1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "CGOpenCLRuntime.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/GlobalVariable.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 
33 void CodeGenFunction::EmitDecl(const Decl &D) {
34   switch (D.getKind()) {
35   case Decl::TranslationUnit:
36   case Decl::Namespace:
37   case Decl::UnresolvedUsingTypename:
38   case Decl::ClassTemplateSpecialization:
39   case Decl::ClassTemplatePartialSpecialization:
40   case Decl::TemplateTypeParm:
41   case Decl::UnresolvedUsingValue:
42   case Decl::NonTypeTemplateParm:
43   case Decl::CXXMethod:
44   case Decl::CXXConstructor:
45   case Decl::CXXDestructor:
46   case Decl::CXXConversion:
47   case Decl::Field:
48   case Decl::IndirectField:
49   case Decl::ObjCIvar:
50   case Decl::ObjCAtDefsField:
51   case Decl::ParmVar:
52   case Decl::ImplicitParam:
53   case Decl::ClassTemplate:
54   case Decl::FunctionTemplate:
55   case Decl::TypeAliasTemplate:
56   case Decl::TemplateTemplateParm:
57   case Decl::ObjCMethod:
58   case Decl::ObjCCategory:
59   case Decl::ObjCProtocol:
60   case Decl::ObjCInterface:
61   case Decl::ObjCCategoryImpl:
62   case Decl::ObjCImplementation:
63   case Decl::ObjCProperty:
64   case Decl::ObjCCompatibleAlias:
65   case Decl::AccessSpec:
66   case Decl::LinkageSpec:
67   case Decl::ObjCPropertyImpl:
68   case Decl::FileScopeAsm:
69   case Decl::Friend:
70   case Decl::FriendTemplate:
71   case Decl::Block:
72   case Decl::ClassScopeFunctionSpecialization:
73     llvm_unreachable("Declaration should not be in declstmts!");
74   case Decl::Function:  // void X();
75   case Decl::Record:    // struct/union/class X;
76   case Decl::Enum:      // enum X;
77   case Decl::EnumConstant: // enum ? { X = ? }
78   case Decl::CXXRecord: // struct/union/class X; [C++]
79   case Decl::Using:          // using X; [C++]
80   case Decl::UsingShadow:
81   case Decl::UsingDirective: // using namespace X; [C++]
82   case Decl::NamespaceAlias:
83   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84   case Decl::Label:        // __label__ x;
85   case Decl::Import:
86     // None of these decls require codegen support.
87     return;
88 
89   case Decl::Var: {
90     const VarDecl &VD = cast<VarDecl>(D);
91     assert(VD.isLocalVarDecl() &&
92            "Should not see file-scope variables inside a function!");
93     return EmitVarDecl(VD);
94   }
95 
96   case Decl::Typedef:      // typedef int X;
97   case Decl::TypeAlias: {  // using X = int; [C++0x]
98     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
99     QualType Ty = TD.getUnderlyingType();
100 
101     if (Ty->isVariablyModifiedType())
102       EmitVariablyModifiedType(Ty);
103   }
104   }
105 }
106 
107 /// EmitVarDecl - This method handles emission of any variable declaration
108 /// inside a function, including static vars etc.
109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
110   switch (D.getStorageClass()) {
111   case SC_None:
112   case SC_Auto:
113   case SC_Register:
114     return EmitAutoVarDecl(D);
115   case SC_Static: {
116     llvm::GlobalValue::LinkageTypes Linkage =
117       llvm::GlobalValue::InternalLinkage;
118 
119     // If the function definition has some sort of weak linkage, its
120     // static variables should also be weak so that they get properly
121     // uniqued.  We can't do this in C, though, because there's no
122     // standard way to agree on which variables are the same (i.e.
123     // there's no mangling).
124     if (getContext().getLangOptions().CPlusPlus)
125       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
126         Linkage = CurFn->getLinkage();
127 
128     return EmitStaticVarDecl(D, Linkage);
129   }
130   case SC_Extern:
131   case SC_PrivateExtern:
132     // Don't emit it now, allow it to be emitted lazily on its first use.
133     return;
134   case SC_OpenCLWorkGroupLocal:
135     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
136   }
137 
138   llvm_unreachable("Unknown storage class");
139 }
140 
141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
142                                      const char *Separator) {
143   CodeGenModule &CGM = CGF.CGM;
144   if (CGF.getContext().getLangOptions().CPlusPlus) {
145     StringRef Name = CGM.getMangledName(&D);
146     return Name.str();
147   }
148 
149   std::string ContextName;
150   if (!CGF.CurFuncDecl) {
151     // Better be in a block declared in global scope.
152     const NamedDecl *ND = cast<NamedDecl>(&D);
153     const DeclContext *DC = ND->getDeclContext();
154     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
155       MangleBuffer Name;
156       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
157       ContextName = Name.getString();
158     }
159     else
160       llvm_unreachable("Unknown context for block static var decl");
161   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
162     StringRef Name = CGM.getMangledName(FD);
163     ContextName = Name.str();
164   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
165     ContextName = CGF.CurFn->getName();
166   else
167     llvm_unreachable("Unknown context for static var decl");
168 
169   return ContextName + Separator + D.getNameAsString();
170 }
171 
172 llvm::GlobalVariable *
173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
174                                      const char *Separator,
175                                      llvm::GlobalValue::LinkageTypes Linkage) {
176   QualType Ty = D.getType();
177   assert(Ty->isConstantSizeType() && "VLAs can't be static");
178 
179   // Use the label if the variable is renamed with the asm-label extension.
180   std::string Name;
181   if (D.hasAttr<AsmLabelAttr>())
182     Name = CGM.getMangledName(&D);
183   else
184     Name = GetStaticDeclName(*this, D, Separator);
185 
186   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
187   llvm::GlobalVariable *GV =
188     new llvm::GlobalVariable(CGM.getModule(), LTy,
189                              Ty.isConstant(getContext()), Linkage,
190                              CGM.EmitNullConstant(D.getType()), Name, 0,
191                              D.isThreadSpecified(),
192                              CGM.getContext().getTargetAddressSpace(Ty));
193   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
194   if (Linkage != llvm::GlobalValue::InternalLinkage)
195     GV->setVisibility(CurFn->getVisibility());
196   return GV;
197 }
198 
199 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
200 /// global variable that has already been created for it.  If the initializer
201 /// has a different type than GV does, this may free GV and return a different
202 /// one.  Otherwise it just returns GV.
203 llvm::GlobalVariable *
204 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
205                                                llvm::GlobalVariable *GV) {
206   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
207 
208   // If constant emission failed, then this should be a C++ static
209   // initializer.
210   if (!Init) {
211     if (!getContext().getLangOptions().CPlusPlus)
212       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
213     else if (Builder.GetInsertBlock()) {
214       // Since we have a static initializer, this global variable can't
215       // be constant.
216       GV->setConstant(false);
217 
218       EmitCXXGuardedInit(D, GV);
219     }
220     return GV;
221   }
222 
223   // The initializer may differ in type from the global. Rewrite
224   // the global to match the initializer.  (We have to do this
225   // because some types, like unions, can't be completely represented
226   // in the LLVM type system.)
227   if (GV->getType()->getElementType() != Init->getType()) {
228     llvm::GlobalVariable *OldGV = GV;
229 
230     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
231                                   OldGV->isConstant(),
232                                   OldGV->getLinkage(), Init, "",
233                                   /*InsertBefore*/ OldGV,
234                                   D.isThreadSpecified(),
235                            CGM.getContext().getTargetAddressSpace(D.getType()));
236     GV->setVisibility(OldGV->getVisibility());
237 
238     // Steal the name of the old global
239     GV->takeName(OldGV);
240 
241     // Replace all uses of the old global with the new global
242     llvm::Constant *NewPtrForOldDecl =
243     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
244     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
245 
246     // Erase the old global, since it is no longer used.
247     OldGV->eraseFromParent();
248   }
249 
250   GV->setInitializer(Init);
251   return GV;
252 }
253 
254 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
255                                       llvm::GlobalValue::LinkageTypes Linkage) {
256   llvm::Value *&DMEntry = LocalDeclMap[&D];
257   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
258 
259   llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
260 
261   // Store into LocalDeclMap before generating initializer to handle
262   // circular references.
263   DMEntry = GV;
264 
265   // We can't have a VLA here, but we can have a pointer to a VLA,
266   // even though that doesn't really make any sense.
267   // Make sure to evaluate VLA bounds now so that we have them for later.
268   if (D.getType()->isVariablyModifiedType())
269     EmitVariablyModifiedType(D.getType());
270 
271   // Local static block variables must be treated as globals as they may be
272   // referenced in their RHS initializer block-literal expresion.
273   CGM.setStaticLocalDeclAddress(&D, GV);
274 
275   // If this value has an initializer, emit it.
276   if (D.getInit())
277     GV = AddInitializerToStaticVarDecl(D, GV);
278 
279   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
280 
281   if (D.hasAttr<AnnotateAttr>())
282     CGM.AddGlobalAnnotations(&D, GV);
283 
284   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
285     GV->setSection(SA->getName());
286 
287   if (D.hasAttr<UsedAttr>())
288     CGM.AddUsedGlobal(GV);
289 
290   // We may have to cast the constant because of the initializer
291   // mismatch above.
292   //
293   // FIXME: It is really dangerous to store this in the map; if anyone
294   // RAUW's the GV uses of this constant will be invalid.
295   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
296   llvm::Type *LPtrTy =
297     LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
298   DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
299 
300   // Emit global variable debug descriptor for static vars.
301   CGDebugInfo *DI = getDebugInfo();
302   if (DI) {
303     DI->setLocation(D.getLocation());
304     DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
305   }
306 }
307 
308 namespace {
309   struct DestroyObject : EHScopeStack::Cleanup {
310     DestroyObject(llvm::Value *addr, QualType type,
311                   CodeGenFunction::Destroyer *destroyer,
312                   bool useEHCleanupForArray)
313       : addr(addr), type(type), destroyer(destroyer),
314         useEHCleanupForArray(useEHCleanupForArray) {}
315 
316     llvm::Value *addr;
317     QualType type;
318     CodeGenFunction::Destroyer *destroyer;
319     bool useEHCleanupForArray;
320 
321     void Emit(CodeGenFunction &CGF, Flags flags) {
322       // Don't use an EH cleanup recursively from an EH cleanup.
323       bool useEHCleanupForArray =
324         flags.isForNormalCleanup() && this->useEHCleanupForArray;
325 
326       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
327     }
328   };
329 
330   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
331     DestroyNRVOVariable(llvm::Value *addr,
332                         const CXXDestructorDecl *Dtor,
333                         llvm::Value *NRVOFlag)
334       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
335 
336     const CXXDestructorDecl *Dtor;
337     llvm::Value *NRVOFlag;
338     llvm::Value *Loc;
339 
340     void Emit(CodeGenFunction &CGF, Flags flags) {
341       // Along the exceptions path we always execute the dtor.
342       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
343 
344       llvm::BasicBlock *SkipDtorBB = 0;
345       if (NRVO) {
346         // If we exited via NRVO, we skip the destructor call.
347         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
348         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
349         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
350         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
351         CGF.EmitBlock(RunDtorBB);
352       }
353 
354       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
355                                 /*ForVirtualBase=*/false, Loc);
356 
357       if (NRVO) CGF.EmitBlock(SkipDtorBB);
358     }
359   };
360 
361   struct CallStackRestore : EHScopeStack::Cleanup {
362     llvm::Value *Stack;
363     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
364     void Emit(CodeGenFunction &CGF, Flags flags) {
365       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
366       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
367       CGF.Builder.CreateCall(F, V);
368     }
369   };
370 
371   struct ExtendGCLifetime : EHScopeStack::Cleanup {
372     const VarDecl &Var;
373     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
374 
375     void Emit(CodeGenFunction &CGF, Flags flags) {
376       // Compute the address of the local variable, in case it's a
377       // byref or something.
378       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
379                       SourceLocation());
380       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
381       CGF.EmitExtendGCLifetime(value);
382     }
383   };
384 
385   struct CallCleanupFunction : EHScopeStack::Cleanup {
386     llvm::Constant *CleanupFn;
387     const CGFunctionInfo &FnInfo;
388     const VarDecl &Var;
389 
390     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
391                         const VarDecl *Var)
392       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
393 
394     void Emit(CodeGenFunction &CGF, Flags flags) {
395       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
396                       SourceLocation());
397       // Compute the address of the local variable, in case it's a byref
398       // or something.
399       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
400 
401       // In some cases, the type of the function argument will be different from
402       // the type of the pointer. An example of this is
403       // void f(void* arg);
404       // __attribute__((cleanup(f))) void *g;
405       //
406       // To fix this we insert a bitcast here.
407       QualType ArgTy = FnInfo.arg_begin()->type;
408       llvm::Value *Arg =
409         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
410 
411       CallArgList Args;
412       Args.add(RValue::get(Arg),
413                CGF.getContext().getPointerType(Var.getType()));
414       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
415     }
416   };
417 }
418 
419 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
420 /// variable with lifetime.
421 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
422                                     llvm::Value *addr,
423                                     Qualifiers::ObjCLifetime lifetime) {
424   switch (lifetime) {
425   case Qualifiers::OCL_None:
426     llvm_unreachable("present but none");
427 
428   case Qualifiers::OCL_ExplicitNone:
429     // nothing to do
430     break;
431 
432   case Qualifiers::OCL_Strong: {
433     CodeGenFunction::Destroyer *destroyer =
434       (var.hasAttr<ObjCPreciseLifetimeAttr>()
435        ? CodeGenFunction::destroyARCStrongPrecise
436        : CodeGenFunction::destroyARCStrongImprecise);
437 
438     CleanupKind cleanupKind = CGF.getARCCleanupKind();
439     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
440                     cleanupKind & EHCleanup);
441     break;
442   }
443   case Qualifiers::OCL_Autoreleasing:
444     // nothing to do
445     break;
446 
447   case Qualifiers::OCL_Weak:
448     // __weak objects always get EH cleanups; otherwise, exceptions
449     // could cause really nasty crashes instead of mere leaks.
450     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
451                     CodeGenFunction::destroyARCWeak,
452                     /*useEHCleanup*/ true);
453     break;
454   }
455 }
456 
457 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
458   if (const Expr *e = dyn_cast<Expr>(s)) {
459     // Skip the most common kinds of expressions that make
460     // hierarchy-walking expensive.
461     s = e = e->IgnoreParenCasts();
462 
463     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
464       return (ref->getDecl() == &var);
465   }
466 
467   for (Stmt::const_child_range children = s->children(); children; ++children)
468     // children might be null; as in missing decl or conditional of an if-stmt.
469     if ((*children) && isAccessedBy(var, *children))
470       return true;
471 
472   return false;
473 }
474 
475 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
476   if (!decl) return false;
477   if (!isa<VarDecl>(decl)) return false;
478   const VarDecl *var = cast<VarDecl>(decl);
479   return isAccessedBy(*var, e);
480 }
481 
482 static void drillIntoBlockVariable(CodeGenFunction &CGF,
483                                    LValue &lvalue,
484                                    const VarDecl *var) {
485   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
486 }
487 
488 void CodeGenFunction::EmitScalarInit(const Expr *init,
489                                      const ValueDecl *D,
490                                      LValue lvalue,
491                                      bool capturedByInit) {
492   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
493   if (!lifetime) {
494     llvm::Value *value = EmitScalarExpr(init);
495     if (capturedByInit)
496       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
497     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
498     return;
499   }
500 
501   // If we're emitting a value with lifetime, we have to do the
502   // initialization *before* we leave the cleanup scopes.
503   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
504     enterFullExpression(ewc);
505     init = ewc->getSubExpr();
506   }
507   CodeGenFunction::RunCleanupsScope Scope(*this);
508 
509   // We have to maintain the illusion that the variable is
510   // zero-initialized.  If the variable might be accessed in its
511   // initializer, zero-initialize before running the initializer, then
512   // actually perform the initialization with an assign.
513   bool accessedByInit = false;
514   if (lifetime != Qualifiers::OCL_ExplicitNone)
515     accessedByInit = (capturedByInit || isAccessedBy(D, init));
516   if (accessedByInit) {
517     LValue tempLV = lvalue;
518     // Drill down to the __block object if necessary.
519     if (capturedByInit) {
520       // We can use a simple GEP for this because it can't have been
521       // moved yet.
522       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
523                                    getByRefValueLLVMField(cast<VarDecl>(D))));
524     }
525 
526     llvm::PointerType *ty
527       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
528     ty = cast<llvm::PointerType>(ty->getElementType());
529 
530     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
531 
532     // If __weak, we want to use a barrier under certain conditions.
533     if (lifetime == Qualifiers::OCL_Weak)
534       EmitARCInitWeak(tempLV.getAddress(), zero);
535 
536     // Otherwise just do a simple store.
537     else
538       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
539   }
540 
541   // Emit the initializer.
542   llvm::Value *value = 0;
543 
544   switch (lifetime) {
545   case Qualifiers::OCL_None:
546     llvm_unreachable("present but none");
547 
548   case Qualifiers::OCL_ExplicitNone:
549     // nothing to do
550     value = EmitScalarExpr(init);
551     break;
552 
553   case Qualifiers::OCL_Strong: {
554     value = EmitARCRetainScalarExpr(init);
555     break;
556   }
557 
558   case Qualifiers::OCL_Weak: {
559     // No way to optimize a producing initializer into this.  It's not
560     // worth optimizing for, because the value will immediately
561     // disappear in the common case.
562     value = EmitScalarExpr(init);
563 
564     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
565     if (accessedByInit)
566       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
567     else
568       EmitARCInitWeak(lvalue.getAddress(), value);
569     return;
570   }
571 
572   case Qualifiers::OCL_Autoreleasing:
573     value = EmitARCRetainAutoreleaseScalarExpr(init);
574     break;
575   }
576 
577   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
578 
579   // If the variable might have been accessed by its initializer, we
580   // might have to initialize with a barrier.  We have to do this for
581   // both __weak and __strong, but __weak got filtered out above.
582   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
583     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
584     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
585     EmitARCRelease(oldValue, /*precise*/ false);
586     return;
587   }
588 
589   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
590 }
591 
592 /// EmitScalarInit - Initialize the given lvalue with the given object.
593 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
594   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
595   if (!lifetime)
596     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
597 
598   switch (lifetime) {
599   case Qualifiers::OCL_None:
600     llvm_unreachable("present but none");
601 
602   case Qualifiers::OCL_ExplicitNone:
603     // nothing to do
604     break;
605 
606   case Qualifiers::OCL_Strong:
607     init = EmitARCRetain(lvalue.getType(), init);
608     break;
609 
610   case Qualifiers::OCL_Weak:
611     // Initialize and then skip the primitive store.
612     EmitARCInitWeak(lvalue.getAddress(), init);
613     return;
614 
615   case Qualifiers::OCL_Autoreleasing:
616     init = EmitARCRetainAutorelease(lvalue.getType(), init);
617     break;
618   }
619 
620   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
621 }
622 
623 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
624 /// non-zero parts of the specified initializer with equal or fewer than
625 /// NumStores scalar stores.
626 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
627                                                 unsigned &NumStores) {
628   // Zero and Undef never requires any extra stores.
629   if (isa<llvm::ConstantAggregateZero>(Init) ||
630       isa<llvm::ConstantPointerNull>(Init) ||
631       isa<llvm::UndefValue>(Init))
632     return true;
633   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
634       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
635       isa<llvm::ConstantExpr>(Init))
636     return Init->isNullValue() || NumStores--;
637 
638   // See if we can emit each element.
639   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
640     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
641       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
642       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
643         return false;
644     }
645     return true;
646   }
647 
648   if (llvm::ConstantDataSequential *CDS =
649         dyn_cast<llvm::ConstantDataSequential>(Init)) {
650     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
651       llvm::Constant *Elt = CDS->getElementAsConstant(i);
652       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
653         return false;
654     }
655     return true;
656   }
657 
658   // Anything else is hard and scary.
659   return false;
660 }
661 
662 /// emitStoresForInitAfterMemset - For inits that
663 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
664 /// stores that would be required.
665 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
666                                          bool isVolatile, CGBuilderTy &Builder) {
667   // Zero doesn't require a store.
668   if (Init->isNullValue() || isa<llvm::UndefValue>(Init))
669     return;
670 
671   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
672       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
673       isa<llvm::ConstantExpr>(Init)) {
674     Builder.CreateStore(Init, Loc, isVolatile);
675     return;
676   }
677 
678   if (llvm::ConstantDataSequential *CDS =
679         dyn_cast<llvm::ConstantDataSequential>(Init)) {
680     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
681       llvm::Constant *Elt = CDS->getElementAsConstant(i);
682 
683       // Get a pointer to the element and emit it.
684       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
685                                    isVolatile, Builder);
686     }
687     return;
688   }
689 
690   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
691          "Unknown value type!");
692 
693   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
694     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
695     // Get a pointer to the element and emit it.
696     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
697                                  isVolatile, Builder);
698   }
699 }
700 
701 
702 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
703 /// plus some stores to initialize a local variable instead of using a memcpy
704 /// from a constant global.  It is beneficial to use memset if the global is all
705 /// zeros, or mostly zeros and large.
706 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
707                                                   uint64_t GlobalSize) {
708   // If a global is all zeros, always use a memset.
709   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
710 
711 
712   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
713   // do it if it will require 6 or fewer scalar stores.
714   // TODO: Should budget depends on the size?  Avoiding a large global warrants
715   // plopping in more stores.
716   unsigned StoreBudget = 6;
717   uint64_t SizeLimit = 32;
718 
719   return GlobalSize > SizeLimit &&
720          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
721 }
722 
723 
724 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
725 /// variable declaration with auto, register, or no storage class specifier.
726 /// These turn into simple stack objects, or GlobalValues depending on target.
727 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
728   AutoVarEmission emission = EmitAutoVarAlloca(D);
729   EmitAutoVarInit(emission);
730   EmitAutoVarCleanups(emission);
731 }
732 
733 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
734 /// local variable.  Does not emit initalization or destruction.
735 CodeGenFunction::AutoVarEmission
736 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
737   QualType Ty = D.getType();
738 
739   AutoVarEmission emission(D);
740 
741   bool isByRef = D.hasAttr<BlocksAttr>();
742   emission.IsByRef = isByRef;
743 
744   CharUnits alignment = getContext().getDeclAlign(&D);
745   emission.Alignment = alignment;
746 
747   // If the type is variably-modified, emit all the VLA sizes for it.
748   if (Ty->isVariablyModifiedType())
749     EmitVariablyModifiedType(Ty);
750 
751   llvm::Value *DeclPtr;
752   if (Ty->isConstantSizeType()) {
753     if (!Target.useGlobalsForAutomaticVariables()) {
754       bool NRVO = getContext().getLangOptions().ElideConstructors &&
755                   D.isNRVOVariable();
756 
757       // If this value is a POD array or struct with a statically
758       // determinable constant initializer, there are optimizations we can do.
759       //
760       // TODO: we should constant-evaluate any variable of literal type
761       // as long as it is initialized by a constant expression. Currently,
762       // isConstantInitializer produces wrong answers for structs with
763       // reference or bitfield members, and a few other cases, and checking
764       // for POD-ness protects us from some of these.
765       if (D.getInit() &&
766           (Ty->isArrayType() || Ty->isRecordType()) &&
767           (Ty.isPODType(getContext()) ||
768            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
769           D.getInit()->isConstantInitializer(getContext(), false)) {
770 
771         // If the variable's a const type, and it's neither an NRVO
772         // candidate nor a __block variable and has no mutable members,
773         // emit it as a global instead.
774         if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
775             !NRVO && !isByRef && Ty->isLiteralType()) {
776           CXXRecordDecl *RD =
777             Ty->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
778           if (!RD || !RD->hasMutableFields()) {
779             EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
780 
781             emission.Address = 0; // signal this condition to later callbacks
782             assert(emission.wasEmittedAsGlobal());
783             return emission;
784           }
785         }
786 
787         // Otherwise, tell the initialization code that we're in this case.
788         emission.IsConstantAggregate = true;
789       }
790 
791       // A normal fixed sized variable becomes an alloca in the entry block,
792       // unless it's an NRVO variable.
793       llvm::Type *LTy = ConvertTypeForMem(Ty);
794 
795       if (NRVO) {
796         // The named return value optimization: allocate this variable in the
797         // return slot, so that we can elide the copy when returning this
798         // variable (C++0x [class.copy]p34).
799         DeclPtr = ReturnValue;
800 
801         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
802           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
803             // Create a flag that is used to indicate when the NRVO was applied
804             // to this variable. Set it to zero to indicate that NRVO was not
805             // applied.
806             llvm::Value *Zero = Builder.getFalse();
807             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
808             EnsureInsertPoint();
809             Builder.CreateStore(Zero, NRVOFlag);
810 
811             // Record the NRVO flag for this variable.
812             NRVOFlags[&D] = NRVOFlag;
813             emission.NRVOFlag = NRVOFlag;
814           }
815         }
816       } else {
817         if (isByRef)
818           LTy = BuildByRefType(&D);
819 
820         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
821         Alloc->setName(D.getName());
822 
823         CharUnits allocaAlignment = alignment;
824         if (isByRef)
825           allocaAlignment = std::max(allocaAlignment,
826               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
827         Alloc->setAlignment(allocaAlignment.getQuantity());
828         DeclPtr = Alloc;
829       }
830     } else {
831       // Targets that don't support recursion emit locals as globals.
832       const char *Class =
833         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
834       DeclPtr = CreateStaticVarDecl(D, Class,
835                                     llvm::GlobalValue::InternalLinkage);
836     }
837   } else {
838     EnsureInsertPoint();
839 
840     if (!DidCallStackSave) {
841       // Save the stack.
842       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
843 
844       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
845       llvm::Value *V = Builder.CreateCall(F);
846 
847       Builder.CreateStore(V, Stack);
848 
849       DidCallStackSave = true;
850 
851       // Push a cleanup block and restore the stack there.
852       // FIXME: in general circumstances, this should be an EH cleanup.
853       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
854     }
855 
856     llvm::Value *elementCount;
857     QualType elementType;
858     llvm::tie(elementCount, elementType) = getVLASize(Ty);
859 
860     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
861 
862     // Allocate memory for the array.
863     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
864     vla->setAlignment(alignment.getQuantity());
865 
866     DeclPtr = vla;
867   }
868 
869   llvm::Value *&DMEntry = LocalDeclMap[&D];
870   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
871   DMEntry = DeclPtr;
872   emission.Address = DeclPtr;
873 
874   // Emit debug info for local var declaration.
875   if (HaveInsertPoint())
876     if (CGDebugInfo *DI = getDebugInfo()) {
877       DI->setLocation(D.getLocation());
878       if (Target.useGlobalsForAutomaticVariables()) {
879         DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
880       } else
881         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
882     }
883 
884   if (D.hasAttr<AnnotateAttr>())
885       EmitVarAnnotations(&D, emission.Address);
886 
887   return emission;
888 }
889 
890 /// Determines whether the given __block variable is potentially
891 /// captured by the given expression.
892 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
893   // Skip the most common kinds of expressions that make
894   // hierarchy-walking expensive.
895   e = e->IgnoreParenCasts();
896 
897   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
898     const BlockDecl *block = be->getBlockDecl();
899     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
900            e = block->capture_end(); i != e; ++i) {
901       if (i->getVariable() == &var)
902         return true;
903     }
904 
905     // No need to walk into the subexpressions.
906     return false;
907   }
908 
909   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
910     const CompoundStmt *CS = SE->getSubStmt();
911     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
912 	   BE = CS->body_end(); BI != BE; ++BI)
913       if (Expr *E = dyn_cast<Expr>((*BI))) {
914         if (isCapturedBy(var, E))
915             return true;
916       }
917       else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
918           // special case declarations
919           for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
920                I != E; ++I) {
921               if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
922                 Expr *Init = VD->getInit();
923                 if (Init && isCapturedBy(var, Init))
924                   return true;
925               }
926           }
927       }
928       else
929         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
930         // Later, provide code to poke into statements for capture analysis.
931         return true;
932     return false;
933   }
934 
935   for (Stmt::const_child_range children = e->children(); children; ++children)
936     if (isCapturedBy(var, cast<Expr>(*children)))
937       return true;
938 
939   return false;
940 }
941 
942 /// \brief Determine whether the given initializer is trivial in the sense
943 /// that it requires no code to be generated.
944 static bool isTrivialInitializer(const Expr *Init) {
945   if (!Init)
946     return true;
947 
948   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
949     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
950       if (Constructor->isTrivial() &&
951           Constructor->isDefaultConstructor() &&
952           !Construct->requiresZeroInitialization())
953         return true;
954 
955   return false;
956 }
957 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
958   assert(emission.Variable && "emission was not valid!");
959 
960   // If this was emitted as a global constant, we're done.
961   if (emission.wasEmittedAsGlobal()) return;
962 
963   const VarDecl &D = *emission.Variable;
964   QualType type = D.getType();
965 
966   // If this local has an initializer, emit it now.
967   const Expr *Init = D.getInit();
968 
969   // If we are at an unreachable point, we don't need to emit the initializer
970   // unless it contains a label.
971   if (!HaveInsertPoint()) {
972     if (!Init || !ContainsLabel(Init)) return;
973     EnsureInsertPoint();
974   }
975 
976   // Initialize the structure of a __block variable.
977   if (emission.IsByRef)
978     emitByrefStructureInit(emission);
979 
980   if (isTrivialInitializer(Init))
981     return;
982 
983   CharUnits alignment = emission.Alignment;
984 
985   // Check whether this is a byref variable that's potentially
986   // captured and moved by its own initializer.  If so, we'll need to
987   // emit the initializer first, then copy into the variable.
988   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
989 
990   llvm::Value *Loc =
991     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
992 
993   llvm::Constant *constant = 0;
994   if (emission.IsConstantAggregate) {
995     assert(!capturedByInit && "constant init contains a capturing block?");
996     constant = CGM.EmitConstantInit(D, this);
997   }
998 
999   if (!constant) {
1000     LValue lv = MakeAddrLValue(Loc, type, alignment);
1001     lv.setNonGC(true);
1002     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1003   }
1004 
1005   // If this is a simple aggregate initialization, we can optimize it
1006   // in various ways.
1007   bool isVolatile = type.isVolatileQualified();
1008 
1009   llvm::Value *SizeVal =
1010     llvm::ConstantInt::get(IntPtrTy,
1011                            getContext().getTypeSizeInChars(type).getQuantity());
1012 
1013   llvm::Type *BP = Int8PtrTy;
1014   if (Loc->getType() != BP)
1015     Loc = Builder.CreateBitCast(Loc, BP);
1016 
1017   // If the initializer is all or mostly zeros, codegen with memset then do
1018   // a few stores afterward.
1019   if (shouldUseMemSetPlusStoresToInitialize(constant,
1020                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
1021     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1022                          alignment.getQuantity(), isVolatile);
1023     if (!constant->isNullValue()) {
1024       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1025       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1026     }
1027   } else {
1028     // Otherwise, create a temporary global with the initializer then
1029     // memcpy from the global to the alloca.
1030     std::string Name = GetStaticDeclName(*this, D, ".");
1031     llvm::GlobalVariable *GV =
1032       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1033                                llvm::GlobalValue::PrivateLinkage,
1034                                constant, Name, 0, false, 0);
1035     GV->setAlignment(alignment.getQuantity());
1036     GV->setUnnamedAddr(true);
1037 
1038     llvm::Value *SrcPtr = GV;
1039     if (SrcPtr->getType() != BP)
1040       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1041 
1042     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1043                          isVolatile);
1044   }
1045 }
1046 
1047 /// Emit an expression as an initializer for a variable at the given
1048 /// location.  The expression is not necessarily the normal
1049 /// initializer for the variable, and the address is not necessarily
1050 /// its normal location.
1051 ///
1052 /// \param init the initializing expression
1053 /// \param var the variable to act as if we're initializing
1054 /// \param loc the address to initialize; its type is a pointer
1055 ///   to the LLVM mapping of the variable's type
1056 /// \param alignment the alignment of the address
1057 /// \param capturedByInit true if the variable is a __block variable
1058 ///   whose address is potentially changed by the initializer
1059 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1060                                      const ValueDecl *D,
1061                                      LValue lvalue,
1062                                      bool capturedByInit) {
1063   QualType type = D->getType();
1064 
1065   if (type->isReferenceType()) {
1066     RValue rvalue = EmitReferenceBindingToExpr(init, D);
1067     if (capturedByInit)
1068       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1069     EmitStoreThroughLValue(rvalue, lvalue, true);
1070   } else if (!hasAggregateLLVMType(type)) {
1071     EmitScalarInit(init, D, lvalue, capturedByInit);
1072   } else if (type->isAnyComplexType()) {
1073     ComplexPairTy complex = EmitComplexExpr(init);
1074     if (capturedByInit)
1075       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1076     StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1077   } else {
1078     // TODO: how can we delay here if D is captured by its initializer?
1079     EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1080                                               AggValueSlot::IsDestructed,
1081                                          AggValueSlot::DoesNotNeedGCBarriers,
1082                                               AggValueSlot::IsNotAliased));
1083   }
1084 }
1085 
1086 /// Enter a destroy cleanup for the given local variable.
1087 void CodeGenFunction::emitAutoVarTypeCleanup(
1088                             const CodeGenFunction::AutoVarEmission &emission,
1089                             QualType::DestructionKind dtorKind) {
1090   assert(dtorKind != QualType::DK_none);
1091 
1092   // Note that for __block variables, we want to destroy the
1093   // original stack object, not the possibly forwarded object.
1094   llvm::Value *addr = emission.getObjectAddress(*this);
1095 
1096   const VarDecl *var = emission.Variable;
1097   QualType type = var->getType();
1098 
1099   CleanupKind cleanupKind = NormalAndEHCleanup;
1100   CodeGenFunction::Destroyer *destroyer = 0;
1101 
1102   switch (dtorKind) {
1103   case QualType::DK_none:
1104     llvm_unreachable("no cleanup for trivially-destructible variable");
1105 
1106   case QualType::DK_cxx_destructor:
1107     // If there's an NRVO flag on the emission, we need a different
1108     // cleanup.
1109     if (emission.NRVOFlag) {
1110       assert(!type->isArrayType());
1111       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1112       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1113                                                emission.NRVOFlag);
1114       return;
1115     }
1116     break;
1117 
1118   case QualType::DK_objc_strong_lifetime:
1119     // Suppress cleanups for pseudo-strong variables.
1120     if (var->isARCPseudoStrong()) return;
1121 
1122     // Otherwise, consider whether to use an EH cleanup or not.
1123     cleanupKind = getARCCleanupKind();
1124 
1125     // Use the imprecise destroyer by default.
1126     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1127       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1128     break;
1129 
1130   case QualType::DK_objc_weak_lifetime:
1131     break;
1132   }
1133 
1134   // If we haven't chosen a more specific destroyer, use the default.
1135   if (!destroyer) destroyer = getDestroyer(dtorKind);
1136 
1137   // Use an EH cleanup in array destructors iff the destructor itself
1138   // is being pushed as an EH cleanup.
1139   bool useEHCleanup = (cleanupKind & EHCleanup);
1140   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1141                                      useEHCleanup);
1142 }
1143 
1144 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1145   assert(emission.Variable && "emission was not valid!");
1146 
1147   // If this was emitted as a global constant, we're done.
1148   if (emission.wasEmittedAsGlobal()) return;
1149 
1150   const VarDecl &D = *emission.Variable;
1151 
1152   // Check the type for a cleanup.
1153   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1154     emitAutoVarTypeCleanup(emission, dtorKind);
1155 
1156   // In GC mode, honor objc_precise_lifetime.
1157   if (getLangOptions().getGC() != LangOptions::NonGC &&
1158       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1159     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1160   }
1161 
1162   // Handle the cleanup attribute.
1163   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1164     const FunctionDecl *FD = CA->getFunctionDecl();
1165 
1166     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1167     assert(F && "Could not find function!");
1168 
1169     const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
1170     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1171   }
1172 
1173   // If this is a block variable, call _Block_object_destroy
1174   // (on the unforwarded address).
1175   if (emission.IsByRef)
1176     enterByrefCleanup(emission);
1177 }
1178 
1179 CodeGenFunction::Destroyer *
1180 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1181   switch (kind) {
1182   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1183   case QualType::DK_cxx_destructor:
1184     return destroyCXXObject;
1185   case QualType::DK_objc_strong_lifetime:
1186     return destroyARCStrongPrecise;
1187   case QualType::DK_objc_weak_lifetime:
1188     return destroyARCWeak;
1189   }
1190   llvm_unreachable("Unknown DestructionKind");
1191 }
1192 
1193 /// pushDestroy - Push the standard destructor for the given type.
1194 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1195                                   llvm::Value *addr, QualType type) {
1196   assert(dtorKind && "cannot push destructor for trivial type");
1197 
1198   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1199   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1200               cleanupKind & EHCleanup);
1201 }
1202 
1203 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1204                                   QualType type, Destroyer *destroyer,
1205                                   bool useEHCleanupForArray) {
1206   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1207                                      destroyer, useEHCleanupForArray);
1208 }
1209 
1210 /// emitDestroy - Immediately perform the destruction of the given
1211 /// object.
1212 ///
1213 /// \param addr - the address of the object; a type*
1214 /// \param type - the type of the object; if an array type, all
1215 ///   objects are destroyed in reverse order
1216 /// \param destroyer - the function to call to destroy individual
1217 ///   elements
1218 /// \param useEHCleanupForArray - whether an EH cleanup should be
1219 ///   used when destroying array elements, in case one of the
1220 ///   destructions throws an exception
1221 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1222                                   Destroyer *destroyer,
1223                                   bool useEHCleanupForArray) {
1224   const ArrayType *arrayType = getContext().getAsArrayType(type);
1225   if (!arrayType)
1226     return destroyer(*this, addr, type);
1227 
1228   llvm::Value *begin = addr;
1229   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1230 
1231   // Normally we have to check whether the array is zero-length.
1232   bool checkZeroLength = true;
1233 
1234   // But if the array length is constant, we can suppress that.
1235   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1236     // ...and if it's constant zero, we can just skip the entire thing.
1237     if (constLength->isZero()) return;
1238     checkZeroLength = false;
1239   }
1240 
1241   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1242   emitArrayDestroy(begin, end, type, destroyer,
1243                    checkZeroLength, useEHCleanupForArray);
1244 }
1245 
1246 /// emitArrayDestroy - Destroys all the elements of the given array,
1247 /// beginning from last to first.  The array cannot be zero-length.
1248 ///
1249 /// \param begin - a type* denoting the first element of the array
1250 /// \param end - a type* denoting one past the end of the array
1251 /// \param type - the element type of the array
1252 /// \param destroyer - the function to call to destroy elements
1253 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1254 ///   the remaining elements in case the destruction of a single
1255 ///   element throws
1256 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1257                                        llvm::Value *end,
1258                                        QualType type,
1259                                        Destroyer *destroyer,
1260                                        bool checkZeroLength,
1261                                        bool useEHCleanup) {
1262   assert(!type->isArrayType());
1263 
1264   // The basic structure here is a do-while loop, because we don't
1265   // need to check for the zero-element case.
1266   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1267   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1268 
1269   if (checkZeroLength) {
1270     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1271                                                 "arraydestroy.isempty");
1272     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1273   }
1274 
1275   // Enter the loop body, making that address the current address.
1276   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1277   EmitBlock(bodyBB);
1278   llvm::PHINode *elementPast =
1279     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1280   elementPast->addIncoming(end, entryBB);
1281 
1282   // Shift the address back by one element.
1283   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1284   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1285                                                    "arraydestroy.element");
1286 
1287   if (useEHCleanup)
1288     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1289 
1290   // Perform the actual destruction there.
1291   destroyer(*this, element, type);
1292 
1293   if (useEHCleanup)
1294     PopCleanupBlock();
1295 
1296   // Check whether we've reached the end.
1297   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1298   Builder.CreateCondBr(done, doneBB, bodyBB);
1299   elementPast->addIncoming(element, Builder.GetInsertBlock());
1300 
1301   // Done.
1302   EmitBlock(doneBB);
1303 }
1304 
1305 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1306 /// emitArrayDestroy, the element type here may still be an array type.
1307 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1308                                     llvm::Value *begin, llvm::Value *end,
1309                                     QualType type,
1310                                     CodeGenFunction::Destroyer *destroyer) {
1311   // If the element type is itself an array, drill down.
1312   unsigned arrayDepth = 0;
1313   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1314     // VLAs don't require a GEP index to walk into.
1315     if (!isa<VariableArrayType>(arrayType))
1316       arrayDepth++;
1317     type = arrayType->getElementType();
1318   }
1319 
1320   if (arrayDepth) {
1321     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1322 
1323     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1324     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1325     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1326   }
1327 
1328   // Destroy the array.  We don't ever need an EH cleanup because we
1329   // assume that we're in an EH cleanup ourselves, so a throwing
1330   // destructor causes an immediate terminate.
1331   CGF.emitArrayDestroy(begin, end, type, destroyer,
1332                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1333 }
1334 
1335 namespace {
1336   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1337   /// array destroy where the end pointer is regularly determined and
1338   /// does not need to be loaded from a local.
1339   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1340     llvm::Value *ArrayBegin;
1341     llvm::Value *ArrayEnd;
1342     QualType ElementType;
1343     CodeGenFunction::Destroyer *Destroyer;
1344   public:
1345     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1346                                QualType elementType,
1347                                CodeGenFunction::Destroyer *destroyer)
1348       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1349         ElementType(elementType), Destroyer(destroyer) {}
1350 
1351     void Emit(CodeGenFunction &CGF, Flags flags) {
1352       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1353                               ElementType, Destroyer);
1354     }
1355   };
1356 
1357   /// IrregularPartialArrayDestroy - a cleanup which performs a
1358   /// partial array destroy where the end pointer is irregularly
1359   /// determined and must be loaded from a local.
1360   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1361     llvm::Value *ArrayBegin;
1362     llvm::Value *ArrayEndPointer;
1363     QualType ElementType;
1364     CodeGenFunction::Destroyer *Destroyer;
1365   public:
1366     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1367                                  llvm::Value *arrayEndPointer,
1368                                  QualType elementType,
1369                                  CodeGenFunction::Destroyer *destroyer)
1370       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1371         ElementType(elementType), Destroyer(destroyer) {}
1372 
1373     void Emit(CodeGenFunction &CGF, Flags flags) {
1374       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1375       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1376                               ElementType, Destroyer);
1377     }
1378   };
1379 }
1380 
1381 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1382 /// already-constructed elements of the given array.  The cleanup
1383 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1384 ///
1385 /// \param elementType - the immediate element type of the array;
1386 ///   possibly still an array type
1387 /// \param array - a value of type elementType*
1388 /// \param destructionKind - the kind of destruction required
1389 /// \param initializedElementCount - a value of type size_t* holding
1390 ///   the number of successfully-constructed elements
1391 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1392                                                  llvm::Value *arrayEndPointer,
1393                                                        QualType elementType,
1394                                                        Destroyer *destroyer) {
1395   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1396                                                     arrayBegin, arrayEndPointer,
1397                                                     elementType, destroyer);
1398 }
1399 
1400 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1401 /// already-constructed elements of the given array.  The cleanup
1402 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1403 ///
1404 /// \param elementType - the immediate element type of the array;
1405 ///   possibly still an array type
1406 /// \param array - a value of type elementType*
1407 /// \param destructionKind - the kind of destruction required
1408 /// \param initializedElementCount - a value of type size_t* holding
1409 ///   the number of successfully-constructed elements
1410 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1411                                                      llvm::Value *arrayEnd,
1412                                                      QualType elementType,
1413                                                      Destroyer *destroyer) {
1414   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1415                                                   arrayBegin, arrayEnd,
1416                                                   elementType, destroyer);
1417 }
1418 
1419 namespace {
1420   /// A cleanup to perform a release of an object at the end of a
1421   /// function.  This is used to balance out the incoming +1 of a
1422   /// ns_consumed argument when we can't reasonably do that just by
1423   /// not doing the initial retain for a __block argument.
1424   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1425     ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1426 
1427     llvm::Value *Param;
1428 
1429     void Emit(CodeGenFunction &CGF, Flags flags) {
1430       CGF.EmitARCRelease(Param, /*precise*/ false);
1431     }
1432   };
1433 }
1434 
1435 /// Emit an alloca (or GlobalValue depending on target)
1436 /// for the specified parameter and set up LocalDeclMap.
1437 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1438                                    unsigned ArgNo) {
1439   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1440   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1441          "Invalid argument to EmitParmDecl");
1442 
1443   Arg->setName(D.getName());
1444 
1445   // Use better IR generation for certain implicit parameters.
1446   if (isa<ImplicitParamDecl>(D)) {
1447     // The only implicit argument a block has is its literal.
1448     if (BlockInfo) {
1449       LocalDeclMap[&D] = Arg;
1450 
1451       if (CGDebugInfo *DI = getDebugInfo()) {
1452         DI->setLocation(D.getLocation());
1453         DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1454       }
1455 
1456       return;
1457     }
1458   }
1459 
1460   QualType Ty = D.getType();
1461 
1462   llvm::Value *DeclPtr;
1463   // If this is an aggregate or variable sized value, reuse the input pointer.
1464   if (!Ty->isConstantSizeType() ||
1465       CodeGenFunction::hasAggregateLLVMType(Ty)) {
1466     DeclPtr = Arg;
1467   } else {
1468     // Otherwise, create a temporary to hold the value.
1469     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1470                                                D.getName() + ".addr");
1471     Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1472     DeclPtr = Alloc;
1473 
1474     bool doStore = true;
1475 
1476     Qualifiers qs = Ty.getQualifiers();
1477 
1478     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1479       // We honor __attribute__((ns_consumed)) for types with lifetime.
1480       // For __strong, it's handled by just skipping the initial retain;
1481       // otherwise we have to balance out the initial +1 with an extra
1482       // cleanup to do the release at the end of the function.
1483       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1484 
1485       // 'self' is always formally __strong, but if this is not an
1486       // init method then we don't want to retain it.
1487       if (D.isARCPseudoStrong()) {
1488         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1489         assert(&D == method->getSelfDecl());
1490         assert(lt == Qualifiers::OCL_Strong);
1491         assert(qs.hasConst());
1492         assert(method->getMethodFamily() != OMF_init);
1493         (void) method;
1494         lt = Qualifiers::OCL_ExplicitNone;
1495       }
1496 
1497       if (lt == Qualifiers::OCL_Strong) {
1498         if (!isConsumed)
1499           // Don't use objc_retainBlock for block pointers, because we
1500           // don't want to Block_copy something just because we got it
1501           // as a parameter.
1502           Arg = EmitARCRetainNonBlock(Arg);
1503       } else {
1504         // Push the cleanup for a consumed parameter.
1505         if (isConsumed)
1506           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1507 
1508         if (lt == Qualifiers::OCL_Weak) {
1509           EmitARCInitWeak(DeclPtr, Arg);
1510           doStore = false; // The weak init is a store, no need to do two
1511         }
1512       }
1513 
1514       // Enter the cleanup scope.
1515       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1516     }
1517 
1518     // Store the initial value into the alloca.
1519     if (doStore) {
1520       LValue lv = MakeAddrLValue(DeclPtr, Ty,
1521                                  getContext().getDeclAlign(&D));
1522       EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1523     }
1524   }
1525 
1526   llvm::Value *&DMEntry = LocalDeclMap[&D];
1527   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1528   DMEntry = DeclPtr;
1529 
1530   // Emit debug info for param declaration.
1531   if (CGDebugInfo *DI = getDebugInfo())
1532     DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1533 
1534   if (D.hasAttr<AnnotateAttr>())
1535       EmitVarAnnotations(&D, DeclPtr);
1536 }
1537