1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Type.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 
32 void CodeGenFunction::EmitDecl(const Decl &D) {
33   switch (D.getKind()) {
34   case Decl::TranslationUnit:
35   case Decl::Namespace:
36   case Decl::UnresolvedUsingTypename:
37   case Decl::ClassTemplateSpecialization:
38   case Decl::ClassTemplatePartialSpecialization:
39   case Decl::TemplateTypeParm:
40   case Decl::UnresolvedUsingValue:
41   case Decl::NonTypeTemplateParm:
42   case Decl::CXXMethod:
43   case Decl::CXXConstructor:
44   case Decl::CXXDestructor:
45   case Decl::CXXConversion:
46   case Decl::Field:
47   case Decl::IndirectField:
48   case Decl::ObjCIvar:
49   case Decl::ObjCAtDefsField:
50   case Decl::ParmVar:
51   case Decl::ImplicitParam:
52   case Decl::ClassTemplate:
53   case Decl::FunctionTemplate:
54   case Decl::TemplateTemplateParm:
55   case Decl::ObjCMethod:
56   case Decl::ObjCCategory:
57   case Decl::ObjCProtocol:
58   case Decl::ObjCInterface:
59   case Decl::ObjCCategoryImpl:
60   case Decl::ObjCImplementation:
61   case Decl::ObjCProperty:
62   case Decl::ObjCCompatibleAlias:
63   case Decl::AccessSpec:
64   case Decl::LinkageSpec:
65   case Decl::ObjCPropertyImpl:
66   case Decl::ObjCClass:
67   case Decl::ObjCForwardProtocol:
68   case Decl::FileScopeAsm:
69   case Decl::Friend:
70   case Decl::FriendTemplate:
71   case Decl::Block:
72     assert(0 && "Declaration should not be in declstmts!");
73   case Decl::Function:  // void X();
74   case Decl::Record:    // struct/union/class X;
75   case Decl::Enum:      // enum X;
76   case Decl::EnumConstant: // enum ? { X = ? }
77   case Decl::CXXRecord: // struct/union/class X; [C++]
78   case Decl::Using:          // using X; [C++]
79   case Decl::UsingShadow:
80   case Decl::UsingDirective: // using namespace X; [C++]
81   case Decl::NamespaceAlias:
82   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
83   case Decl::Label:        // __label__ x;
84     // None of these decls require codegen support.
85     return;
86 
87   case Decl::Var: {
88     const VarDecl &VD = cast<VarDecl>(D);
89     assert(VD.isLocalVarDecl() &&
90            "Should not see file-scope variables inside a function!");
91     return EmitVarDecl(VD);
92   }
93 
94   case Decl::Typedef: {   // typedef int X;
95     const TypedefDecl &TD = cast<TypedefDecl>(D);
96     QualType Ty = TD.getUnderlyingType();
97 
98     if (Ty->isVariablyModifiedType())
99       EmitVLASize(Ty);
100   }
101   }
102 }
103 
104 /// EmitVarDecl - This method handles emission of any variable declaration
105 /// inside a function, including static vars etc.
106 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
107   switch (D.getStorageClass()) {
108   case SC_None:
109   case SC_Auto:
110   case SC_Register:
111     return EmitAutoVarDecl(D);
112   case SC_Static: {
113     llvm::GlobalValue::LinkageTypes Linkage =
114       llvm::GlobalValue::InternalLinkage;
115 
116     // If the function definition has some sort of weak linkage, its
117     // static variables should also be weak so that they get properly
118     // uniqued.  We can't do this in C, though, because there's no
119     // standard way to agree on which variables are the same (i.e.
120     // there's no mangling).
121     if (getContext().getLangOptions().CPlusPlus)
122       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
123         Linkage = CurFn->getLinkage();
124 
125     return EmitStaticVarDecl(D, Linkage);
126   }
127   case SC_Extern:
128   case SC_PrivateExtern:
129     // Don't emit it now, allow it to be emitted lazily on its first use.
130     return;
131   }
132 
133   assert(0 && "Unknown storage class");
134 }
135 
136 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
137                                      const char *Separator) {
138   CodeGenModule &CGM = CGF.CGM;
139   if (CGF.getContext().getLangOptions().CPlusPlus) {
140     llvm::StringRef Name = CGM.getMangledName(&D);
141     return Name.str();
142   }
143 
144   std::string ContextName;
145   if (!CGF.CurFuncDecl) {
146     // Better be in a block declared in global scope.
147     const NamedDecl *ND = cast<NamedDecl>(&D);
148     const DeclContext *DC = ND->getDeclContext();
149     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
150       MangleBuffer Name;
151       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
152       ContextName = Name.getString();
153     }
154     else
155       assert(0 && "Unknown context for block static var decl");
156   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
157     llvm::StringRef Name = CGM.getMangledName(FD);
158     ContextName = Name.str();
159   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
160     ContextName = CGF.CurFn->getName();
161   else
162     assert(0 && "Unknown context for static var decl");
163 
164   return ContextName + Separator + D.getNameAsString();
165 }
166 
167 llvm::GlobalVariable *
168 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
169                                      const char *Separator,
170                                      llvm::GlobalValue::LinkageTypes Linkage) {
171   QualType Ty = D.getType();
172   assert(Ty->isConstantSizeType() && "VLAs can't be static");
173 
174   std::string Name = GetStaticDeclName(*this, D, Separator);
175 
176   const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
177   llvm::GlobalVariable *GV =
178     new llvm::GlobalVariable(CGM.getModule(), LTy,
179                              Ty.isConstant(getContext()), Linkage,
180                              CGM.EmitNullConstant(D.getType()), Name, 0,
181                              D.isThreadSpecified(),
182                              CGM.getContext().getTargetAddressSpace(Ty));
183   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
184   if (Linkage != llvm::GlobalValue::InternalLinkage)
185     GV->setVisibility(CurFn->getVisibility());
186   return GV;
187 }
188 
189 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
190 /// global variable that has already been created for it.  If the initializer
191 /// has a different type than GV does, this may free GV and return a different
192 /// one.  Otherwise it just returns GV.
193 llvm::GlobalVariable *
194 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
195                                                llvm::GlobalVariable *GV) {
196   llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this);
197 
198   // If constant emission failed, then this should be a C++ static
199   // initializer.
200   if (!Init) {
201     if (!getContext().getLangOptions().CPlusPlus)
202       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
203     else if (Builder.GetInsertBlock()) {
204       // Since we have a static initializer, this global variable can't
205       // be constant.
206       GV->setConstant(false);
207 
208       EmitCXXGuardedInit(D, GV);
209     }
210     return GV;
211   }
212 
213   // The initializer may differ in type from the global. Rewrite
214   // the global to match the initializer.  (We have to do this
215   // because some types, like unions, can't be completely represented
216   // in the LLVM type system.)
217   if (GV->getType()->getElementType() != Init->getType()) {
218     llvm::GlobalVariable *OldGV = GV;
219 
220     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
221                                   OldGV->isConstant(),
222                                   OldGV->getLinkage(), Init, "",
223                                   /*InsertBefore*/ OldGV,
224                                   D.isThreadSpecified(),
225                            CGM.getContext().getTargetAddressSpace(D.getType()));
226     GV->setVisibility(OldGV->getVisibility());
227 
228     // Steal the name of the old global
229     GV->takeName(OldGV);
230 
231     // Replace all uses of the old global with the new global
232     llvm::Constant *NewPtrForOldDecl =
233     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
234     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
235 
236     // Erase the old global, since it is no longer used.
237     OldGV->eraseFromParent();
238   }
239 
240   GV->setInitializer(Init);
241   return GV;
242 }
243 
244 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
245                                       llvm::GlobalValue::LinkageTypes Linkage) {
246   llvm::Value *&DMEntry = LocalDeclMap[&D];
247   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
248 
249   llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
250 
251   // Store into LocalDeclMap before generating initializer to handle
252   // circular references.
253   DMEntry = GV;
254 
255   // We can't have a VLA here, but we can have a pointer to a VLA,
256   // even though that doesn't really make any sense.
257   // Make sure to evaluate VLA bounds now so that we have them for later.
258   if (D.getType()->isVariablyModifiedType())
259     EmitVLASize(D.getType());
260 
261   // Local static block variables must be treated as globals as they may be
262   // referenced in their RHS initializer block-literal expresion.
263   CGM.setStaticLocalDeclAddress(&D, GV);
264 
265   // If this value has an initializer, emit it.
266   if (D.getInit())
267     GV = AddInitializerToStaticVarDecl(D, GV);
268 
269   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
270 
271   // FIXME: Merge attribute handling.
272   if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) {
273     SourceManager &SM = CGM.getContext().getSourceManager();
274     llvm::Constant *Ann =
275       CGM.EmitAnnotateAttr(GV, AA,
276                            SM.getInstantiationLineNumber(D.getLocation()));
277     CGM.AddAnnotation(Ann);
278   }
279 
280   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
281     GV->setSection(SA->getName());
282 
283   if (D.hasAttr<UsedAttr>())
284     CGM.AddUsedGlobal(GV);
285 
286   // We may have to cast the constant because of the initializer
287   // mismatch above.
288   //
289   // FIXME: It is really dangerous to store this in the map; if anyone
290   // RAUW's the GV uses of this constant will be invalid.
291   const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
292   const llvm::Type *LPtrTy =
293     LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
294   DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
295 
296   // Emit global variable debug descriptor for static vars.
297   CGDebugInfo *DI = getDebugInfo();
298   if (DI) {
299     DI->setLocation(D.getLocation());
300     DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
301   }
302 }
303 
304 namespace {
305   struct CallArrayDtor : EHScopeStack::Cleanup {
306     CallArrayDtor(const CXXDestructorDecl *Dtor,
307                   const ConstantArrayType *Type,
308                   llvm::Value *Loc)
309       : Dtor(Dtor), Type(Type), Loc(Loc) {}
310 
311     const CXXDestructorDecl *Dtor;
312     const ConstantArrayType *Type;
313     llvm::Value *Loc;
314 
315     void Emit(CodeGenFunction &CGF, bool IsForEH) {
316       QualType BaseElementTy = CGF.getContext().getBaseElementType(Type);
317       const llvm::Type *BasePtr = CGF.ConvertType(BaseElementTy);
318       BasePtr = llvm::PointerType::getUnqual(BasePtr);
319       llvm::Value *BaseAddrPtr = CGF.Builder.CreateBitCast(Loc, BasePtr);
320       CGF.EmitCXXAggrDestructorCall(Dtor, Type, BaseAddrPtr);
321     }
322   };
323 
324   struct CallVarDtor : EHScopeStack::Cleanup {
325     CallVarDtor(const CXXDestructorDecl *Dtor,
326                 llvm::Value *NRVOFlag,
327                 llvm::Value *Loc)
328       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(Loc) {}
329 
330     const CXXDestructorDecl *Dtor;
331     llvm::Value *NRVOFlag;
332     llvm::Value *Loc;
333 
334     void Emit(CodeGenFunction &CGF, bool IsForEH) {
335       // Along the exceptions path we always execute the dtor.
336       bool NRVO = !IsForEH && NRVOFlag;
337 
338       llvm::BasicBlock *SkipDtorBB = 0;
339       if (NRVO) {
340         // If we exited via NRVO, we skip the destructor call.
341         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
342         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
343         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
344         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
345         CGF.EmitBlock(RunDtorBB);
346       }
347 
348       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
349                                 /*ForVirtualBase=*/false, Loc);
350 
351       if (NRVO) CGF.EmitBlock(SkipDtorBB);
352     }
353   };
354 }
355 
356 namespace {
357   struct CallStackRestore : EHScopeStack::Cleanup {
358     llvm::Value *Stack;
359     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
360     void Emit(CodeGenFunction &CGF, bool IsForEH) {
361       llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp");
362       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
363       CGF.Builder.CreateCall(F, V);
364     }
365   };
366 
367   struct CallCleanupFunction : EHScopeStack::Cleanup {
368     llvm::Constant *CleanupFn;
369     const CGFunctionInfo &FnInfo;
370     const VarDecl &Var;
371 
372     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
373                         const VarDecl *Var)
374       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
375 
376     void Emit(CodeGenFunction &CGF, bool IsForEH) {
377       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
378                       SourceLocation());
379       // Compute the address of the local variable, in case it's a byref
380       // or something.
381       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
382 
383       // In some cases, the type of the function argument will be different from
384       // the type of the pointer. An example of this is
385       // void f(void* arg);
386       // __attribute__((cleanup(f))) void *g;
387       //
388       // To fix this we insert a bitcast here.
389       QualType ArgTy = FnInfo.arg_begin()->type;
390       llvm::Value *Arg =
391         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
392 
393       CallArgList Args;
394       Args.push_back(std::make_pair(RValue::get(Arg),
395                             CGF.getContext().getPointerType(Var.getType())));
396       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
397     }
398   };
399 }
400 
401 
402 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
403 /// non-zero parts of the specified initializer with equal or fewer than
404 /// NumStores scalar stores.
405 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
406                                                 unsigned &NumStores) {
407   // Zero and Undef never requires any extra stores.
408   if (isa<llvm::ConstantAggregateZero>(Init) ||
409       isa<llvm::ConstantPointerNull>(Init) ||
410       isa<llvm::UndefValue>(Init))
411     return true;
412   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
413       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
414       isa<llvm::ConstantExpr>(Init))
415     return Init->isNullValue() || NumStores--;
416 
417   // See if we can emit each element.
418   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
419     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
420       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
421       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
422         return false;
423     }
424     return true;
425   }
426 
427   // Anything else is hard and scary.
428   return false;
429 }
430 
431 /// emitStoresForInitAfterMemset - For inits that
432 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
433 /// stores that would be required.
434 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
435                                          bool isVolatile, CGBuilderTy &Builder) {
436   // Zero doesn't require any stores.
437   if (isa<llvm::ConstantAggregateZero>(Init) ||
438       isa<llvm::ConstantPointerNull>(Init) ||
439       isa<llvm::UndefValue>(Init))
440     return;
441 
442   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
443       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
444       isa<llvm::ConstantExpr>(Init)) {
445     if (!Init->isNullValue())
446       Builder.CreateStore(Init, Loc, isVolatile);
447     return;
448   }
449 
450   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
451          "Unknown value type!");
452 
453   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
454     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
455     if (Elt->isNullValue()) continue;
456 
457     // Otherwise, get a pointer to the element and emit it.
458     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
459                                  isVolatile, Builder);
460   }
461 }
462 
463 
464 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
465 /// plus some stores to initialize a local variable instead of using a memcpy
466 /// from a constant global.  It is beneficial to use memset if the global is all
467 /// zeros, or mostly zeros and large.
468 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
469                                                   uint64_t GlobalSize) {
470   // If a global is all zeros, always use a memset.
471   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
472 
473 
474   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
475   // do it if it will require 6 or fewer scalar stores.
476   // TODO: Should budget depends on the size?  Avoiding a large global warrants
477   // plopping in more stores.
478   unsigned StoreBudget = 6;
479   uint64_t SizeLimit = 32;
480 
481   return GlobalSize > SizeLimit &&
482          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
483 }
484 
485 
486 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
487 /// variable declaration with auto, register, or no storage class specifier.
488 /// These turn into simple stack objects, or GlobalValues depending on target.
489 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
490   AutoVarEmission emission = EmitAutoVarAlloca(D);
491   EmitAutoVarInit(emission);
492   EmitAutoVarCleanups(emission);
493 }
494 
495 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
496 /// local variable.  Does not emit initalization or destruction.
497 CodeGenFunction::AutoVarEmission
498 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
499   QualType Ty = D.getType();
500 
501   AutoVarEmission emission(D);
502 
503   bool isByRef = D.hasAttr<BlocksAttr>();
504   emission.IsByRef = isByRef;
505 
506   CharUnits alignment = getContext().getDeclAlign(&D);
507   emission.Alignment = alignment;
508 
509   llvm::Value *DeclPtr;
510   if (Ty->isConstantSizeType()) {
511     if (!Target.useGlobalsForAutomaticVariables()) {
512       bool NRVO = getContext().getLangOptions().ElideConstructors &&
513                   D.isNRVOVariable();
514 
515       // If this value is a POD array or struct with a statically
516       // determinable constant initializer, there are optimizations we
517       // can do.
518       // TODO: we can potentially constant-evaluate non-POD structs and
519       // arrays as long as the initialization is trivial (e.g. if they
520       // have a non-trivial destructor, but not a non-trivial constructor).
521       if (D.getInit() &&
522           (Ty->isArrayType() || Ty->isRecordType()) && Ty->isPODType() &&
523           D.getInit()->isConstantInitializer(getContext(), false)) {
524 
525         // If the variable's a const type, and it's neither an NRVO
526         // candidate nor a __block variable, emit it as a global instead.
527         if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
528             !NRVO && !isByRef) {
529           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
530 
531           emission.Address = 0; // signal this condition to later callbacks
532           assert(emission.wasEmittedAsGlobal());
533           return emission;
534         }
535 
536         // Otherwise, tell the initialization code that we're in this case.
537         emission.IsConstantAggregate = true;
538       }
539 
540       // A normal fixed sized variable becomes an alloca in the entry block,
541       // unless it's an NRVO variable.
542       const llvm::Type *LTy = ConvertTypeForMem(Ty);
543 
544       if (NRVO) {
545         // The named return value optimization: allocate this variable in the
546         // return slot, so that we can elide the copy when returning this
547         // variable (C++0x [class.copy]p34).
548         DeclPtr = ReturnValue;
549 
550         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
551           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
552             // Create a flag that is used to indicate when the NRVO was applied
553             // to this variable. Set it to zero to indicate that NRVO was not
554             // applied.
555             llvm::Value *Zero = Builder.getFalse();
556             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
557             EnsureInsertPoint();
558             Builder.CreateStore(Zero, NRVOFlag);
559 
560             // Record the NRVO flag for this variable.
561             NRVOFlags[&D] = NRVOFlag;
562             emission.NRVOFlag = NRVOFlag;
563           }
564         }
565       } else {
566         if (isByRef)
567           LTy = BuildByRefType(&D);
568 
569         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
570         Alloc->setName(D.getNameAsString());
571 
572         CharUnits allocaAlignment = alignment;
573         if (isByRef)
574           allocaAlignment = std::max(allocaAlignment,
575               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
576         Alloc->setAlignment(allocaAlignment.getQuantity());
577         DeclPtr = Alloc;
578       }
579     } else {
580       // Targets that don't support recursion emit locals as globals.
581       const char *Class =
582         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
583       DeclPtr = CreateStaticVarDecl(D, Class,
584                                     llvm::GlobalValue::InternalLinkage);
585     }
586 
587     // FIXME: Can this happen?
588     if (Ty->isVariablyModifiedType())
589       EmitVLASize(Ty);
590   } else {
591     EnsureInsertPoint();
592 
593     if (!DidCallStackSave) {
594       // Save the stack.
595       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
596 
597       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
598       llvm::Value *V = Builder.CreateCall(F);
599 
600       Builder.CreateStore(V, Stack);
601 
602       DidCallStackSave = true;
603 
604       // Push a cleanup block and restore the stack there.
605       // FIXME: in general circumstances, this should be an EH cleanup.
606       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
607     }
608 
609     // Get the element type.
610     const llvm::Type *LElemTy = ConvertTypeForMem(Ty);
611     const llvm::Type *LElemPtrTy =
612       LElemTy->getPointerTo(CGM.getContext().getTargetAddressSpace(Ty));
613 
614     llvm::Value *VLASize = EmitVLASize(Ty);
615 
616     // Allocate memory for the array.
617     llvm::AllocaInst *VLA =
618       Builder.CreateAlloca(llvm::Type::getInt8Ty(getLLVMContext()), VLASize, "vla");
619     VLA->setAlignment(alignment.getQuantity());
620 
621     DeclPtr = Builder.CreateBitCast(VLA, LElemPtrTy, "tmp");
622   }
623 
624   llvm::Value *&DMEntry = LocalDeclMap[&D];
625   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
626   DMEntry = DeclPtr;
627   emission.Address = DeclPtr;
628 
629   // Emit debug info for local var declaration.
630   if (CGDebugInfo *DI = getDebugInfo()) {
631     assert(HaveInsertPoint() && "Unexpected unreachable point!");
632 
633     DI->setLocation(D.getLocation());
634     if (Target.useGlobalsForAutomaticVariables()) {
635       DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
636     } else
637       DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
638   }
639 
640   return emission;
641 }
642 
643 /// Determines whether the given __block variable is potentially
644 /// captured by the given expression.
645 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
646   // Skip the most common kinds of expressions that make
647   // hierarchy-walking expensive.
648   e = e->IgnoreParenCasts();
649 
650   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
651     const BlockDecl *block = be->getBlockDecl();
652     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
653            e = block->capture_end(); i != e; ++i) {
654       if (i->getVariable() == &var)
655         return true;
656     }
657 
658     // No need to walk into the subexpressions.
659     return false;
660   }
661 
662   for (Stmt::const_child_range children = e->children(); children; ++children)
663     if (isCapturedBy(var, cast<Expr>(*children)))
664       return true;
665 
666   return false;
667 }
668 
669 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
670   assert(emission.Variable && "emission was not valid!");
671 
672   // If this was emitted as a global constant, we're done.
673   if (emission.wasEmittedAsGlobal()) return;
674 
675   const VarDecl &D = *emission.Variable;
676   QualType type = D.getType();
677 
678   // If this local has an initializer, emit it now.
679   const Expr *Init = D.getInit();
680 
681   // If we are at an unreachable point, we don't need to emit the initializer
682   // unless it contains a label.
683   if (!HaveInsertPoint()) {
684     if (!Init || !ContainsLabel(Init)) return;
685     EnsureInsertPoint();
686   }
687 
688   // Initialize the structure of a __block variable.
689   if (emission.IsByRef)
690     emitByrefStructureInit(emission);
691 
692   if (!Init) return;
693 
694   CharUnits alignment = emission.Alignment;
695 
696   // Check whether this is a byref variable that's potentially
697   // captured and moved by its own initializer.  If so, we'll need to
698   // emit the initializer first, then copy into the variable.
699   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
700 
701   llvm::Value *Loc =
702     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
703 
704   if (!emission.IsConstantAggregate)
705     return EmitExprAsInit(Init, &D, Loc, alignment, capturedByInit);
706 
707   // If this is a simple aggregate initialization, we can optimize it
708   // in various ways.
709   assert(!capturedByInit && "constant init contains a capturing block?");
710 
711   bool isVolatile = type.isVolatileQualified();
712 
713   llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this);
714   assert(constant != 0 && "Wasn't a simple constant init?");
715 
716   llvm::Value *SizeVal =
717     llvm::ConstantInt::get(IntPtrTy,
718                            getContext().getTypeSizeInChars(type).getQuantity());
719 
720   const llvm::Type *BP = Int8PtrTy;
721   if (Loc->getType() != BP)
722     Loc = Builder.CreateBitCast(Loc, BP, "tmp");
723 
724   // If the initializer is all or mostly zeros, codegen with memset then do
725   // a few stores afterward.
726   if (shouldUseMemSetPlusStoresToInitialize(constant,
727                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
728     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
729                          alignment.getQuantity(), isVolatile);
730     if (!constant->isNullValue()) {
731       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
732       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
733     }
734   } else {
735     // Otherwise, create a temporary global with the initializer then
736     // memcpy from the global to the alloca.
737     std::string Name = GetStaticDeclName(*this, D, ".");
738     llvm::GlobalVariable *GV =
739       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
740                                llvm::GlobalValue::InternalLinkage,
741                                constant, Name, 0, false, 0);
742     GV->setAlignment(alignment.getQuantity());
743 
744     llvm::Value *SrcPtr = GV;
745     if (SrcPtr->getType() != BP)
746       SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
747 
748     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
749                          isVolatile);
750   }
751 }
752 
753 /// Emit an expression as an initializer for a variable at the given
754 /// location.  The expression is not necessarily the normal
755 /// initializer for the variable, and the address is not necessarily
756 /// its normal location.
757 ///
758 /// \param init the initializing expression
759 /// \param var the variable to act as if we're initializing
760 /// \param loc the address to initialize; its type is a pointer
761 ///   to the LLVM mapping of the variable's type
762 /// \param alignment the alignment of the address
763 /// \param capturedByInit true if the variable is a __block variable
764 ///   whose address is potentially changed by the initializer
765 void CodeGenFunction::EmitExprAsInit(const Expr *init,
766                                      const VarDecl *var,
767                                      llvm::Value *loc,
768                                      CharUnits alignment,
769                                      bool capturedByInit) {
770   QualType type = var->getType();
771   bool isVolatile = type.isVolatileQualified();
772 
773   if (type->isReferenceType()) {
774     RValue RV = EmitReferenceBindingToExpr(init, var);
775     if (capturedByInit) loc = BuildBlockByrefAddress(loc, var);
776     EmitStoreOfScalar(RV.getScalarVal(), loc, false,
777                       alignment.getQuantity(), type);
778   } else if (!hasAggregateLLVMType(type)) {
779     llvm::Value *V = EmitScalarExpr(init);
780     if (capturedByInit) loc = BuildBlockByrefAddress(loc, var);
781     EmitStoreOfScalar(V, loc, isVolatile, alignment.getQuantity(), type);
782   } else if (type->isAnyComplexType()) {
783     ComplexPairTy complex = EmitComplexExpr(init);
784     if (capturedByInit) loc = BuildBlockByrefAddress(loc, var);
785     StoreComplexToAddr(complex, loc, isVolatile);
786   } else {
787     // TODO: how can we delay here if D is captured by its initializer?
788     EmitAggExpr(init, AggValueSlot::forAddr(loc, isVolatile, true, false));
789   }
790 }
791 
792 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
793   assert(emission.Variable && "emission was not valid!");
794 
795   // If this was emitted as a global constant, we're done.
796   if (emission.wasEmittedAsGlobal()) return;
797 
798   const VarDecl &D = *emission.Variable;
799 
800   // Handle C++ destruction of variables.
801   if (getLangOptions().CPlusPlus) {
802     QualType type = D.getType();
803     QualType baseType = getContext().getBaseElementType(type);
804     if (const RecordType *RT = baseType->getAs<RecordType>()) {
805       CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
806       if (!ClassDecl->hasTrivialDestructor()) {
807         // Note: We suppress the destructor call when the corresponding NRVO
808         // flag has been set.
809 
810         // Note that for __block variables, we want to destroy the
811         // original stack object, not the possible forwarded object.
812         llvm::Value *Loc = emission.getObjectAddress(*this);
813 
814         const CXXDestructorDecl *D = ClassDecl->getDestructor();
815         assert(D && "EmitLocalBlockVarDecl - destructor is nul");
816 
817         if (type != baseType) {
818           const ConstantArrayType *Array =
819             getContext().getAsConstantArrayType(type);
820           assert(Array && "types changed without array?");
821           EHStack.pushCleanup<CallArrayDtor>(NormalAndEHCleanup,
822                                              D, Array, Loc);
823         } else {
824           EHStack.pushCleanup<CallVarDtor>(NormalAndEHCleanup,
825                                            D, emission.NRVOFlag, Loc);
826         }
827       }
828     }
829   }
830 
831   // Handle the cleanup attribute.
832   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
833     const FunctionDecl *FD = CA->getFunctionDecl();
834 
835     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
836     assert(F && "Could not find function!");
837 
838     const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
839     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
840   }
841 
842   // If this is a block variable, call _Block_object_destroy
843   // (on the unforwarded address).
844   if (emission.IsByRef)
845     enterByrefCleanup(emission);
846 }
847 
848 /// Emit an alloca (or GlobalValue depending on target)
849 /// for the specified parameter and set up LocalDeclMap.
850 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
851                                    unsigned ArgNo) {
852   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
853   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
854          "Invalid argument to EmitParmDecl");
855 
856   Arg->setName(D.getName());
857 
858   // Use better IR generation for certain implicit parameters.
859   if (isa<ImplicitParamDecl>(D)) {
860     // The only implicit argument a block has is its literal.
861     if (BlockInfo) {
862       LocalDeclMap[&D] = Arg;
863 
864       if (CGDebugInfo *DI = getDebugInfo()) {
865         DI->setLocation(D.getLocation());
866         DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
867       }
868 
869       return;
870     }
871   }
872 
873   QualType Ty = D.getType();
874 
875   llvm::Value *DeclPtr;
876   // If this is an aggregate or variable sized value, reuse the input pointer.
877   if (!Ty->isConstantSizeType() ||
878       CodeGenFunction::hasAggregateLLVMType(Ty)) {
879     DeclPtr = Arg;
880   } else {
881     // Otherwise, create a temporary to hold the value.
882     DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr");
883 
884     // Store the initial value into the alloca.
885     EmitStoreOfScalar(Arg, DeclPtr, Ty.isVolatileQualified(),
886                       getContext().getDeclAlign(&D).getQuantity(), Ty,
887                       CGM.getTBAAInfo(Ty));
888   }
889 
890   llvm::Value *&DMEntry = LocalDeclMap[&D];
891   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
892   DMEntry = DeclPtr;
893 
894   // Emit debug info for param declaration.
895   if (CGDebugInfo *DI = getDebugInfo()) {
896     DI->setLocation(D.getLocation());
897     DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
898   }
899 }
900