1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/GlobalVariable.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/Target/TargetData.h" 27 #include "llvm/Type.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 32 void CodeGenFunction::EmitDecl(const Decl &D) { 33 switch (D.getKind()) { 34 case Decl::TranslationUnit: 35 case Decl::Namespace: 36 case Decl::UnresolvedUsingTypename: 37 case Decl::ClassTemplateSpecialization: 38 case Decl::ClassTemplatePartialSpecialization: 39 case Decl::TemplateTypeParm: 40 case Decl::UnresolvedUsingValue: 41 case Decl::NonTypeTemplateParm: 42 case Decl::CXXMethod: 43 case Decl::CXXConstructor: 44 case Decl::CXXDestructor: 45 case Decl::CXXConversion: 46 case Decl::Field: 47 case Decl::IndirectField: 48 case Decl::ObjCIvar: 49 case Decl::ObjCAtDefsField: 50 case Decl::ParmVar: 51 case Decl::ImplicitParam: 52 case Decl::ClassTemplate: 53 case Decl::FunctionTemplate: 54 case Decl::TemplateTemplateParm: 55 case Decl::ObjCMethod: 56 case Decl::ObjCCategory: 57 case Decl::ObjCProtocol: 58 case Decl::ObjCInterface: 59 case Decl::ObjCCategoryImpl: 60 case Decl::ObjCImplementation: 61 case Decl::ObjCProperty: 62 case Decl::ObjCCompatibleAlias: 63 case Decl::AccessSpec: 64 case Decl::LinkageSpec: 65 case Decl::ObjCPropertyImpl: 66 case Decl::ObjCClass: 67 case Decl::ObjCForwardProtocol: 68 case Decl::FileScopeAsm: 69 case Decl::Friend: 70 case Decl::FriendTemplate: 71 case Decl::Block: 72 assert(0 && "Declaration should not be in declstmts!"); 73 case Decl::Function: // void X(); 74 case Decl::Record: // struct/union/class X; 75 case Decl::Enum: // enum X; 76 case Decl::EnumConstant: // enum ? { X = ? } 77 case Decl::CXXRecord: // struct/union/class X; [C++] 78 case Decl::Using: // using X; [C++] 79 case Decl::UsingShadow: 80 case Decl::UsingDirective: // using namespace X; [C++] 81 case Decl::NamespaceAlias: 82 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 83 case Decl::Label: // __label__ x; 84 // None of these decls require codegen support. 85 return; 86 87 case Decl::Var: { 88 const VarDecl &VD = cast<VarDecl>(D); 89 assert(VD.isLocalVarDecl() && 90 "Should not see file-scope variables inside a function!"); 91 return EmitVarDecl(VD); 92 } 93 94 case Decl::Typedef: { // typedef int X; 95 const TypedefDecl &TD = cast<TypedefDecl>(D); 96 QualType Ty = TD.getUnderlyingType(); 97 98 if (Ty->isVariablyModifiedType()) 99 EmitVLASize(Ty); 100 } 101 } 102 } 103 104 /// EmitVarDecl - This method handles emission of any variable declaration 105 /// inside a function, including static vars etc. 106 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 107 switch (D.getStorageClass()) { 108 case SC_None: 109 case SC_Auto: 110 case SC_Register: 111 return EmitAutoVarDecl(D); 112 case SC_Static: { 113 llvm::GlobalValue::LinkageTypes Linkage = 114 llvm::GlobalValue::InternalLinkage; 115 116 // If the function definition has some sort of weak linkage, its 117 // static variables should also be weak so that they get properly 118 // uniqued. We can't do this in C, though, because there's no 119 // standard way to agree on which variables are the same (i.e. 120 // there's no mangling). 121 if (getContext().getLangOptions().CPlusPlus) 122 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 123 Linkage = CurFn->getLinkage(); 124 125 return EmitStaticVarDecl(D, Linkage); 126 } 127 case SC_Extern: 128 case SC_PrivateExtern: 129 // Don't emit it now, allow it to be emitted lazily on its first use. 130 return; 131 } 132 133 assert(0 && "Unknown storage class"); 134 } 135 136 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 137 const char *Separator) { 138 CodeGenModule &CGM = CGF.CGM; 139 if (CGF.getContext().getLangOptions().CPlusPlus) { 140 llvm::StringRef Name = CGM.getMangledName(&D); 141 return Name.str(); 142 } 143 144 std::string ContextName; 145 if (!CGF.CurFuncDecl) { 146 // Better be in a block declared in global scope. 147 const NamedDecl *ND = cast<NamedDecl>(&D); 148 const DeclContext *DC = ND->getDeclContext(); 149 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 150 MangleBuffer Name; 151 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 152 ContextName = Name.getString(); 153 } 154 else 155 assert(0 && "Unknown context for block static var decl"); 156 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 157 llvm::StringRef Name = CGM.getMangledName(FD); 158 ContextName = Name.str(); 159 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 160 ContextName = CGF.CurFn->getName(); 161 else 162 assert(0 && "Unknown context for static var decl"); 163 164 return ContextName + Separator + D.getNameAsString(); 165 } 166 167 llvm::GlobalVariable * 168 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 169 const char *Separator, 170 llvm::GlobalValue::LinkageTypes Linkage) { 171 QualType Ty = D.getType(); 172 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 173 174 std::string Name = GetStaticDeclName(*this, D, Separator); 175 176 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 177 llvm::GlobalVariable *GV = 178 new llvm::GlobalVariable(CGM.getModule(), LTy, 179 Ty.isConstant(getContext()), Linkage, 180 CGM.EmitNullConstant(D.getType()), Name, 0, 181 D.isThreadSpecified(), 182 CGM.getContext().getTargetAddressSpace(Ty)); 183 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 184 if (Linkage != llvm::GlobalValue::InternalLinkage) 185 GV->setVisibility(CurFn->getVisibility()); 186 return GV; 187 } 188 189 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 190 /// global variable that has already been created for it. If the initializer 191 /// has a different type than GV does, this may free GV and return a different 192 /// one. Otherwise it just returns GV. 193 llvm::GlobalVariable * 194 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 195 llvm::GlobalVariable *GV) { 196 llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this); 197 198 // If constant emission failed, then this should be a C++ static 199 // initializer. 200 if (!Init) { 201 if (!getContext().getLangOptions().CPlusPlus) 202 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 203 else if (Builder.GetInsertBlock()) { 204 // Since we have a static initializer, this global variable can't 205 // be constant. 206 GV->setConstant(false); 207 208 EmitCXXGuardedInit(D, GV); 209 } 210 return GV; 211 } 212 213 // The initializer may differ in type from the global. Rewrite 214 // the global to match the initializer. (We have to do this 215 // because some types, like unions, can't be completely represented 216 // in the LLVM type system.) 217 if (GV->getType()->getElementType() != Init->getType()) { 218 llvm::GlobalVariable *OldGV = GV; 219 220 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 221 OldGV->isConstant(), 222 OldGV->getLinkage(), Init, "", 223 /*InsertBefore*/ OldGV, 224 D.isThreadSpecified(), 225 CGM.getContext().getTargetAddressSpace(D.getType())); 226 GV->setVisibility(OldGV->getVisibility()); 227 228 // Steal the name of the old global 229 GV->takeName(OldGV); 230 231 // Replace all uses of the old global with the new global 232 llvm::Constant *NewPtrForOldDecl = 233 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 234 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 235 236 // Erase the old global, since it is no longer used. 237 OldGV->eraseFromParent(); 238 } 239 240 GV->setInitializer(Init); 241 return GV; 242 } 243 244 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 245 llvm::GlobalValue::LinkageTypes Linkage) { 246 llvm::Value *&DMEntry = LocalDeclMap[&D]; 247 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 248 249 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 250 251 // Store into LocalDeclMap before generating initializer to handle 252 // circular references. 253 DMEntry = GV; 254 255 // We can't have a VLA here, but we can have a pointer to a VLA, 256 // even though that doesn't really make any sense. 257 // Make sure to evaluate VLA bounds now so that we have them for later. 258 if (D.getType()->isVariablyModifiedType()) 259 EmitVLASize(D.getType()); 260 261 // Local static block variables must be treated as globals as they may be 262 // referenced in their RHS initializer block-literal expresion. 263 CGM.setStaticLocalDeclAddress(&D, GV); 264 265 // If this value has an initializer, emit it. 266 if (D.getInit()) 267 GV = AddInitializerToStaticVarDecl(D, GV); 268 269 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 270 271 // FIXME: Merge attribute handling. 272 if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) { 273 SourceManager &SM = CGM.getContext().getSourceManager(); 274 llvm::Constant *Ann = 275 CGM.EmitAnnotateAttr(GV, AA, 276 SM.getInstantiationLineNumber(D.getLocation())); 277 CGM.AddAnnotation(Ann); 278 } 279 280 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 281 GV->setSection(SA->getName()); 282 283 if (D.hasAttr<UsedAttr>()) 284 CGM.AddUsedGlobal(GV); 285 286 // We may have to cast the constant because of the initializer 287 // mismatch above. 288 // 289 // FIXME: It is really dangerous to store this in the map; if anyone 290 // RAUW's the GV uses of this constant will be invalid. 291 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 292 const llvm::Type *LPtrTy = 293 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 294 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 295 296 // Emit global variable debug descriptor for static vars. 297 CGDebugInfo *DI = getDebugInfo(); 298 if (DI) { 299 DI->setLocation(D.getLocation()); 300 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 301 } 302 } 303 304 namespace { 305 struct CallArrayDtor : EHScopeStack::Cleanup { 306 CallArrayDtor(const CXXDestructorDecl *Dtor, 307 const ConstantArrayType *Type, 308 llvm::Value *Loc) 309 : Dtor(Dtor), Type(Type), Loc(Loc) {} 310 311 const CXXDestructorDecl *Dtor; 312 const ConstantArrayType *Type; 313 llvm::Value *Loc; 314 315 void Emit(CodeGenFunction &CGF, bool IsForEH) { 316 QualType BaseElementTy = CGF.getContext().getBaseElementType(Type); 317 const llvm::Type *BasePtr = CGF.ConvertType(BaseElementTy); 318 BasePtr = llvm::PointerType::getUnqual(BasePtr); 319 llvm::Value *BaseAddrPtr = CGF.Builder.CreateBitCast(Loc, BasePtr); 320 CGF.EmitCXXAggrDestructorCall(Dtor, Type, BaseAddrPtr); 321 } 322 }; 323 324 struct CallVarDtor : EHScopeStack::Cleanup { 325 CallVarDtor(const CXXDestructorDecl *Dtor, 326 llvm::Value *NRVOFlag, 327 llvm::Value *Loc) 328 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(Loc) {} 329 330 const CXXDestructorDecl *Dtor; 331 llvm::Value *NRVOFlag; 332 llvm::Value *Loc; 333 334 void Emit(CodeGenFunction &CGF, bool IsForEH) { 335 // Along the exceptions path we always execute the dtor. 336 bool NRVO = !IsForEH && NRVOFlag; 337 338 llvm::BasicBlock *SkipDtorBB = 0; 339 if (NRVO) { 340 // If we exited via NRVO, we skip the destructor call. 341 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 342 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 343 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 344 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 345 CGF.EmitBlock(RunDtorBB); 346 } 347 348 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 349 /*ForVirtualBase=*/false, Loc); 350 351 if (NRVO) CGF.EmitBlock(SkipDtorBB); 352 } 353 }; 354 } 355 356 namespace { 357 struct CallStackRestore : EHScopeStack::Cleanup { 358 llvm::Value *Stack; 359 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 360 void Emit(CodeGenFunction &CGF, bool IsForEH) { 361 llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp"); 362 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 363 CGF.Builder.CreateCall(F, V); 364 } 365 }; 366 367 struct CallCleanupFunction : EHScopeStack::Cleanup { 368 llvm::Constant *CleanupFn; 369 const CGFunctionInfo &FnInfo; 370 const VarDecl &Var; 371 372 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 373 const VarDecl *Var) 374 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 375 376 void Emit(CodeGenFunction &CGF, bool IsForEH) { 377 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 378 SourceLocation()); 379 // Compute the address of the local variable, in case it's a byref 380 // or something. 381 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 382 383 // In some cases, the type of the function argument will be different from 384 // the type of the pointer. An example of this is 385 // void f(void* arg); 386 // __attribute__((cleanup(f))) void *g; 387 // 388 // To fix this we insert a bitcast here. 389 QualType ArgTy = FnInfo.arg_begin()->type; 390 llvm::Value *Arg = 391 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 392 393 CallArgList Args; 394 Args.push_back(std::make_pair(RValue::get(Arg), 395 CGF.getContext().getPointerType(Var.getType()))); 396 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 397 } 398 }; 399 } 400 401 402 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 403 /// non-zero parts of the specified initializer with equal or fewer than 404 /// NumStores scalar stores. 405 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 406 unsigned &NumStores) { 407 // Zero and Undef never requires any extra stores. 408 if (isa<llvm::ConstantAggregateZero>(Init) || 409 isa<llvm::ConstantPointerNull>(Init) || 410 isa<llvm::UndefValue>(Init)) 411 return true; 412 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 413 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 414 isa<llvm::ConstantExpr>(Init)) 415 return Init->isNullValue() || NumStores--; 416 417 // See if we can emit each element. 418 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 419 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 420 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 421 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 422 return false; 423 } 424 return true; 425 } 426 427 // Anything else is hard and scary. 428 return false; 429 } 430 431 /// emitStoresForInitAfterMemset - For inits that 432 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 433 /// stores that would be required. 434 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 435 bool isVolatile, CGBuilderTy &Builder) { 436 // Zero doesn't require any stores. 437 if (isa<llvm::ConstantAggregateZero>(Init) || 438 isa<llvm::ConstantPointerNull>(Init) || 439 isa<llvm::UndefValue>(Init)) 440 return; 441 442 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 443 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 444 isa<llvm::ConstantExpr>(Init)) { 445 if (!Init->isNullValue()) 446 Builder.CreateStore(Init, Loc, isVolatile); 447 return; 448 } 449 450 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 451 "Unknown value type!"); 452 453 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 454 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 455 if (Elt->isNullValue()) continue; 456 457 // Otherwise, get a pointer to the element and emit it. 458 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 459 isVolatile, Builder); 460 } 461 } 462 463 464 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 465 /// plus some stores to initialize a local variable instead of using a memcpy 466 /// from a constant global. It is beneficial to use memset if the global is all 467 /// zeros, or mostly zeros and large. 468 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 469 uint64_t GlobalSize) { 470 // If a global is all zeros, always use a memset. 471 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 472 473 474 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 475 // do it if it will require 6 or fewer scalar stores. 476 // TODO: Should budget depends on the size? Avoiding a large global warrants 477 // plopping in more stores. 478 unsigned StoreBudget = 6; 479 uint64_t SizeLimit = 32; 480 481 return GlobalSize > SizeLimit && 482 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 483 } 484 485 486 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 487 /// variable declaration with auto, register, or no storage class specifier. 488 /// These turn into simple stack objects, or GlobalValues depending on target. 489 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 490 AutoVarEmission emission = EmitAutoVarAlloca(D); 491 EmitAutoVarInit(emission); 492 EmitAutoVarCleanups(emission); 493 } 494 495 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 496 /// local variable. Does not emit initalization or destruction. 497 CodeGenFunction::AutoVarEmission 498 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 499 QualType Ty = D.getType(); 500 501 AutoVarEmission emission(D); 502 503 bool isByRef = D.hasAttr<BlocksAttr>(); 504 emission.IsByRef = isByRef; 505 506 CharUnits alignment = getContext().getDeclAlign(&D); 507 emission.Alignment = alignment; 508 509 llvm::Value *DeclPtr; 510 if (Ty->isConstantSizeType()) { 511 if (!Target.useGlobalsForAutomaticVariables()) { 512 bool NRVO = getContext().getLangOptions().ElideConstructors && 513 D.isNRVOVariable(); 514 515 // If this value is a POD array or struct with a statically 516 // determinable constant initializer, there are optimizations we 517 // can do. 518 // TODO: we can potentially constant-evaluate non-POD structs and 519 // arrays as long as the initialization is trivial (e.g. if they 520 // have a non-trivial destructor, but not a non-trivial constructor). 521 if (D.getInit() && 522 (Ty->isArrayType() || Ty->isRecordType()) && Ty->isPODType() && 523 D.getInit()->isConstantInitializer(getContext(), false)) { 524 525 // If the variable's a const type, and it's neither an NRVO 526 // candidate nor a __block variable, emit it as a global instead. 527 if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() && 528 !NRVO && !isByRef) { 529 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 530 531 emission.Address = 0; // signal this condition to later callbacks 532 assert(emission.wasEmittedAsGlobal()); 533 return emission; 534 } 535 536 // Otherwise, tell the initialization code that we're in this case. 537 emission.IsConstantAggregate = true; 538 } 539 540 // A normal fixed sized variable becomes an alloca in the entry block, 541 // unless it's an NRVO variable. 542 const llvm::Type *LTy = ConvertTypeForMem(Ty); 543 544 if (NRVO) { 545 // The named return value optimization: allocate this variable in the 546 // return slot, so that we can elide the copy when returning this 547 // variable (C++0x [class.copy]p34). 548 DeclPtr = ReturnValue; 549 550 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 551 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 552 // Create a flag that is used to indicate when the NRVO was applied 553 // to this variable. Set it to zero to indicate that NRVO was not 554 // applied. 555 llvm::Value *Zero = Builder.getFalse(); 556 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 557 EnsureInsertPoint(); 558 Builder.CreateStore(Zero, NRVOFlag); 559 560 // Record the NRVO flag for this variable. 561 NRVOFlags[&D] = NRVOFlag; 562 emission.NRVOFlag = NRVOFlag; 563 } 564 } 565 } else { 566 if (isByRef) 567 LTy = BuildByRefType(&D); 568 569 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 570 Alloc->setName(D.getNameAsString()); 571 572 CharUnits allocaAlignment = alignment; 573 if (isByRef) 574 allocaAlignment = std::max(allocaAlignment, 575 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 576 Alloc->setAlignment(allocaAlignment.getQuantity()); 577 DeclPtr = Alloc; 578 } 579 } else { 580 // Targets that don't support recursion emit locals as globals. 581 const char *Class = 582 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 583 DeclPtr = CreateStaticVarDecl(D, Class, 584 llvm::GlobalValue::InternalLinkage); 585 } 586 587 // FIXME: Can this happen? 588 if (Ty->isVariablyModifiedType()) 589 EmitVLASize(Ty); 590 } else { 591 EnsureInsertPoint(); 592 593 if (!DidCallStackSave) { 594 // Save the stack. 595 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 596 597 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 598 llvm::Value *V = Builder.CreateCall(F); 599 600 Builder.CreateStore(V, Stack); 601 602 DidCallStackSave = true; 603 604 // Push a cleanup block and restore the stack there. 605 // FIXME: in general circumstances, this should be an EH cleanup. 606 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 607 } 608 609 // Get the element type. 610 const llvm::Type *LElemTy = ConvertTypeForMem(Ty); 611 const llvm::Type *LElemPtrTy = 612 LElemTy->getPointerTo(CGM.getContext().getTargetAddressSpace(Ty)); 613 614 llvm::Value *VLASize = EmitVLASize(Ty); 615 616 // Allocate memory for the array. 617 llvm::AllocaInst *VLA = 618 Builder.CreateAlloca(llvm::Type::getInt8Ty(getLLVMContext()), VLASize, "vla"); 619 VLA->setAlignment(alignment.getQuantity()); 620 621 DeclPtr = Builder.CreateBitCast(VLA, LElemPtrTy, "tmp"); 622 } 623 624 llvm::Value *&DMEntry = LocalDeclMap[&D]; 625 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 626 DMEntry = DeclPtr; 627 emission.Address = DeclPtr; 628 629 // Emit debug info for local var declaration. 630 if (CGDebugInfo *DI = getDebugInfo()) { 631 assert(HaveInsertPoint() && "Unexpected unreachable point!"); 632 633 DI->setLocation(D.getLocation()); 634 if (Target.useGlobalsForAutomaticVariables()) { 635 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 636 } else 637 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 638 } 639 640 return emission; 641 } 642 643 /// Determines whether the given __block variable is potentially 644 /// captured by the given expression. 645 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 646 // Skip the most common kinds of expressions that make 647 // hierarchy-walking expensive. 648 e = e->IgnoreParenCasts(); 649 650 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 651 const BlockDecl *block = be->getBlockDecl(); 652 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 653 e = block->capture_end(); i != e; ++i) { 654 if (i->getVariable() == &var) 655 return true; 656 } 657 658 // No need to walk into the subexpressions. 659 return false; 660 } 661 662 for (Stmt::const_child_range children = e->children(); children; ++children) 663 if (isCapturedBy(var, cast<Expr>(*children))) 664 return true; 665 666 return false; 667 } 668 669 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 670 assert(emission.Variable && "emission was not valid!"); 671 672 // If this was emitted as a global constant, we're done. 673 if (emission.wasEmittedAsGlobal()) return; 674 675 const VarDecl &D = *emission.Variable; 676 QualType type = D.getType(); 677 678 // If this local has an initializer, emit it now. 679 const Expr *Init = D.getInit(); 680 681 // If we are at an unreachable point, we don't need to emit the initializer 682 // unless it contains a label. 683 if (!HaveInsertPoint()) { 684 if (!Init || !ContainsLabel(Init)) return; 685 EnsureInsertPoint(); 686 } 687 688 // Initialize the structure of a __block variable. 689 if (emission.IsByRef) 690 emitByrefStructureInit(emission); 691 692 if (!Init) return; 693 694 CharUnits alignment = emission.Alignment; 695 696 // Check whether this is a byref variable that's potentially 697 // captured and moved by its own initializer. If so, we'll need to 698 // emit the initializer first, then copy into the variable. 699 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 700 701 llvm::Value *Loc = 702 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 703 704 if (!emission.IsConstantAggregate) 705 return EmitExprAsInit(Init, &D, Loc, alignment, capturedByInit); 706 707 // If this is a simple aggregate initialization, we can optimize it 708 // in various ways. 709 assert(!capturedByInit && "constant init contains a capturing block?"); 710 711 bool isVolatile = type.isVolatileQualified(); 712 713 llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this); 714 assert(constant != 0 && "Wasn't a simple constant init?"); 715 716 llvm::Value *SizeVal = 717 llvm::ConstantInt::get(IntPtrTy, 718 getContext().getTypeSizeInChars(type).getQuantity()); 719 720 const llvm::Type *BP = Int8PtrTy; 721 if (Loc->getType() != BP) 722 Loc = Builder.CreateBitCast(Loc, BP, "tmp"); 723 724 // If the initializer is all or mostly zeros, codegen with memset then do 725 // a few stores afterward. 726 if (shouldUseMemSetPlusStoresToInitialize(constant, 727 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 728 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 729 alignment.getQuantity(), isVolatile); 730 if (!constant->isNullValue()) { 731 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 732 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 733 } 734 } else { 735 // Otherwise, create a temporary global with the initializer then 736 // memcpy from the global to the alloca. 737 std::string Name = GetStaticDeclName(*this, D, "."); 738 llvm::GlobalVariable *GV = 739 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 740 llvm::GlobalValue::InternalLinkage, 741 constant, Name, 0, false, 0); 742 GV->setAlignment(alignment.getQuantity()); 743 744 llvm::Value *SrcPtr = GV; 745 if (SrcPtr->getType() != BP) 746 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 747 748 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 749 isVolatile); 750 } 751 } 752 753 /// Emit an expression as an initializer for a variable at the given 754 /// location. The expression is not necessarily the normal 755 /// initializer for the variable, and the address is not necessarily 756 /// its normal location. 757 /// 758 /// \param init the initializing expression 759 /// \param var the variable to act as if we're initializing 760 /// \param loc the address to initialize; its type is a pointer 761 /// to the LLVM mapping of the variable's type 762 /// \param alignment the alignment of the address 763 /// \param capturedByInit true if the variable is a __block variable 764 /// whose address is potentially changed by the initializer 765 void CodeGenFunction::EmitExprAsInit(const Expr *init, 766 const VarDecl *var, 767 llvm::Value *loc, 768 CharUnits alignment, 769 bool capturedByInit) { 770 QualType type = var->getType(); 771 bool isVolatile = type.isVolatileQualified(); 772 773 if (type->isReferenceType()) { 774 RValue RV = EmitReferenceBindingToExpr(init, var); 775 if (capturedByInit) loc = BuildBlockByrefAddress(loc, var); 776 EmitStoreOfScalar(RV.getScalarVal(), loc, false, 777 alignment.getQuantity(), type); 778 } else if (!hasAggregateLLVMType(type)) { 779 llvm::Value *V = EmitScalarExpr(init); 780 if (capturedByInit) loc = BuildBlockByrefAddress(loc, var); 781 EmitStoreOfScalar(V, loc, isVolatile, alignment.getQuantity(), type); 782 } else if (type->isAnyComplexType()) { 783 ComplexPairTy complex = EmitComplexExpr(init); 784 if (capturedByInit) loc = BuildBlockByrefAddress(loc, var); 785 StoreComplexToAddr(complex, loc, isVolatile); 786 } else { 787 // TODO: how can we delay here if D is captured by its initializer? 788 EmitAggExpr(init, AggValueSlot::forAddr(loc, isVolatile, true, false)); 789 } 790 } 791 792 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 793 assert(emission.Variable && "emission was not valid!"); 794 795 // If this was emitted as a global constant, we're done. 796 if (emission.wasEmittedAsGlobal()) return; 797 798 const VarDecl &D = *emission.Variable; 799 800 // Handle C++ destruction of variables. 801 if (getLangOptions().CPlusPlus) { 802 QualType type = D.getType(); 803 QualType baseType = getContext().getBaseElementType(type); 804 if (const RecordType *RT = baseType->getAs<RecordType>()) { 805 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 806 if (!ClassDecl->hasTrivialDestructor()) { 807 // Note: We suppress the destructor call when the corresponding NRVO 808 // flag has been set. 809 810 // Note that for __block variables, we want to destroy the 811 // original stack object, not the possible forwarded object. 812 llvm::Value *Loc = emission.getObjectAddress(*this); 813 814 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 815 assert(D && "EmitLocalBlockVarDecl - destructor is nul"); 816 817 if (type != baseType) { 818 const ConstantArrayType *Array = 819 getContext().getAsConstantArrayType(type); 820 assert(Array && "types changed without array?"); 821 EHStack.pushCleanup<CallArrayDtor>(NormalAndEHCleanup, 822 D, Array, Loc); 823 } else { 824 EHStack.pushCleanup<CallVarDtor>(NormalAndEHCleanup, 825 D, emission.NRVOFlag, Loc); 826 } 827 } 828 } 829 } 830 831 // Handle the cleanup attribute. 832 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 833 const FunctionDecl *FD = CA->getFunctionDecl(); 834 835 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 836 assert(F && "Could not find function!"); 837 838 const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD); 839 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 840 } 841 842 // If this is a block variable, call _Block_object_destroy 843 // (on the unforwarded address). 844 if (emission.IsByRef) 845 enterByrefCleanup(emission); 846 } 847 848 /// Emit an alloca (or GlobalValue depending on target) 849 /// for the specified parameter and set up LocalDeclMap. 850 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 851 unsigned ArgNo) { 852 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 853 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 854 "Invalid argument to EmitParmDecl"); 855 856 Arg->setName(D.getName()); 857 858 // Use better IR generation for certain implicit parameters. 859 if (isa<ImplicitParamDecl>(D)) { 860 // The only implicit argument a block has is its literal. 861 if (BlockInfo) { 862 LocalDeclMap[&D] = Arg; 863 864 if (CGDebugInfo *DI = getDebugInfo()) { 865 DI->setLocation(D.getLocation()); 866 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 867 } 868 869 return; 870 } 871 } 872 873 QualType Ty = D.getType(); 874 875 llvm::Value *DeclPtr; 876 // If this is an aggregate or variable sized value, reuse the input pointer. 877 if (!Ty->isConstantSizeType() || 878 CodeGenFunction::hasAggregateLLVMType(Ty)) { 879 DeclPtr = Arg; 880 } else { 881 // Otherwise, create a temporary to hold the value. 882 DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr"); 883 884 // Store the initial value into the alloca. 885 EmitStoreOfScalar(Arg, DeclPtr, Ty.isVolatileQualified(), 886 getContext().getDeclAlign(&D).getQuantity(), Ty, 887 CGM.getTBAAInfo(Ty)); 888 } 889 890 llvm::Value *&DMEntry = LocalDeclMap[&D]; 891 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 892 DMEntry = DeclPtr; 893 894 // Emit debug info for param declaration. 895 if (CGDebugInfo *DI = getDebugInfo()) { 896 DI->setLocation(D.getLocation()); 897 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 898 } 899 } 900