1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenCLRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclOpenMP.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Type.h" 37 38 using namespace clang; 39 using namespace CodeGen; 40 41 void CodeGenFunction::EmitDecl(const Decl &D) { 42 switch (D.getKind()) { 43 case Decl::BuiltinTemplate: 44 case Decl::TranslationUnit: 45 case Decl::ExternCContext: 46 case Decl::Namespace: 47 case Decl::UnresolvedUsingTypename: 48 case Decl::ClassTemplateSpecialization: 49 case Decl::ClassTemplatePartialSpecialization: 50 case Decl::VarTemplateSpecialization: 51 case Decl::VarTemplatePartialSpecialization: 52 case Decl::TemplateTypeParm: 53 case Decl::UnresolvedUsingValue: 54 case Decl::NonTypeTemplateParm: 55 case Decl::CXXDeductionGuide: 56 case Decl::CXXMethod: 57 case Decl::CXXConstructor: 58 case Decl::CXXDestructor: 59 case Decl::CXXConversion: 60 case Decl::Field: 61 case Decl::MSProperty: 62 case Decl::IndirectField: 63 case Decl::ObjCIvar: 64 case Decl::ObjCAtDefsField: 65 case Decl::ParmVar: 66 case Decl::ImplicitParam: 67 case Decl::ClassTemplate: 68 case Decl::VarTemplate: 69 case Decl::FunctionTemplate: 70 case Decl::TypeAliasTemplate: 71 case Decl::TemplateTemplateParm: 72 case Decl::ObjCMethod: 73 case Decl::ObjCCategory: 74 case Decl::ObjCProtocol: 75 case Decl::ObjCInterface: 76 case Decl::ObjCCategoryImpl: 77 case Decl::ObjCImplementation: 78 case Decl::ObjCProperty: 79 case Decl::ObjCCompatibleAlias: 80 case Decl::PragmaComment: 81 case Decl::PragmaDetectMismatch: 82 case Decl::AccessSpec: 83 case Decl::LinkageSpec: 84 case Decl::Export: 85 case Decl::ObjCPropertyImpl: 86 case Decl::FileScopeAsm: 87 case Decl::Friend: 88 case Decl::FriendTemplate: 89 case Decl::Block: 90 case Decl::Captured: 91 case Decl::ClassScopeFunctionSpecialization: 92 case Decl::UsingShadow: 93 case Decl::ConstructorUsingShadow: 94 case Decl::ObjCTypeParam: 95 case Decl::Binding: 96 llvm_unreachable("Declaration should not be in declstmts!"); 97 case Decl::Function: // void X(); 98 case Decl::Record: // struct/union/class X; 99 case Decl::Enum: // enum X; 100 case Decl::EnumConstant: // enum ? { X = ? } 101 case Decl::CXXRecord: // struct/union/class X; [C++] 102 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 103 case Decl::Label: // __label__ x; 104 case Decl::Import: 105 case Decl::OMPThreadPrivate: 106 case Decl::OMPCapturedExpr: 107 case Decl::Empty: 108 // None of these decls require codegen support. 109 return; 110 111 case Decl::NamespaceAlias: 112 if (CGDebugInfo *DI = getDebugInfo()) 113 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 114 return; 115 case Decl::Using: // using X; [C++] 116 if (CGDebugInfo *DI = getDebugInfo()) 117 DI->EmitUsingDecl(cast<UsingDecl>(D)); 118 return; 119 case Decl::UsingPack: 120 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 121 EmitDecl(*Using); 122 return; 123 case Decl::UsingDirective: // using namespace X; [C++] 124 if (CGDebugInfo *DI = getDebugInfo()) 125 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 126 return; 127 case Decl::Var: 128 case Decl::Decomposition: { 129 const VarDecl &VD = cast<VarDecl>(D); 130 assert(VD.isLocalVarDecl() && 131 "Should not see file-scope variables inside a function!"); 132 EmitVarDecl(VD); 133 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 134 for (auto *B : DD->bindings()) 135 if (auto *HD = B->getHoldingVar()) 136 EmitVarDecl(*HD); 137 return; 138 } 139 140 case Decl::OMPDeclareReduction: 141 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 142 143 case Decl::Typedef: // typedef int X; 144 case Decl::TypeAlias: { // using X = int; [C++0x] 145 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 146 QualType Ty = TD.getUnderlyingType(); 147 148 if (Ty->isVariablyModifiedType()) 149 EmitVariablyModifiedType(Ty); 150 } 151 } 152 } 153 154 /// EmitVarDecl - This method handles emission of any variable declaration 155 /// inside a function, including static vars etc. 156 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 157 if (D.hasExternalStorage()) 158 // Don't emit it now, allow it to be emitted lazily on its first use. 159 return; 160 161 // Some function-scope variable does not have static storage but still 162 // needs to be emitted like a static variable, e.g. a function-scope 163 // variable in constant address space in OpenCL. 164 if (D.getStorageDuration() != SD_Automatic) { 165 // Static sampler variables translated to function calls. 166 if (D.getType()->isSamplerT()) 167 return; 168 169 llvm::GlobalValue::LinkageTypes Linkage = 170 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 171 172 // FIXME: We need to force the emission/use of a guard variable for 173 // some variables even if we can constant-evaluate them because 174 // we can't guarantee every translation unit will constant-evaluate them. 175 176 return EmitStaticVarDecl(D, Linkage); 177 } 178 179 if (D.getType().getAddressSpace() == LangAS::opencl_local) 180 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 181 182 assert(D.hasLocalStorage()); 183 return EmitAutoVarDecl(D); 184 } 185 186 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 187 if (CGM.getLangOpts().CPlusPlus) 188 return CGM.getMangledName(&D).str(); 189 190 // If this isn't C++, we don't need a mangled name, just a pretty one. 191 assert(!D.isExternallyVisible() && "name shouldn't matter"); 192 std::string ContextName; 193 const DeclContext *DC = D.getDeclContext(); 194 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 195 DC = cast<DeclContext>(CD->getNonClosureContext()); 196 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 197 ContextName = CGM.getMangledName(FD); 198 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 199 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 200 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 201 ContextName = OMD->getSelector().getAsString(); 202 else 203 llvm_unreachable("Unknown context for static var decl"); 204 205 ContextName += "." + D.getNameAsString(); 206 return ContextName; 207 } 208 209 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 210 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 211 // In general, we don't always emit static var decls once before we reference 212 // them. It is possible to reference them before emitting the function that 213 // contains them, and it is possible to emit the containing function multiple 214 // times. 215 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 216 return ExistingGV; 217 218 QualType Ty = D.getType(); 219 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 220 221 // Use the label if the variable is renamed with the asm-label extension. 222 std::string Name; 223 if (D.hasAttr<AsmLabelAttr>()) 224 Name = getMangledName(&D); 225 else 226 Name = getStaticDeclName(*this, D); 227 228 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 229 LangAS AS = GetGlobalVarAddressSpace(&D); 230 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 231 232 // Local address space cannot have an initializer. 233 llvm::Constant *Init = nullptr; 234 if (Ty.getAddressSpace() != LangAS::opencl_local) 235 Init = EmitNullConstant(Ty); 236 else 237 Init = llvm::UndefValue::get(LTy); 238 239 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 240 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 241 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 242 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 243 244 if (supportsCOMDAT() && GV->isWeakForLinker()) 245 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 246 247 if (D.getTLSKind()) 248 setTLSMode(GV, D); 249 250 setGVProperties(GV, &D); 251 252 // Make sure the result is of the correct type. 253 LangAS ExpectedAS = Ty.getAddressSpace(); 254 llvm::Constant *Addr = GV; 255 if (AS != ExpectedAS) { 256 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 257 *this, GV, AS, ExpectedAS, 258 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 259 } 260 261 setStaticLocalDeclAddress(&D, Addr); 262 263 // Ensure that the static local gets initialized by making sure the parent 264 // function gets emitted eventually. 265 const Decl *DC = cast<Decl>(D.getDeclContext()); 266 267 // We can't name blocks or captured statements directly, so try to emit their 268 // parents. 269 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 270 DC = DC->getNonClosureContext(); 271 // FIXME: Ensure that global blocks get emitted. 272 if (!DC) 273 return Addr; 274 } 275 276 GlobalDecl GD; 277 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 278 GD = GlobalDecl(CD, Ctor_Base); 279 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 280 GD = GlobalDecl(DD, Dtor_Base); 281 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 282 GD = GlobalDecl(FD); 283 else { 284 // Don't do anything for Obj-C method decls or global closures. We should 285 // never defer them. 286 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 287 } 288 if (GD.getDecl()) 289 (void)GetAddrOfGlobal(GD); 290 291 return Addr; 292 } 293 294 /// hasNontrivialDestruction - Determine whether a type's destruction is 295 /// non-trivial. If so, and the variable uses static initialization, we must 296 /// register its destructor to run on exit. 297 static bool hasNontrivialDestruction(QualType T) { 298 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 299 return RD && !RD->hasTrivialDestructor(); 300 } 301 302 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 303 /// global variable that has already been created for it. If the initializer 304 /// has a different type than GV does, this may free GV and return a different 305 /// one. Otherwise it just returns GV. 306 llvm::GlobalVariable * 307 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 308 llvm::GlobalVariable *GV) { 309 ConstantEmitter emitter(*this); 310 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 311 312 // If constant emission failed, then this should be a C++ static 313 // initializer. 314 if (!Init) { 315 if (!getLangOpts().CPlusPlus) 316 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 317 else if (HaveInsertPoint()) { 318 // Since we have a static initializer, this global variable can't 319 // be constant. 320 GV->setConstant(false); 321 322 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 323 } 324 return GV; 325 } 326 327 // The initializer may differ in type from the global. Rewrite 328 // the global to match the initializer. (We have to do this 329 // because some types, like unions, can't be completely represented 330 // in the LLVM type system.) 331 if (GV->getType()->getElementType() != Init->getType()) { 332 llvm::GlobalVariable *OldGV = GV; 333 334 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 335 OldGV->isConstant(), 336 OldGV->getLinkage(), Init, "", 337 /*InsertBefore*/ OldGV, 338 OldGV->getThreadLocalMode(), 339 CGM.getContext().getTargetAddressSpace(D.getType())); 340 GV->setVisibility(OldGV->getVisibility()); 341 GV->setDSOLocal(OldGV->isDSOLocal()); 342 GV->setComdat(OldGV->getComdat()); 343 344 // Steal the name of the old global 345 GV->takeName(OldGV); 346 347 // Replace all uses of the old global with the new global 348 llvm::Constant *NewPtrForOldDecl = 349 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 350 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 351 352 // Erase the old global, since it is no longer used. 353 OldGV->eraseFromParent(); 354 } 355 356 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 357 GV->setInitializer(Init); 358 359 emitter.finalize(GV); 360 361 if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { 362 // We have a constant initializer, but a nontrivial destructor. We still 363 // need to perform a guarded "initialization" in order to register the 364 // destructor. 365 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 366 } 367 368 return GV; 369 } 370 371 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 372 llvm::GlobalValue::LinkageTypes Linkage) { 373 // Check to see if we already have a global variable for this 374 // declaration. This can happen when double-emitting function 375 // bodies, e.g. with complete and base constructors. 376 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 377 CharUnits alignment = getContext().getDeclAlign(&D); 378 379 // Store into LocalDeclMap before generating initializer to handle 380 // circular references. 381 setAddrOfLocalVar(&D, Address(addr, alignment)); 382 383 // We can't have a VLA here, but we can have a pointer to a VLA, 384 // even though that doesn't really make any sense. 385 // Make sure to evaluate VLA bounds now so that we have them for later. 386 if (D.getType()->isVariablyModifiedType()) 387 EmitVariablyModifiedType(D.getType()); 388 389 // Save the type in case adding the initializer forces a type change. 390 llvm::Type *expectedType = addr->getType(); 391 392 llvm::GlobalVariable *var = 393 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 394 395 // CUDA's local and local static __shared__ variables should not 396 // have any non-empty initializers. This is ensured by Sema. 397 // Whatever initializer such variable may have when it gets here is 398 // a no-op and should not be emitted. 399 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 400 D.hasAttr<CUDASharedAttr>(); 401 // If this value has an initializer, emit it. 402 if (D.getInit() && !isCudaSharedVar) 403 var = AddInitializerToStaticVarDecl(D, var); 404 405 var->setAlignment(alignment.getQuantity()); 406 407 if (D.hasAttr<AnnotateAttr>()) 408 CGM.AddGlobalAnnotations(&D, var); 409 410 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 411 var->addAttribute("bss-section", SA->getName()); 412 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 413 var->addAttribute("data-section", SA->getName()); 414 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 415 var->addAttribute("rodata-section", SA->getName()); 416 417 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 418 var->setSection(SA->getName()); 419 420 if (D.hasAttr<UsedAttr>()) 421 CGM.addUsedGlobal(var); 422 423 // We may have to cast the constant because of the initializer 424 // mismatch above. 425 // 426 // FIXME: It is really dangerous to store this in the map; if anyone 427 // RAUW's the GV uses of this constant will be invalid. 428 llvm::Constant *castedAddr = 429 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 430 if (var != castedAddr) 431 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 432 CGM.setStaticLocalDeclAddress(&D, castedAddr); 433 434 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 435 436 // Emit global variable debug descriptor for static vars. 437 CGDebugInfo *DI = getDebugInfo(); 438 if (DI && 439 CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 440 DI->setLocation(D.getLocation()); 441 DI->EmitGlobalVariable(var, &D); 442 } 443 } 444 445 namespace { 446 struct DestroyObject final : EHScopeStack::Cleanup { 447 DestroyObject(Address addr, QualType type, 448 CodeGenFunction::Destroyer *destroyer, 449 bool useEHCleanupForArray) 450 : addr(addr), type(type), destroyer(destroyer), 451 useEHCleanupForArray(useEHCleanupForArray) {} 452 453 Address addr; 454 QualType type; 455 CodeGenFunction::Destroyer *destroyer; 456 bool useEHCleanupForArray; 457 458 void Emit(CodeGenFunction &CGF, Flags flags) override { 459 // Don't use an EH cleanup recursively from an EH cleanup. 460 bool useEHCleanupForArray = 461 flags.isForNormalCleanup() && this->useEHCleanupForArray; 462 463 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 464 } 465 }; 466 467 struct DestroyNRVOVariable final : EHScopeStack::Cleanup { 468 DestroyNRVOVariable(Address addr, 469 const CXXDestructorDecl *Dtor, 470 llvm::Value *NRVOFlag) 471 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 472 473 const CXXDestructorDecl *Dtor; 474 llvm::Value *NRVOFlag; 475 Address Loc; 476 477 void Emit(CodeGenFunction &CGF, Flags flags) override { 478 // Along the exceptions path we always execute the dtor. 479 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 480 481 llvm::BasicBlock *SkipDtorBB = nullptr; 482 if (NRVO) { 483 // If we exited via NRVO, we skip the destructor call. 484 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 485 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 486 llvm::Value *DidNRVO = 487 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 488 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 489 CGF.EmitBlock(RunDtorBB); 490 } 491 492 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 493 /*ForVirtualBase=*/false, 494 /*Delegating=*/false, 495 Loc); 496 497 if (NRVO) CGF.EmitBlock(SkipDtorBB); 498 } 499 }; 500 501 struct CallStackRestore final : EHScopeStack::Cleanup { 502 Address Stack; 503 CallStackRestore(Address Stack) : Stack(Stack) {} 504 void Emit(CodeGenFunction &CGF, Flags flags) override { 505 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 506 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 507 CGF.Builder.CreateCall(F, V); 508 } 509 }; 510 511 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 512 const VarDecl &Var; 513 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 514 515 void Emit(CodeGenFunction &CGF, Flags flags) override { 516 // Compute the address of the local variable, in case it's a 517 // byref or something. 518 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 519 Var.getType(), VK_LValue, SourceLocation()); 520 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 521 SourceLocation()); 522 CGF.EmitExtendGCLifetime(value); 523 } 524 }; 525 526 struct CallCleanupFunction final : EHScopeStack::Cleanup { 527 llvm::Constant *CleanupFn; 528 const CGFunctionInfo &FnInfo; 529 const VarDecl &Var; 530 531 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 532 const VarDecl *Var) 533 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 534 535 void Emit(CodeGenFunction &CGF, Flags flags) override { 536 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 537 Var.getType(), VK_LValue, SourceLocation()); 538 // Compute the address of the local variable, in case it's a byref 539 // or something. 540 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); 541 542 // In some cases, the type of the function argument will be different from 543 // the type of the pointer. An example of this is 544 // void f(void* arg); 545 // __attribute__((cleanup(f))) void *g; 546 // 547 // To fix this we insert a bitcast here. 548 QualType ArgTy = FnInfo.arg_begin()->type; 549 llvm::Value *Arg = 550 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 551 552 CallArgList Args; 553 Args.add(RValue::get(Arg), 554 CGF.getContext().getPointerType(Var.getType())); 555 auto Callee = CGCallee::forDirect(CleanupFn); 556 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 557 } 558 }; 559 } // end anonymous namespace 560 561 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 562 /// variable with lifetime. 563 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 564 Address addr, 565 Qualifiers::ObjCLifetime lifetime) { 566 switch (lifetime) { 567 case Qualifiers::OCL_None: 568 llvm_unreachable("present but none"); 569 570 case Qualifiers::OCL_ExplicitNone: 571 // nothing to do 572 break; 573 574 case Qualifiers::OCL_Strong: { 575 CodeGenFunction::Destroyer *destroyer = 576 (var.hasAttr<ObjCPreciseLifetimeAttr>() 577 ? CodeGenFunction::destroyARCStrongPrecise 578 : CodeGenFunction::destroyARCStrongImprecise); 579 580 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 581 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 582 cleanupKind & EHCleanup); 583 break; 584 } 585 case Qualifiers::OCL_Autoreleasing: 586 // nothing to do 587 break; 588 589 case Qualifiers::OCL_Weak: 590 // __weak objects always get EH cleanups; otherwise, exceptions 591 // could cause really nasty crashes instead of mere leaks. 592 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 593 CodeGenFunction::destroyARCWeak, 594 /*useEHCleanup*/ true); 595 break; 596 } 597 } 598 599 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 600 if (const Expr *e = dyn_cast<Expr>(s)) { 601 // Skip the most common kinds of expressions that make 602 // hierarchy-walking expensive. 603 s = e = e->IgnoreParenCasts(); 604 605 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 606 return (ref->getDecl() == &var); 607 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 608 const BlockDecl *block = be->getBlockDecl(); 609 for (const auto &I : block->captures()) { 610 if (I.getVariable() == &var) 611 return true; 612 } 613 } 614 } 615 616 for (const Stmt *SubStmt : s->children()) 617 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 618 if (SubStmt && isAccessedBy(var, SubStmt)) 619 return true; 620 621 return false; 622 } 623 624 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 625 if (!decl) return false; 626 if (!isa<VarDecl>(decl)) return false; 627 const VarDecl *var = cast<VarDecl>(decl); 628 return isAccessedBy(*var, e); 629 } 630 631 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 632 const LValue &destLV, const Expr *init) { 633 bool needsCast = false; 634 635 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 636 switch (castExpr->getCastKind()) { 637 // Look through casts that don't require representation changes. 638 case CK_NoOp: 639 case CK_BitCast: 640 case CK_BlockPointerToObjCPointerCast: 641 needsCast = true; 642 break; 643 644 // If we find an l-value to r-value cast from a __weak variable, 645 // emit this operation as a copy or move. 646 case CK_LValueToRValue: { 647 const Expr *srcExpr = castExpr->getSubExpr(); 648 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 649 return false; 650 651 // Emit the source l-value. 652 LValue srcLV = CGF.EmitLValue(srcExpr); 653 654 // Handle a formal type change to avoid asserting. 655 auto srcAddr = srcLV.getAddress(); 656 if (needsCast) { 657 srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, 658 destLV.getAddress().getElementType()); 659 } 660 661 // If it was an l-value, use objc_copyWeak. 662 if (srcExpr->getValueKind() == VK_LValue) { 663 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 664 } else { 665 assert(srcExpr->getValueKind() == VK_XValue); 666 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 667 } 668 return true; 669 } 670 671 // Stop at anything else. 672 default: 673 return false; 674 } 675 676 init = castExpr->getSubExpr(); 677 } 678 return false; 679 } 680 681 static void drillIntoBlockVariable(CodeGenFunction &CGF, 682 LValue &lvalue, 683 const VarDecl *var) { 684 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 685 } 686 687 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 688 SourceLocation Loc) { 689 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 690 return; 691 692 auto Nullability = LHS.getType()->getNullability(getContext()); 693 if (!Nullability || *Nullability != NullabilityKind::NonNull) 694 return; 695 696 // Check if the right hand side of the assignment is nonnull, if the left 697 // hand side must be nonnull. 698 SanitizerScope SanScope(this); 699 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 700 llvm::Constant *StaticData[] = { 701 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 702 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 703 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 704 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 705 SanitizerHandler::TypeMismatch, StaticData, RHS); 706 } 707 708 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 709 LValue lvalue, bool capturedByInit) { 710 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 711 if (!lifetime) { 712 llvm::Value *value = EmitScalarExpr(init); 713 if (capturedByInit) 714 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 715 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 716 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 717 return; 718 } 719 720 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 721 init = DIE->getExpr(); 722 723 // If we're emitting a value with lifetime, we have to do the 724 // initialization *before* we leave the cleanup scopes. 725 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 726 enterFullExpression(ewc); 727 init = ewc->getSubExpr(); 728 } 729 CodeGenFunction::RunCleanupsScope Scope(*this); 730 731 // We have to maintain the illusion that the variable is 732 // zero-initialized. If the variable might be accessed in its 733 // initializer, zero-initialize before running the initializer, then 734 // actually perform the initialization with an assign. 735 bool accessedByInit = false; 736 if (lifetime != Qualifiers::OCL_ExplicitNone) 737 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 738 if (accessedByInit) { 739 LValue tempLV = lvalue; 740 // Drill down to the __block object if necessary. 741 if (capturedByInit) { 742 // We can use a simple GEP for this because it can't have been 743 // moved yet. 744 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 745 cast<VarDecl>(D), 746 /*follow*/ false)); 747 } 748 749 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 750 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 751 752 // If __weak, we want to use a barrier under certain conditions. 753 if (lifetime == Qualifiers::OCL_Weak) 754 EmitARCInitWeak(tempLV.getAddress(), zero); 755 756 // Otherwise just do a simple store. 757 else 758 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 759 } 760 761 // Emit the initializer. 762 llvm::Value *value = nullptr; 763 764 switch (lifetime) { 765 case Qualifiers::OCL_None: 766 llvm_unreachable("present but none"); 767 768 case Qualifiers::OCL_ExplicitNone: 769 value = EmitARCUnsafeUnretainedScalarExpr(init); 770 break; 771 772 case Qualifiers::OCL_Strong: { 773 value = EmitARCRetainScalarExpr(init); 774 break; 775 } 776 777 case Qualifiers::OCL_Weak: { 778 // If it's not accessed by the initializer, try to emit the 779 // initialization with a copy or move. 780 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 781 return; 782 } 783 784 // No way to optimize a producing initializer into this. It's not 785 // worth optimizing for, because the value will immediately 786 // disappear in the common case. 787 value = EmitScalarExpr(init); 788 789 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 790 if (accessedByInit) 791 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 792 else 793 EmitARCInitWeak(lvalue.getAddress(), value); 794 return; 795 } 796 797 case Qualifiers::OCL_Autoreleasing: 798 value = EmitARCRetainAutoreleaseScalarExpr(init); 799 break; 800 } 801 802 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 803 804 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 805 806 // If the variable might have been accessed by its initializer, we 807 // might have to initialize with a barrier. We have to do this for 808 // both __weak and __strong, but __weak got filtered out above. 809 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 810 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 811 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 812 EmitARCRelease(oldValue, ARCImpreciseLifetime); 813 return; 814 } 815 816 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 817 } 818 819 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 820 /// non-zero parts of the specified initializer with equal or fewer than 821 /// NumStores scalar stores. 822 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 823 unsigned &NumStores) { 824 // Zero and Undef never requires any extra stores. 825 if (isa<llvm::ConstantAggregateZero>(Init) || 826 isa<llvm::ConstantPointerNull>(Init) || 827 isa<llvm::UndefValue>(Init)) 828 return true; 829 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 830 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 831 isa<llvm::ConstantExpr>(Init)) 832 return Init->isNullValue() || NumStores--; 833 834 // See if we can emit each element. 835 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 836 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 837 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 838 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 839 return false; 840 } 841 return true; 842 } 843 844 if (llvm::ConstantDataSequential *CDS = 845 dyn_cast<llvm::ConstantDataSequential>(Init)) { 846 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 847 llvm::Constant *Elt = CDS->getElementAsConstant(i); 848 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 849 return false; 850 } 851 return true; 852 } 853 854 // Anything else is hard and scary. 855 return false; 856 } 857 858 /// emitStoresForInitAfterMemset - For inits that 859 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 860 /// stores that would be required. 861 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 862 bool isVolatile, CGBuilderTy &Builder) { 863 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 864 "called emitStoresForInitAfterMemset for zero or undef value."); 865 866 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 867 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 868 isa<llvm::ConstantExpr>(Init)) { 869 Builder.CreateDefaultAlignedStore(Init, Loc, isVolatile); 870 return; 871 } 872 873 if (llvm::ConstantDataSequential *CDS = 874 dyn_cast<llvm::ConstantDataSequential>(Init)) { 875 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 876 llvm::Constant *Elt = CDS->getElementAsConstant(i); 877 878 // If necessary, get a pointer to the element and emit it. 879 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 880 emitStoresForInitAfterMemset( 881 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 882 isVolatile, Builder); 883 } 884 return; 885 } 886 887 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 888 "Unknown value type!"); 889 890 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 891 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 892 893 // If necessary, get a pointer to the element and emit it. 894 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 895 emitStoresForInitAfterMemset( 896 Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i), 897 isVolatile, Builder); 898 } 899 } 900 901 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 902 /// plus some stores to initialize a local variable instead of using a memcpy 903 /// from a constant global. It is beneficial to use memset if the global is all 904 /// zeros, or mostly zeros and large. 905 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 906 uint64_t GlobalSize) { 907 // If a global is all zeros, always use a memset. 908 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 909 910 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 911 // do it if it will require 6 or fewer scalar stores. 912 // TODO: Should budget depends on the size? Avoiding a large global warrants 913 // plopping in more stores. 914 unsigned StoreBudget = 6; 915 uint64_t SizeLimit = 32; 916 917 return GlobalSize > SizeLimit && 918 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 919 } 920 921 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 922 /// variable declaration with auto, register, or no storage class specifier. 923 /// These turn into simple stack objects, or GlobalValues depending on target. 924 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 925 AutoVarEmission emission = EmitAutoVarAlloca(D); 926 EmitAutoVarInit(emission); 927 EmitAutoVarCleanups(emission); 928 } 929 930 /// Emit a lifetime.begin marker if some criteria are satisfied. 931 /// \return a pointer to the temporary size Value if a marker was emitted, null 932 /// otherwise 933 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 934 llvm::Value *Addr) { 935 if (!ShouldEmitLifetimeMarkers) 936 return nullptr; 937 938 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 939 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 940 llvm::CallInst *C = 941 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 942 C->setDoesNotThrow(); 943 return SizeV; 944 } 945 946 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 947 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 948 llvm::CallInst *C = 949 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 950 C->setDoesNotThrow(); 951 } 952 953 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 954 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 955 // For each dimension stores its QualType and corresponding 956 // size-expression Value. 957 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 958 959 // Break down the array into individual dimensions. 960 QualType Type1D = D.getType(); 961 while (getContext().getAsVariableArrayType(Type1D)) { 962 auto VlaSize = getVLAElements1D(Type1D); 963 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 964 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 965 else { 966 auto SizeExprAddr = CreateDefaultAlignTempAlloca( 967 VlaSize.NumElts->getType(), "__vla_expr"); 968 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 969 Dimensions.emplace_back(SizeExprAddr.getPointer(), 970 Type1D.getUnqualifiedType()); 971 } 972 Type1D = VlaSize.Type; 973 } 974 975 if (!EmitDebugInfo) 976 return; 977 978 // Register each dimension's size-expression with a DILocalVariable, 979 // so that it can be used by CGDebugInfo when instantiating a DISubrange 980 // to describe this array. 981 for (auto &VlaSize : Dimensions) { 982 llvm::Metadata *MD; 983 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 984 MD = llvm::ConstantAsMetadata::get(C); 985 else { 986 // Create an artificial VarDecl to generate debug info for. 987 IdentifierInfo &NameIdent = getContext().Idents.getOwn( 988 cast<llvm::AllocaInst>(VlaSize.NumElts)->getName()); 989 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 990 auto QT = getContext().getIntTypeForBitwidth( 991 VlaExprTy->getScalarSizeInBits(), false); 992 auto *ArtificialDecl = VarDecl::Create( 993 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 994 D.getLocation(), D.getLocation(), &NameIdent, QT, 995 getContext().CreateTypeSourceInfo(QT), SC_Auto); 996 ArtificialDecl->setImplicit(); 997 998 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 999 Builder); 1000 } 1001 assert(MD && "No Size expression debug node created"); 1002 DI->registerVLASizeExpression(VlaSize.Type, MD); 1003 } 1004 } 1005 1006 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1007 /// local variable. Does not emit initialization or destruction. 1008 CodeGenFunction::AutoVarEmission 1009 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1010 QualType Ty = D.getType(); 1011 assert( 1012 Ty.getAddressSpace() == LangAS::Default || 1013 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1014 1015 AutoVarEmission emission(D); 1016 1017 bool isByRef = D.hasAttr<BlocksAttr>(); 1018 emission.IsByRef = isByRef; 1019 1020 CharUnits alignment = getContext().getDeclAlign(&D); 1021 1022 // If the type is variably-modified, emit all the VLA sizes for it. 1023 if (Ty->isVariablyModifiedType()) 1024 EmitVariablyModifiedType(Ty); 1025 1026 auto *DI = getDebugInfo(); 1027 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= 1028 codegenoptions::LimitedDebugInfo; 1029 1030 Address address = Address::invalid(); 1031 if (Ty->isConstantSizeType()) { 1032 bool NRVO = getLangOpts().ElideConstructors && 1033 D.isNRVOVariable(); 1034 1035 // If this value is an array or struct with a statically determinable 1036 // constant initializer, there are optimizations we can do. 1037 // 1038 // TODO: We should constant-evaluate the initializer of any variable, 1039 // as long as it is initialized by a constant expression. Currently, 1040 // isConstantInitializer produces wrong answers for structs with 1041 // reference or bitfield members, and a few other cases, and checking 1042 // for POD-ness protects us from some of these. 1043 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1044 (D.isConstexpr() || 1045 ((Ty.isPODType(getContext()) || 1046 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1047 D.getInit()->isConstantInitializer(getContext(), false)))) { 1048 1049 // If the variable's a const type, and it's neither an NRVO 1050 // candidate nor a __block variable and has no mutable members, 1051 // emit it as a global instead. 1052 // Exception is if a variable is located in non-constant address space 1053 // in OpenCL. 1054 if ((!getLangOpts().OpenCL || 1055 Ty.getAddressSpace() == LangAS::opencl_constant) && 1056 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 1057 CGM.isTypeConstant(Ty, true))) { 1058 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1059 1060 // Signal this condition to later callbacks. 1061 emission.Addr = Address::invalid(); 1062 assert(emission.wasEmittedAsGlobal()); 1063 return emission; 1064 } 1065 1066 // Otherwise, tell the initialization code that we're in this case. 1067 emission.IsConstantAggregate = true; 1068 } 1069 1070 // A normal fixed sized variable becomes an alloca in the entry block, 1071 // unless it's an NRVO variable. 1072 1073 if (NRVO) { 1074 // The named return value optimization: allocate this variable in the 1075 // return slot, so that we can elide the copy when returning this 1076 // variable (C++0x [class.copy]p34). 1077 address = ReturnValue; 1078 1079 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1080 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 1081 // Create a flag that is used to indicate when the NRVO was applied 1082 // to this variable. Set it to zero to indicate that NRVO was not 1083 // applied. 1084 llvm::Value *Zero = Builder.getFalse(); 1085 Address NRVOFlag = 1086 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1087 EnsureInsertPoint(); 1088 Builder.CreateStore(Zero, NRVOFlag); 1089 1090 // Record the NRVO flag for this variable. 1091 NRVOFlags[&D] = NRVOFlag.getPointer(); 1092 emission.NRVOFlag = NRVOFlag.getPointer(); 1093 } 1094 } 1095 } else { 1096 CharUnits allocaAlignment; 1097 llvm::Type *allocaTy; 1098 if (isByRef) { 1099 auto &byrefInfo = getBlockByrefInfo(&D); 1100 allocaTy = byrefInfo.Type; 1101 allocaAlignment = byrefInfo.ByrefAlignment; 1102 } else { 1103 allocaTy = ConvertTypeForMem(Ty); 1104 allocaAlignment = alignment; 1105 } 1106 1107 // Create the alloca. Note that we set the name separately from 1108 // building the instruction so that it's there even in no-asserts 1109 // builds. 1110 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName()); 1111 1112 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1113 // the catch parameter starts in the catchpad instruction, and we can't 1114 // insert code in those basic blocks. 1115 bool IsMSCatchParam = 1116 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1117 1118 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1119 // if we don't have a valid insertion point (?). 1120 if (HaveInsertPoint() && !IsMSCatchParam) { 1121 // If there's a jump into the lifetime of this variable, its lifetime 1122 // gets broken up into several regions in IR, which requires more work 1123 // to handle correctly. For now, just omit the intrinsics; this is a 1124 // rare case, and it's better to just be conservatively correct. 1125 // PR28267. 1126 // 1127 // We have to do this in all language modes if there's a jump past the 1128 // declaration. We also have to do it in C if there's a jump to an 1129 // earlier point in the current block because non-VLA lifetimes begin as 1130 // soon as the containing block is entered, not when its variables 1131 // actually come into scope; suppressing the lifetime annotations 1132 // completely in this case is unnecessarily pessimistic, but again, this 1133 // is rare. 1134 if (!Bypasses.IsBypassed(&D) && 1135 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1136 uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1137 emission.SizeForLifetimeMarkers = 1138 EmitLifetimeStart(size, address.getPointer()); 1139 } 1140 } else { 1141 assert(!emission.useLifetimeMarkers()); 1142 } 1143 } 1144 } else { 1145 EnsureInsertPoint(); 1146 1147 if (!DidCallStackSave) { 1148 // Save the stack. 1149 Address Stack = 1150 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1151 1152 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1153 llvm::Value *V = Builder.CreateCall(F); 1154 Builder.CreateStore(V, Stack); 1155 1156 DidCallStackSave = true; 1157 1158 // Push a cleanup block and restore the stack there. 1159 // FIXME: in general circumstances, this should be an EH cleanup. 1160 pushStackRestore(NormalCleanup, Stack); 1161 } 1162 1163 auto VlaSize = getVLASize(Ty); 1164 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1165 1166 // Allocate memory for the array. 1167 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts); 1168 1169 // If we have debug info enabled, properly describe the VLA dimensions for 1170 // this type by registering the vla size expression for each of the 1171 // dimensions. 1172 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1173 } 1174 1175 setAddrOfLocalVar(&D, address); 1176 emission.Addr = address; 1177 1178 // Emit debug info for local var declaration. 1179 if (EmitDebugInfo && HaveInsertPoint()) { 1180 DI->setLocation(D.getLocation()); 1181 (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); 1182 } 1183 1184 if (D.hasAttr<AnnotateAttr>()) 1185 EmitVarAnnotations(&D, address.getPointer()); 1186 1187 // Make sure we call @llvm.lifetime.end. 1188 if (emission.useLifetimeMarkers()) 1189 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1190 emission.getAllocatedAddress(), 1191 emission.getSizeForLifetimeMarkers()); 1192 1193 return emission; 1194 } 1195 1196 /// Determines whether the given __block variable is potentially 1197 /// captured by the given expression. 1198 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 1199 // Skip the most common kinds of expressions that make 1200 // hierarchy-walking expensive. 1201 e = e->IgnoreParenCasts(); 1202 1203 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1204 const BlockDecl *block = be->getBlockDecl(); 1205 for (const auto &I : block->captures()) { 1206 if (I.getVariable() == &var) 1207 return true; 1208 } 1209 1210 // No need to walk into the subexpressions. 1211 return false; 1212 } 1213 1214 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1215 const CompoundStmt *CS = SE->getSubStmt(); 1216 for (const auto *BI : CS->body()) 1217 if (const auto *E = dyn_cast<Expr>(BI)) { 1218 if (isCapturedBy(var, E)) 1219 return true; 1220 } 1221 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1222 // special case declarations 1223 for (const auto *I : DS->decls()) { 1224 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1225 const Expr *Init = VD->getInit(); 1226 if (Init && isCapturedBy(var, Init)) 1227 return true; 1228 } 1229 } 1230 } 1231 else 1232 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1233 // Later, provide code to poke into statements for capture analysis. 1234 return true; 1235 return false; 1236 } 1237 1238 for (const Stmt *SubStmt : e->children()) 1239 if (isCapturedBy(var, cast<Expr>(SubStmt))) 1240 return true; 1241 1242 return false; 1243 } 1244 1245 /// \brief Determine whether the given initializer is trivial in the sense 1246 /// that it requires no code to be generated. 1247 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1248 if (!Init) 1249 return true; 1250 1251 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1252 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1253 if (Constructor->isTrivial() && 1254 Constructor->isDefaultConstructor() && 1255 !Construct->requiresZeroInitialization()) 1256 return true; 1257 1258 return false; 1259 } 1260 1261 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1262 assert(emission.Variable && "emission was not valid!"); 1263 1264 // If this was emitted as a global constant, we're done. 1265 if (emission.wasEmittedAsGlobal()) return; 1266 1267 const VarDecl &D = *emission.Variable; 1268 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1269 QualType type = D.getType(); 1270 1271 // If this local has an initializer, emit it now. 1272 const Expr *Init = D.getInit(); 1273 1274 // If we are at an unreachable point, we don't need to emit the initializer 1275 // unless it contains a label. 1276 if (!HaveInsertPoint()) { 1277 if (!Init || !ContainsLabel(Init)) return; 1278 EnsureInsertPoint(); 1279 } 1280 1281 // Initialize the structure of a __block variable. 1282 if (emission.IsByRef) 1283 emitByrefStructureInit(emission); 1284 1285 // Initialize the variable here if it doesn't have a initializer and it is a 1286 // C struct that is non-trivial to initialize or an array containing such a 1287 // struct. 1288 if (!Init && 1289 type.isNonTrivialToPrimitiveDefaultInitialize() == 1290 QualType::PDIK_Struct) { 1291 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1292 if (emission.IsByRef) 1293 drillIntoBlockVariable(*this, Dst, &D); 1294 defaultInitNonTrivialCStructVar(Dst); 1295 return; 1296 } 1297 1298 if (isTrivialInitializer(Init)) 1299 return; 1300 1301 // Check whether this is a byref variable that's potentially 1302 // captured and moved by its own initializer. If so, we'll need to 1303 // emit the initializer first, then copy into the variable. 1304 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1305 1306 Address Loc = 1307 capturedByInit ? emission.Addr : emission.getObjectAddress(*this); 1308 1309 llvm::Constant *constant = nullptr; 1310 if (emission.IsConstantAggregate || D.isConstexpr()) { 1311 assert(!capturedByInit && "constant init contains a capturing block?"); 1312 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1313 } 1314 1315 if (!constant) { 1316 LValue lv = MakeAddrLValue(Loc, type); 1317 lv.setNonGC(true); 1318 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1319 } 1320 1321 if (!emission.IsConstantAggregate) { 1322 // For simple scalar/complex initialization, store the value directly. 1323 LValue lv = MakeAddrLValue(Loc, type); 1324 lv.setNonGC(true); 1325 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1326 } 1327 1328 // If this is a simple aggregate initialization, we can optimize it 1329 // in various ways. 1330 bool isVolatile = type.isVolatileQualified(); 1331 1332 llvm::Value *SizeVal = 1333 llvm::ConstantInt::get(IntPtrTy, 1334 getContext().getTypeSizeInChars(type).getQuantity()); 1335 1336 llvm::Type *BP = AllocaInt8PtrTy; 1337 if (Loc.getType() != BP) 1338 Loc = Builder.CreateBitCast(Loc, BP); 1339 1340 // If the initializer is all or mostly zeros, codegen with memset then do 1341 // a few stores afterward. 1342 if (shouldUseMemSetPlusStoresToInitialize(constant, 1343 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1344 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1345 isVolatile); 1346 // Zero and undef don't require a stores. 1347 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1348 Loc = Builder.CreateBitCast(Loc, 1349 constant->getType()->getPointerTo(Loc.getAddressSpace())); 1350 emitStoresForInitAfterMemset(constant, Loc.getPointer(), 1351 isVolatile, Builder); 1352 } 1353 } else { 1354 // Otherwise, create a temporary global with the initializer then 1355 // memcpy from the global to the alloca. 1356 std::string Name = getStaticDeclName(CGM, D); 1357 unsigned AS = 0; 1358 if (getLangOpts().OpenCL) { 1359 AS = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 1360 BP = llvm::PointerType::getInt8PtrTy(getLLVMContext(), AS); 1361 } 1362 llvm::GlobalVariable *GV = 1363 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1364 llvm::GlobalValue::PrivateLinkage, 1365 constant, Name, nullptr, 1366 llvm::GlobalValue::NotThreadLocal, AS); 1367 GV->setAlignment(Loc.getAlignment().getQuantity()); 1368 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1369 1370 Address SrcPtr = Address(GV, Loc.getAlignment()); 1371 if (SrcPtr.getType() != BP) 1372 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1373 1374 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, isVolatile); 1375 } 1376 } 1377 1378 /// Emit an expression as an initializer for a variable at the given 1379 /// location. The expression is not necessarily the normal 1380 /// initializer for the variable, and the address is not necessarily 1381 /// its normal location. 1382 /// 1383 /// \param init the initializing expression 1384 /// \param var the variable to act as if we're initializing 1385 /// \param loc the address to initialize; its type is a pointer 1386 /// to the LLVM mapping of the variable's type 1387 /// \param alignment the alignment of the address 1388 /// \param capturedByInit true if the variable is a __block variable 1389 /// whose address is potentially changed by the initializer 1390 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1391 LValue lvalue, bool capturedByInit) { 1392 QualType type = D->getType(); 1393 1394 if (type->isReferenceType()) { 1395 RValue rvalue = EmitReferenceBindingToExpr(init); 1396 if (capturedByInit) 1397 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1398 EmitStoreThroughLValue(rvalue, lvalue, true); 1399 return; 1400 } 1401 switch (getEvaluationKind(type)) { 1402 case TEK_Scalar: 1403 EmitScalarInit(init, D, lvalue, capturedByInit); 1404 return; 1405 case TEK_Complex: { 1406 ComplexPairTy complex = EmitComplexExpr(init); 1407 if (capturedByInit) 1408 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1409 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1410 return; 1411 } 1412 case TEK_Aggregate: 1413 if (type->isAtomicType()) { 1414 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1415 } else { 1416 // TODO: how can we delay here if D is captured by its initializer? 1417 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1418 AggValueSlot::IsDestructed, 1419 AggValueSlot::DoesNotNeedGCBarriers, 1420 AggValueSlot::IsNotAliased)); 1421 } 1422 return; 1423 } 1424 llvm_unreachable("bad evaluation kind"); 1425 } 1426 1427 /// Enter a destroy cleanup for the given local variable. 1428 void CodeGenFunction::emitAutoVarTypeCleanup( 1429 const CodeGenFunction::AutoVarEmission &emission, 1430 QualType::DestructionKind dtorKind) { 1431 assert(dtorKind != QualType::DK_none); 1432 1433 // Note that for __block variables, we want to destroy the 1434 // original stack object, not the possibly forwarded object. 1435 Address addr = emission.getObjectAddress(*this); 1436 1437 const VarDecl *var = emission.Variable; 1438 QualType type = var->getType(); 1439 1440 CleanupKind cleanupKind = NormalAndEHCleanup; 1441 CodeGenFunction::Destroyer *destroyer = nullptr; 1442 1443 switch (dtorKind) { 1444 case QualType::DK_none: 1445 llvm_unreachable("no cleanup for trivially-destructible variable"); 1446 1447 case QualType::DK_cxx_destructor: 1448 // If there's an NRVO flag on the emission, we need a different 1449 // cleanup. 1450 if (emission.NRVOFlag) { 1451 assert(!type->isArrayType()); 1452 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1453 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, 1454 dtor, emission.NRVOFlag); 1455 return; 1456 } 1457 break; 1458 1459 case QualType::DK_objc_strong_lifetime: 1460 // Suppress cleanups for pseudo-strong variables. 1461 if (var->isARCPseudoStrong()) return; 1462 1463 // Otherwise, consider whether to use an EH cleanup or not. 1464 cleanupKind = getARCCleanupKind(); 1465 1466 // Use the imprecise destroyer by default. 1467 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1468 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1469 break; 1470 1471 case QualType::DK_objc_weak_lifetime: 1472 break; 1473 1474 case QualType::DK_nontrivial_c_struct: 1475 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 1476 break; 1477 } 1478 1479 // If we haven't chosen a more specific destroyer, use the default. 1480 if (!destroyer) destroyer = getDestroyer(dtorKind); 1481 1482 // Use an EH cleanup in array destructors iff the destructor itself 1483 // is being pushed as an EH cleanup. 1484 bool useEHCleanup = (cleanupKind & EHCleanup); 1485 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1486 useEHCleanup); 1487 } 1488 1489 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1490 assert(emission.Variable && "emission was not valid!"); 1491 1492 // If this was emitted as a global constant, we're done. 1493 if (emission.wasEmittedAsGlobal()) return; 1494 1495 // If we don't have an insertion point, we're done. Sema prevents 1496 // us from jumping into any of these scopes anyway. 1497 if (!HaveInsertPoint()) return; 1498 1499 const VarDecl &D = *emission.Variable; 1500 1501 // Check the type for a cleanup. 1502 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1503 emitAutoVarTypeCleanup(emission, dtorKind); 1504 1505 // In GC mode, honor objc_precise_lifetime. 1506 if (getLangOpts().getGC() != LangOptions::NonGC && 1507 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1508 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1509 } 1510 1511 // Handle the cleanup attribute. 1512 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1513 const FunctionDecl *FD = CA->getFunctionDecl(); 1514 1515 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1516 assert(F && "Could not find function!"); 1517 1518 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1519 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1520 } 1521 1522 // If this is a block variable, call _Block_object_destroy 1523 // (on the unforwarded address). 1524 if (emission.IsByRef) 1525 enterByrefCleanup(emission); 1526 } 1527 1528 CodeGenFunction::Destroyer * 1529 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1530 switch (kind) { 1531 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1532 case QualType::DK_cxx_destructor: 1533 return destroyCXXObject; 1534 case QualType::DK_objc_strong_lifetime: 1535 return destroyARCStrongPrecise; 1536 case QualType::DK_objc_weak_lifetime: 1537 return destroyARCWeak; 1538 case QualType::DK_nontrivial_c_struct: 1539 return destroyNonTrivialCStruct; 1540 } 1541 llvm_unreachable("Unknown DestructionKind"); 1542 } 1543 1544 /// pushEHDestroy - Push the standard destructor for the given type as 1545 /// an EH-only cleanup. 1546 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1547 Address addr, QualType type) { 1548 assert(dtorKind && "cannot push destructor for trivial type"); 1549 assert(needsEHCleanup(dtorKind)); 1550 1551 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1552 } 1553 1554 /// pushDestroy - Push the standard destructor for the given type as 1555 /// at least a normal cleanup. 1556 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1557 Address addr, QualType type) { 1558 assert(dtorKind && "cannot push destructor for trivial type"); 1559 1560 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1561 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1562 cleanupKind & EHCleanup); 1563 } 1564 1565 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 1566 QualType type, Destroyer *destroyer, 1567 bool useEHCleanupForArray) { 1568 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1569 destroyer, useEHCleanupForArray); 1570 } 1571 1572 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 1573 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1574 } 1575 1576 void CodeGenFunction::pushLifetimeExtendedDestroy( 1577 CleanupKind cleanupKind, Address addr, QualType type, 1578 Destroyer *destroyer, bool useEHCleanupForArray) { 1579 assert(!isInConditionalBranch() && 1580 "performing lifetime extension from within conditional"); 1581 1582 // Push an EH-only cleanup for the object now. 1583 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1584 // around in case a temporary's destructor throws an exception. 1585 if (cleanupKind & EHCleanup) 1586 EHStack.pushCleanup<DestroyObject>( 1587 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1588 destroyer, useEHCleanupForArray); 1589 1590 // Remember that we need to push a full cleanup for the object at the 1591 // end of the full-expression. 1592 pushCleanupAfterFullExpr<DestroyObject>( 1593 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1594 } 1595 1596 /// emitDestroy - Immediately perform the destruction of the given 1597 /// object. 1598 /// 1599 /// \param addr - the address of the object; a type* 1600 /// \param type - the type of the object; if an array type, all 1601 /// objects are destroyed in reverse order 1602 /// \param destroyer - the function to call to destroy individual 1603 /// elements 1604 /// \param useEHCleanupForArray - whether an EH cleanup should be 1605 /// used when destroying array elements, in case one of the 1606 /// destructions throws an exception 1607 void CodeGenFunction::emitDestroy(Address addr, QualType type, 1608 Destroyer *destroyer, 1609 bool useEHCleanupForArray) { 1610 const ArrayType *arrayType = getContext().getAsArrayType(type); 1611 if (!arrayType) 1612 return destroyer(*this, addr, type); 1613 1614 llvm::Value *length = emitArrayLength(arrayType, type, addr); 1615 1616 CharUnits elementAlign = 1617 addr.getAlignment() 1618 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1619 1620 // Normally we have to check whether the array is zero-length. 1621 bool checkZeroLength = true; 1622 1623 // But if the array length is constant, we can suppress that. 1624 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1625 // ...and if it's constant zero, we can just skip the entire thing. 1626 if (constLength->isZero()) return; 1627 checkZeroLength = false; 1628 } 1629 1630 llvm::Value *begin = addr.getPointer(); 1631 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1632 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1633 checkZeroLength, useEHCleanupForArray); 1634 } 1635 1636 /// emitArrayDestroy - Destroys all the elements of the given array, 1637 /// beginning from last to first. The array cannot be zero-length. 1638 /// 1639 /// \param begin - a type* denoting the first element of the array 1640 /// \param end - a type* denoting one past the end of the array 1641 /// \param elementType - the element type of the array 1642 /// \param destroyer - the function to call to destroy elements 1643 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1644 /// the remaining elements in case the destruction of a single 1645 /// element throws 1646 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1647 llvm::Value *end, 1648 QualType elementType, 1649 CharUnits elementAlign, 1650 Destroyer *destroyer, 1651 bool checkZeroLength, 1652 bool useEHCleanup) { 1653 assert(!elementType->isArrayType()); 1654 1655 // The basic structure here is a do-while loop, because we don't 1656 // need to check for the zero-element case. 1657 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1658 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1659 1660 if (checkZeroLength) { 1661 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1662 "arraydestroy.isempty"); 1663 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1664 } 1665 1666 // Enter the loop body, making that address the current address. 1667 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1668 EmitBlock(bodyBB); 1669 llvm::PHINode *elementPast = 1670 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1671 elementPast->addIncoming(end, entryBB); 1672 1673 // Shift the address back by one element. 1674 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1675 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1676 "arraydestroy.element"); 1677 1678 if (useEHCleanup) 1679 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 1680 destroyer); 1681 1682 // Perform the actual destruction there. 1683 destroyer(*this, Address(element, elementAlign), elementType); 1684 1685 if (useEHCleanup) 1686 PopCleanupBlock(); 1687 1688 // Check whether we've reached the end. 1689 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1690 Builder.CreateCondBr(done, doneBB, bodyBB); 1691 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1692 1693 // Done. 1694 EmitBlock(doneBB); 1695 } 1696 1697 /// Perform partial array destruction as if in an EH cleanup. Unlike 1698 /// emitArrayDestroy, the element type here may still be an array type. 1699 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1700 llvm::Value *begin, llvm::Value *end, 1701 QualType type, CharUnits elementAlign, 1702 CodeGenFunction::Destroyer *destroyer) { 1703 // If the element type is itself an array, drill down. 1704 unsigned arrayDepth = 0; 1705 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1706 // VLAs don't require a GEP index to walk into. 1707 if (!isa<VariableArrayType>(arrayType)) 1708 arrayDepth++; 1709 type = arrayType->getElementType(); 1710 } 1711 1712 if (arrayDepth) { 1713 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1714 1715 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 1716 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1717 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1718 } 1719 1720 // Destroy the array. We don't ever need an EH cleanup because we 1721 // assume that we're in an EH cleanup ourselves, so a throwing 1722 // destructor causes an immediate terminate. 1723 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 1724 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1725 } 1726 1727 namespace { 1728 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1729 /// array destroy where the end pointer is regularly determined and 1730 /// does not need to be loaded from a local. 1731 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1732 llvm::Value *ArrayBegin; 1733 llvm::Value *ArrayEnd; 1734 QualType ElementType; 1735 CodeGenFunction::Destroyer *Destroyer; 1736 CharUnits ElementAlign; 1737 public: 1738 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1739 QualType elementType, CharUnits elementAlign, 1740 CodeGenFunction::Destroyer *destroyer) 1741 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1742 ElementType(elementType), Destroyer(destroyer), 1743 ElementAlign(elementAlign) {} 1744 1745 void Emit(CodeGenFunction &CGF, Flags flags) override { 1746 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1747 ElementType, ElementAlign, Destroyer); 1748 } 1749 }; 1750 1751 /// IrregularPartialArrayDestroy - a cleanup which performs a 1752 /// partial array destroy where the end pointer is irregularly 1753 /// determined and must be loaded from a local. 1754 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 1755 llvm::Value *ArrayBegin; 1756 Address ArrayEndPointer; 1757 QualType ElementType; 1758 CodeGenFunction::Destroyer *Destroyer; 1759 CharUnits ElementAlign; 1760 public: 1761 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1762 Address arrayEndPointer, 1763 QualType elementType, 1764 CharUnits elementAlign, 1765 CodeGenFunction::Destroyer *destroyer) 1766 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1767 ElementType(elementType), Destroyer(destroyer), 1768 ElementAlign(elementAlign) {} 1769 1770 void Emit(CodeGenFunction &CGF, Flags flags) override { 1771 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1772 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1773 ElementType, ElementAlign, Destroyer); 1774 } 1775 }; 1776 } // end anonymous namespace 1777 1778 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1779 /// already-constructed elements of the given array. The cleanup 1780 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1781 /// 1782 /// \param elementType - the immediate element type of the array; 1783 /// possibly still an array type 1784 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1785 Address arrayEndPointer, 1786 QualType elementType, 1787 CharUnits elementAlign, 1788 Destroyer *destroyer) { 1789 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1790 arrayBegin, arrayEndPointer, 1791 elementType, elementAlign, 1792 destroyer); 1793 } 1794 1795 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1796 /// already-constructed elements of the given array. The cleanup 1797 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1798 /// 1799 /// \param elementType - the immediate element type of the array; 1800 /// possibly still an array type 1801 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1802 llvm::Value *arrayEnd, 1803 QualType elementType, 1804 CharUnits elementAlign, 1805 Destroyer *destroyer) { 1806 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1807 arrayBegin, arrayEnd, 1808 elementType, elementAlign, 1809 destroyer); 1810 } 1811 1812 /// Lazily declare the @llvm.lifetime.start intrinsic. 1813 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1814 if (LifetimeStartFn) 1815 return LifetimeStartFn; 1816 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1817 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 1818 return LifetimeStartFn; 1819 } 1820 1821 /// Lazily declare the @llvm.lifetime.end intrinsic. 1822 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1823 if (LifetimeEndFn) 1824 return LifetimeEndFn; 1825 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1826 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 1827 return LifetimeEndFn; 1828 } 1829 1830 namespace { 1831 /// A cleanup to perform a release of an object at the end of a 1832 /// function. This is used to balance out the incoming +1 of a 1833 /// ns_consumed argument when we can't reasonably do that just by 1834 /// not doing the initial retain for a __block argument. 1835 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 1836 ConsumeARCParameter(llvm::Value *param, 1837 ARCPreciseLifetime_t precise) 1838 : Param(param), Precise(precise) {} 1839 1840 llvm::Value *Param; 1841 ARCPreciseLifetime_t Precise; 1842 1843 void Emit(CodeGenFunction &CGF, Flags flags) override { 1844 CGF.EmitARCRelease(Param, Precise); 1845 } 1846 }; 1847 } // end anonymous namespace 1848 1849 /// Emit an alloca (or GlobalValue depending on target) 1850 /// for the specified parameter and set up LocalDeclMap. 1851 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 1852 unsigned ArgNo) { 1853 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1854 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1855 "Invalid argument to EmitParmDecl"); 1856 1857 Arg.getAnyValue()->setName(D.getName()); 1858 1859 QualType Ty = D.getType(); 1860 1861 // Use better IR generation for certain implicit parameters. 1862 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 1863 // The only implicit argument a block has is its literal. 1864 // This may be passed as an inalloca'ed value on Windows x86. 1865 if (BlockInfo) { 1866 llvm::Value *V = Arg.isIndirect() 1867 ? Builder.CreateLoad(Arg.getIndirectAddress()) 1868 : Arg.getDirectValue(); 1869 setBlockContextParameter(IPD, ArgNo, V); 1870 return; 1871 } 1872 } 1873 1874 Address DeclPtr = Address::invalid(); 1875 bool DoStore = false; 1876 bool IsScalar = hasScalarEvaluationKind(Ty); 1877 // If we already have a pointer to the argument, reuse the input pointer. 1878 if (Arg.isIndirect()) { 1879 DeclPtr = Arg.getIndirectAddress(); 1880 // If we have a prettier pointer type at this point, bitcast to that. 1881 unsigned AS = DeclPtr.getType()->getAddressSpace(); 1882 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1883 if (DeclPtr.getType() != IRTy) 1884 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 1885 // Indirect argument is in alloca address space, which may be different 1886 // from the default address space. 1887 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 1888 auto *V = DeclPtr.getPointer(); 1889 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 1890 auto DestLangAS = 1891 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 1892 if (SrcLangAS != DestLangAS) { 1893 assert(getContext().getTargetAddressSpace(SrcLangAS) == 1894 CGM.getDataLayout().getAllocaAddrSpace()); 1895 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 1896 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 1897 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 1898 *this, V, SrcLangAS, DestLangAS, T, true), 1899 DeclPtr.getAlignment()); 1900 } 1901 1902 // Push a destructor cleanup for this parameter if the ABI requires it. 1903 // Don't push a cleanup in a thunk for a method that will also emit a 1904 // cleanup. 1905 if (!IsScalar && !CurFuncIsThunk && 1906 getContext().isParamDestroyedInCallee(Ty)) { 1907 if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { 1908 assert((DtorKind == QualType::DK_cxx_destructor || 1909 DtorKind == QualType::DK_nontrivial_c_struct) && 1910 "unexpected destructor type"); 1911 pushDestroy(DtorKind, DeclPtr, Ty); 1912 } 1913 } 1914 } else { 1915 // Otherwise, create a temporary to hold the value. 1916 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 1917 D.getName() + ".addr"); 1918 DoStore = true; 1919 } 1920 1921 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 1922 1923 LValue lv = MakeAddrLValue(DeclPtr, Ty); 1924 if (IsScalar) { 1925 Qualifiers qs = Ty.getQualifiers(); 1926 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1927 // We honor __attribute__((ns_consumed)) for types with lifetime. 1928 // For __strong, it's handled by just skipping the initial retain; 1929 // otherwise we have to balance out the initial +1 with an extra 1930 // cleanup to do the release at the end of the function. 1931 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1932 1933 // 'self' is always formally __strong, but if this is not an 1934 // init method then we don't want to retain it. 1935 if (D.isARCPseudoStrong()) { 1936 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1937 assert(&D == method->getSelfDecl()); 1938 assert(lt == Qualifiers::OCL_Strong); 1939 assert(qs.hasConst()); 1940 assert(method->getMethodFamily() != OMF_init); 1941 (void) method; 1942 lt = Qualifiers::OCL_ExplicitNone; 1943 } 1944 1945 // Load objects passed indirectly. 1946 if (Arg.isIndirect() && !ArgVal) 1947 ArgVal = Builder.CreateLoad(DeclPtr); 1948 1949 if (lt == Qualifiers::OCL_Strong) { 1950 if (!isConsumed) { 1951 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1952 // use objc_storeStrong(&dest, value) for retaining the 1953 // object. But first, store a null into 'dest' because 1954 // objc_storeStrong attempts to release its old value. 1955 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1956 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1957 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 1958 DoStore = false; 1959 } 1960 else 1961 // Don't use objc_retainBlock for block pointers, because we 1962 // don't want to Block_copy something just because we got it 1963 // as a parameter. 1964 ArgVal = EmitARCRetainNonBlock(ArgVal); 1965 } 1966 } else { 1967 // Push the cleanup for a consumed parameter. 1968 if (isConsumed) { 1969 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1970 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1971 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 1972 precise); 1973 } 1974 1975 if (lt == Qualifiers::OCL_Weak) { 1976 EmitARCInitWeak(DeclPtr, ArgVal); 1977 DoStore = false; // The weak init is a store, no need to do two. 1978 } 1979 } 1980 1981 // Enter the cleanup scope. 1982 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1983 } 1984 } 1985 1986 // Store the initial value into the alloca. 1987 if (DoStore) 1988 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 1989 1990 setAddrOfLocalVar(&D, DeclPtr); 1991 1992 // Emit debug info for param declaration. 1993 if (CGDebugInfo *DI = getDebugInfo()) { 1994 if (CGM.getCodeGenOpts().getDebugInfo() >= 1995 codegenoptions::LimitedDebugInfo) { 1996 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); 1997 } 1998 } 1999 2000 if (D.hasAttr<AnnotateAttr>()) 2001 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2002 2003 // We can only check return value nullability if all arguments to the 2004 // function satisfy their nullability preconditions. This makes it necessary 2005 // to emit null checks for args in the function body itself. 2006 if (requiresReturnValueNullabilityCheck()) { 2007 auto Nullability = Ty->getNullability(getContext()); 2008 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2009 SanitizerScope SanScope(this); 2010 RetValNullabilityPrecondition = 2011 Builder.CreateAnd(RetValNullabilityPrecondition, 2012 Builder.CreateIsNotNull(Arg.getAnyValue())); 2013 } 2014 } 2015 } 2016 2017 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2018 CodeGenFunction *CGF) { 2019 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2020 return; 2021 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2022 } 2023