267 llvm::Type *BP = Int8PtrTy; 1268 if (Loc.getType() != BP) 1269 Loc = Builder.CreateBitCast(Loc, BP); 1270 1271 // If the initializer is all or mostly zeros, codegen with memset then do 1272 // a few stores afterward. 1273 if (shouldUseMemSetPlusStoresToInitialize(constant, 1274 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1275 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1276 isVolatile); 1277 // Zero and undef don't require a stores. 1278 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1279 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1280 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1281 isVolatile, Builder); 1282 } 1283 } else { 1284 // Otherwise, create a temporary global with the initializer then 1285 // memcpy from the global to the alloca. 1286 std::string Name = getStaticDeclName(CGM, D); 1287 unsigned AS = 0; 1288 if (getLangOpts().OpenCL) { 1289 AS = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 1290 BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS); 1291 } 1292 llvm::GlobalVariable *GV = 1293 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1294 llvm::GlobalValue::PrivateLinkage, 1295 constant, Name, nullptr, 1296 llvm::GlobalValue::NotThreadLocal, AS); 1297 GV->setAlignment(Loc.getAlignment().getQuantity()); 1298 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1299 1300 Address SrcPtr = Address(GV, Loc.getAlignment()); 1301 if (SrcPtr.getType() != BP) 1302 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1303 1304 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1305 } 1306 } 1307 1308 /// Emit an expression as an initializer for a variable at the given 1309 /// location. The expression is not necessarily the normal 1310 /// initializer for the variable, and the address is not necessarily 1311 /// its normal location. 1312 /// 1313 /// \param init the initializing expression 1314 /// \param var the variable to act as if we're initializing 1315 /// \param loc the address to initialize; its type is a pointer 1316 /// to the LLVM mapping of the variable's type 1317 /// \param alignment the alignment of the address 1318 /// \param capturedByInit true if the variable is a __block variable 1319 /// whose address is potentially changed by the initializer 1320 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1321 LValue lvalue, bool capturedByInit) { 1322 QualType type = D->getType(); 1323 1324 if (type->isReferenceType()) { 1325 RValue rvalue = EmitReferenceBindingToExpr(init); 1326 if (capturedByInit) 1327 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1328 EmitStoreThroughLValue(rvalue, lvalue, true); 1329 return; 1330 } 1331 switch (getEvaluationKind(type)) { 1332 case TEK_Scalar: 1333 EmitScalarInit(init, D, lvalue, capturedByInit); 1334 return; 1335 case TEK_Complex: { 1336 ComplexPairTy complex = EmitComplexExpr(init); 1337 if (capturedByInit) 1338 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1339 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1340 return; 1341 } 1342 case TEK_Aggregate: 1343 if (type->isAtomicType()) { 1344 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1345 } else { 1346 // TODO: how can we delay here if D is captured by its initializer? 1347 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1348 AggValueSlot::IsDestructed, 1349 AggValueSlot::DoesNotNeedGCBarriers, 1350 AggValueSlot::IsNotAliased)); 1351 } 1352 return; 1353 } 1354 llvm_unreachable("bad evaluation kind"); 1355 } 1356 1357 /// Enter a destroy cleanup for the given local variable. 1358 void CodeGenFunction::emitAutoVarTypeCleanup( 1359 const CodeGenFunction::AutoVarEmission &emission, 1360 QualType::DestructionKind dtorKind) { 1361 assert(dtorKind != QualType::DK_none); 1362 1363 // Note that for __block variables, we want to destroy the 1364 // original stack object, not the possibly forwarded object. 1365 Address addr = emission.getObjectAddress(*this); 1366 1367 const VarDecl *var = emission.Variable; 1368 QualType type = var->getType(); 1369 1370 CleanupKind cleanupKind = NormalAndEHCleanup; 1371 CodeGenFunction::Destroyer *destroyer = nullptr; 1372 1373 switch (dtorKind) { 1374 case QualType::DK_none: 1375 llvm_unreachable("no cleanup for trivially-destructible variable"); 1376 1377 case QualType::DK_cxx_destructor: 1378 // If there's an NRVO flag on the emission, we need a different 1379 // cleanup. 1380 if (emission.NRVOFlag) { 1381 assert(!type->isArrayType()); 1382 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1383 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1384 dtor, emission.NRVOFlag); 1385 return; 1386 } 1387 break; 1388 1389 case QualType::DK_objc_strong_lifetime: 1390 // Suppress cleanups for pseudo-strong variables. 1391 if (var->isARCPseudoStrong()) return; 1392 1393 // Otherwise, consider whether to use an EH cleanup or not. 1394 cleanupKind = getARCCleanupKind(); 1395 1396 // Use the imprecise destroyer by default. 1397 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1398 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1399 break; 1400 1401 case QualType::DK_objc_weak_lifetime: 1402 break; 1403 } 1404 1405 // If we haven't chosen a more specific destroyer, use the default. 1406 if (!destroyer) destroyer = getDestroyer(dtorKind); 1407 1408 // Use an EH cleanup in array destructors iff the destructor itself 1409 // is being pushed as an EH cleanup. 1410 bool useEHCleanup = (cleanupKind & EHCleanup); 1411 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1412 useEHCleanup); 1413 } 1414 1415 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1416 assert(emission.Variable && "emission was not valid!"); 1417 1418 // If this was emitted as a global constant, we're done. 1419 if (emission.wasEmittedAsGlobal()) return; 1420 1421 // If we don't have an insertion point, we're done. Sema prevents 1422 // us from jumping into any of these scopes anyway. 1423 if (!HaveInsertPoint()) return; 1424 1425 const VarDecl &D = *emission.Variable; 1426 1427 // Check the type for a cleanup. 1428 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1429 emitAutoVarTypeCleanup(emission, dtorKind); 1430 1431 // In GC mode, honor objc_precise_lifetime. 1432 if (getLangOpts().getGC() != LangOptions::NonGC && 1433 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1434 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1435 } 1436 1437 // Handle the cleanup attribute. 1438 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1439 const FunctionDecl *FD = CA->getFunctionDecl(); 1440 1441 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1442 assert(F && "Could not find function!"); 1443 1444 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1445 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1446 } 1447 1448 // If this is a block variable, call _Block_object_destroy 1449 // (on the unforwarded address). 1450 if (emission.IsByRef) 1451 enterByrefCleanup(emission); 1452 } 1453 1454 CodeGenFunction::Destroyer * 1455 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1456 switch (kind) { 1457 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1458 case QualType::DK_cxx_destructor: 1459 return destroyCXXObject; 1460 case QualType::DK_objc_strong_lifetime: 1461 return destroyARCStrongPrecise; 1462 case QualType::DK_objc_weak_lifetime: 1463 return destroyARCWeak; 1464 } 1465 llvm_unreachable("Unknown DestructionKind"); 1466 } 1467 1468 /// pushEHDestroy - Push the standard destructor for the given type as 1469 /// an EH-only cleanup. 1470 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1471 Address addr, QualType type) { 1472 assert(dtorKind && "cannot push destructor for trivial type"); 1473 assert(needsEHCleanup(dtorKind)); 1474 1475 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1476 } 1477 1478 /// pushDestroy - Push the standard destructor for the given type as 1479 /// at least a normal cleanup. 1480 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1481 Address addr, QualType type) { 1482 assert(dtorKind && "cannot push destructor for trivial type"); 1483 1484 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1485 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1486 cleanupKind & EHCleanup); 1487 } 1488 1489 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1490 QualType type, Destroyer *destroyer, 1491 bool useEHCleanupForArray) { 1492 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1493 destroyer, useEHCleanupForArray); 1494 } 1495 1496 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1497 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1498 } 1499 1500 void CodeGenFunction::pushLifetimeExtendedDestroy( 1501 CleanupKind cleanupKind, Address addr, QualType type, 1502 Destroyer *destroyer, bool useEHCleanupForArray) { 1503 assert(!isInConditionalBranch() && 1504 "performing lifetime extension from within conditional"); 1505 1506 // Push an EH-only cleanup for the object now. 1507 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1508 // around in case a temporary's destructor throws an exception. 1509 if (cleanupKind & EHCleanup) 1510 EHStack.pushCleanup<DestroyObject>( 1511 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1512 destroyer, useEHCleanupForArray); 1513 1514 // Remember that we need to push a full cleanup for the object at the 1515 // end of the full-expression. 1516 pushCleanupAfterFullExpr<DestroyObject>( 1517 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1518 } 1519 1520 /// emitDestroy - Immediately perform the destruction of the given 1521 /// object. 1522 /// 1523 /// \param addr - the address of the object; a type* 1524 /// \param type - the type of the object; if an array type, all 1525 /// objects are destroyed in reverse order 1526 /// \param destroyer - the function to call to destroy individual 1527 /// elements 1528 /// \param useEHCleanupForArray - whether an EH cleanup should be 1529 /// used when destroying array elements, in case one of the 1530 /// destructions throws an exception 1531 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1532 Destroyer *destroyer, 1533 bool useEHCleanupForArray) { 1534 const ArrayType *arrayType = getContext().getAsArrayType(type); 1535 if (!arrayType) 1536 return destroyer(*this, addr, type); 1537 1538 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1539 1540 CharUnits elementAlign = 1541 addr.getAlignment() 1542 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1543 1544 // Normally we have to check whether the array is zero-length. 1545 bool checkZeroLength = true; 1546 1547 // But if the array length is constant, we can suppress that. 1548 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1549 // ...and if it's constant zero, we can just skip the entire thing. 1550 if (constLength->isZero()) return; 1551 checkZeroLength = false; 1552 } 1553 1554 llvm::Value *begin = addr.getPointer(); 1555 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1556 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1557 checkZeroLength, useEHCleanupForArray); 1558 } 1559 1560 /// emitArrayDestroy - Destroys all the elements of the given array, 1561 /// beginning from last to first. The array cannot be zero-length. 1562 /// 1563 /// \param begin - a type* denoting the first element of the array 1564 /// \param end - a type* denoting one past the end of the array 1565 /// \param elementType - the element type of the array 1566 /// \param destroyer - the function to call to destroy elements 1567 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1568 /// the remaining elements in case the destruction of a single 1569 /// element throws 1570 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1571 llvm::Value *end, 1572 QualType elementType, 1573 CharUnits elementAlign, 1574 Destroyer *destroyer, 1575 bool checkZeroLength, 1576 bool useEHCleanup) { 1577 assert(!elementType->isArrayType()); 1578 1579 // The basic structure here is a do-while loop, because we don't 1580 // need to check for the zero-element case. 1581 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1582 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1583 1584 if (checkZeroLength) { 1585 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1586 "arraydestroy.isempty"); 1587 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1588 } 1589 1590 // Enter the loop body, making that address the current address. 1591 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1592 EmitBlock(bodyBB); 1593 llvm::PHINode *elementPast = 1594 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1595 elementPast->addIncoming(end, entryBB); 1596 1597 // Shift the address back by one element. 1598 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1599 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1600 "arraydestroy.element"); 1601 1602 if (useEHCleanup) 1603 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1604 destroyer); 1605 1606 // Perform the actual destruction there. 1607 destroyer(*this, Address(element, elementAlign), elementType); 1608 1609 if (useEHCleanup) 1610 PopCleanupBlock(); 1611 1612 // Check whether we've reached the end. 1613 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1614 Builder.CreateCondBr(done, doneBB, bodyBB); 1615 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1616 1617 // Done. 1618 EmitBlock(doneBB); 1619 } 1620 1621 /// Perform partial array destruction as if in an EH cleanup. Unlike 1622 /// emitArrayDestroy, the element type here may still be an array type. 1623 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1624 llvm::Value *begin, llvm::Value *end, 1625 QualType type, CharUnits elementAlign, 1626 CodeGenFunction::Destroyer *destroyer) { 1627 // If the element type is itself an array, drill down. 1628 unsigned arrayDepth = 0; 1629 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1630 // VLAs don't require a GEP index to walk into. 1631 if (!isa<VariableArrayType>(arrayType)) 1632 arrayDepth++; 1633 type = arrayType->getElementType(); 1634 } 1635 1636 if (arrayDepth) { 1637 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1638 1639 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1640 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1641 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1642 } 1643 1644 // Destroy the array. We don't ever need an EH cleanup because we 1645 // assume that we're in an EH cleanup ourselves, so a throwing 1646 // destructor causes an immediate terminate. 1647 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1648 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1649 } 1650 1651 namespace { 1652 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1653 /// array destroy where the end pointer is regularly determined and 1654 /// does not need to be loaded from a local. 1655 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1656 llvm::Value *ArrayBegin; 1657 llvm::Value *ArrayEnd; 1658 QualType ElementType; 1659 CodeGenFunction::Destroyer *Destroyer; 1660 CharUnits ElementAlign; 1661 public: 1662 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1663 QualType elementType, CharUnits elementAlign, 1664 CodeGenFunction::Destroyer *destroyer) 1665 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1666 ElementType(elementType), Destroyer(destroyer), 1667 ElementAlign(elementAlign) {} 1668 1669 void Emit(CodeGenFunction &CGF, Flags flags) override { 1670 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1671 ElementType, ElementAlign, Destroyer); 1672 } 1673 }; 1674 1675 /// IrregularPartialArrayDestroy - a cleanup which performs a 1676 /// partial array destroy where the end pointer is irregularly 1677 /// determined and must be loaded from a local. 1678 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1679 llvm::Value *ArrayBegin; 1680 Address ArrayEndPointer; 1681 QualType ElementType; 1682 CodeGenFunction::Destroyer *Destroyer; 1683 CharUnits ElementAlign; 1684 public: 1685 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1686 Address arrayEndPointer, 1687 QualType elementType, 1688 CharUnits elementAlign, 1689 CodeGenFunction::Destroyer *destroyer) 1690 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1691 ElementType(elementType), Destroyer(destroyer), 1692 ElementAlign(elementAlign) {} 1693 1694 void Emit(CodeGenFunction &CGF, Flags flags) override { 1695 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1696 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1697 ElementType, ElementAlign, Destroyer); 1698 } 1699 }; 1700 } // end anonymous namespace 1701 1702 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1703 /// already-constructed elements of the given array. The cleanup 1704 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1705 /// 1706 /// \param elementType - the immediate element type of the array; 1707 /// possibly still an array type 1708 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1709 Address arrayEndPointer, 1710 QualType elementType, 1711 CharUnits elementAlign, 1712 Destroyer *destroyer) { 1713 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1714 arrayBegin, arrayEndPointer, 1715 elementType, elementAlign, 1716 destroyer); 1717 } 1718 1719 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1720 /// already-constructed elements of the given array. The cleanup 1721 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1722 /// 1723 /// \param elementType - the immediate element type of the array; 1724 /// possibly still an array type 1725 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1726 llvm::Value *arrayEnd, 1727 QualType elementType, 1728 CharUnits elementAlign, 1729 Destroyer *destroyer) { 1730 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1731 arrayBegin, arrayEnd, 1732 elementType, elementAlign, 1733 destroyer); 1734 } 1735 1736 /// Lazily declare the @llvm.lifetime.start intrinsic. 1737 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1738 if (LifetimeStartFn) 1739 return LifetimeStartFn; 1740 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1741 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 1742 return LifetimeStartFn; 1743 } 1744 1745 /// Lazily declare the @llvm.lifetime.end intrinsic. 1746 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1747 if (LifetimeEndFn) 1748 return LifetimeEndFn; 1749 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1750 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 1751 return LifetimeEndFn; 1752 } 1753 1754 namespace { 1755 /// A cleanup to perform a release of an object at the end of a 1756 /// function. This is used to balance out the incoming +1 of a 1757 /// ns_consumed argument when we can't reasonably do that just by 1758 /// not doing the initial retain for a __block argument. 1759 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1760 ConsumeARCParameter(llvm::Value *param, 1761 ARCPreciseLifetime_t precise) 1762 : Param(param), Precise(precise) {} 1763 1764 llvm::Value *Param; 1765 ARCPreciseLifetime_t Precise; 1766 1767 void Emit(CodeGenFunction &CGF, Flags flags) override { 1768 CGF.EmitARCRelease(Param, Precise); 1769 } 1770 }; 1771 } // end anonymous namespace 1772 1773 /// Emit an alloca (or GlobalValue depending on target) 1774 /// for the specified parameter and set up LocalDeclMap. 1775 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1776 unsigned ArgNo) { 1777 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1778 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1779 "Invalid argument to EmitParmDecl"); 1780 1781 Arg.getAnyValue()->setName(D.getName()); 1782 1783 QualType Ty = D.getType(); 1784 1785 // Use better IR generation for certain implicit parameters. 1786 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1787 // The only implicit argument a block has is its literal. 1788 // We assume this is always passed directly. 1789 if (BlockInfo) { 1790 setBlockContextParameter(IPD, ArgNo, Arg.getDirectValue()); 1791 return; 1792 } 1793 1794 // Apply any prologue 'this' adjustments required by the ABI. Be careful to 1795 // handle the case where 'this' is passed indirectly as part of an inalloca 1796 // struct. 1797 if (const CXXMethodDecl *MD = 1798 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1799 if (MD->isVirtual() && IPD == CXXABIThisDecl) { 1800 llvm::Value *This = Arg.isIndirect() 1801 ? Builder.CreateLoad(Arg.getIndirectAddress()) 1802 : Arg.getDirectValue(); 1803 This = CGM.getCXXABI().adjustThisParameterInVirtualFunctionPrologue( 1804 *this, CurGD, This); 1805 if (Arg.isIndirect()) 1806 Builder.CreateStore(This, Arg.getIndirectAddress()); 1807 else 1808 Arg = ParamValue::forDirect(This); 1809 } 1810 } 1811 } 1812 1813 Address DeclPtr = Address::invalid(); 1814 bool DoStore = false; 1815 bool IsScalar = hasScalarEvaluationKind(Ty); 1816 // If we already have a pointer to the argument, reuse the input pointer. 1817 if (Arg.isIndirect()) { 1818 DeclPtr = Arg.getIndirectAddress(); 1819 // If we have a prettier pointer type at this point, bitcast to that. 1820 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1821 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1822 if (DeclPtr.getType() != IRTy) 1823 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1824 1825 // Push a destructor cleanup for this parameter if the ABI requires it. 1826 // Don't push a cleanup in a thunk for a method that will also emit a 1827 // cleanup. 1828 if (!IsScalar && !CurFuncIsThunk && 1829 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1830 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1831 if (RD && RD->hasNonTrivialDestructor()) 1832 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1833 } 1834 } else { 1835 // Otherwise, create a temporary to hold the value. 1836 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1837 D.getName() + ".addr"); 1838 DoStore = true; 1839 } 1840 1841 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1842 1843 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1844 if (IsScalar) { 1845 Qualifiers qs = Ty.getQualifiers(); 1846 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1847 // We honor __attribute__((ns_consumed)) for types with lifetime. 1848 // For __strong, it's handled by just skipping the initial retain; 1849 // otherwise we have to balance out the initial +1 with an extra 1850 // cleanup to do the release at the end of the function. 1851 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1852 1853 // 'self' is always formally __strong, but if this is not an 1854 // init method then we don't want to retain it. 1855 if (D.isARCPseudoStrong()) { 1856 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1857 assert(&D == method->getSelfDecl()); 1858 assert(lt == Qualifiers::OCL_Strong); 1859 assert(qs.hasConst()); 1860 assert(method->getMethodFamily() != OMF_init); 1861 (void) method; 1862 lt = Qualifiers::OCL_ExplicitNone; 1863 } 1864 1865 // Load objects passed indirectly. 1866 if (Arg.isIndirect() && !ArgVal) 1867 ArgVal = Builder.CreateLoad(DeclPtr); 1868 1869 if (lt == Qualifiers::OCL_Strong) { 1870 if (!isConsumed) { 1871 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1872 // use objc_storeStrong(&dest, value) for retaining the 1873 // object. But first, store a null into 'dest' because 1874 // objc_storeStrong attempts to release its old value. 1875 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1876 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1877 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1878 DoStore = false; 1879 } 1880 else 1881 // Don't use objc_retainBlock for block pointers, because we 1882 // don't want to Block_copy something just because we got it 1883 // as a parameter. 1884 ArgVal = EmitARCRetainNonBlock(ArgVal); 1885 } 1886 } else { 1887 // Push the cleanup for a consumed parameter. 1888 if (isConsumed) { 1889 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1890 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1891 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1892 precise); 1893 } 1894 1895 if (lt == Qualifiers::OCL_Weak) { 1896 EmitARCInitWeak(DeclPtr, ArgVal); 1897 DoStore = false; // The weak init is a store, no need to do two. 1898 } 1899 } 1900 1901 // Enter the cleanup scope. 1902 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1903 } 1904 } 1905 1906 // Store the initial value into the alloca. 1907 if (DoStore) 1908 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1909 1910 setAddrOfLocalVar(&D, DeclPtr); 1911 1912 // Emit debug info for param declaration. 1913 if (CGDebugInfo *DI = getDebugInfo()) { 1914 if (CGM.getCodeGenOpts().getDebugInfo() >= 1915 codegenoptions::LimitedDebugInfo) { 1916 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1917 } 1918 } 1919 1920 if (D.hasAttr<AnnotateAttr>()) 1921 EmitVarAnnotations(&D, DeclPtr.getPointer()); 1922 1923 // We can only check return value nullability if all arguments to the 1924 // function satisfy their nullability preconditions. This makes it necessary 1925 // to emit null checks for args in the function body itself. 1926 if (requiresReturnValueNullabilityCheck()) { 1927 auto Nullability = Ty->getNullability(getContext()); 1928 if (Nullability && *Nullability == NullabilityKind::NonNull) { 1929 SanitizerScope SanScope(this); 1930 RetValNullabilityPrecondition = 1931 Builder.CreateAnd(RetValNullabilityPrecondition, 1932 Builder.CreateIsNotNull(Arg.getAnyValue())); 1933 } 1934 } 1935 } 1936 1937 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 1938 CodeGenFunction *CGF) { 1939 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 1940 return; 1941 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 1942 } 1943