1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 
33 void CodeGenFunction::EmitDecl(const Decl &D) {
34   switch (D.getKind()) {
35   case Decl::TranslationUnit:
36   case Decl::Namespace:
37   case Decl::UnresolvedUsingTypename:
38   case Decl::ClassTemplateSpecialization:
39   case Decl::ClassTemplatePartialSpecialization:
40   case Decl::TemplateTypeParm:
41   case Decl::UnresolvedUsingValue:
42   case Decl::NonTypeTemplateParm:
43   case Decl::CXXMethod:
44   case Decl::CXXConstructor:
45   case Decl::CXXDestructor:
46   case Decl::CXXConversion:
47   case Decl::Field:
48   case Decl::MSProperty:
49   case Decl::IndirectField:
50   case Decl::ObjCIvar:
51   case Decl::ObjCAtDefsField:
52   case Decl::ParmVar:
53   case Decl::ImplicitParam:
54   case Decl::ClassTemplate:
55   case Decl::FunctionTemplate:
56   case Decl::TypeAliasTemplate:
57   case Decl::TemplateTemplateParm:
58   case Decl::ObjCMethod:
59   case Decl::ObjCCategory:
60   case Decl::ObjCProtocol:
61   case Decl::ObjCInterface:
62   case Decl::ObjCCategoryImpl:
63   case Decl::ObjCImplementation:
64   case Decl::ObjCProperty:
65   case Decl::ObjCCompatibleAlias:
66   case Decl::AccessSpec:
67   case Decl::LinkageSpec:
68   case Decl::ObjCPropertyImpl:
69   case Decl::FileScopeAsm:
70   case Decl::Friend:
71   case Decl::FriendTemplate:
72   case Decl::Block:
73   case Decl::Captured:
74   case Decl::ClassScopeFunctionSpecialization:
75   case Decl::UsingShadow:
76     llvm_unreachable("Declaration should not be in declstmts!");
77   case Decl::Function:  // void X();
78   case Decl::Record:    // struct/union/class X;
79   case Decl::Enum:      // enum X;
80   case Decl::EnumConstant: // enum ? { X = ? }
81   case Decl::CXXRecord: // struct/union/class X; [C++]
82   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
83   case Decl::Label:        // __label__ x;
84   case Decl::Import:
85   case Decl::OMPThreadPrivate:
86   case Decl::Empty:
87     // None of these decls require codegen support.
88     return;
89 
90   case Decl::NamespaceAlias:
91     if (CGDebugInfo *DI = getDebugInfo())
92         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
93     return;
94   case Decl::Using:          // using X; [C++]
95     if (CGDebugInfo *DI = getDebugInfo())
96         DI->EmitUsingDecl(cast<UsingDecl>(D));
97     return;
98   case Decl::UsingDirective: // using namespace X; [C++]
99     if (CGDebugInfo *DI = getDebugInfo())
100       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
101     return;
102   case Decl::Var: {
103     const VarDecl &VD = cast<VarDecl>(D);
104     assert(VD.isLocalVarDecl() &&
105            "Should not see file-scope variables inside a function!");
106     return EmitVarDecl(VD);
107   }
108 
109   case Decl::Typedef:      // typedef int X;
110   case Decl::TypeAlias: {  // using X = int; [C++0x]
111     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
112     QualType Ty = TD.getUnderlyingType();
113 
114     if (Ty->isVariablyModifiedType())
115       EmitVariablyModifiedType(Ty);
116   }
117   }
118 }
119 
120 /// EmitVarDecl - This method handles emission of any variable declaration
121 /// inside a function, including static vars etc.
122 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
123   if (D.isStaticLocal()) {
124     llvm::GlobalValue::LinkageTypes Linkage =
125       llvm::GlobalValue::InternalLinkage;
126 
127     // If the variable is externally visible, it must have weak linkage so it
128     // can be uniqued.
129     if (D.isExternallyVisible()) {
130       Linkage = llvm::GlobalValue::LinkOnceODRLinkage;
131 
132       // FIXME: We need to force the emission/use of a guard variable for
133       // some variables even if we can constant-evaluate them because
134       // we can't guarantee every translation unit will constant-evaluate them.
135     }
136 
137     return EmitStaticVarDecl(D, Linkage);
138   }
139 
140   if (D.hasExternalStorage())
141     // Don't emit it now, allow it to be emitted lazily on its first use.
142     return;
143 
144   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
145     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
146 
147   assert(D.hasLocalStorage());
148   return EmitAutoVarDecl(D);
149 }
150 
151 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
152                                      const char *Separator) {
153   CodeGenModule &CGM = CGF.CGM;
154   if (CGF.getLangOpts().CPlusPlus) {
155     StringRef Name = CGM.getMangledName(&D);
156     return Name.str();
157   }
158 
159   std::string ContextName;
160   if (!CGF.CurFuncDecl) {
161     // Better be in a block declared in global scope.
162     const NamedDecl *ND = cast<NamedDecl>(&D);
163     const DeclContext *DC = ND->getDeclContext();
164     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
165       MangleBuffer Name;
166       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
167       ContextName = Name.getString();
168     }
169     else
170       llvm_unreachable("Unknown context for block static var decl");
171   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
172     StringRef Name = CGM.getMangledName(FD);
173     ContextName = Name.str();
174   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
175     ContextName = CGF.CurFn->getName();
176   else
177     llvm_unreachable("Unknown context for static var decl");
178 
179   return ContextName + Separator + D.getNameAsString();
180 }
181 
182 llvm::GlobalVariable *
183 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
184                                      const char *Separator,
185                                      llvm::GlobalValue::LinkageTypes Linkage) {
186   QualType Ty = D.getType();
187   assert(Ty->isConstantSizeType() && "VLAs can't be static");
188 
189   // Use the label if the variable is renamed with the asm-label extension.
190   std::string Name;
191   if (D.hasAttr<AsmLabelAttr>())
192     Name = CGM.getMangledName(&D);
193   else
194     Name = GetStaticDeclName(*this, D, Separator);
195 
196   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
197   unsigned AddrSpace =
198    CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
199   llvm::GlobalVariable *GV =
200     new llvm::GlobalVariable(CGM.getModule(), LTy,
201                              Ty.isConstant(getContext()), Linkage,
202                              CGM.EmitNullConstant(D.getType()), Name, 0,
203                              llvm::GlobalVariable::NotThreadLocal,
204                              AddrSpace);
205   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
206   CGM.setGlobalVisibility(GV, &D);
207 
208   if (D.getTLSKind())
209     CGM.setTLSMode(GV, D);
210 
211   return GV;
212 }
213 
214 /// hasNontrivialDestruction - Determine whether a type's destruction is
215 /// non-trivial. If so, and the variable uses static initialization, we must
216 /// register its destructor to run on exit.
217 static bool hasNontrivialDestruction(QualType T) {
218   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
219   return RD && !RD->hasTrivialDestructor();
220 }
221 
222 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
223 /// global variable that has already been created for it.  If the initializer
224 /// has a different type than GV does, this may free GV and return a different
225 /// one.  Otherwise it just returns GV.
226 llvm::GlobalVariable *
227 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
228                                                llvm::GlobalVariable *GV) {
229   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
230 
231   // If constant emission failed, then this should be a C++ static
232   // initializer.
233   if (!Init) {
234     if (!getLangOpts().CPlusPlus)
235       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
236     else if (Builder.GetInsertBlock()) {
237       // Since we have a static initializer, this global variable can't
238       // be constant.
239       GV->setConstant(false);
240 
241       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
242     }
243     return GV;
244   }
245 
246   // The initializer may differ in type from the global. Rewrite
247   // the global to match the initializer.  (We have to do this
248   // because some types, like unions, can't be completely represented
249   // in the LLVM type system.)
250   if (GV->getType()->getElementType() != Init->getType()) {
251     llvm::GlobalVariable *OldGV = GV;
252 
253     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
254                                   OldGV->isConstant(),
255                                   OldGV->getLinkage(), Init, "",
256                                   /*InsertBefore*/ OldGV,
257                                   OldGV->getThreadLocalMode(),
258                            CGM.getContext().getTargetAddressSpace(D.getType()));
259     GV->setVisibility(OldGV->getVisibility());
260 
261     // Steal the name of the old global
262     GV->takeName(OldGV);
263 
264     // Replace all uses of the old global with the new global
265     llvm::Constant *NewPtrForOldDecl =
266     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
267     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
268 
269     // Erase the old global, since it is no longer used.
270     OldGV->eraseFromParent();
271   }
272 
273   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
274   GV->setInitializer(Init);
275 
276   if (hasNontrivialDestruction(D.getType())) {
277     // We have a constant initializer, but a nontrivial destructor. We still
278     // need to perform a guarded "initialization" in order to register the
279     // destructor.
280     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
281   }
282 
283   return GV;
284 }
285 
286 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
287                                       llvm::GlobalValue::LinkageTypes Linkage) {
288   llvm::Value *&DMEntry = LocalDeclMap[&D];
289   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
290 
291   // Check to see if we already have a global variable for this
292   // declaration.  This can happen when double-emitting function
293   // bodies, e.g. with complete and base constructors.
294   llvm::Constant *addr =
295     CGM.getStaticLocalDeclAddress(&D);
296 
297   llvm::GlobalVariable *var;
298   if (addr) {
299     var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
300   } else {
301     addr = var = CreateStaticVarDecl(D, ".", Linkage);
302   }
303 
304   // Store into LocalDeclMap before generating initializer to handle
305   // circular references.
306   DMEntry = addr;
307   CGM.setStaticLocalDeclAddress(&D, addr);
308 
309   // We can't have a VLA here, but we can have a pointer to a VLA,
310   // even though that doesn't really make any sense.
311   // Make sure to evaluate VLA bounds now so that we have them for later.
312   if (D.getType()->isVariablyModifiedType())
313     EmitVariablyModifiedType(D.getType());
314 
315   // Save the type in case adding the initializer forces a type change.
316   llvm::Type *expectedType = addr->getType();
317 
318   // If this value has an initializer, emit it.
319   if (D.getInit())
320     var = AddInitializerToStaticVarDecl(D, var);
321 
322   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
323 
324   if (D.hasAttr<AnnotateAttr>())
325     CGM.AddGlobalAnnotations(&D, var);
326 
327   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
328     var->setSection(SA->getName());
329 
330   if (D.hasAttr<UsedAttr>())
331     CGM.AddUsedGlobal(var);
332 
333   // We may have to cast the constant because of the initializer
334   // mismatch above.
335   //
336   // FIXME: It is really dangerous to store this in the map; if anyone
337   // RAUW's the GV uses of this constant will be invalid.
338   llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
339   DMEntry = castedAddr;
340   CGM.setStaticLocalDeclAddress(&D, castedAddr);
341 
342   // Emit global variable debug descriptor for static vars.
343   CGDebugInfo *DI = getDebugInfo();
344   if (DI &&
345       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
346     DI->setLocation(D.getLocation());
347     DI->EmitGlobalVariable(var, &D);
348   }
349 }
350 
351 namespace {
352   struct DestroyObject : EHScopeStack::Cleanup {
353     DestroyObject(llvm::Value *addr, QualType type,
354                   CodeGenFunction::Destroyer *destroyer,
355                   bool useEHCleanupForArray)
356       : addr(addr), type(type), destroyer(destroyer),
357         useEHCleanupForArray(useEHCleanupForArray) {}
358 
359     llvm::Value *addr;
360     QualType type;
361     CodeGenFunction::Destroyer *destroyer;
362     bool useEHCleanupForArray;
363 
364     void Emit(CodeGenFunction &CGF, Flags flags) {
365       // Don't use an EH cleanup recursively from an EH cleanup.
366       bool useEHCleanupForArray =
367         flags.isForNormalCleanup() && this->useEHCleanupForArray;
368 
369       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
370     }
371   };
372 
373   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
374     DestroyNRVOVariable(llvm::Value *addr,
375                         const CXXDestructorDecl *Dtor,
376                         llvm::Value *NRVOFlag)
377       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
378 
379     const CXXDestructorDecl *Dtor;
380     llvm::Value *NRVOFlag;
381     llvm::Value *Loc;
382 
383     void Emit(CodeGenFunction &CGF, Flags flags) {
384       // Along the exceptions path we always execute the dtor.
385       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
386 
387       llvm::BasicBlock *SkipDtorBB = 0;
388       if (NRVO) {
389         // If we exited via NRVO, we skip the destructor call.
390         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
391         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
392         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
393         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
394         CGF.EmitBlock(RunDtorBB);
395       }
396 
397       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
398                                 /*ForVirtualBase=*/false,
399                                 /*Delegating=*/false,
400                                 Loc);
401 
402       if (NRVO) CGF.EmitBlock(SkipDtorBB);
403     }
404   };
405 
406   struct CallStackRestore : EHScopeStack::Cleanup {
407     llvm::Value *Stack;
408     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
409     void Emit(CodeGenFunction &CGF, Flags flags) {
410       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
411       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
412       CGF.Builder.CreateCall(F, V);
413     }
414   };
415 
416   struct ExtendGCLifetime : EHScopeStack::Cleanup {
417     const VarDecl &Var;
418     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
419 
420     void Emit(CodeGenFunction &CGF, Flags flags) {
421       // Compute the address of the local variable, in case it's a
422       // byref or something.
423       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
424                       Var.getType(), VK_LValue, SourceLocation());
425       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
426       CGF.EmitExtendGCLifetime(value);
427     }
428   };
429 
430   struct CallCleanupFunction : EHScopeStack::Cleanup {
431     llvm::Constant *CleanupFn;
432     const CGFunctionInfo &FnInfo;
433     const VarDecl &Var;
434 
435     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
436                         const VarDecl *Var)
437       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
438 
439     void Emit(CodeGenFunction &CGF, Flags flags) {
440       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
441                       Var.getType(), VK_LValue, SourceLocation());
442       // Compute the address of the local variable, in case it's a byref
443       // or something.
444       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
445 
446       // In some cases, the type of the function argument will be different from
447       // the type of the pointer. An example of this is
448       // void f(void* arg);
449       // __attribute__((cleanup(f))) void *g;
450       //
451       // To fix this we insert a bitcast here.
452       QualType ArgTy = FnInfo.arg_begin()->type;
453       llvm::Value *Arg =
454         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
455 
456       CallArgList Args;
457       Args.add(RValue::get(Arg),
458                CGF.getContext().getPointerType(Var.getType()));
459       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
460     }
461   };
462 
463   /// A cleanup to call @llvm.lifetime.end.
464   class CallLifetimeEnd : public EHScopeStack::Cleanup {
465     llvm::Value *Addr;
466     llvm::Value *Size;
467   public:
468     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
469       : Addr(addr), Size(size) {}
470 
471     void Emit(CodeGenFunction &CGF, Flags flags) {
472       llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
473       CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
474                               Size, castAddr)
475         ->setDoesNotThrow();
476     }
477   };
478 }
479 
480 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
481 /// variable with lifetime.
482 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
483                                     llvm::Value *addr,
484                                     Qualifiers::ObjCLifetime lifetime) {
485   switch (lifetime) {
486   case Qualifiers::OCL_None:
487     llvm_unreachable("present but none");
488 
489   case Qualifiers::OCL_ExplicitNone:
490     // nothing to do
491     break;
492 
493   case Qualifiers::OCL_Strong: {
494     CodeGenFunction::Destroyer *destroyer =
495       (var.hasAttr<ObjCPreciseLifetimeAttr>()
496        ? CodeGenFunction::destroyARCStrongPrecise
497        : CodeGenFunction::destroyARCStrongImprecise);
498 
499     CleanupKind cleanupKind = CGF.getARCCleanupKind();
500     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
501                     cleanupKind & EHCleanup);
502     break;
503   }
504   case Qualifiers::OCL_Autoreleasing:
505     // nothing to do
506     break;
507 
508   case Qualifiers::OCL_Weak:
509     // __weak objects always get EH cleanups; otherwise, exceptions
510     // could cause really nasty crashes instead of mere leaks.
511     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
512                     CodeGenFunction::destroyARCWeak,
513                     /*useEHCleanup*/ true);
514     break;
515   }
516 }
517 
518 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
519   if (const Expr *e = dyn_cast<Expr>(s)) {
520     // Skip the most common kinds of expressions that make
521     // hierarchy-walking expensive.
522     s = e = e->IgnoreParenCasts();
523 
524     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
525       return (ref->getDecl() == &var);
526     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
527       const BlockDecl *block = be->getBlockDecl();
528       for (BlockDecl::capture_const_iterator i = block->capture_begin(),
529            e = block->capture_end(); i != e; ++i) {
530         if (i->getVariable() == &var)
531           return true;
532       }
533     }
534   }
535 
536   for (Stmt::const_child_range children = s->children(); children; ++children)
537     // children might be null; as in missing decl or conditional of an if-stmt.
538     if ((*children) && isAccessedBy(var, *children))
539       return true;
540 
541   return false;
542 }
543 
544 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
545   if (!decl) return false;
546   if (!isa<VarDecl>(decl)) return false;
547   const VarDecl *var = cast<VarDecl>(decl);
548   return isAccessedBy(*var, e);
549 }
550 
551 static void drillIntoBlockVariable(CodeGenFunction &CGF,
552                                    LValue &lvalue,
553                                    const VarDecl *var) {
554   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
555 }
556 
557 void CodeGenFunction::EmitScalarInit(const Expr *init,
558                                      const ValueDecl *D,
559                                      LValue lvalue,
560                                      bool capturedByInit) {
561   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
562   if (!lifetime) {
563     llvm::Value *value = EmitScalarExpr(init);
564     if (capturedByInit)
565       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
566     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
567     return;
568   }
569 
570   // If we're emitting a value with lifetime, we have to do the
571   // initialization *before* we leave the cleanup scopes.
572   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
573     enterFullExpression(ewc);
574     init = ewc->getSubExpr();
575   }
576   CodeGenFunction::RunCleanupsScope Scope(*this);
577 
578   // We have to maintain the illusion that the variable is
579   // zero-initialized.  If the variable might be accessed in its
580   // initializer, zero-initialize before running the initializer, then
581   // actually perform the initialization with an assign.
582   bool accessedByInit = false;
583   if (lifetime != Qualifiers::OCL_ExplicitNone)
584     accessedByInit = (capturedByInit || isAccessedBy(D, init));
585   if (accessedByInit) {
586     LValue tempLV = lvalue;
587     // Drill down to the __block object if necessary.
588     if (capturedByInit) {
589       // We can use a simple GEP for this because it can't have been
590       // moved yet.
591       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
592                                    getByRefValueLLVMField(cast<VarDecl>(D))));
593     }
594 
595     llvm::PointerType *ty
596       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
597     ty = cast<llvm::PointerType>(ty->getElementType());
598 
599     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
600 
601     // If __weak, we want to use a barrier under certain conditions.
602     if (lifetime == Qualifiers::OCL_Weak)
603       EmitARCInitWeak(tempLV.getAddress(), zero);
604 
605     // Otherwise just do a simple store.
606     else
607       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
608   }
609 
610   // Emit the initializer.
611   llvm::Value *value = 0;
612 
613   switch (lifetime) {
614   case Qualifiers::OCL_None:
615     llvm_unreachable("present but none");
616 
617   case Qualifiers::OCL_ExplicitNone:
618     // nothing to do
619     value = EmitScalarExpr(init);
620     break;
621 
622   case Qualifiers::OCL_Strong: {
623     value = EmitARCRetainScalarExpr(init);
624     break;
625   }
626 
627   case Qualifiers::OCL_Weak: {
628     // No way to optimize a producing initializer into this.  It's not
629     // worth optimizing for, because the value will immediately
630     // disappear in the common case.
631     value = EmitScalarExpr(init);
632 
633     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
634     if (accessedByInit)
635       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
636     else
637       EmitARCInitWeak(lvalue.getAddress(), value);
638     return;
639   }
640 
641   case Qualifiers::OCL_Autoreleasing:
642     value = EmitARCRetainAutoreleaseScalarExpr(init);
643     break;
644   }
645 
646   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
647 
648   // If the variable might have been accessed by its initializer, we
649   // might have to initialize with a barrier.  We have to do this for
650   // both __weak and __strong, but __weak got filtered out above.
651   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
652     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
653     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
654     EmitARCRelease(oldValue, ARCImpreciseLifetime);
655     return;
656   }
657 
658   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
659 }
660 
661 /// EmitScalarInit - Initialize the given lvalue with the given object.
662 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
663   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
664   if (!lifetime)
665     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
666 
667   switch (lifetime) {
668   case Qualifiers::OCL_None:
669     llvm_unreachable("present but none");
670 
671   case Qualifiers::OCL_ExplicitNone:
672     // nothing to do
673     break;
674 
675   case Qualifiers::OCL_Strong:
676     init = EmitARCRetain(lvalue.getType(), init);
677     break;
678 
679   case Qualifiers::OCL_Weak:
680     // Initialize and then skip the primitive store.
681     EmitARCInitWeak(lvalue.getAddress(), init);
682     return;
683 
684   case Qualifiers::OCL_Autoreleasing:
685     init = EmitARCRetainAutorelease(lvalue.getType(), init);
686     break;
687   }
688 
689   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
690 }
691 
692 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
693 /// non-zero parts of the specified initializer with equal or fewer than
694 /// NumStores scalar stores.
695 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
696                                                 unsigned &NumStores) {
697   // Zero and Undef never requires any extra stores.
698   if (isa<llvm::ConstantAggregateZero>(Init) ||
699       isa<llvm::ConstantPointerNull>(Init) ||
700       isa<llvm::UndefValue>(Init))
701     return true;
702   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
703       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
704       isa<llvm::ConstantExpr>(Init))
705     return Init->isNullValue() || NumStores--;
706 
707   // See if we can emit each element.
708   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
709     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
710       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
711       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
712         return false;
713     }
714     return true;
715   }
716 
717   if (llvm::ConstantDataSequential *CDS =
718         dyn_cast<llvm::ConstantDataSequential>(Init)) {
719     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
720       llvm::Constant *Elt = CDS->getElementAsConstant(i);
721       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
722         return false;
723     }
724     return true;
725   }
726 
727   // Anything else is hard and scary.
728   return false;
729 }
730 
731 /// emitStoresForInitAfterMemset - For inits that
732 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
733 /// stores that would be required.
734 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
735                                          bool isVolatile, CGBuilderTy &Builder) {
736   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
737          "called emitStoresForInitAfterMemset for zero or undef value.");
738 
739   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
740       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
741       isa<llvm::ConstantExpr>(Init)) {
742     Builder.CreateStore(Init, Loc, isVolatile);
743     return;
744   }
745 
746   if (llvm::ConstantDataSequential *CDS =
747         dyn_cast<llvm::ConstantDataSequential>(Init)) {
748     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
749       llvm::Constant *Elt = CDS->getElementAsConstant(i);
750 
751       // If necessary, get a pointer to the element and emit it.
752       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
753         emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
754                                      isVolatile, Builder);
755     }
756     return;
757   }
758 
759   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
760          "Unknown value type!");
761 
762   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
763     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
764 
765     // If necessary, get a pointer to the element and emit it.
766     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
767       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
768                                    isVolatile, Builder);
769   }
770 }
771 
772 
773 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
774 /// plus some stores to initialize a local variable instead of using a memcpy
775 /// from a constant global.  It is beneficial to use memset if the global is all
776 /// zeros, or mostly zeros and large.
777 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
778                                                   uint64_t GlobalSize) {
779   // If a global is all zeros, always use a memset.
780   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
781 
782   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
783   // do it if it will require 6 or fewer scalar stores.
784   // TODO: Should budget depends on the size?  Avoiding a large global warrants
785   // plopping in more stores.
786   unsigned StoreBudget = 6;
787   uint64_t SizeLimit = 32;
788 
789   return GlobalSize > SizeLimit &&
790          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
791 }
792 
793 /// Should we use the LLVM lifetime intrinsics for the given local variable?
794 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
795                                      unsigned Size) {
796   // Always emit lifetime markers in -fsanitize=use-after-scope mode.
797   if (CGF.getLangOpts().Sanitize.UseAfterScope)
798     return true;
799   // For now, only in optimized builds.
800   if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
801     return false;
802 
803   // Limit the size of marked objects to 32 bytes. We don't want to increase
804   // compile time by marking tiny objects.
805   unsigned SizeThreshold = 32;
806 
807   return Size > SizeThreshold;
808 }
809 
810 
811 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
812 /// variable declaration with auto, register, or no storage class specifier.
813 /// These turn into simple stack objects, or GlobalValues depending on target.
814 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
815   AutoVarEmission emission = EmitAutoVarAlloca(D);
816   EmitAutoVarInit(emission);
817   EmitAutoVarCleanups(emission);
818 }
819 
820 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
821 /// local variable.  Does not emit initalization or destruction.
822 CodeGenFunction::AutoVarEmission
823 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
824   QualType Ty = D.getType();
825 
826   AutoVarEmission emission(D);
827 
828   bool isByRef = D.hasAttr<BlocksAttr>();
829   emission.IsByRef = isByRef;
830 
831   CharUnits alignment = getContext().getDeclAlign(&D);
832   emission.Alignment = alignment;
833 
834   // If the type is variably-modified, emit all the VLA sizes for it.
835   if (Ty->isVariablyModifiedType())
836     EmitVariablyModifiedType(Ty);
837 
838   llvm::Value *DeclPtr;
839   if (Ty->isConstantSizeType()) {
840     bool NRVO = getLangOpts().ElideConstructors &&
841       D.isNRVOVariable();
842 
843     // If this value is an array or struct with a statically determinable
844     // constant initializer, there are optimizations we can do.
845     //
846     // TODO: We should constant-evaluate the initializer of any variable,
847     // as long as it is initialized by a constant expression. Currently,
848     // isConstantInitializer produces wrong answers for structs with
849     // reference or bitfield members, and a few other cases, and checking
850     // for POD-ness protects us from some of these.
851     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
852         (D.isConstexpr() ||
853          ((Ty.isPODType(getContext()) ||
854            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
855           D.getInit()->isConstantInitializer(getContext(), false)))) {
856 
857       // If the variable's a const type, and it's neither an NRVO
858       // candidate nor a __block variable and has no mutable members,
859       // emit it as a global instead.
860       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
861           CGM.isTypeConstant(Ty, true)) {
862         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
863 
864         emission.Address = 0; // signal this condition to later callbacks
865         assert(emission.wasEmittedAsGlobal());
866         return emission;
867       }
868 
869       // Otherwise, tell the initialization code that we're in this case.
870       emission.IsConstantAggregate = true;
871     }
872 
873     // A normal fixed sized variable becomes an alloca in the entry block,
874     // unless it's an NRVO variable.
875     llvm::Type *LTy = ConvertTypeForMem(Ty);
876 
877     if (NRVO) {
878       // The named return value optimization: allocate this variable in the
879       // return slot, so that we can elide the copy when returning this
880       // variable (C++0x [class.copy]p34).
881       DeclPtr = ReturnValue;
882 
883       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
884         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
885           // Create a flag that is used to indicate when the NRVO was applied
886           // to this variable. Set it to zero to indicate that NRVO was not
887           // applied.
888           llvm::Value *Zero = Builder.getFalse();
889           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
890           EnsureInsertPoint();
891           Builder.CreateStore(Zero, NRVOFlag);
892 
893           // Record the NRVO flag for this variable.
894           NRVOFlags[&D] = NRVOFlag;
895           emission.NRVOFlag = NRVOFlag;
896         }
897       }
898     } else {
899       if (isByRef)
900         LTy = BuildByRefType(&D);
901 
902       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
903       Alloc->setName(D.getName());
904 
905       CharUnits allocaAlignment = alignment;
906       if (isByRef)
907         allocaAlignment = std::max(allocaAlignment,
908             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
909       Alloc->setAlignment(allocaAlignment.getQuantity());
910       DeclPtr = Alloc;
911 
912       // Emit a lifetime intrinsic if meaningful.  There's no point
913       // in doing this if we don't have a valid insertion point (?).
914       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
915       if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
916         llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
917 
918         emission.SizeForLifetimeMarkers = sizeV;
919         llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
920         Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
921           ->setDoesNotThrow();
922       } else {
923         assert(!emission.useLifetimeMarkers());
924       }
925     }
926   } else {
927     EnsureInsertPoint();
928 
929     if (!DidCallStackSave) {
930       // Save the stack.
931       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
932 
933       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
934       llvm::Value *V = Builder.CreateCall(F);
935 
936       Builder.CreateStore(V, Stack);
937 
938       DidCallStackSave = true;
939 
940       // Push a cleanup block and restore the stack there.
941       // FIXME: in general circumstances, this should be an EH cleanup.
942       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
943     }
944 
945     llvm::Value *elementCount;
946     QualType elementType;
947     llvm::tie(elementCount, elementType) = getVLASize(Ty);
948 
949     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
950 
951     // Allocate memory for the array.
952     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
953     vla->setAlignment(alignment.getQuantity());
954 
955     DeclPtr = vla;
956   }
957 
958   llvm::Value *&DMEntry = LocalDeclMap[&D];
959   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
960   DMEntry = DeclPtr;
961   emission.Address = DeclPtr;
962 
963   // Emit debug info for local var declaration.
964   if (HaveInsertPoint())
965     if (CGDebugInfo *DI = getDebugInfo()) {
966       if (CGM.getCodeGenOpts().getDebugInfo()
967             >= CodeGenOptions::LimitedDebugInfo) {
968         DI->setLocation(D.getLocation());
969         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
970       }
971     }
972 
973   if (D.hasAttr<AnnotateAttr>())
974       EmitVarAnnotations(&D, emission.Address);
975 
976   return emission;
977 }
978 
979 /// Determines whether the given __block variable is potentially
980 /// captured by the given expression.
981 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
982   // Skip the most common kinds of expressions that make
983   // hierarchy-walking expensive.
984   e = e->IgnoreParenCasts();
985 
986   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
987     const BlockDecl *block = be->getBlockDecl();
988     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
989            e = block->capture_end(); i != e; ++i) {
990       if (i->getVariable() == &var)
991         return true;
992     }
993 
994     // No need to walk into the subexpressions.
995     return false;
996   }
997 
998   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
999     const CompoundStmt *CS = SE->getSubStmt();
1000     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
1001 	   BE = CS->body_end(); BI != BE; ++BI)
1002       if (Expr *E = dyn_cast<Expr>((*BI))) {
1003         if (isCapturedBy(var, E))
1004             return true;
1005       }
1006       else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
1007           // special case declarations
1008           for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1009                I != E; ++I) {
1010               if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
1011                 Expr *Init = VD->getInit();
1012                 if (Init && isCapturedBy(var, Init))
1013                   return true;
1014               }
1015           }
1016       }
1017       else
1018         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1019         // Later, provide code to poke into statements for capture analysis.
1020         return true;
1021     return false;
1022   }
1023 
1024   for (Stmt::const_child_range children = e->children(); children; ++children)
1025     if (isCapturedBy(var, cast<Expr>(*children)))
1026       return true;
1027 
1028   return false;
1029 }
1030 
1031 /// \brief Determine whether the given initializer is trivial in the sense
1032 /// that it requires no code to be generated.
1033 static bool isTrivialInitializer(const Expr *Init) {
1034   if (!Init)
1035     return true;
1036 
1037   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1038     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1039       if (Constructor->isTrivial() &&
1040           Constructor->isDefaultConstructor() &&
1041           !Construct->requiresZeroInitialization())
1042         return true;
1043 
1044   return false;
1045 }
1046 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1047   assert(emission.Variable && "emission was not valid!");
1048 
1049   // If this was emitted as a global constant, we're done.
1050   if (emission.wasEmittedAsGlobal()) return;
1051 
1052   const VarDecl &D = *emission.Variable;
1053   QualType type = D.getType();
1054 
1055   // If this local has an initializer, emit it now.
1056   const Expr *Init = D.getInit();
1057 
1058   // If we are at an unreachable point, we don't need to emit the initializer
1059   // unless it contains a label.
1060   if (!HaveInsertPoint()) {
1061     if (!Init || !ContainsLabel(Init)) return;
1062     EnsureInsertPoint();
1063   }
1064 
1065   // Initialize the structure of a __block variable.
1066   if (emission.IsByRef)
1067     emitByrefStructureInit(emission);
1068 
1069   if (isTrivialInitializer(Init))
1070     return;
1071 
1072   CharUnits alignment = emission.Alignment;
1073 
1074   // Check whether this is a byref variable that's potentially
1075   // captured and moved by its own initializer.  If so, we'll need to
1076   // emit the initializer first, then copy into the variable.
1077   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1078 
1079   llvm::Value *Loc =
1080     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1081 
1082   llvm::Constant *constant = 0;
1083   if (emission.IsConstantAggregate || D.isConstexpr()) {
1084     assert(!capturedByInit && "constant init contains a capturing block?");
1085     constant = CGM.EmitConstantInit(D, this);
1086   }
1087 
1088   if (!constant) {
1089     LValue lv = MakeAddrLValue(Loc, type, alignment);
1090     lv.setNonGC(true);
1091     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1092   }
1093 
1094   if (!emission.IsConstantAggregate) {
1095     // For simple scalar/complex initialization, store the value directly.
1096     LValue lv = MakeAddrLValue(Loc, type, alignment);
1097     lv.setNonGC(true);
1098     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1099   }
1100 
1101   // If this is a simple aggregate initialization, we can optimize it
1102   // in various ways.
1103   bool isVolatile = type.isVolatileQualified();
1104 
1105   llvm::Value *SizeVal =
1106     llvm::ConstantInt::get(IntPtrTy,
1107                            getContext().getTypeSizeInChars(type).getQuantity());
1108 
1109   llvm::Type *BP = Int8PtrTy;
1110   if (Loc->getType() != BP)
1111     Loc = Builder.CreateBitCast(Loc, BP);
1112 
1113   // If the initializer is all or mostly zeros, codegen with memset then do
1114   // a few stores afterward.
1115   if (shouldUseMemSetPlusStoresToInitialize(constant,
1116                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1117     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1118                          alignment.getQuantity(), isVolatile);
1119     // Zero and undef don't require a stores.
1120     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1121       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1122       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1123     }
1124   } else {
1125     // Otherwise, create a temporary global with the initializer then
1126     // memcpy from the global to the alloca.
1127     std::string Name = GetStaticDeclName(*this, D, ".");
1128     llvm::GlobalVariable *GV =
1129       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1130                                llvm::GlobalValue::PrivateLinkage,
1131                                constant, Name);
1132     GV->setAlignment(alignment.getQuantity());
1133     GV->setUnnamedAddr(true);
1134 
1135     llvm::Value *SrcPtr = GV;
1136     if (SrcPtr->getType() != BP)
1137       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1138 
1139     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1140                          isVolatile);
1141   }
1142 }
1143 
1144 /// Emit an expression as an initializer for a variable at the given
1145 /// location.  The expression is not necessarily the normal
1146 /// initializer for the variable, and the address is not necessarily
1147 /// its normal location.
1148 ///
1149 /// \param init the initializing expression
1150 /// \param var the variable to act as if we're initializing
1151 /// \param loc the address to initialize; its type is a pointer
1152 ///   to the LLVM mapping of the variable's type
1153 /// \param alignment the alignment of the address
1154 /// \param capturedByInit true if the variable is a __block variable
1155 ///   whose address is potentially changed by the initializer
1156 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1157                                      const ValueDecl *D,
1158                                      LValue lvalue,
1159                                      bool capturedByInit) {
1160   QualType type = D->getType();
1161 
1162   if (type->isReferenceType()) {
1163     RValue rvalue = EmitReferenceBindingToExpr(init);
1164     if (capturedByInit)
1165       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1166     EmitStoreThroughLValue(rvalue, lvalue, true);
1167     return;
1168   }
1169   switch (getEvaluationKind(type)) {
1170   case TEK_Scalar:
1171     EmitScalarInit(init, D, lvalue, capturedByInit);
1172     return;
1173   case TEK_Complex: {
1174     ComplexPairTy complex = EmitComplexExpr(init);
1175     if (capturedByInit)
1176       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1177     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1178     return;
1179   }
1180   case TEK_Aggregate:
1181     if (type->isAtomicType()) {
1182       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1183     } else {
1184       // TODO: how can we delay here if D is captured by its initializer?
1185       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1186                                               AggValueSlot::IsDestructed,
1187                                          AggValueSlot::DoesNotNeedGCBarriers,
1188                                               AggValueSlot::IsNotAliased));
1189     }
1190     return;
1191   }
1192   llvm_unreachable("bad evaluation kind");
1193 }
1194 
1195 /// Enter a destroy cleanup for the given local variable.
1196 void CodeGenFunction::emitAutoVarTypeCleanup(
1197                             const CodeGenFunction::AutoVarEmission &emission,
1198                             QualType::DestructionKind dtorKind) {
1199   assert(dtorKind != QualType::DK_none);
1200 
1201   // Note that for __block variables, we want to destroy the
1202   // original stack object, not the possibly forwarded object.
1203   llvm::Value *addr = emission.getObjectAddress(*this);
1204 
1205   const VarDecl *var = emission.Variable;
1206   QualType type = var->getType();
1207 
1208   CleanupKind cleanupKind = NormalAndEHCleanup;
1209   CodeGenFunction::Destroyer *destroyer = 0;
1210 
1211   switch (dtorKind) {
1212   case QualType::DK_none:
1213     llvm_unreachable("no cleanup for trivially-destructible variable");
1214 
1215   case QualType::DK_cxx_destructor:
1216     // If there's an NRVO flag on the emission, we need a different
1217     // cleanup.
1218     if (emission.NRVOFlag) {
1219       assert(!type->isArrayType());
1220       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1221       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1222                                                emission.NRVOFlag);
1223       return;
1224     }
1225     break;
1226 
1227   case QualType::DK_objc_strong_lifetime:
1228     // Suppress cleanups for pseudo-strong variables.
1229     if (var->isARCPseudoStrong()) return;
1230 
1231     // Otherwise, consider whether to use an EH cleanup or not.
1232     cleanupKind = getARCCleanupKind();
1233 
1234     // Use the imprecise destroyer by default.
1235     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1236       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1237     break;
1238 
1239   case QualType::DK_objc_weak_lifetime:
1240     break;
1241   }
1242 
1243   // If we haven't chosen a more specific destroyer, use the default.
1244   if (!destroyer) destroyer = getDestroyer(dtorKind);
1245 
1246   // Use an EH cleanup in array destructors iff the destructor itself
1247   // is being pushed as an EH cleanup.
1248   bool useEHCleanup = (cleanupKind & EHCleanup);
1249   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1250                                      useEHCleanup);
1251 }
1252 
1253 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1254   assert(emission.Variable && "emission was not valid!");
1255 
1256   // If this was emitted as a global constant, we're done.
1257   if (emission.wasEmittedAsGlobal()) return;
1258 
1259   // If we don't have an insertion point, we're done.  Sema prevents
1260   // us from jumping into any of these scopes anyway.
1261   if (!HaveInsertPoint()) return;
1262 
1263   const VarDecl &D = *emission.Variable;
1264 
1265   // Make sure we call @llvm.lifetime.end.  This needs to happen
1266   // *last*, so the cleanup needs to be pushed *first*.
1267   if (emission.useLifetimeMarkers()) {
1268     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1269                                          emission.getAllocatedAddress(),
1270                                          emission.getSizeForLifetimeMarkers());
1271   }
1272 
1273   // Check the type for a cleanup.
1274   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1275     emitAutoVarTypeCleanup(emission, dtorKind);
1276 
1277   // In GC mode, honor objc_precise_lifetime.
1278   if (getLangOpts().getGC() != LangOptions::NonGC &&
1279       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1280     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1281   }
1282 
1283   // Handle the cleanup attribute.
1284   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1285     const FunctionDecl *FD = CA->getFunctionDecl();
1286 
1287     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1288     assert(F && "Could not find function!");
1289 
1290     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1291     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1292   }
1293 
1294   // If this is a block variable, call _Block_object_destroy
1295   // (on the unforwarded address).
1296   if (emission.IsByRef)
1297     enterByrefCleanup(emission);
1298 }
1299 
1300 CodeGenFunction::Destroyer *
1301 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1302   switch (kind) {
1303   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1304   case QualType::DK_cxx_destructor:
1305     return destroyCXXObject;
1306   case QualType::DK_objc_strong_lifetime:
1307     return destroyARCStrongPrecise;
1308   case QualType::DK_objc_weak_lifetime:
1309     return destroyARCWeak;
1310   }
1311   llvm_unreachable("Unknown DestructionKind");
1312 }
1313 
1314 /// pushEHDestroy - Push the standard destructor for the given type as
1315 /// an EH-only cleanup.
1316 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1317                                   llvm::Value *addr, QualType type) {
1318   assert(dtorKind && "cannot push destructor for trivial type");
1319   assert(needsEHCleanup(dtorKind));
1320 
1321   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1322 }
1323 
1324 /// pushDestroy - Push the standard destructor for the given type as
1325 /// at least a normal cleanup.
1326 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1327                                   llvm::Value *addr, QualType type) {
1328   assert(dtorKind && "cannot push destructor for trivial type");
1329 
1330   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1331   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1332               cleanupKind & EHCleanup);
1333 }
1334 
1335 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1336                                   QualType type, Destroyer *destroyer,
1337                                   bool useEHCleanupForArray) {
1338   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1339                                      destroyer, useEHCleanupForArray);
1340 }
1341 
1342 void CodeGenFunction::pushLifetimeExtendedDestroy(
1343     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1344     Destroyer *destroyer, bool useEHCleanupForArray) {
1345   assert(!isInConditionalBranch() &&
1346          "performing lifetime extension from within conditional");
1347 
1348   // Push an EH-only cleanup for the object now.
1349   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1350   // around in case a temporary's destructor throws an exception.
1351   if (cleanupKind & EHCleanup)
1352     EHStack.pushCleanup<DestroyObject>(
1353         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1354         destroyer, useEHCleanupForArray);
1355 
1356   // Remember that we need to push a full cleanup for the object at the
1357   // end of the full-expression.
1358   pushCleanupAfterFullExpr<DestroyObject>(
1359       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1360 }
1361 
1362 /// emitDestroy - Immediately perform the destruction of the given
1363 /// object.
1364 ///
1365 /// \param addr - the address of the object; a type*
1366 /// \param type - the type of the object; if an array type, all
1367 ///   objects are destroyed in reverse order
1368 /// \param destroyer - the function to call to destroy individual
1369 ///   elements
1370 /// \param useEHCleanupForArray - whether an EH cleanup should be
1371 ///   used when destroying array elements, in case one of the
1372 ///   destructions throws an exception
1373 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1374                                   Destroyer *destroyer,
1375                                   bool useEHCleanupForArray) {
1376   const ArrayType *arrayType = getContext().getAsArrayType(type);
1377   if (!arrayType)
1378     return destroyer(*this, addr, type);
1379 
1380   llvm::Value *begin = addr;
1381   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1382 
1383   // Normally we have to check whether the array is zero-length.
1384   bool checkZeroLength = true;
1385 
1386   // But if the array length is constant, we can suppress that.
1387   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1388     // ...and if it's constant zero, we can just skip the entire thing.
1389     if (constLength->isZero()) return;
1390     checkZeroLength = false;
1391   }
1392 
1393   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1394   emitArrayDestroy(begin, end, type, destroyer,
1395                    checkZeroLength, useEHCleanupForArray);
1396 }
1397 
1398 /// emitArrayDestroy - Destroys all the elements of the given array,
1399 /// beginning from last to first.  The array cannot be zero-length.
1400 ///
1401 /// \param begin - a type* denoting the first element of the array
1402 /// \param end - a type* denoting one past the end of the array
1403 /// \param type - the element type of the array
1404 /// \param destroyer - the function to call to destroy elements
1405 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1406 ///   the remaining elements in case the destruction of a single
1407 ///   element throws
1408 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1409                                        llvm::Value *end,
1410                                        QualType type,
1411                                        Destroyer *destroyer,
1412                                        bool checkZeroLength,
1413                                        bool useEHCleanup) {
1414   assert(!type->isArrayType());
1415 
1416   // The basic structure here is a do-while loop, because we don't
1417   // need to check for the zero-element case.
1418   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1419   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1420 
1421   if (checkZeroLength) {
1422     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1423                                                 "arraydestroy.isempty");
1424     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1425   }
1426 
1427   // Enter the loop body, making that address the current address.
1428   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1429   EmitBlock(bodyBB);
1430   llvm::PHINode *elementPast =
1431     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1432   elementPast->addIncoming(end, entryBB);
1433 
1434   // Shift the address back by one element.
1435   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1436   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1437                                                    "arraydestroy.element");
1438 
1439   if (useEHCleanup)
1440     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1441 
1442   // Perform the actual destruction there.
1443   destroyer(*this, element, type);
1444 
1445   if (useEHCleanup)
1446     PopCleanupBlock();
1447 
1448   // Check whether we've reached the end.
1449   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1450   Builder.CreateCondBr(done, doneBB, bodyBB);
1451   elementPast->addIncoming(element, Builder.GetInsertBlock());
1452 
1453   // Done.
1454   EmitBlock(doneBB);
1455 }
1456 
1457 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1458 /// emitArrayDestroy, the element type here may still be an array type.
1459 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1460                                     llvm::Value *begin, llvm::Value *end,
1461                                     QualType type,
1462                                     CodeGenFunction::Destroyer *destroyer) {
1463   // If the element type is itself an array, drill down.
1464   unsigned arrayDepth = 0;
1465   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1466     // VLAs don't require a GEP index to walk into.
1467     if (!isa<VariableArrayType>(arrayType))
1468       arrayDepth++;
1469     type = arrayType->getElementType();
1470   }
1471 
1472   if (arrayDepth) {
1473     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1474 
1475     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1476     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1477     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1478   }
1479 
1480   // Destroy the array.  We don't ever need an EH cleanup because we
1481   // assume that we're in an EH cleanup ourselves, so a throwing
1482   // destructor causes an immediate terminate.
1483   CGF.emitArrayDestroy(begin, end, type, destroyer,
1484                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1485 }
1486 
1487 namespace {
1488   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1489   /// array destroy where the end pointer is regularly determined and
1490   /// does not need to be loaded from a local.
1491   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1492     llvm::Value *ArrayBegin;
1493     llvm::Value *ArrayEnd;
1494     QualType ElementType;
1495     CodeGenFunction::Destroyer *Destroyer;
1496   public:
1497     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1498                                QualType elementType,
1499                                CodeGenFunction::Destroyer *destroyer)
1500       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1501         ElementType(elementType), Destroyer(destroyer) {}
1502 
1503     void Emit(CodeGenFunction &CGF, Flags flags) {
1504       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1505                               ElementType, Destroyer);
1506     }
1507   };
1508 
1509   /// IrregularPartialArrayDestroy - a cleanup which performs a
1510   /// partial array destroy where the end pointer is irregularly
1511   /// determined and must be loaded from a local.
1512   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1513     llvm::Value *ArrayBegin;
1514     llvm::Value *ArrayEndPointer;
1515     QualType ElementType;
1516     CodeGenFunction::Destroyer *Destroyer;
1517   public:
1518     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1519                                  llvm::Value *arrayEndPointer,
1520                                  QualType elementType,
1521                                  CodeGenFunction::Destroyer *destroyer)
1522       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1523         ElementType(elementType), Destroyer(destroyer) {}
1524 
1525     void Emit(CodeGenFunction &CGF, Flags flags) {
1526       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1527       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1528                               ElementType, Destroyer);
1529     }
1530   };
1531 }
1532 
1533 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1534 /// already-constructed elements of the given array.  The cleanup
1535 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1536 ///
1537 /// \param elementType - the immediate element type of the array;
1538 ///   possibly still an array type
1539 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1540                                                  llvm::Value *arrayEndPointer,
1541                                                        QualType elementType,
1542                                                        Destroyer *destroyer) {
1543   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1544                                                     arrayBegin, arrayEndPointer,
1545                                                     elementType, destroyer);
1546 }
1547 
1548 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1549 /// already-constructed elements of the given array.  The cleanup
1550 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1551 ///
1552 /// \param elementType - the immediate element type of the array;
1553 ///   possibly still an array type
1554 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1555                                                      llvm::Value *arrayEnd,
1556                                                      QualType elementType,
1557                                                      Destroyer *destroyer) {
1558   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1559                                                   arrayBegin, arrayEnd,
1560                                                   elementType, destroyer);
1561 }
1562 
1563 /// Lazily declare the @llvm.lifetime.start intrinsic.
1564 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1565   if (LifetimeStartFn) return LifetimeStartFn;
1566   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1567                                             llvm::Intrinsic::lifetime_start);
1568   return LifetimeStartFn;
1569 }
1570 
1571 /// Lazily declare the @llvm.lifetime.end intrinsic.
1572 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1573   if (LifetimeEndFn) return LifetimeEndFn;
1574   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1575                                               llvm::Intrinsic::lifetime_end);
1576   return LifetimeEndFn;
1577 }
1578 
1579 namespace {
1580   /// A cleanup to perform a release of an object at the end of a
1581   /// function.  This is used to balance out the incoming +1 of a
1582   /// ns_consumed argument when we can't reasonably do that just by
1583   /// not doing the initial retain for a __block argument.
1584   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1585     ConsumeARCParameter(llvm::Value *param,
1586                         ARCPreciseLifetime_t precise)
1587       : Param(param), Precise(precise) {}
1588 
1589     llvm::Value *Param;
1590     ARCPreciseLifetime_t Precise;
1591 
1592     void Emit(CodeGenFunction &CGF, Flags flags) {
1593       CGF.EmitARCRelease(Param, Precise);
1594     }
1595   };
1596 }
1597 
1598 /// Emit an alloca (or GlobalValue depending on target)
1599 /// for the specified parameter and set up LocalDeclMap.
1600 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1601                                    unsigned ArgNo) {
1602   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1603   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1604          "Invalid argument to EmitParmDecl");
1605 
1606   Arg->setName(D.getName());
1607 
1608   QualType Ty = D.getType();
1609 
1610   // Use better IR generation for certain implicit parameters.
1611   if (isa<ImplicitParamDecl>(D)) {
1612     // The only implicit argument a block has is its literal.
1613     if (BlockInfo) {
1614       LocalDeclMap[&D] = Arg;
1615       llvm::Value *LocalAddr = 0;
1616       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1617         // Allocate a stack slot to let the debug info survive the RA.
1618         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1619                                                    D.getName() + ".addr");
1620         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1621         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1622         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1623         LocalAddr = Builder.CreateLoad(Alloc);
1624       }
1625 
1626       if (CGDebugInfo *DI = getDebugInfo()) {
1627         if (CGM.getCodeGenOpts().getDebugInfo()
1628               >= CodeGenOptions::LimitedDebugInfo) {
1629           DI->setLocation(D.getLocation());
1630           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1631         }
1632       }
1633 
1634       return;
1635     }
1636   }
1637 
1638   llvm::Value *DeclPtr;
1639   bool HasNonScalarEvalKind = !CodeGenFunction::hasScalarEvaluationKind(Ty);
1640   // If this is an aggregate or variable sized value, reuse the input pointer.
1641   if (HasNonScalarEvalKind || !Ty->isConstantSizeType()) {
1642     DeclPtr = Arg;
1643     // Push a destructor cleanup for this parameter if the ABI requires it.
1644     if (HasNonScalarEvalKind &&
1645         getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
1646       if (const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl()) {
1647         if (RD->hasNonTrivialDestructor())
1648           pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1649       }
1650     }
1651   } else {
1652     // Otherwise, create a temporary to hold the value.
1653     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1654                                                D.getName() + ".addr");
1655     CharUnits Align = getContext().getDeclAlign(&D);
1656     Alloc->setAlignment(Align.getQuantity());
1657     DeclPtr = Alloc;
1658 
1659     bool doStore = true;
1660 
1661     Qualifiers qs = Ty.getQualifiers();
1662     LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1663     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1664       // We honor __attribute__((ns_consumed)) for types with lifetime.
1665       // For __strong, it's handled by just skipping the initial retain;
1666       // otherwise we have to balance out the initial +1 with an extra
1667       // cleanup to do the release at the end of the function.
1668       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1669 
1670       // 'self' is always formally __strong, but if this is not an
1671       // init method then we don't want to retain it.
1672       if (D.isARCPseudoStrong()) {
1673         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1674         assert(&D == method->getSelfDecl());
1675         assert(lt == Qualifiers::OCL_Strong);
1676         assert(qs.hasConst());
1677         assert(method->getMethodFamily() != OMF_init);
1678         (void) method;
1679         lt = Qualifiers::OCL_ExplicitNone;
1680       }
1681 
1682       if (lt == Qualifiers::OCL_Strong) {
1683         if (!isConsumed) {
1684           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1685             // use objc_storeStrong(&dest, value) for retaining the
1686             // object. But first, store a null into 'dest' because
1687             // objc_storeStrong attempts to release its old value.
1688             llvm::Value * Null = CGM.EmitNullConstant(D.getType());
1689             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1690             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1691             doStore = false;
1692           }
1693           else
1694           // Don't use objc_retainBlock for block pointers, because we
1695           // don't want to Block_copy something just because we got it
1696           // as a parameter.
1697             Arg = EmitARCRetainNonBlock(Arg);
1698         }
1699       } else {
1700         // Push the cleanup for a consumed parameter.
1701         if (isConsumed) {
1702           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1703                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1704           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1705                                                    precise);
1706         }
1707 
1708         if (lt == Qualifiers::OCL_Weak) {
1709           EmitARCInitWeak(DeclPtr, Arg);
1710           doStore = false; // The weak init is a store, no need to do two.
1711         }
1712       }
1713 
1714       // Enter the cleanup scope.
1715       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1716     }
1717 
1718     // Store the initial value into the alloca.
1719     if (doStore)
1720       EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1721   }
1722 
1723   llvm::Value *&DMEntry = LocalDeclMap[&D];
1724   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1725   DMEntry = DeclPtr;
1726 
1727   // Emit debug info for param declaration.
1728   if (CGDebugInfo *DI = getDebugInfo()) {
1729     if (CGM.getCodeGenOpts().getDebugInfo()
1730           >= CodeGenOptions::LimitedDebugInfo) {
1731       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1732     }
1733   }
1734 
1735   if (D.hasAttr<AnnotateAttr>())
1736       EmitVarAnnotations(&D, DeclPtr);
1737 }
1738