1 //===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the debug information generation while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/DeclFriend.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/Expr.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/AST/RecursiveASTVisitor.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/FileManager.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/Version.h" 33 #include "clang/Frontend/FrontendOptions.h" 34 #include "clang/Lex/HeaderSearchOptions.h" 35 #include "clang/Lex/ModuleMap.h" 36 #include "clang/Lex/PreprocessorOptions.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/StringExtras.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/MD5.h" 49 #include "llvm/Support/Path.h" 50 #include "llvm/Support/TimeProfiler.h" 51 using namespace clang; 52 using namespace clang::CodeGen; 53 54 static uint32_t getTypeAlignIfRequired(const Type *Ty, const ASTContext &Ctx) { 55 auto TI = Ctx.getTypeInfo(Ty); 56 return TI.isAlignRequired() ? TI.Align : 0; 57 } 58 59 static uint32_t getTypeAlignIfRequired(QualType Ty, const ASTContext &Ctx) { 60 return getTypeAlignIfRequired(Ty.getTypePtr(), Ctx); 61 } 62 63 static uint32_t getDeclAlignIfRequired(const Decl *D, const ASTContext &Ctx) { 64 return D->hasAttr<AlignedAttr>() ? D->getMaxAlignment() : 0; 65 } 66 67 CGDebugInfo::CGDebugInfo(CodeGenModule &CGM) 68 : CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()), 69 DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs), 70 DBuilder(CGM.getModule()) { 71 for (const auto &KV : CGM.getCodeGenOpts().DebugPrefixMap) 72 DebugPrefixMap[KV.first] = KV.second; 73 CreateCompileUnit(); 74 } 75 76 CGDebugInfo::~CGDebugInfo() { 77 assert(LexicalBlockStack.empty() && 78 "Region stack mismatch, stack not empty!"); 79 } 80 81 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, 82 SourceLocation TemporaryLocation) 83 : CGF(&CGF) { 84 init(TemporaryLocation); 85 } 86 87 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, 88 bool DefaultToEmpty, 89 SourceLocation TemporaryLocation) 90 : CGF(&CGF) { 91 init(TemporaryLocation, DefaultToEmpty); 92 } 93 94 void ApplyDebugLocation::init(SourceLocation TemporaryLocation, 95 bool DefaultToEmpty) { 96 auto *DI = CGF->getDebugInfo(); 97 if (!DI) { 98 CGF = nullptr; 99 return; 100 } 101 102 OriginalLocation = CGF->Builder.getCurrentDebugLocation(); 103 104 if (OriginalLocation && !DI->CGM.getExpressionLocationsEnabled()) 105 return; 106 107 if (TemporaryLocation.isValid()) { 108 DI->EmitLocation(CGF->Builder, TemporaryLocation); 109 return; 110 } 111 112 if (DefaultToEmpty) { 113 CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 114 return; 115 } 116 117 // Construct a location that has a valid scope, but no line info. 118 assert(!DI->LexicalBlockStack.empty()); 119 CGF->Builder.SetCurrentDebugLocation( 120 llvm::DILocation::get(DI->LexicalBlockStack.back()->getContext(), 0, 0, 121 DI->LexicalBlockStack.back(), DI->getInlinedAt())); 122 } 123 124 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E) 125 : CGF(&CGF) { 126 init(E->getExprLoc()); 127 } 128 129 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc) 130 : CGF(&CGF) { 131 if (!CGF.getDebugInfo()) { 132 this->CGF = nullptr; 133 return; 134 } 135 OriginalLocation = CGF.Builder.getCurrentDebugLocation(); 136 if (Loc) 137 CGF.Builder.SetCurrentDebugLocation(std::move(Loc)); 138 } 139 140 ApplyDebugLocation::~ApplyDebugLocation() { 141 // Query CGF so the location isn't overwritten when location updates are 142 // temporarily disabled (for C++ default function arguments) 143 if (CGF) 144 CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation)); 145 } 146 147 ApplyInlineDebugLocation::ApplyInlineDebugLocation(CodeGenFunction &CGF, 148 GlobalDecl InlinedFn) 149 : CGF(&CGF) { 150 if (!CGF.getDebugInfo()) { 151 this->CGF = nullptr; 152 return; 153 } 154 auto &DI = *CGF.getDebugInfo(); 155 SavedLocation = DI.getLocation(); 156 assert((DI.getInlinedAt() == 157 CGF.Builder.getCurrentDebugLocation()->getInlinedAt()) && 158 "CGDebugInfo and IRBuilder are out of sync"); 159 160 DI.EmitInlineFunctionStart(CGF.Builder, InlinedFn); 161 } 162 163 ApplyInlineDebugLocation::~ApplyInlineDebugLocation() { 164 if (!CGF) 165 return; 166 auto &DI = *CGF->getDebugInfo(); 167 DI.EmitInlineFunctionEnd(CGF->Builder); 168 DI.EmitLocation(CGF->Builder, SavedLocation); 169 } 170 171 void CGDebugInfo::setLocation(SourceLocation Loc) { 172 // If the new location isn't valid return. 173 if (Loc.isInvalid()) 174 return; 175 176 CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc); 177 178 // If we've changed files in the middle of a lexical scope go ahead 179 // and create a new lexical scope with file node if it's different 180 // from the one in the scope. 181 if (LexicalBlockStack.empty()) 182 return; 183 184 SourceManager &SM = CGM.getContext().getSourceManager(); 185 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 186 PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc); 187 if (PCLoc.isInvalid() || Scope->getFile() == getOrCreateFile(CurLoc)) 188 return; 189 190 if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) { 191 LexicalBlockStack.pop_back(); 192 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile( 193 LBF->getScope(), getOrCreateFile(CurLoc))); 194 } else if (isa<llvm::DILexicalBlock>(Scope) || 195 isa<llvm::DISubprogram>(Scope)) { 196 LexicalBlockStack.pop_back(); 197 LexicalBlockStack.emplace_back( 198 DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc))); 199 } 200 } 201 202 llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) { 203 llvm::DIScope *Mod = getParentModuleOrNull(D); 204 return getContextDescriptor(cast<Decl>(D->getDeclContext()), 205 Mod ? Mod : TheCU); 206 } 207 208 llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context, 209 llvm::DIScope *Default) { 210 if (!Context) 211 return Default; 212 213 auto I = RegionMap.find(Context); 214 if (I != RegionMap.end()) { 215 llvm::Metadata *V = I->second; 216 return dyn_cast_or_null<llvm::DIScope>(V); 217 } 218 219 // Check namespace. 220 if (const auto *NSDecl = dyn_cast<NamespaceDecl>(Context)) 221 return getOrCreateNamespace(NSDecl); 222 223 if (const auto *RDecl = dyn_cast<RecordDecl>(Context)) 224 if (!RDecl->isDependentType()) 225 return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl), 226 TheCU->getFile()); 227 return Default; 228 } 229 230 void CGDebugInfo::recordDeclarationLexicalScope(const Decl &D) { 231 assert(LexicalBlockMap.find(&D) == LexicalBlockMap.end() && 232 "D is already mapped to a lexical block scope"); 233 if (!LexicalBlockStack.empty()) 234 LexicalBlockMap.insert({&D, LexicalBlockStack.back()}); 235 } 236 237 llvm::DIScope *CGDebugInfo::getDeclarationLexicalScope(const Decl *D) { 238 auto I = LexicalBlockMap.find(D); 239 if (I != LexicalBlockMap.end()) 240 return I->second; 241 return getDeclContextDescriptor(cast<Decl>(D)); 242 } 243 244 PrintingPolicy CGDebugInfo::getPrintingPolicy() const { 245 PrintingPolicy PP = CGM.getContext().getPrintingPolicy(); 246 247 // If we're emitting codeview, it's important to try to match MSVC's naming so 248 // that visualizers written for MSVC will trigger for our class names. In 249 // particular, we can't have spaces between arguments of standard templates 250 // like basic_string and vector, but we must have spaces between consecutive 251 // angle brackets that close nested template argument lists. 252 if (CGM.getCodeGenOpts().EmitCodeView) { 253 PP.MSVCFormatting = true; 254 PP.SplitTemplateClosers = true; 255 } else { 256 // For DWARF, printing rules are underspecified. 257 // SplitTemplateClosers yields better interop with GCC and GDB (PR46052). 258 PP.SplitTemplateClosers = true; 259 } 260 261 PP.SuppressInlineNamespace = false; 262 PP.PrintCanonicalTypes = true; 263 PP.UsePreferredNames = false; 264 PP.AlwaysIncludeTypeForTemplateArgument = true; 265 266 // Apply -fdebug-prefix-map. 267 PP.Callbacks = &PrintCB; 268 return PP; 269 } 270 271 StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) { 272 return internString(GetName(FD)); 273 } 274 275 StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) { 276 SmallString<256> MethodName; 277 llvm::raw_svector_ostream OS(MethodName); 278 OS << (OMD->isInstanceMethod() ? '-' : '+') << '['; 279 const DeclContext *DC = OMD->getDeclContext(); 280 if (const auto *OID = dyn_cast<ObjCImplementationDecl>(DC)) { 281 OS << OID->getName(); 282 } else if (const auto *OID = dyn_cast<ObjCInterfaceDecl>(DC)) { 283 OS << OID->getName(); 284 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(DC)) { 285 if (OC->IsClassExtension()) { 286 OS << OC->getClassInterface()->getName(); 287 } else { 288 OS << OC->getIdentifier()->getNameStart() << '(' 289 << OC->getIdentifier()->getNameStart() << ')'; 290 } 291 } else if (const auto *OCD = dyn_cast<ObjCCategoryImplDecl>(DC)) { 292 OS << OCD->getClassInterface()->getName() << '(' << OCD->getName() << ')'; 293 } 294 OS << ' ' << OMD->getSelector().getAsString() << ']'; 295 296 return internString(OS.str()); 297 } 298 299 StringRef CGDebugInfo::getSelectorName(Selector S) { 300 return internString(S.getAsString()); 301 } 302 303 StringRef CGDebugInfo::getClassName(const RecordDecl *RD) { 304 if (isa<ClassTemplateSpecializationDecl>(RD)) { 305 // Copy this name on the side and use its reference. 306 return internString(GetName(RD)); 307 } 308 309 // quick optimization to avoid having to intern strings that are already 310 // stored reliably elsewhere 311 if (const IdentifierInfo *II = RD->getIdentifier()) 312 return II->getName(); 313 314 // The CodeView printer in LLVM wants to see the names of unnamed types 315 // because they need to have a unique identifier. 316 // These names are used to reconstruct the fully qualified type names. 317 if (CGM.getCodeGenOpts().EmitCodeView) { 318 if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) { 319 assert(RD->getDeclContext() == D->getDeclContext() && 320 "Typedef should not be in another decl context!"); 321 assert(D->getDeclName().getAsIdentifierInfo() && 322 "Typedef was not named!"); 323 return D->getDeclName().getAsIdentifierInfo()->getName(); 324 } 325 326 if (CGM.getLangOpts().CPlusPlus) { 327 StringRef Name; 328 329 ASTContext &Context = CGM.getContext(); 330 if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD)) 331 // Anonymous types without a name for linkage purposes have their 332 // declarator mangled in if they have one. 333 Name = DD->getName(); 334 else if (const TypedefNameDecl *TND = 335 Context.getTypedefNameForUnnamedTagDecl(RD)) 336 // Anonymous types without a name for linkage purposes have their 337 // associate typedef mangled in if they have one. 338 Name = TND->getName(); 339 340 // Give lambdas a display name based on their name mangling. 341 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 342 if (CXXRD->isLambda()) 343 return internString( 344 CGM.getCXXABI().getMangleContext().getLambdaString(CXXRD)); 345 346 if (!Name.empty()) { 347 SmallString<256> UnnamedType("<unnamed-type-"); 348 UnnamedType += Name; 349 UnnamedType += '>'; 350 return internString(UnnamedType); 351 } 352 } 353 } 354 355 return StringRef(); 356 } 357 358 Optional<llvm::DIFile::ChecksumKind> 359 CGDebugInfo::computeChecksum(FileID FID, SmallString<32> &Checksum) const { 360 Checksum.clear(); 361 362 if (!CGM.getCodeGenOpts().EmitCodeView && 363 CGM.getCodeGenOpts().DwarfVersion < 5) 364 return None; 365 366 SourceManager &SM = CGM.getContext().getSourceManager(); 367 Optional<llvm::MemoryBufferRef> MemBuffer = SM.getBufferOrNone(FID); 368 if (!MemBuffer) 369 return None; 370 371 llvm::MD5 Hash; 372 llvm::MD5::MD5Result Result; 373 374 Hash.update(MemBuffer->getBuffer()); 375 Hash.final(Result); 376 377 Hash.stringifyResult(Result, Checksum); 378 return llvm::DIFile::CSK_MD5; 379 } 380 381 Optional<StringRef> CGDebugInfo::getSource(const SourceManager &SM, 382 FileID FID) { 383 if (!CGM.getCodeGenOpts().EmbedSource) 384 return None; 385 386 bool SourceInvalid = false; 387 StringRef Source = SM.getBufferData(FID, &SourceInvalid); 388 389 if (SourceInvalid) 390 return None; 391 392 return Source; 393 } 394 395 llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) { 396 SourceManager &SM = CGM.getContext().getSourceManager(); 397 StringRef FileName; 398 FileID FID; 399 400 if (Loc.isInvalid()) { 401 // The DIFile used by the CU is distinct from the main source file. Call 402 // createFile() below for canonicalization if the source file was specified 403 // with an absolute path. 404 FileName = TheCU->getFile()->getFilename(); 405 } else { 406 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 407 FileName = PLoc.getFilename(); 408 409 if (FileName.empty()) { 410 FileName = TheCU->getFile()->getFilename(); 411 } else { 412 FileName = PLoc.getFilename(); 413 } 414 FID = PLoc.getFileID(); 415 } 416 417 // Cache the results. 418 auto It = DIFileCache.find(FileName.data()); 419 if (It != DIFileCache.end()) { 420 // Verify that the information still exists. 421 if (llvm::Metadata *V = It->second) 422 return cast<llvm::DIFile>(V); 423 } 424 425 SmallString<32> Checksum; 426 427 Optional<llvm::DIFile::ChecksumKind> CSKind = computeChecksum(FID, Checksum); 428 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo; 429 if (CSKind) 430 CSInfo.emplace(*CSKind, Checksum); 431 return createFile(FileName, CSInfo, getSource(SM, SM.getFileID(Loc))); 432 } 433 434 llvm::DIFile * 435 CGDebugInfo::createFile(StringRef FileName, 436 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo, 437 Optional<StringRef> Source) { 438 StringRef Dir; 439 StringRef File; 440 std::string RemappedFile = remapDIPath(FileName); 441 std::string CurDir = remapDIPath(getCurrentDirname()); 442 SmallString<128> DirBuf; 443 SmallString<128> FileBuf; 444 if (llvm::sys::path::is_absolute(RemappedFile)) { 445 // Strip the common prefix (if it is more than just "/") from current 446 // directory and FileName for a more space-efficient encoding. 447 auto FileIt = llvm::sys::path::begin(RemappedFile); 448 auto FileE = llvm::sys::path::end(RemappedFile); 449 auto CurDirIt = llvm::sys::path::begin(CurDir); 450 auto CurDirE = llvm::sys::path::end(CurDir); 451 for (; CurDirIt != CurDirE && *CurDirIt == *FileIt; ++CurDirIt, ++FileIt) 452 llvm::sys::path::append(DirBuf, *CurDirIt); 453 if (std::distance(llvm::sys::path::begin(CurDir), CurDirIt) == 1) { 454 // Don't strip the common prefix if it is only the root "/" 455 // since that would make LLVM diagnostic locations confusing. 456 Dir = {}; 457 File = RemappedFile; 458 } else { 459 for (; FileIt != FileE; ++FileIt) 460 llvm::sys::path::append(FileBuf, *FileIt); 461 Dir = DirBuf; 462 File = FileBuf; 463 } 464 } else { 465 Dir = CurDir; 466 File = RemappedFile; 467 } 468 llvm::DIFile *F = DBuilder.createFile(File, Dir, CSInfo, Source); 469 DIFileCache[FileName.data()].reset(F); 470 return F; 471 } 472 473 std::string CGDebugInfo::remapDIPath(StringRef Path) const { 474 if (DebugPrefixMap.empty()) 475 return Path.str(); 476 477 SmallString<256> P = Path; 478 for (const auto &Entry : DebugPrefixMap) 479 if (llvm::sys::path::replace_path_prefix(P, Entry.first, Entry.second)) 480 break; 481 return P.str().str(); 482 } 483 484 unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) { 485 if (Loc.isInvalid()) 486 return 0; 487 SourceManager &SM = CGM.getContext().getSourceManager(); 488 return SM.getPresumedLoc(Loc).getLine(); 489 } 490 491 unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) { 492 // We may not want column information at all. 493 if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo) 494 return 0; 495 496 // If the location is invalid then use the current column. 497 if (Loc.isInvalid() && CurLoc.isInvalid()) 498 return 0; 499 SourceManager &SM = CGM.getContext().getSourceManager(); 500 PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc); 501 return PLoc.isValid() ? PLoc.getColumn() : 0; 502 } 503 504 StringRef CGDebugInfo::getCurrentDirname() { 505 if (!CGM.getCodeGenOpts().DebugCompilationDir.empty()) 506 return CGM.getCodeGenOpts().DebugCompilationDir; 507 508 if (!CWDName.empty()) 509 return CWDName; 510 SmallString<256> CWD; 511 llvm::sys::fs::current_path(CWD); 512 return CWDName = internString(CWD); 513 } 514 515 void CGDebugInfo::CreateCompileUnit() { 516 SmallString<32> Checksum; 517 Optional<llvm::DIFile::ChecksumKind> CSKind; 518 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo; 519 520 // Should we be asking the SourceManager for the main file name, instead of 521 // accepting it as an argument? This just causes the main file name to 522 // mismatch with source locations and create extra lexical scopes or 523 // mismatched debug info (a CU with a DW_AT_file of "-", because that's what 524 // the driver passed, but functions/other things have DW_AT_file of "<stdin>" 525 // because that's what the SourceManager says) 526 527 // Get absolute path name. 528 SourceManager &SM = CGM.getContext().getSourceManager(); 529 std::string MainFileName = CGM.getCodeGenOpts().MainFileName; 530 if (MainFileName.empty()) 531 MainFileName = "<stdin>"; 532 533 // The main file name provided via the "-main-file-name" option contains just 534 // the file name itself with no path information. This file name may have had 535 // a relative path, so we look into the actual file entry for the main 536 // file to determine the real absolute path for the file. 537 std::string MainFileDir; 538 if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 539 MainFileDir = std::string(MainFile->getDir()->getName()); 540 if (!llvm::sys::path::is_absolute(MainFileName)) { 541 llvm::SmallString<1024> MainFileDirSS(MainFileDir); 542 llvm::sys::path::append(MainFileDirSS, MainFileName); 543 MainFileName = 544 std::string(llvm::sys::path::remove_leading_dotslash(MainFileDirSS)); 545 } 546 // If the main file name provided is identical to the input file name, and 547 // if the input file is a preprocessed source, use the module name for 548 // debug info. The module name comes from the name specified in the first 549 // linemarker if the input is a preprocessed source. 550 if (MainFile->getName() == MainFileName && 551 FrontendOptions::getInputKindForExtension( 552 MainFile->getName().rsplit('.').second) 553 .isPreprocessed()) 554 MainFileName = CGM.getModule().getName().str(); 555 556 CSKind = computeChecksum(SM.getMainFileID(), Checksum); 557 } 558 559 llvm::dwarf::SourceLanguage LangTag; 560 const LangOptions &LO = CGM.getLangOpts(); 561 if (LO.CPlusPlus) { 562 if (LO.ObjC) 563 LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus; 564 else if (LO.CPlusPlus14 && (!CGM.getCodeGenOpts().DebugStrictDwarf || 565 CGM.getCodeGenOpts().DwarfVersion >= 5)) 566 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_14; 567 else if (LO.CPlusPlus11 && (!CGM.getCodeGenOpts().DebugStrictDwarf || 568 CGM.getCodeGenOpts().DwarfVersion >= 5)) 569 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_11; 570 else 571 LangTag = llvm::dwarf::DW_LANG_C_plus_plus; 572 } else if (LO.ObjC) { 573 LangTag = llvm::dwarf::DW_LANG_ObjC; 574 } else if (LO.OpenCL && (!CGM.getCodeGenOpts().DebugStrictDwarf || 575 CGM.getCodeGenOpts().DwarfVersion >= 5)) { 576 LangTag = llvm::dwarf::DW_LANG_OpenCL; 577 } else if (LO.RenderScript) { 578 LangTag = llvm::dwarf::DW_LANG_GOOGLE_RenderScript; 579 } else if (LO.C99) { 580 LangTag = llvm::dwarf::DW_LANG_C99; 581 } else { 582 LangTag = llvm::dwarf::DW_LANG_C89; 583 } 584 585 std::string Producer = getClangFullVersion(); 586 587 // Figure out which version of the ObjC runtime we have. 588 unsigned RuntimeVers = 0; 589 if (LO.ObjC) 590 RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1; 591 592 llvm::DICompileUnit::DebugEmissionKind EmissionKind; 593 switch (DebugKind) { 594 case codegenoptions::NoDebugInfo: 595 case codegenoptions::LocTrackingOnly: 596 EmissionKind = llvm::DICompileUnit::NoDebug; 597 break; 598 case codegenoptions::DebugLineTablesOnly: 599 EmissionKind = llvm::DICompileUnit::LineTablesOnly; 600 break; 601 case codegenoptions::DebugDirectivesOnly: 602 EmissionKind = llvm::DICompileUnit::DebugDirectivesOnly; 603 break; 604 case codegenoptions::DebugInfoConstructor: 605 case codegenoptions::LimitedDebugInfo: 606 case codegenoptions::FullDebugInfo: 607 case codegenoptions::UnusedTypeInfo: 608 EmissionKind = llvm::DICompileUnit::FullDebug; 609 break; 610 } 611 612 uint64_t DwoId = 0; 613 auto &CGOpts = CGM.getCodeGenOpts(); 614 // The DIFile used by the CU is distinct from the main source 615 // file. Its directory part specifies what becomes the 616 // DW_AT_comp_dir (the compilation directory), even if the source 617 // file was specified with an absolute path. 618 if (CSKind) 619 CSInfo.emplace(*CSKind, Checksum); 620 llvm::DIFile *CUFile = DBuilder.createFile( 621 remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), CSInfo, 622 getSource(SM, SM.getMainFileID())); 623 624 StringRef Sysroot, SDK; 625 if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB) { 626 Sysroot = CGM.getHeaderSearchOpts().Sysroot; 627 auto B = llvm::sys::path::rbegin(Sysroot); 628 auto E = llvm::sys::path::rend(Sysroot); 629 auto It = std::find_if(B, E, [](auto SDK) { return SDK.endswith(".sdk"); }); 630 if (It != E) 631 SDK = *It; 632 } 633 634 // Create new compile unit. 635 TheCU = DBuilder.createCompileUnit( 636 LangTag, CUFile, CGOpts.EmitVersionIdentMetadata ? Producer : "", 637 LO.Optimize || CGOpts.PrepareForLTO || CGOpts.PrepareForThinLTO, 638 CGOpts.DwarfDebugFlags, RuntimeVers, CGOpts.SplitDwarfFile, EmissionKind, 639 DwoId, CGOpts.SplitDwarfInlining, CGOpts.DebugInfoForProfiling, 640 CGM.getTarget().getTriple().isNVPTX() 641 ? llvm::DICompileUnit::DebugNameTableKind::None 642 : static_cast<llvm::DICompileUnit::DebugNameTableKind>( 643 CGOpts.DebugNameTable), 644 CGOpts.DebugRangesBaseAddress, remapDIPath(Sysroot), SDK); 645 } 646 647 llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) { 648 llvm::dwarf::TypeKind Encoding; 649 StringRef BTName; 650 switch (BT->getKind()) { 651 #define BUILTIN_TYPE(Id, SingletonId) 652 #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: 653 #include "clang/AST/BuiltinTypes.def" 654 case BuiltinType::Dependent: 655 llvm_unreachable("Unexpected builtin type"); 656 case BuiltinType::NullPtr: 657 return DBuilder.createNullPtrType(); 658 case BuiltinType::Void: 659 return nullptr; 660 case BuiltinType::ObjCClass: 661 if (!ClassTy) 662 ClassTy = 663 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 664 "objc_class", TheCU, TheCU->getFile(), 0); 665 return ClassTy; 666 case BuiltinType::ObjCId: { 667 // typedef struct objc_class *Class; 668 // typedef struct objc_object { 669 // Class isa; 670 // } *id; 671 672 if (ObjTy) 673 return ObjTy; 674 675 if (!ClassTy) 676 ClassTy = 677 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 678 "objc_class", TheCU, TheCU->getFile(), 0); 679 680 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 681 682 auto *ISATy = DBuilder.createPointerType(ClassTy, Size); 683 684 ObjTy = DBuilder.createStructType(TheCU, "objc_object", TheCU->getFile(), 0, 685 0, 0, llvm::DINode::FlagZero, nullptr, 686 llvm::DINodeArray()); 687 688 DBuilder.replaceArrays( 689 ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType( 690 ObjTy, "isa", TheCU->getFile(), 0, Size, 0, 0, 691 llvm::DINode::FlagZero, ISATy))); 692 return ObjTy; 693 } 694 case BuiltinType::ObjCSel: { 695 if (!SelTy) 696 SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 697 "objc_selector", TheCU, 698 TheCU->getFile(), 0); 699 return SelTy; 700 } 701 702 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 703 case BuiltinType::Id: \ 704 return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \ 705 SingletonId); 706 #include "clang/Basic/OpenCLImageTypes.def" 707 case BuiltinType::OCLSampler: 708 return getOrCreateStructPtrType("opencl_sampler_t", OCLSamplerDITy); 709 case BuiltinType::OCLEvent: 710 return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy); 711 case BuiltinType::OCLClkEvent: 712 return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy); 713 case BuiltinType::OCLQueue: 714 return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy); 715 case BuiltinType::OCLReserveID: 716 return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy); 717 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 718 case BuiltinType::Id: \ 719 return getOrCreateStructPtrType("opencl_" #ExtType, Id##Ty); 720 #include "clang/Basic/OpenCLExtensionTypes.def" 721 722 #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 723 #include "clang/Basic/AArch64SVEACLETypes.def" 724 { 725 ASTContext::BuiltinVectorTypeInfo Info = 726 CGM.getContext().getBuiltinVectorTypeInfo(BT); 727 unsigned NumElemsPerVG = (Info.EC.getKnownMinValue() * Info.NumVectors) / 2; 728 729 // Debuggers can't extract 1bit from a vector, so will display a 730 // bitpattern for svbool_t instead. 731 if (Info.ElementType == CGM.getContext().BoolTy) { 732 NumElemsPerVG /= 8; 733 Info.ElementType = CGM.getContext().UnsignedCharTy; 734 } 735 736 auto *LowerBound = 737 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 738 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); 739 SmallVector<int64_t, 9> Expr( 740 {llvm::dwarf::DW_OP_constu, NumElemsPerVG, llvm::dwarf::DW_OP_bregx, 741 /* AArch64::VG */ 46, 0, llvm::dwarf::DW_OP_mul, 742 llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus}); 743 auto *UpperBound = DBuilder.createExpression(Expr); 744 745 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( 746 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); 747 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 748 llvm::DIType *ElemTy = 749 getOrCreateType(Info.ElementType, TheCU->getFile()); 750 auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); 751 return DBuilder.createVectorType(/*Size*/ 0, Align, ElemTy, 752 SubscriptArray); 753 } 754 // It doesn't make sense to generate debug info for PowerPC MMA vector types. 755 // So we return a safe type here to avoid generating an error. 756 #define PPC_VECTOR_TYPE(Name, Id, size) \ 757 case BuiltinType::Id: 758 #include "clang/Basic/PPCTypes.def" 759 return CreateType(cast<const BuiltinType>(CGM.getContext().IntTy)); 760 761 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 762 #include "clang/Basic/RISCVVTypes.def" 763 { 764 ASTContext::BuiltinVectorTypeInfo Info = 765 CGM.getContext().getBuiltinVectorTypeInfo(BT); 766 767 unsigned ElementCount = Info.EC.getKnownMinValue(); 768 unsigned SEW = CGM.getContext().getTypeSize(Info.ElementType); 769 770 bool Fractional = false; 771 unsigned LMUL; 772 unsigned FixedSize = ElementCount * SEW; 773 if (Info.ElementType == CGM.getContext().BoolTy) { 774 // Mask type only occupies one vector register. 775 LMUL = 1; 776 } else if (FixedSize < 64) { 777 // In RVV scalable vector types, we encode 64 bits in the fixed part. 778 Fractional = true; 779 LMUL = 64 / FixedSize; 780 } else { 781 LMUL = FixedSize / 64; 782 } 783 784 // Element count = (VLENB / SEW) x LMUL 785 SmallVector<int64_t, 9> Expr( 786 // The DW_OP_bregx operation has two operands: a register which is 787 // specified by an unsigned LEB128 number, followed by a signed LEB128 788 // offset. 789 {llvm::dwarf::DW_OP_bregx, // Read the contents of a register. 790 4096 + 0xC22, // RISC-V VLENB CSR register. 791 0, // Offset for DW_OP_bregx. It is dummy here. 792 llvm::dwarf::DW_OP_constu, 793 SEW / 8, // SEW is in bits. 794 llvm::dwarf::DW_OP_div, llvm::dwarf::DW_OP_constu, LMUL}); 795 if (Fractional) 796 Expr.push_back(llvm::dwarf::DW_OP_div); 797 else 798 Expr.push_back(llvm::dwarf::DW_OP_mul); 799 800 auto *LowerBound = 801 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 802 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); 803 auto *UpperBound = DBuilder.createExpression(Expr); 804 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( 805 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); 806 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 807 llvm::DIType *ElemTy = 808 getOrCreateType(Info.ElementType, TheCU->getFile()); 809 810 auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); 811 return DBuilder.createVectorType(/*Size=*/0, Align, ElemTy, 812 SubscriptArray); 813 } 814 case BuiltinType::UChar: 815 case BuiltinType::Char_U: 816 Encoding = llvm::dwarf::DW_ATE_unsigned_char; 817 break; 818 case BuiltinType::Char_S: 819 case BuiltinType::SChar: 820 Encoding = llvm::dwarf::DW_ATE_signed_char; 821 break; 822 case BuiltinType::Char8: 823 case BuiltinType::Char16: 824 case BuiltinType::Char32: 825 Encoding = llvm::dwarf::DW_ATE_UTF; 826 break; 827 case BuiltinType::UShort: 828 case BuiltinType::UInt: 829 case BuiltinType::UInt128: 830 case BuiltinType::ULong: 831 case BuiltinType::WChar_U: 832 case BuiltinType::ULongLong: 833 Encoding = llvm::dwarf::DW_ATE_unsigned; 834 break; 835 case BuiltinType::Short: 836 case BuiltinType::Int: 837 case BuiltinType::Int128: 838 case BuiltinType::Long: 839 case BuiltinType::WChar_S: 840 case BuiltinType::LongLong: 841 Encoding = llvm::dwarf::DW_ATE_signed; 842 break; 843 case BuiltinType::Bool: 844 Encoding = llvm::dwarf::DW_ATE_boolean; 845 break; 846 case BuiltinType::Half: 847 case BuiltinType::Float: 848 case BuiltinType::LongDouble: 849 case BuiltinType::Float16: 850 case BuiltinType::BFloat16: 851 case BuiltinType::Float128: 852 case BuiltinType::Double: 853 case BuiltinType::Ibm128: 854 // FIXME: For targets where long double, __ibm128 and __float128 have the 855 // same size, they are currently indistinguishable in the debugger without 856 // some special treatment. However, there is currently no consensus on 857 // encoding and this should be updated once a DWARF encoding exists for 858 // distinct floating point types of the same size. 859 Encoding = llvm::dwarf::DW_ATE_float; 860 break; 861 case BuiltinType::ShortAccum: 862 case BuiltinType::Accum: 863 case BuiltinType::LongAccum: 864 case BuiltinType::ShortFract: 865 case BuiltinType::Fract: 866 case BuiltinType::LongFract: 867 case BuiltinType::SatShortFract: 868 case BuiltinType::SatFract: 869 case BuiltinType::SatLongFract: 870 case BuiltinType::SatShortAccum: 871 case BuiltinType::SatAccum: 872 case BuiltinType::SatLongAccum: 873 Encoding = llvm::dwarf::DW_ATE_signed_fixed; 874 break; 875 case BuiltinType::UShortAccum: 876 case BuiltinType::UAccum: 877 case BuiltinType::ULongAccum: 878 case BuiltinType::UShortFract: 879 case BuiltinType::UFract: 880 case BuiltinType::ULongFract: 881 case BuiltinType::SatUShortAccum: 882 case BuiltinType::SatUAccum: 883 case BuiltinType::SatULongAccum: 884 case BuiltinType::SatUShortFract: 885 case BuiltinType::SatUFract: 886 case BuiltinType::SatULongFract: 887 Encoding = llvm::dwarf::DW_ATE_unsigned_fixed; 888 break; 889 } 890 891 BTName = BT->getName(CGM.getLangOpts()); 892 // Bit size and offset of the type. 893 uint64_t Size = CGM.getContext().getTypeSize(BT); 894 return DBuilder.createBasicType(BTName, Size, Encoding); 895 } 896 897 llvm::DIType *CGDebugInfo::CreateType(const AutoType *Ty) { 898 return DBuilder.createUnspecifiedType("auto"); 899 } 900 901 llvm::DIType *CGDebugInfo::CreateType(const ExtIntType *Ty) { 902 903 StringRef Name = Ty->isUnsigned() ? "unsigned _ExtInt" : "_ExtInt"; 904 llvm::dwarf::TypeKind Encoding = Ty->isUnsigned() 905 ? llvm::dwarf::DW_ATE_unsigned 906 : llvm::dwarf::DW_ATE_signed; 907 908 return DBuilder.createBasicType(Name, CGM.getContext().getTypeSize(Ty), 909 Encoding); 910 } 911 912 llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) { 913 // Bit size and offset of the type. 914 llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float; 915 if (Ty->isComplexIntegerType()) 916 Encoding = llvm::dwarf::DW_ATE_lo_user; 917 918 uint64_t Size = CGM.getContext().getTypeSize(Ty); 919 return DBuilder.createBasicType("complex", Size, Encoding); 920 } 921 922 static void stripUnusedQualifiers(Qualifiers &Q) { 923 // Ignore these qualifiers for now. 924 Q.removeObjCGCAttr(); 925 Q.removeAddressSpace(); 926 Q.removeObjCLifetime(); 927 Q.removeUnaligned(); 928 } 929 930 static llvm::dwarf::Tag getNextQualifier(Qualifiers &Q) { 931 if (Q.hasConst()) { 932 Q.removeConst(); 933 return llvm::dwarf::DW_TAG_const_type; 934 } 935 if (Q.hasVolatile()) { 936 Q.removeVolatile(); 937 return llvm::dwarf::DW_TAG_volatile_type; 938 } 939 if (Q.hasRestrict()) { 940 Q.removeRestrict(); 941 return llvm::dwarf::DW_TAG_restrict_type; 942 } 943 return (llvm::dwarf::Tag)0; 944 } 945 946 // Strip MacroQualifiedTypeLoc and AttributedTypeLoc 947 // as their corresponding types will be ignored 948 // during code generation. Stripping them allows 949 // to maintain proper TypeLoc for a given type 950 // during code generation. 951 static TypeLoc StripMacroAttributed(TypeLoc TL) { 952 if (!TL) 953 return TL; 954 955 while (true) { 956 if (auto MTL = TL.getAs<MacroQualifiedTypeLoc>()) 957 TL = MTL.getInnerLoc(); 958 else if (auto ATL = TL.getAs<AttributedTypeLoc>()) 959 TL = ATL.getModifiedLoc(); 960 else 961 break; 962 } 963 return TL; 964 } 965 966 llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty, llvm::DIFile *Unit, 967 TypeLoc TL) { 968 QualifierCollector Qc; 969 const Type *T = Qc.strip(Ty); 970 971 stripUnusedQualifiers(Qc); 972 973 // We will create one Derived type for one qualifier and recurse to handle any 974 // additional ones. 975 llvm::dwarf::Tag Tag = getNextQualifier(Qc); 976 if (!Tag) { 977 assert(Qc.empty() && "Unknown type qualifier for debug info"); 978 return getOrCreateType(QualType(T, 0), Unit); 979 } 980 981 QualType NextTy = Qc.apply(CGM.getContext(), T); 982 TypeLoc NextTL; 983 if (NextTy.hasQualifiers()) 984 NextTL = TL; 985 else if (TL) { 986 if (auto QTL = TL.getAs<QualifiedTypeLoc>()) 987 NextTL = StripMacroAttributed(QTL.getNextTypeLoc()); 988 } 989 auto *FromTy = getOrCreateType(NextTy, Unit, NextTL); 990 991 // No need to fill in the Name, Line, Size, Alignment, Offset in case of 992 // CVR derived types. 993 return DBuilder.createQualifiedType(Tag, FromTy); 994 } 995 996 llvm::DIType *CGDebugInfo::CreateQualifiedType(const FunctionProtoType *F, 997 llvm::DIFile *Unit) { 998 FunctionProtoType::ExtProtoInfo EPI = F->getExtProtoInfo(); 999 Qualifiers &Q = EPI.TypeQuals; 1000 stripUnusedQualifiers(Q); 1001 1002 // We will create one Derived type for one qualifier and recurse to handle any 1003 // additional ones. 1004 llvm::dwarf::Tag Tag = getNextQualifier(Q); 1005 if (!Tag) { 1006 assert(Q.empty() && "Unknown type qualifier for debug info"); 1007 return nullptr; 1008 } 1009 1010 auto *FromTy = 1011 getOrCreateType(CGM.getContext().getFunctionType(F->getReturnType(), 1012 F->getParamTypes(), EPI), 1013 Unit); 1014 1015 // No need to fill in the Name, Line, Size, Alignment, Offset in case of 1016 // CVR derived types. 1017 return DBuilder.createQualifiedType(Tag, FromTy); 1018 } 1019 1020 llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty, 1021 llvm::DIFile *Unit) { 1022 1023 // The frontend treats 'id' as a typedef to an ObjCObjectType, 1024 // whereas 'id<protocol>' is treated as an ObjCPointerType. For the 1025 // debug info, we want to emit 'id' in both cases. 1026 if (Ty->isObjCQualifiedIdType()) 1027 return getOrCreateType(CGM.getContext().getObjCIdType(), Unit); 1028 1029 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, 1030 Ty->getPointeeType(), Unit); 1031 } 1032 1033 llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty, llvm::DIFile *Unit, 1034 TypeLoc TL) { 1035 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, 1036 Ty->getPointeeType(), Unit, TL); 1037 } 1038 1039 /// \return whether a C++ mangling exists for the type defined by TD. 1040 static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) { 1041 switch (TheCU->getSourceLanguage()) { 1042 case llvm::dwarf::DW_LANG_C_plus_plus: 1043 case llvm::dwarf::DW_LANG_C_plus_plus_11: 1044 case llvm::dwarf::DW_LANG_C_plus_plus_14: 1045 return true; 1046 case llvm::dwarf::DW_LANG_ObjC_plus_plus: 1047 return isa<CXXRecordDecl>(TD) || isa<EnumDecl>(TD); 1048 default: 1049 return false; 1050 } 1051 } 1052 1053 // Determines if the debug info for this tag declaration needs a type 1054 // identifier. The purpose of the unique identifier is to deduplicate type 1055 // information for identical types across TUs. Because of the C++ one definition 1056 // rule (ODR), it is valid to assume that the type is defined the same way in 1057 // every TU and its debug info is equivalent. 1058 // 1059 // C does not have the ODR, and it is common for codebases to contain multiple 1060 // different definitions of a struct with the same name in different TUs. 1061 // Therefore, if the type doesn't have a C++ mangling, don't give it an 1062 // identifer. Type information in C is smaller and simpler than C++ type 1063 // information, so the increase in debug info size is negligible. 1064 // 1065 // If the type is not externally visible, it should be unique to the current TU, 1066 // and should not need an identifier to participate in type deduplication. 1067 // However, when emitting CodeView, the format internally uses these 1068 // unique type name identifers for references between debug info. For example, 1069 // the method of a class in an anonymous namespace uses the identifer to refer 1070 // to its parent class. The Microsoft C++ ABI attempts to provide unique names 1071 // for such types, so when emitting CodeView, always use identifiers for C++ 1072 // types. This may create problems when attempting to emit CodeView when the MS 1073 // C++ ABI is not in use. 1074 static bool needsTypeIdentifier(const TagDecl *TD, CodeGenModule &CGM, 1075 llvm::DICompileUnit *TheCU) { 1076 // We only add a type identifier for types with C++ name mangling. 1077 if (!hasCXXMangling(TD, TheCU)) 1078 return false; 1079 1080 // Externally visible types with C++ mangling need a type identifier. 1081 if (TD->isExternallyVisible()) 1082 return true; 1083 1084 // CodeView types with C++ mangling need a type identifier. 1085 if (CGM.getCodeGenOpts().EmitCodeView) 1086 return true; 1087 1088 return false; 1089 } 1090 1091 // Returns a unique type identifier string if one exists, or an empty string. 1092 static SmallString<256> getTypeIdentifier(const TagType *Ty, CodeGenModule &CGM, 1093 llvm::DICompileUnit *TheCU) { 1094 SmallString<256> Identifier; 1095 const TagDecl *TD = Ty->getDecl(); 1096 1097 if (!needsTypeIdentifier(TD, CGM, TheCU)) 1098 return Identifier; 1099 if (const auto *RD = dyn_cast<CXXRecordDecl>(TD)) 1100 if (RD->getDefinition()) 1101 if (RD->isDynamicClass() && 1102 CGM.getVTableLinkage(RD) == llvm::GlobalValue::ExternalLinkage) 1103 return Identifier; 1104 1105 // TODO: This is using the RTTI name. Is there a better way to get 1106 // a unique string for a type? 1107 llvm::raw_svector_ostream Out(Identifier); 1108 CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out); 1109 return Identifier; 1110 } 1111 1112 /// \return the appropriate DWARF tag for a composite type. 1113 static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) { 1114 llvm::dwarf::Tag Tag; 1115 if (RD->isStruct() || RD->isInterface()) 1116 Tag = llvm::dwarf::DW_TAG_structure_type; 1117 else if (RD->isUnion()) 1118 Tag = llvm::dwarf::DW_TAG_union_type; 1119 else { 1120 // FIXME: This could be a struct type giving a default visibility different 1121 // than C++ class type, but needs llvm metadata changes first. 1122 assert(RD->isClass()); 1123 Tag = llvm::dwarf::DW_TAG_class_type; 1124 } 1125 return Tag; 1126 } 1127 1128 llvm::DICompositeType * 1129 CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty, 1130 llvm::DIScope *Ctx) { 1131 const RecordDecl *RD = Ty->getDecl(); 1132 if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD))) 1133 return cast<llvm::DICompositeType>(T); 1134 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); 1135 const unsigned Line = 1136 getLineNumber(RD->getLocation().isValid() ? RD->getLocation() : CurLoc); 1137 StringRef RDName = getClassName(RD); 1138 1139 uint64_t Size = 0; 1140 uint32_t Align = 0; 1141 1142 const RecordDecl *D = RD->getDefinition(); 1143 if (D && D->isCompleteDefinition()) 1144 Size = CGM.getContext().getTypeSize(Ty); 1145 1146 llvm::DINode::DIFlags Flags = llvm::DINode::FlagFwdDecl; 1147 1148 // Add flag to nontrivial forward declarations. To be consistent with MSVC, 1149 // add the flag if a record has no definition because we don't know whether 1150 // it will be trivial or not. 1151 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1152 if (!CXXRD->hasDefinition() || 1153 (CXXRD->hasDefinition() && !CXXRD->isTrivial())) 1154 Flags |= llvm::DINode::FlagNonTrivial; 1155 1156 // Create the type. 1157 SmallString<256> Identifier; 1158 // Don't include a linkage name in line tables only. 1159 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 1160 Identifier = getTypeIdentifier(Ty, CGM, TheCU); 1161 llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType( 1162 getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align, Flags, 1163 Identifier); 1164 if (CGM.getCodeGenOpts().DebugFwdTemplateParams) 1165 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 1166 DBuilder.replaceArrays(RetTy, llvm::DINodeArray(), 1167 CollectCXXTemplateParams(TSpecial, DefUnit)); 1168 ReplaceMap.emplace_back( 1169 std::piecewise_construct, std::make_tuple(Ty), 1170 std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); 1171 return RetTy; 1172 } 1173 1174 llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag, 1175 const Type *Ty, 1176 QualType PointeeTy, 1177 llvm::DIFile *Unit, 1178 TypeLoc TL) { 1179 // Bit size, align and offset of the type. 1180 // Size is always the size of a pointer. We can't use getTypeSize here 1181 // because that does not return the correct value for references. 1182 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(PointeeTy); 1183 uint64_t Size = CGM.getTarget().getPointerWidth(AddressSpace); 1184 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 1185 Optional<unsigned> DWARFAddressSpace = 1186 CGM.getTarget().getDWARFAddressSpace(AddressSpace); 1187 1188 llvm::DINodeArray Annotations = nullptr; 1189 TypeLoc NextTL; 1190 if (TL) { 1191 SmallVector<llvm::Metadata *, 4> Annots; 1192 NextTL = TL.getNextTypeLoc(); 1193 if (NextTL) { 1194 // Traverse all MacroQualifiedTypeLoc, QualifiedTypeLoc and 1195 // AttributedTypeLoc type locations so we can collect 1196 // BTFTypeTag attributes for this pointer. 1197 while (true) { 1198 if (auto MTL = NextTL.getAs<MacroQualifiedTypeLoc>()) { 1199 NextTL = MTL.getInnerLoc(); 1200 } else if (auto QTL = NextTL.getAs<QualifiedTypeLoc>()) { 1201 NextTL = QTL.getNextTypeLoc(); 1202 } else if (auto ATL = NextTL.getAs<AttributedTypeLoc>()) { 1203 if (const auto *A = ATL.getAttrAs<BTFTypeTagAttr>()) { 1204 StringRef BTFTypeTag = A->getBTFTypeTag(); 1205 if (!BTFTypeTag.empty()) { 1206 llvm::Metadata *Ops[2] = { 1207 llvm::MDString::get(CGM.getLLVMContext(), 1208 StringRef("btf_type_tag")), 1209 llvm::MDString::get(CGM.getLLVMContext(), BTFTypeTag)}; 1210 Annots.insert(Annots.begin(), 1211 llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1212 } 1213 } 1214 NextTL = ATL.getModifiedLoc(); 1215 } else { 1216 break; 1217 } 1218 } 1219 } 1220 1221 NextTL = StripMacroAttributed(TL.getNextTypeLoc()); 1222 if (Annots.size() > 0) 1223 Annotations = DBuilder.getOrCreateArray(Annots); 1224 } 1225 1226 if (Tag == llvm::dwarf::DW_TAG_reference_type || 1227 Tag == llvm::dwarf::DW_TAG_rvalue_reference_type) 1228 return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit), 1229 Size, Align, DWARFAddressSpace); 1230 else 1231 return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit, NextTL), 1232 Size, Align, DWARFAddressSpace, 1233 StringRef(), Annotations); 1234 } 1235 1236 llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name, 1237 llvm::DIType *&Cache) { 1238 if (Cache) 1239 return Cache; 1240 Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name, 1241 TheCU, TheCU->getFile(), 0); 1242 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 1243 Cache = DBuilder.createPointerType(Cache, Size); 1244 return Cache; 1245 } 1246 1247 uint64_t CGDebugInfo::collectDefaultElementTypesForBlockPointer( 1248 const BlockPointerType *Ty, llvm::DIFile *Unit, llvm::DIDerivedType *DescTy, 1249 unsigned LineNo, SmallVectorImpl<llvm::Metadata *> &EltTys) { 1250 QualType FType; 1251 1252 // Advanced by calls to CreateMemberType in increments of FType, then 1253 // returned as the overall size of the default elements. 1254 uint64_t FieldOffset = 0; 1255 1256 // Blocks in OpenCL have unique constraints which make the standard fields 1257 // redundant while requiring size and align fields for enqueue_kernel. See 1258 // initializeForBlockHeader in CGBlocks.cpp 1259 if (CGM.getLangOpts().OpenCL) { 1260 FType = CGM.getContext().IntTy; 1261 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); 1262 EltTys.push_back(CreateMemberType(Unit, FType, "__align", &FieldOffset)); 1263 } else { 1264 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 1265 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); 1266 FType = CGM.getContext().IntTy; 1267 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); 1268 EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset)); 1269 FType = CGM.getContext().getPointerType(Ty->getPointeeType()); 1270 EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset)); 1271 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 1272 uint64_t FieldSize = CGM.getContext().getTypeSize(Ty); 1273 uint32_t FieldAlign = CGM.getContext().getTypeAlign(Ty); 1274 EltTys.push_back(DBuilder.createMemberType( 1275 Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign, 1276 FieldOffset, llvm::DINode::FlagZero, DescTy)); 1277 FieldOffset += FieldSize; 1278 } 1279 1280 return FieldOffset; 1281 } 1282 1283 llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty, 1284 llvm::DIFile *Unit) { 1285 SmallVector<llvm::Metadata *, 8> EltTys; 1286 QualType FType; 1287 uint64_t FieldOffset; 1288 llvm::DINodeArray Elements; 1289 1290 FieldOffset = 0; 1291 FType = CGM.getContext().UnsignedLongTy; 1292 EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset)); 1293 EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset)); 1294 1295 Elements = DBuilder.getOrCreateArray(EltTys); 1296 EltTys.clear(); 1297 1298 llvm::DINode::DIFlags Flags = llvm::DINode::FlagAppleBlock; 1299 1300 auto *EltTy = 1301 DBuilder.createStructType(Unit, "__block_descriptor", nullptr, 0, 1302 FieldOffset, 0, Flags, nullptr, Elements); 1303 1304 // Bit size, align and offset of the type. 1305 uint64_t Size = CGM.getContext().getTypeSize(Ty); 1306 1307 auto *DescTy = DBuilder.createPointerType(EltTy, Size); 1308 1309 FieldOffset = collectDefaultElementTypesForBlockPointer(Ty, Unit, DescTy, 1310 0, EltTys); 1311 1312 Elements = DBuilder.getOrCreateArray(EltTys); 1313 1314 // The __block_literal_generic structs are marked with a special 1315 // DW_AT_APPLE_BLOCK attribute and are an implementation detail only 1316 // the debugger needs to know about. To allow type uniquing, emit 1317 // them without a name or a location. 1318 EltTy = DBuilder.createStructType(Unit, "", nullptr, 0, FieldOffset, 0, 1319 Flags, nullptr, Elements); 1320 1321 return DBuilder.createPointerType(EltTy, Size); 1322 } 1323 1324 llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty, 1325 llvm::DIFile *Unit) { 1326 assert(Ty->isTypeAlias()); 1327 llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit); 1328 1329 auto *AliasDecl = 1330 cast<TypeAliasTemplateDecl>(Ty->getTemplateName().getAsTemplateDecl()) 1331 ->getTemplatedDecl(); 1332 1333 if (AliasDecl->hasAttr<NoDebugAttr>()) 1334 return Src; 1335 1336 SmallString<128> NS; 1337 llvm::raw_svector_ostream OS(NS); 1338 Ty->getTemplateName().print(OS, getPrintingPolicy(), 1339 TemplateName::Qualified::None); 1340 printTemplateArgumentList(OS, Ty->template_arguments(), getPrintingPolicy()); 1341 1342 SourceLocation Loc = AliasDecl->getLocation(); 1343 return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc), 1344 getLineNumber(Loc), 1345 getDeclContextDescriptor(AliasDecl)); 1346 } 1347 1348 llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty, 1349 llvm::DIFile *Unit) { 1350 TypeLoc TL; 1351 if (const TypeSourceInfo *TSI = Ty->getDecl()->getTypeSourceInfo()) 1352 TL = TSI->getTypeLoc(); 1353 llvm::DIType *Underlying = 1354 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit, TL); 1355 1356 if (Ty->getDecl()->hasAttr<NoDebugAttr>()) 1357 return Underlying; 1358 1359 // We don't set size information, but do specify where the typedef was 1360 // declared. 1361 SourceLocation Loc = Ty->getDecl()->getLocation(); 1362 1363 llvm::DIScope *TDContext = getDeclarationLexicalScope(Ty->getDecl()); 1364 uint32_t Align = getDeclAlignIfRequired(Ty->getDecl(), CGM.getContext()); 1365 // Typedefs are derived from some other type. 1366 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(Ty->getDecl()); 1367 return DBuilder.createTypedef(Underlying, Ty->getDecl()->getName(), 1368 getOrCreateFile(Loc), getLineNumber(Loc), 1369 TDContext, Align, Annotations); 1370 } 1371 1372 static unsigned getDwarfCC(CallingConv CC) { 1373 switch (CC) { 1374 case CC_C: 1375 // Avoid emitting DW_AT_calling_convention if the C convention was used. 1376 return 0; 1377 1378 case CC_X86StdCall: 1379 return llvm::dwarf::DW_CC_BORLAND_stdcall; 1380 case CC_X86FastCall: 1381 return llvm::dwarf::DW_CC_BORLAND_msfastcall; 1382 case CC_X86ThisCall: 1383 return llvm::dwarf::DW_CC_BORLAND_thiscall; 1384 case CC_X86VectorCall: 1385 return llvm::dwarf::DW_CC_LLVM_vectorcall; 1386 case CC_X86Pascal: 1387 return llvm::dwarf::DW_CC_BORLAND_pascal; 1388 case CC_Win64: 1389 return llvm::dwarf::DW_CC_LLVM_Win64; 1390 case CC_X86_64SysV: 1391 return llvm::dwarf::DW_CC_LLVM_X86_64SysV; 1392 case CC_AAPCS: 1393 case CC_AArch64VectorCall: 1394 return llvm::dwarf::DW_CC_LLVM_AAPCS; 1395 case CC_AAPCS_VFP: 1396 return llvm::dwarf::DW_CC_LLVM_AAPCS_VFP; 1397 case CC_IntelOclBicc: 1398 return llvm::dwarf::DW_CC_LLVM_IntelOclBicc; 1399 case CC_SpirFunction: 1400 return llvm::dwarf::DW_CC_LLVM_SpirFunction; 1401 case CC_OpenCLKernel: 1402 return llvm::dwarf::DW_CC_LLVM_OpenCLKernel; 1403 case CC_Swift: 1404 return llvm::dwarf::DW_CC_LLVM_Swift; 1405 case CC_SwiftAsync: 1406 // [FIXME: swiftasynccc] Update to SwiftAsync once LLVM support lands. 1407 return llvm::dwarf::DW_CC_LLVM_Swift; 1408 case CC_PreserveMost: 1409 return llvm::dwarf::DW_CC_LLVM_PreserveMost; 1410 case CC_PreserveAll: 1411 return llvm::dwarf::DW_CC_LLVM_PreserveAll; 1412 case CC_X86RegCall: 1413 return llvm::dwarf::DW_CC_LLVM_X86RegCall; 1414 } 1415 return 0; 1416 } 1417 1418 static llvm::DINode::DIFlags getRefFlags(const FunctionProtoType *Func) { 1419 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1420 if (Func->getExtProtoInfo().RefQualifier == RQ_LValue) 1421 Flags |= llvm::DINode::FlagLValueReference; 1422 if (Func->getExtProtoInfo().RefQualifier == RQ_RValue) 1423 Flags |= llvm::DINode::FlagRValueReference; 1424 return Flags; 1425 } 1426 1427 llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty, 1428 llvm::DIFile *Unit, TypeLoc TL) { 1429 const auto *FPT = dyn_cast<FunctionProtoType>(Ty); 1430 if (FPT) { 1431 if (llvm::DIType *QTy = CreateQualifiedType(FPT, Unit)) 1432 return QTy; 1433 } 1434 1435 // Create the type without any qualifiers 1436 1437 SmallVector<llvm::Metadata *, 16> EltTys; 1438 1439 // Add the result type at least. 1440 TypeLoc RetTL; 1441 if (TL) { 1442 if (auto FTL = TL.getAs<FunctionTypeLoc>()) 1443 RetTL = FTL.getReturnLoc(); 1444 } 1445 EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit, RetTL)); 1446 1447 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1448 // Set up remainder of arguments if there is a prototype. 1449 // otherwise emit it as a variadic function. 1450 if (!FPT) { 1451 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 1452 } else { 1453 Flags = getRefFlags(FPT); 1454 bool DoneWithTL = false; 1455 if (TL) { 1456 if (auto FTL = TL.getAs<FunctionTypeLoc>()) { 1457 DoneWithTL = true; 1458 unsigned Idx = 0; 1459 unsigned FTL_NumParams = FTL.getNumParams(); 1460 for (const QualType &ParamType : FPT->param_types()) { 1461 TypeLoc ParamTL; 1462 if (Idx < FTL_NumParams) { 1463 if (ParmVarDecl *Param = FTL.getParam(Idx)) { 1464 if (const TypeSourceInfo *TSI = Param->getTypeSourceInfo()) 1465 ParamTL = TSI->getTypeLoc(); 1466 } 1467 } 1468 EltTys.push_back(getOrCreateType(ParamType, Unit, ParamTL)); 1469 Idx++; 1470 } 1471 } 1472 } 1473 1474 if (!DoneWithTL) { 1475 for (const QualType &ParamType : FPT->param_types()) 1476 EltTys.push_back(getOrCreateType(ParamType, Unit)); 1477 } 1478 if (FPT->isVariadic()) 1479 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 1480 } 1481 1482 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); 1483 llvm::DIType *F = DBuilder.createSubroutineType( 1484 EltTypeArray, Flags, getDwarfCC(Ty->getCallConv())); 1485 return F; 1486 } 1487 1488 /// Convert an AccessSpecifier into the corresponding DINode flag. 1489 /// As an optimization, return 0 if the access specifier equals the 1490 /// default for the containing type. 1491 static llvm::DINode::DIFlags getAccessFlag(AccessSpecifier Access, 1492 const RecordDecl *RD) { 1493 AccessSpecifier Default = clang::AS_none; 1494 if (RD && RD->isClass()) 1495 Default = clang::AS_private; 1496 else if (RD && (RD->isStruct() || RD->isUnion())) 1497 Default = clang::AS_public; 1498 1499 if (Access == Default) 1500 return llvm::DINode::FlagZero; 1501 1502 switch (Access) { 1503 case clang::AS_private: 1504 return llvm::DINode::FlagPrivate; 1505 case clang::AS_protected: 1506 return llvm::DINode::FlagProtected; 1507 case clang::AS_public: 1508 return llvm::DINode::FlagPublic; 1509 case clang::AS_none: 1510 return llvm::DINode::FlagZero; 1511 } 1512 llvm_unreachable("unexpected access enumerator"); 1513 } 1514 1515 llvm::DIType *CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl, 1516 llvm::DIScope *RecordTy, 1517 const RecordDecl *RD) { 1518 StringRef Name = BitFieldDecl->getName(); 1519 QualType Ty = BitFieldDecl->getType(); 1520 SourceLocation Loc = BitFieldDecl->getLocation(); 1521 llvm::DIFile *VUnit = getOrCreateFile(Loc); 1522 llvm::DIType *DebugType = getOrCreateType(Ty, VUnit); 1523 1524 // Get the location for the field. 1525 llvm::DIFile *File = getOrCreateFile(Loc); 1526 unsigned Line = getLineNumber(Loc); 1527 1528 const CGBitFieldInfo &BitFieldInfo = 1529 CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl); 1530 uint64_t SizeInBits = BitFieldInfo.Size; 1531 assert(SizeInBits > 0 && "found named 0-width bitfield"); 1532 uint64_t StorageOffsetInBits = 1533 CGM.getContext().toBits(BitFieldInfo.StorageOffset); 1534 uint64_t Offset = BitFieldInfo.Offset; 1535 // The bit offsets for big endian machines are reversed for big 1536 // endian target, compensate for that as the DIDerivedType requires 1537 // un-reversed offsets. 1538 if (CGM.getDataLayout().isBigEndian()) 1539 Offset = BitFieldInfo.StorageSize - BitFieldInfo.Size - Offset; 1540 uint64_t OffsetInBits = StorageOffsetInBits + Offset; 1541 llvm::DINode::DIFlags Flags = getAccessFlag(BitFieldDecl->getAccess(), RD); 1542 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(BitFieldDecl); 1543 return DBuilder.createBitFieldMemberType( 1544 RecordTy, Name, File, Line, SizeInBits, OffsetInBits, StorageOffsetInBits, 1545 Flags, DebugType, Annotations); 1546 } 1547 1548 llvm::DIType * 1549 CGDebugInfo::createFieldType(StringRef name, QualType type, SourceLocation loc, 1550 AccessSpecifier AS, uint64_t offsetInBits, 1551 uint32_t AlignInBits, llvm::DIFile *tunit, 1552 llvm::DIScope *scope, const RecordDecl *RD, 1553 llvm::DINodeArray Annotations, TypeLoc TL) { 1554 llvm::DIType *debugType = getOrCreateType(type, tunit, TL); 1555 1556 // Get the location for the field. 1557 llvm::DIFile *file = getOrCreateFile(loc); 1558 const unsigned line = getLineNumber(loc.isValid() ? loc : CurLoc); 1559 1560 uint64_t SizeInBits = 0; 1561 auto Align = AlignInBits; 1562 if (!type->isIncompleteArrayType()) { 1563 TypeInfo TI = CGM.getContext().getTypeInfo(type); 1564 SizeInBits = TI.Width; 1565 if (!Align) 1566 Align = getTypeAlignIfRequired(type, CGM.getContext()); 1567 } 1568 1569 llvm::DINode::DIFlags flags = getAccessFlag(AS, RD); 1570 return DBuilder.createMemberType(scope, name, file, line, SizeInBits, Align, 1571 offsetInBits, flags, debugType, Annotations); 1572 } 1573 1574 void CGDebugInfo::CollectRecordLambdaFields( 1575 const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements, 1576 llvm::DIType *RecordTy) { 1577 // For C++11 Lambdas a Field will be the same as a Capture, but the Capture 1578 // has the name and the location of the variable so we should iterate over 1579 // both concurrently. 1580 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl); 1581 RecordDecl::field_iterator Field = CXXDecl->field_begin(); 1582 unsigned fieldno = 0; 1583 for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(), 1584 E = CXXDecl->captures_end(); 1585 I != E; ++I, ++Field, ++fieldno) { 1586 const LambdaCapture &C = *I; 1587 if (C.capturesVariable()) { 1588 SourceLocation Loc = C.getLocation(); 1589 assert(!Field->isBitField() && "lambdas don't have bitfield members!"); 1590 VarDecl *V = C.getCapturedVar(); 1591 StringRef VName = V->getName(); 1592 llvm::DIFile *VUnit = getOrCreateFile(Loc); 1593 auto Align = getDeclAlignIfRequired(V, CGM.getContext()); 1594 llvm::DIType *FieldType = createFieldType( 1595 VName, Field->getType(), Loc, Field->getAccess(), 1596 layout.getFieldOffset(fieldno), Align, VUnit, RecordTy, CXXDecl); 1597 elements.push_back(FieldType); 1598 } else if (C.capturesThis()) { 1599 // TODO: Need to handle 'this' in some way by probably renaming the 1600 // this of the lambda class and having a field member of 'this' or 1601 // by using AT_object_pointer for the function and having that be 1602 // used as 'this' for semantic references. 1603 FieldDecl *f = *Field; 1604 llvm::DIFile *VUnit = getOrCreateFile(f->getLocation()); 1605 QualType type = f->getType(); 1606 llvm::DIType *fieldType = createFieldType( 1607 "this", type, f->getLocation(), f->getAccess(), 1608 layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl); 1609 1610 elements.push_back(fieldType); 1611 } 1612 } 1613 } 1614 1615 llvm::DIDerivedType * 1616 CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy, 1617 const RecordDecl *RD) { 1618 // Create the descriptor for the static variable, with or without 1619 // constant initializers. 1620 Var = Var->getCanonicalDecl(); 1621 llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation()); 1622 llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit); 1623 1624 unsigned LineNumber = getLineNumber(Var->getLocation()); 1625 StringRef VName = Var->getName(); 1626 llvm::Constant *C = nullptr; 1627 if (Var->getInit()) { 1628 const APValue *Value = Var->evaluateValue(); 1629 if (Value) { 1630 if (Value->isInt()) 1631 C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt()); 1632 if (Value->isFloat()) 1633 C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat()); 1634 } 1635 } 1636 1637 llvm::DINode::DIFlags Flags = getAccessFlag(Var->getAccess(), RD); 1638 auto Align = getDeclAlignIfRequired(Var, CGM.getContext()); 1639 llvm::DIDerivedType *GV = DBuilder.createStaticMemberType( 1640 RecordTy, VName, VUnit, LineNumber, VTy, Flags, C, Align); 1641 StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV); 1642 return GV; 1643 } 1644 1645 void CGDebugInfo::CollectRecordNormalField( 1646 const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit, 1647 SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy, 1648 const RecordDecl *RD) { 1649 StringRef name = field->getName(); 1650 QualType type = field->getType(); 1651 1652 // Ignore unnamed fields unless they're anonymous structs/unions. 1653 if (name.empty() && !type->isRecordType()) 1654 return; 1655 1656 llvm::DIType *FieldType; 1657 if (field->isBitField()) { 1658 FieldType = createBitFieldType(field, RecordTy, RD); 1659 } else { 1660 auto Align = getDeclAlignIfRequired(field, CGM.getContext()); 1661 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(field); 1662 TypeLoc TL; 1663 if (const TypeSourceInfo *TSI = field->getTypeSourceInfo()) 1664 TL = TSI->getTypeLoc(); 1665 FieldType = createFieldType(name, type, field->getLocation(), 1666 field->getAccess(), OffsetInBits, Align, tunit, 1667 RecordTy, RD, Annotations, TL); 1668 } 1669 1670 elements.push_back(FieldType); 1671 } 1672 1673 void CGDebugInfo::CollectRecordNestedType( 1674 const TypeDecl *TD, SmallVectorImpl<llvm::Metadata *> &elements) { 1675 QualType Ty = CGM.getContext().getTypeDeclType(TD); 1676 // Injected class names are not considered nested records. 1677 if (isa<InjectedClassNameType>(Ty)) 1678 return; 1679 SourceLocation Loc = TD->getLocation(); 1680 llvm::DIType *nestedType = getOrCreateType(Ty, getOrCreateFile(Loc)); 1681 elements.push_back(nestedType); 1682 } 1683 1684 void CGDebugInfo::CollectRecordFields( 1685 const RecordDecl *record, llvm::DIFile *tunit, 1686 SmallVectorImpl<llvm::Metadata *> &elements, 1687 llvm::DICompositeType *RecordTy) { 1688 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(record); 1689 1690 if (CXXDecl && CXXDecl->isLambda()) 1691 CollectRecordLambdaFields(CXXDecl, elements, RecordTy); 1692 else { 1693 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record); 1694 1695 // Field number for non-static fields. 1696 unsigned fieldNo = 0; 1697 1698 // Static and non-static members should appear in the same order as 1699 // the corresponding declarations in the source program. 1700 for (const auto *I : record->decls()) 1701 if (const auto *V = dyn_cast<VarDecl>(I)) { 1702 if (V->hasAttr<NoDebugAttr>()) 1703 continue; 1704 1705 // Skip variable template specializations when emitting CodeView. MSVC 1706 // doesn't emit them. 1707 if (CGM.getCodeGenOpts().EmitCodeView && 1708 isa<VarTemplateSpecializationDecl>(V)) 1709 continue; 1710 1711 if (isa<VarTemplatePartialSpecializationDecl>(V)) 1712 continue; 1713 1714 // Reuse the existing static member declaration if one exists 1715 auto MI = StaticDataMemberCache.find(V->getCanonicalDecl()); 1716 if (MI != StaticDataMemberCache.end()) { 1717 assert(MI->second && 1718 "Static data member declaration should still exist"); 1719 elements.push_back(MI->second); 1720 } else { 1721 auto Field = CreateRecordStaticField(V, RecordTy, record); 1722 elements.push_back(Field); 1723 } 1724 } else if (const auto *field = dyn_cast<FieldDecl>(I)) { 1725 CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit, 1726 elements, RecordTy, record); 1727 1728 // Bump field number for next field. 1729 ++fieldNo; 1730 } else if (CGM.getCodeGenOpts().EmitCodeView) { 1731 // Debug info for nested types is included in the member list only for 1732 // CodeView. 1733 if (const auto *nestedType = dyn_cast<TypeDecl>(I)) 1734 if (!nestedType->isImplicit() && 1735 nestedType->getDeclContext() == record) 1736 CollectRecordNestedType(nestedType, elements); 1737 } 1738 } 1739 } 1740 1741 llvm::DISubroutineType * 1742 CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method, 1743 llvm::DIFile *Unit, bool decl) { 1744 const FunctionProtoType *Func = Method->getType()->getAs<FunctionProtoType>(); 1745 if (Method->isStatic()) 1746 return cast_or_null<llvm::DISubroutineType>( 1747 getOrCreateType(QualType(Func, 0), Unit)); 1748 return getOrCreateInstanceMethodType(Method->getThisType(), Func, Unit, decl); 1749 } 1750 1751 llvm::DISubroutineType * 1752 CGDebugInfo::getOrCreateInstanceMethodType(QualType ThisPtr, 1753 const FunctionProtoType *Func, 1754 llvm::DIFile *Unit, bool decl) { 1755 FunctionProtoType::ExtProtoInfo EPI = Func->getExtProtoInfo(); 1756 Qualifiers &Qc = EPI.TypeQuals; 1757 Qc.removeConst(); 1758 Qc.removeVolatile(); 1759 Qc.removeRestrict(); 1760 Qc.removeUnaligned(); 1761 // Keep the removed qualifiers in sync with 1762 // CreateQualifiedType(const FunctionPrototype*, DIFile *Unit) 1763 // On a 'real' member function type, these qualifiers are carried on the type 1764 // of the first parameter, not as separate DW_TAG_const_type (etc) decorator 1765 // tags around them. (But, in the raw function types with qualifiers, they have 1766 // to use wrapper types.) 1767 1768 // Add "this" pointer. 1769 const auto *OriginalFunc = cast<llvm::DISubroutineType>( 1770 getOrCreateType(CGM.getContext().getFunctionType( 1771 Func->getReturnType(), Func->getParamTypes(), EPI), 1772 Unit)); 1773 llvm::DITypeRefArray Args = OriginalFunc->getTypeArray(); 1774 assert(Args.size() && "Invalid number of arguments!"); 1775 1776 SmallVector<llvm::Metadata *, 16> Elts; 1777 // First element is always return type. For 'void' functions it is NULL. 1778 QualType temp = Func->getReturnType(); 1779 if (temp->getTypeClass() == Type::Auto && decl) 1780 Elts.push_back(CreateType(cast<AutoType>(temp))); 1781 else 1782 Elts.push_back(Args[0]); 1783 1784 // "this" pointer is always first argument. 1785 const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl(); 1786 if (isa<ClassTemplateSpecializationDecl>(RD)) { 1787 // Create pointer type directly in this case. 1788 const PointerType *ThisPtrTy = cast<PointerType>(ThisPtr); 1789 QualType PointeeTy = ThisPtrTy->getPointeeType(); 1790 unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy); 1791 uint64_t Size = CGM.getTarget().getPointerWidth(AS); 1792 auto Align = getTypeAlignIfRequired(ThisPtrTy, CGM.getContext()); 1793 llvm::DIType *PointeeType = getOrCreateType(PointeeTy, Unit); 1794 llvm::DIType *ThisPtrType = 1795 DBuilder.createPointerType(PointeeType, Size, Align); 1796 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); 1797 // TODO: This and the artificial type below are misleading, the 1798 // types aren't artificial the argument is, but the current 1799 // metadata doesn't represent that. 1800 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); 1801 Elts.push_back(ThisPtrType); 1802 } else { 1803 llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit); 1804 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); 1805 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); 1806 Elts.push_back(ThisPtrType); 1807 } 1808 1809 // Copy rest of the arguments. 1810 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1811 Elts.push_back(Args[i]); 1812 1813 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); 1814 1815 return DBuilder.createSubroutineType(EltTypeArray, OriginalFunc->getFlags(), 1816 getDwarfCC(Func->getCallConv())); 1817 } 1818 1819 /// isFunctionLocalClass - Return true if CXXRecordDecl is defined 1820 /// inside a function. 1821 static bool isFunctionLocalClass(const CXXRecordDecl *RD) { 1822 if (const auto *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext())) 1823 return isFunctionLocalClass(NRD); 1824 if (isa<FunctionDecl>(RD->getDeclContext())) 1825 return true; 1826 return false; 1827 } 1828 1829 llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction( 1830 const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) { 1831 bool IsCtorOrDtor = 1832 isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method); 1833 1834 StringRef MethodName = getFunctionName(Method); 1835 llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit, true); 1836 1837 // Since a single ctor/dtor corresponds to multiple functions, it doesn't 1838 // make sense to give a single ctor/dtor a linkage name. 1839 StringRef MethodLinkageName; 1840 // FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional 1841 // property to use here. It may've been intended to model "is non-external 1842 // type" but misses cases of non-function-local but non-external classes such 1843 // as those in anonymous namespaces as well as the reverse - external types 1844 // that are function local, such as those in (non-local) inline functions. 1845 if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent())) 1846 MethodLinkageName = CGM.getMangledName(Method); 1847 1848 // Get the location for the method. 1849 llvm::DIFile *MethodDefUnit = nullptr; 1850 unsigned MethodLine = 0; 1851 if (!Method->isImplicit()) { 1852 MethodDefUnit = getOrCreateFile(Method->getLocation()); 1853 MethodLine = getLineNumber(Method->getLocation()); 1854 } 1855 1856 // Collect virtual method info. 1857 llvm::DIType *ContainingType = nullptr; 1858 unsigned VIndex = 0; 1859 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1860 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 1861 int ThisAdjustment = 0; 1862 1863 if (Method->isVirtual()) { 1864 if (Method->isPure()) 1865 SPFlags |= llvm::DISubprogram::SPFlagPureVirtual; 1866 else 1867 SPFlags |= llvm::DISubprogram::SPFlagVirtual; 1868 1869 if (CGM.getTarget().getCXXABI().isItaniumFamily()) { 1870 // It doesn't make sense to give a virtual destructor a vtable index, 1871 // since a single destructor has two entries in the vtable. 1872 if (!isa<CXXDestructorDecl>(Method)) 1873 VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method); 1874 } else { 1875 // Emit MS ABI vftable information. There is only one entry for the 1876 // deleting dtor. 1877 const auto *DD = dyn_cast<CXXDestructorDecl>(Method); 1878 GlobalDecl GD = DD ? GlobalDecl(DD, Dtor_Deleting) : GlobalDecl(Method); 1879 MethodVFTableLocation ML = 1880 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1881 VIndex = ML.Index; 1882 1883 // CodeView only records the vftable offset in the class that introduces 1884 // the virtual method. This is possible because, unlike Itanium, the MS 1885 // C++ ABI does not include all virtual methods from non-primary bases in 1886 // the vtable for the most derived class. For example, if C inherits from 1887 // A and B, C's primary vftable will not include B's virtual methods. 1888 if (Method->size_overridden_methods() == 0) 1889 Flags |= llvm::DINode::FlagIntroducedVirtual; 1890 1891 // The 'this' adjustment accounts for both the virtual and non-virtual 1892 // portions of the adjustment. Presumably the debugger only uses it when 1893 // it knows the dynamic type of an object. 1894 ThisAdjustment = CGM.getCXXABI() 1895 .getVirtualFunctionPrologueThisAdjustment(GD) 1896 .getQuantity(); 1897 } 1898 ContainingType = RecordTy; 1899 } 1900 1901 // We're checking for deleted C++ special member functions 1902 // [Ctors,Dtors, Copy/Move] 1903 auto checkAttrDeleted = [&](const auto *Method) { 1904 if (Method->getCanonicalDecl()->isDeleted()) 1905 SPFlags |= llvm::DISubprogram::SPFlagDeleted; 1906 }; 1907 1908 switch (Method->getKind()) { 1909 1910 case Decl::CXXConstructor: 1911 case Decl::CXXDestructor: 1912 checkAttrDeleted(Method); 1913 break; 1914 case Decl::CXXMethod: 1915 if (Method->isCopyAssignmentOperator() || 1916 Method->isMoveAssignmentOperator()) 1917 checkAttrDeleted(Method); 1918 break; 1919 default: 1920 break; 1921 } 1922 1923 if (Method->isNoReturn()) 1924 Flags |= llvm::DINode::FlagNoReturn; 1925 1926 if (Method->isStatic()) 1927 Flags |= llvm::DINode::FlagStaticMember; 1928 if (Method->isImplicit()) 1929 Flags |= llvm::DINode::FlagArtificial; 1930 Flags |= getAccessFlag(Method->getAccess(), Method->getParent()); 1931 if (const auto *CXXC = dyn_cast<CXXConstructorDecl>(Method)) { 1932 if (CXXC->isExplicit()) 1933 Flags |= llvm::DINode::FlagExplicit; 1934 } else if (const auto *CXXC = dyn_cast<CXXConversionDecl>(Method)) { 1935 if (CXXC->isExplicit()) 1936 Flags |= llvm::DINode::FlagExplicit; 1937 } 1938 if (Method->hasPrototype()) 1939 Flags |= llvm::DINode::FlagPrototyped; 1940 if (Method->getRefQualifier() == RQ_LValue) 1941 Flags |= llvm::DINode::FlagLValueReference; 1942 if (Method->getRefQualifier() == RQ_RValue) 1943 Flags |= llvm::DINode::FlagRValueReference; 1944 if (!Method->isExternallyVisible()) 1945 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 1946 if (CGM.getLangOpts().Optimize) 1947 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 1948 1949 // In this debug mode, emit type info for a class when its constructor type 1950 // info is emitted. 1951 if (DebugKind == codegenoptions::DebugInfoConstructor) 1952 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1953 completeUnusedClass(*CD->getParent()); 1954 1955 llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit); 1956 llvm::DISubprogram *SP = DBuilder.createMethod( 1957 RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine, 1958 MethodTy, VIndex, ThisAdjustment, ContainingType, Flags, SPFlags, 1959 TParamsArray.get()); 1960 1961 SPCache[Method->getCanonicalDecl()].reset(SP); 1962 1963 return SP; 1964 } 1965 1966 void CGDebugInfo::CollectCXXMemberFunctions( 1967 const CXXRecordDecl *RD, llvm::DIFile *Unit, 1968 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) { 1969 1970 // Since we want more than just the individual member decls if we 1971 // have templated functions iterate over every declaration to gather 1972 // the functions. 1973 for (const auto *I : RD->decls()) { 1974 const auto *Method = dyn_cast<CXXMethodDecl>(I); 1975 // If the member is implicit, don't add it to the member list. This avoids 1976 // the member being added to type units by LLVM, while still allowing it 1977 // to be emitted into the type declaration/reference inside the compile 1978 // unit. 1979 // Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp. 1980 // FIXME: Handle Using(Shadow?)Decls here to create 1981 // DW_TAG_imported_declarations inside the class for base decls brought into 1982 // derived classes. GDB doesn't seem to notice/leverage these when I tried 1983 // it, so I'm not rushing to fix this. (GCC seems to produce them, if 1984 // referenced) 1985 if (!Method || Method->isImplicit() || Method->hasAttr<NoDebugAttr>()) 1986 continue; 1987 1988 if (Method->getType()->castAs<FunctionProtoType>()->getContainedAutoType()) 1989 continue; 1990 1991 // Reuse the existing member function declaration if it exists. 1992 // It may be associated with the declaration of the type & should be 1993 // reused as we're building the definition. 1994 // 1995 // This situation can arise in the vtable-based debug info reduction where 1996 // implicit members are emitted in a non-vtable TU. 1997 auto MI = SPCache.find(Method->getCanonicalDecl()); 1998 EltTys.push_back(MI == SPCache.end() 1999 ? CreateCXXMemberFunction(Method, Unit, RecordTy) 2000 : static_cast<llvm::Metadata *>(MI->second)); 2001 } 2002 } 2003 2004 void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit, 2005 SmallVectorImpl<llvm::Metadata *> &EltTys, 2006 llvm::DIType *RecordTy) { 2007 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> SeenTypes; 2008 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->bases(), SeenTypes, 2009 llvm::DINode::FlagZero); 2010 2011 // If we are generating CodeView debug info, we also need to emit records for 2012 // indirect virtual base classes. 2013 if (CGM.getCodeGenOpts().EmitCodeView) { 2014 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->vbases(), SeenTypes, 2015 llvm::DINode::FlagIndirectVirtualBase); 2016 } 2017 } 2018 2019 void CGDebugInfo::CollectCXXBasesAux( 2020 const CXXRecordDecl *RD, llvm::DIFile *Unit, 2021 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy, 2022 const CXXRecordDecl::base_class_const_range &Bases, 2023 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> &SeenTypes, 2024 llvm::DINode::DIFlags StartingFlags) { 2025 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2026 for (const auto &BI : Bases) { 2027 const auto *Base = 2028 cast<CXXRecordDecl>(BI.getType()->castAs<RecordType>()->getDecl()); 2029 if (!SeenTypes.insert(Base).second) 2030 continue; 2031 auto *BaseTy = getOrCreateType(BI.getType(), Unit); 2032 llvm::DINode::DIFlags BFlags = StartingFlags; 2033 uint64_t BaseOffset; 2034 uint32_t VBPtrOffset = 0; 2035 2036 if (BI.isVirtual()) { 2037 if (CGM.getTarget().getCXXABI().isItaniumFamily()) { 2038 // virtual base offset offset is -ve. The code generator emits dwarf 2039 // expression where it expects +ve number. 2040 BaseOffset = 0 - CGM.getItaniumVTableContext() 2041 .getVirtualBaseOffsetOffset(RD, Base) 2042 .getQuantity(); 2043 } else { 2044 // In the MS ABI, store the vbtable offset, which is analogous to the 2045 // vbase offset offset in Itanium. 2046 BaseOffset = 2047 4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base); 2048 VBPtrOffset = CGM.getContext() 2049 .getASTRecordLayout(RD) 2050 .getVBPtrOffset() 2051 .getQuantity(); 2052 } 2053 BFlags |= llvm::DINode::FlagVirtual; 2054 } else 2055 BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base)); 2056 // FIXME: Inconsistent units for BaseOffset. It is in bytes when 2057 // BI->isVirtual() and bits when not. 2058 2059 BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD); 2060 llvm::DIType *DTy = DBuilder.createInheritance(RecordTy, BaseTy, BaseOffset, 2061 VBPtrOffset, BFlags); 2062 EltTys.push_back(DTy); 2063 } 2064 } 2065 2066 llvm::DINodeArray 2067 CGDebugInfo::CollectTemplateParams(Optional<TemplateArgs> OArgs, 2068 llvm::DIFile *Unit) { 2069 if (!OArgs) 2070 return llvm::DINodeArray(); 2071 TemplateArgs &Args = *OArgs; 2072 SmallVector<llvm::Metadata *, 16> TemplateParams; 2073 for (unsigned i = 0, e = Args.Args.size(); i != e; ++i) { 2074 const TemplateArgument &TA = Args.Args[i]; 2075 StringRef Name; 2076 bool defaultParameter = false; 2077 if (Args.TList) 2078 Name = Args.TList->getParam(i)->getName(); 2079 switch (TA.getKind()) { 2080 case TemplateArgument::Type: { 2081 llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit); 2082 2083 if (Args.TList) 2084 if (auto *templateType = 2085 dyn_cast_or_null<TemplateTypeParmDecl>(Args.TList->getParam(i))) 2086 if (templateType->hasDefaultArgument()) 2087 defaultParameter = 2088 templateType->getDefaultArgument() == TA.getAsType(); 2089 2090 TemplateParams.push_back(DBuilder.createTemplateTypeParameter( 2091 TheCU, Name, TTy, defaultParameter)); 2092 2093 } break; 2094 case TemplateArgument::Integral: { 2095 llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit); 2096 if (Args.TList && CGM.getCodeGenOpts().DwarfVersion >= 5) 2097 if (auto *templateType = dyn_cast_or_null<NonTypeTemplateParmDecl>( 2098 Args.TList->getParam(i))) 2099 if (templateType->hasDefaultArgument() && 2100 !templateType->getDefaultArgument()->isValueDependent()) 2101 defaultParameter = llvm::APSInt::isSameValue( 2102 templateType->getDefaultArgument()->EvaluateKnownConstInt( 2103 CGM.getContext()), 2104 TA.getAsIntegral()); 2105 2106 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2107 TheCU, Name, TTy, defaultParameter, 2108 llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral()))); 2109 } break; 2110 case TemplateArgument::Declaration: { 2111 const ValueDecl *D = TA.getAsDecl(); 2112 QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext()); 2113 llvm::DIType *TTy = getOrCreateType(T, Unit); 2114 llvm::Constant *V = nullptr; 2115 // Skip retrieve the value if that template parameter has cuda device 2116 // attribute, i.e. that value is not available at the host side. 2117 if (!CGM.getLangOpts().CUDA || CGM.getLangOpts().CUDAIsDevice || 2118 !D->hasAttr<CUDADeviceAttr>()) { 2119 const CXXMethodDecl *MD; 2120 // Variable pointer template parameters have a value that is the address 2121 // of the variable. 2122 if (const auto *VD = dyn_cast<VarDecl>(D)) 2123 V = CGM.GetAddrOfGlobalVar(VD); 2124 // Member function pointers have special support for building them, 2125 // though this is currently unsupported in LLVM CodeGen. 2126 else if ((MD = dyn_cast<CXXMethodDecl>(D)) && MD->isInstance()) 2127 V = CGM.getCXXABI().EmitMemberFunctionPointer(MD); 2128 else if (const auto *FD = dyn_cast<FunctionDecl>(D)) 2129 V = CGM.GetAddrOfFunction(FD); 2130 // Member data pointers have special handling too to compute the fixed 2131 // offset within the object. 2132 else if (const auto *MPT = 2133 dyn_cast<MemberPointerType>(T.getTypePtr())) { 2134 // These five lines (& possibly the above member function pointer 2135 // handling) might be able to be refactored to use similar code in 2136 // CodeGenModule::getMemberPointerConstant 2137 uint64_t fieldOffset = CGM.getContext().getFieldOffset(D); 2138 CharUnits chars = 2139 CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset); 2140 V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars); 2141 } else if (const auto *GD = dyn_cast<MSGuidDecl>(D)) { 2142 V = CGM.GetAddrOfMSGuidDecl(GD).getPointer(); 2143 } else if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 2144 if (T->isRecordType()) 2145 V = ConstantEmitter(CGM).emitAbstract( 2146 SourceLocation(), TPO->getValue(), TPO->getType()); 2147 else 2148 V = CGM.GetAddrOfTemplateParamObject(TPO).getPointer(); 2149 } 2150 assert(V && "Failed to find template parameter pointer"); 2151 V = V->stripPointerCasts(); 2152 } 2153 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2154 TheCU, Name, TTy, defaultParameter, cast_or_null<llvm::Constant>(V))); 2155 } break; 2156 case TemplateArgument::NullPtr: { 2157 QualType T = TA.getNullPtrType(); 2158 llvm::DIType *TTy = getOrCreateType(T, Unit); 2159 llvm::Constant *V = nullptr; 2160 // Special case member data pointer null values since they're actually -1 2161 // instead of zero. 2162 if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr())) 2163 // But treat member function pointers as simple zero integers because 2164 // it's easier than having a special case in LLVM's CodeGen. If LLVM 2165 // CodeGen grows handling for values of non-null member function 2166 // pointers then perhaps we could remove this special case and rely on 2167 // EmitNullMemberPointer for member function pointers. 2168 if (MPT->isMemberDataPointer()) 2169 V = CGM.getCXXABI().EmitNullMemberPointer(MPT); 2170 if (!V) 2171 V = llvm::ConstantInt::get(CGM.Int8Ty, 0); 2172 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2173 TheCU, Name, TTy, defaultParameter, V)); 2174 } break; 2175 case TemplateArgument::Template: { 2176 std::string QualName; 2177 llvm::raw_string_ostream OS(QualName); 2178 TA.getAsTemplate().getAsTemplateDecl()->printQualifiedName( 2179 OS, getPrintingPolicy()); 2180 TemplateParams.push_back(DBuilder.createTemplateTemplateParameter( 2181 TheCU, Name, nullptr, OS.str())); 2182 break; 2183 } 2184 case TemplateArgument::Pack: 2185 TemplateParams.push_back(DBuilder.createTemplateParameterPack( 2186 TheCU, Name, nullptr, 2187 CollectTemplateParams({{nullptr, TA.getPackAsArray()}}, Unit))); 2188 break; 2189 case TemplateArgument::Expression: { 2190 const Expr *E = TA.getAsExpr(); 2191 QualType T = E->getType(); 2192 if (E->isGLValue()) 2193 T = CGM.getContext().getLValueReferenceType(T); 2194 llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(E, T); 2195 assert(V && "Expression in template argument isn't constant"); 2196 llvm::DIType *TTy = getOrCreateType(T, Unit); 2197 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2198 TheCU, Name, TTy, defaultParameter, V->stripPointerCasts())); 2199 } break; 2200 // And the following should never occur: 2201 case TemplateArgument::TemplateExpansion: 2202 case TemplateArgument::Null: 2203 llvm_unreachable( 2204 "These argument types shouldn't exist in concrete types"); 2205 } 2206 } 2207 return DBuilder.getOrCreateArray(TemplateParams); 2208 } 2209 2210 Optional<CGDebugInfo::TemplateArgs> 2211 CGDebugInfo::GetTemplateArgs(const FunctionDecl *FD) const { 2212 if (FD->getTemplatedKind() == 2213 FunctionDecl::TK_FunctionTemplateSpecialization) { 2214 const TemplateParameterList *TList = FD->getTemplateSpecializationInfo() 2215 ->getTemplate() 2216 ->getTemplateParameters(); 2217 return {{TList, FD->getTemplateSpecializationArgs()->asArray()}}; 2218 } 2219 return None; 2220 } 2221 Optional<CGDebugInfo::TemplateArgs> 2222 CGDebugInfo::GetTemplateArgs(const VarDecl *VD) const { 2223 // Always get the full list of parameters, not just the ones from the 2224 // specialization. A partial specialization may have fewer parameters than 2225 // there are arguments. 2226 auto *TS = dyn_cast<VarTemplateSpecializationDecl>(VD); 2227 if (!TS) 2228 return None; 2229 VarTemplateDecl *T = TS->getSpecializedTemplate(); 2230 const TemplateParameterList *TList = T->getTemplateParameters(); 2231 auto TA = TS->getTemplateArgs().asArray(); 2232 return {{TList, TA}}; 2233 } 2234 Optional<CGDebugInfo::TemplateArgs> 2235 CGDebugInfo::GetTemplateArgs(const RecordDecl *RD) const { 2236 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 2237 // Always get the full list of parameters, not just the ones from the 2238 // specialization. A partial specialization may have fewer parameters than 2239 // there are arguments. 2240 TemplateParameterList *TPList = 2241 TSpecial->getSpecializedTemplate()->getTemplateParameters(); 2242 const TemplateArgumentList &TAList = TSpecial->getTemplateArgs(); 2243 return {{TPList, TAList.asArray()}}; 2244 } 2245 return None; 2246 } 2247 2248 llvm::DINodeArray 2249 CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD, 2250 llvm::DIFile *Unit) { 2251 return CollectTemplateParams(GetTemplateArgs(FD), Unit); 2252 } 2253 2254 llvm::DINodeArray CGDebugInfo::CollectVarTemplateParams(const VarDecl *VL, 2255 llvm::DIFile *Unit) { 2256 return CollectTemplateParams(GetTemplateArgs(VL), Unit); 2257 } 2258 2259 llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(const RecordDecl *RD, 2260 llvm::DIFile *Unit) { 2261 return CollectTemplateParams(GetTemplateArgs(RD), Unit); 2262 } 2263 2264 llvm::DINodeArray CGDebugInfo::CollectBTFDeclTagAnnotations(const Decl *D) { 2265 if (!D->hasAttr<BTFDeclTagAttr>()) 2266 return nullptr; 2267 2268 SmallVector<llvm::Metadata *, 4> Annotations; 2269 for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) { 2270 llvm::Metadata *Ops[2] = { 2271 llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_decl_tag")), 2272 llvm::MDString::get(CGM.getLLVMContext(), I->getBTFDeclTag())}; 2273 Annotations.push_back(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2274 } 2275 return DBuilder.getOrCreateArray(Annotations); 2276 } 2277 2278 llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) { 2279 if (VTablePtrType) 2280 return VTablePtrType; 2281 2282 ASTContext &Context = CGM.getContext(); 2283 2284 /* Function type */ 2285 llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit); 2286 llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy); 2287 llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements); 2288 unsigned Size = Context.getTypeSize(Context.VoidPtrTy); 2289 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); 2290 Optional<unsigned> DWARFAddressSpace = 2291 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); 2292 2293 llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType( 2294 SubTy, Size, 0, DWARFAddressSpace, "__vtbl_ptr_type"); 2295 VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size); 2296 return VTablePtrType; 2297 } 2298 2299 StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) { 2300 // Copy the gdb compatible name on the side and use its reference. 2301 return internString("_vptr$", RD->getNameAsString()); 2302 } 2303 2304 StringRef CGDebugInfo::getDynamicInitializerName(const VarDecl *VD, 2305 DynamicInitKind StubKind, 2306 llvm::Function *InitFn) { 2307 // If we're not emitting codeview, use the mangled name. For Itanium, this is 2308 // arbitrary. 2309 if (!CGM.getCodeGenOpts().EmitCodeView || 2310 StubKind == DynamicInitKind::GlobalArrayDestructor) 2311 return InitFn->getName(); 2312 2313 // Print the normal qualified name for the variable, then break off the last 2314 // NNS, and add the appropriate other text. Clang always prints the global 2315 // variable name without template arguments, so we can use rsplit("::") and 2316 // then recombine the pieces. 2317 SmallString<128> QualifiedGV; 2318 StringRef Quals; 2319 StringRef GVName; 2320 { 2321 llvm::raw_svector_ostream OS(QualifiedGV); 2322 VD->printQualifiedName(OS, getPrintingPolicy()); 2323 std::tie(Quals, GVName) = OS.str().rsplit("::"); 2324 if (GVName.empty()) 2325 std::swap(Quals, GVName); 2326 } 2327 2328 SmallString<128> InitName; 2329 llvm::raw_svector_ostream OS(InitName); 2330 if (!Quals.empty()) 2331 OS << Quals << "::"; 2332 2333 switch (StubKind) { 2334 case DynamicInitKind::NoStub: 2335 case DynamicInitKind::GlobalArrayDestructor: 2336 llvm_unreachable("not an initializer"); 2337 case DynamicInitKind::Initializer: 2338 OS << "`dynamic initializer for '"; 2339 break; 2340 case DynamicInitKind::AtExit: 2341 OS << "`dynamic atexit destructor for '"; 2342 break; 2343 } 2344 2345 OS << GVName; 2346 2347 // Add any template specialization args. 2348 if (const auto *VTpl = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2349 printTemplateArgumentList(OS, VTpl->getTemplateArgs().asArray(), 2350 getPrintingPolicy()); 2351 } 2352 2353 OS << '\''; 2354 2355 return internString(OS.str()); 2356 } 2357 2358 void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit, 2359 SmallVectorImpl<llvm::Metadata *> &EltTys) { 2360 // If this class is not dynamic then there is not any vtable info to collect. 2361 if (!RD->isDynamicClass()) 2362 return; 2363 2364 // Don't emit any vtable shape or vptr info if this class doesn't have an 2365 // extendable vfptr. This can happen if the class doesn't have virtual 2366 // methods, or in the MS ABI if those virtual methods only come from virtually 2367 // inherited bases. 2368 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2369 if (!RL.hasExtendableVFPtr()) 2370 return; 2371 2372 // CodeView needs to know how large the vtable of every dynamic class is, so 2373 // emit a special named pointer type into the element list. The vptr type 2374 // points to this type as well. 2375 llvm::DIType *VPtrTy = nullptr; 2376 bool NeedVTableShape = CGM.getCodeGenOpts().EmitCodeView && 2377 CGM.getTarget().getCXXABI().isMicrosoft(); 2378 if (NeedVTableShape) { 2379 uint64_t PtrWidth = 2380 CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 2381 const VTableLayout &VFTLayout = 2382 CGM.getMicrosoftVTableContext().getVFTableLayout(RD, CharUnits::Zero()); 2383 unsigned VSlotCount = 2384 VFTLayout.vtable_components().size() - CGM.getLangOpts().RTTIData; 2385 unsigned VTableWidth = PtrWidth * VSlotCount; 2386 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); 2387 Optional<unsigned> DWARFAddressSpace = 2388 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); 2389 2390 // Create a very wide void* type and insert it directly in the element list. 2391 llvm::DIType *VTableType = DBuilder.createPointerType( 2392 nullptr, VTableWidth, 0, DWARFAddressSpace, "__vtbl_ptr_type"); 2393 EltTys.push_back(VTableType); 2394 2395 // The vptr is a pointer to this special vtable type. 2396 VPtrTy = DBuilder.createPointerType(VTableType, PtrWidth); 2397 } 2398 2399 // If there is a primary base then the artificial vptr member lives there. 2400 if (RL.getPrimaryBase()) 2401 return; 2402 2403 if (!VPtrTy) 2404 VPtrTy = getOrCreateVTablePtrType(Unit); 2405 2406 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 2407 llvm::DIType *VPtrMember = 2408 DBuilder.createMemberType(Unit, getVTableName(RD), Unit, 0, Size, 0, 0, 2409 llvm::DINode::FlagArtificial, VPtrTy); 2410 EltTys.push_back(VPtrMember); 2411 } 2412 2413 llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy, 2414 SourceLocation Loc) { 2415 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 2416 llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc)); 2417 return T; 2418 } 2419 2420 llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D, 2421 SourceLocation Loc) { 2422 return getOrCreateStandaloneType(D, Loc); 2423 } 2424 2425 llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D, 2426 SourceLocation Loc) { 2427 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 2428 assert(!D.isNull() && "null type"); 2429 llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc)); 2430 assert(T && "could not create debug info for type"); 2431 2432 RetainedTypes.push_back(D.getAsOpaquePtr()); 2433 return T; 2434 } 2435 2436 void CGDebugInfo::addHeapAllocSiteMetadata(llvm::CallBase *CI, 2437 QualType AllocatedTy, 2438 SourceLocation Loc) { 2439 if (CGM.getCodeGenOpts().getDebugInfo() <= 2440 codegenoptions::DebugLineTablesOnly) 2441 return; 2442 llvm::MDNode *node; 2443 if (AllocatedTy->isVoidType()) 2444 node = llvm::MDNode::get(CGM.getLLVMContext(), None); 2445 else 2446 node = getOrCreateType(AllocatedTy, getOrCreateFile(Loc)); 2447 2448 CI->setMetadata("heapallocsite", node); 2449 } 2450 2451 void CGDebugInfo::completeType(const EnumDecl *ED) { 2452 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 2453 return; 2454 QualType Ty = CGM.getContext().getEnumType(ED); 2455 void *TyPtr = Ty.getAsOpaquePtr(); 2456 auto I = TypeCache.find(TyPtr); 2457 if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl()) 2458 return; 2459 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>()); 2460 assert(!Res->isForwardDecl()); 2461 TypeCache[TyPtr].reset(Res); 2462 } 2463 2464 void CGDebugInfo::completeType(const RecordDecl *RD) { 2465 if (DebugKind > codegenoptions::LimitedDebugInfo || 2466 !CGM.getLangOpts().CPlusPlus) 2467 completeRequiredType(RD); 2468 } 2469 2470 /// Return true if the class or any of its methods are marked dllimport. 2471 static bool isClassOrMethodDLLImport(const CXXRecordDecl *RD) { 2472 if (RD->hasAttr<DLLImportAttr>()) 2473 return true; 2474 for (const CXXMethodDecl *MD : RD->methods()) 2475 if (MD->hasAttr<DLLImportAttr>()) 2476 return true; 2477 return false; 2478 } 2479 2480 /// Does a type definition exist in an imported clang module? 2481 static bool isDefinedInClangModule(const RecordDecl *RD) { 2482 // Only definitions that where imported from an AST file come from a module. 2483 if (!RD || !RD->isFromASTFile()) 2484 return false; 2485 // Anonymous entities cannot be addressed. Treat them as not from module. 2486 if (!RD->isExternallyVisible() && RD->getName().empty()) 2487 return false; 2488 if (auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) { 2489 if (!CXXDecl->isCompleteDefinition()) 2490 return false; 2491 // Check wether RD is a template. 2492 auto TemplateKind = CXXDecl->getTemplateSpecializationKind(); 2493 if (TemplateKind != TSK_Undeclared) { 2494 // Unfortunately getOwningModule() isn't accurate enough to find the 2495 // owning module of a ClassTemplateSpecializationDecl that is inside a 2496 // namespace spanning multiple modules. 2497 bool Explicit = false; 2498 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(CXXDecl)) 2499 Explicit = TD->isExplicitInstantiationOrSpecialization(); 2500 if (!Explicit && CXXDecl->getEnclosingNamespaceContext()) 2501 return false; 2502 // This is a template, check the origin of the first member. 2503 if (CXXDecl->field_begin() == CXXDecl->field_end()) 2504 return TemplateKind == TSK_ExplicitInstantiationDeclaration; 2505 if (!CXXDecl->field_begin()->isFromASTFile()) 2506 return false; 2507 } 2508 } 2509 return true; 2510 } 2511 2512 void CGDebugInfo::completeClassData(const RecordDecl *RD) { 2513 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 2514 if (CXXRD->isDynamicClass() && 2515 CGM.getVTableLinkage(CXXRD) == 2516 llvm::GlobalValue::AvailableExternallyLinkage && 2517 !isClassOrMethodDLLImport(CXXRD)) 2518 return; 2519 2520 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) 2521 return; 2522 2523 completeClass(RD); 2524 } 2525 2526 void CGDebugInfo::completeClass(const RecordDecl *RD) { 2527 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 2528 return; 2529 QualType Ty = CGM.getContext().getRecordType(RD); 2530 void *TyPtr = Ty.getAsOpaquePtr(); 2531 auto I = TypeCache.find(TyPtr); 2532 if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl()) 2533 return; 2534 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<RecordType>()); 2535 assert(!Res->isForwardDecl()); 2536 TypeCache[TyPtr].reset(Res); 2537 } 2538 2539 static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I, 2540 CXXRecordDecl::method_iterator End) { 2541 for (CXXMethodDecl *MD : llvm::make_range(I, End)) 2542 if (FunctionDecl *Tmpl = MD->getInstantiatedFromMemberFunction()) 2543 if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() && 2544 !MD->getMemberSpecializationInfo()->isExplicitSpecialization()) 2545 return true; 2546 return false; 2547 } 2548 2549 static bool canUseCtorHoming(const CXXRecordDecl *RD) { 2550 // Constructor homing can be used for classes that cannnot be constructed 2551 // without emitting code for one of their constructors. This is classes that 2552 // don't have trivial or constexpr constructors, or can be created from 2553 // aggregate initialization. Also skip lambda objects because they don't call 2554 // constructors. 2555 2556 // Skip this optimization if the class or any of its methods are marked 2557 // dllimport. 2558 if (isClassOrMethodDLLImport(RD)) 2559 return false; 2560 2561 return !RD->isLambda() && !RD->isAggregate() && 2562 !RD->hasTrivialDefaultConstructor() && 2563 !RD->hasConstexprNonCopyMoveConstructor(); 2564 } 2565 2566 static bool shouldOmitDefinition(codegenoptions::DebugInfoKind DebugKind, 2567 bool DebugTypeExtRefs, const RecordDecl *RD, 2568 const LangOptions &LangOpts) { 2569 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) 2570 return true; 2571 2572 if (auto *ES = RD->getASTContext().getExternalSource()) 2573 if (ES->hasExternalDefinitions(RD) == ExternalASTSource::EK_Always) 2574 return true; 2575 2576 // Only emit forward declarations in line tables only to keep debug info size 2577 // small. This only applies to CodeView, since we don't emit types in DWARF 2578 // line tables only. 2579 if (DebugKind == codegenoptions::DebugLineTablesOnly) 2580 return true; 2581 2582 if (DebugKind > codegenoptions::LimitedDebugInfo || 2583 RD->hasAttr<StandaloneDebugAttr>()) 2584 return false; 2585 2586 if (!LangOpts.CPlusPlus) 2587 return false; 2588 2589 if (!RD->isCompleteDefinitionRequired()) 2590 return true; 2591 2592 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD); 2593 2594 if (!CXXDecl) 2595 return false; 2596 2597 // Only emit complete debug info for a dynamic class when its vtable is 2598 // emitted. However, Microsoft debuggers don't resolve type information 2599 // across DLL boundaries, so skip this optimization if the class or any of its 2600 // methods are marked dllimport. This isn't a complete solution, since objects 2601 // without any dllimport methods can be used in one DLL and constructed in 2602 // another, but it is the current behavior of LimitedDebugInfo. 2603 if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass() && 2604 !isClassOrMethodDLLImport(CXXDecl)) 2605 return true; 2606 2607 TemplateSpecializationKind Spec = TSK_Undeclared; 2608 if (const auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 2609 Spec = SD->getSpecializationKind(); 2610 2611 if (Spec == TSK_ExplicitInstantiationDeclaration && 2612 hasExplicitMemberDefinition(CXXDecl->method_begin(), 2613 CXXDecl->method_end())) 2614 return true; 2615 2616 // In constructor homing mode, only emit complete debug info for a class 2617 // when its constructor is emitted. 2618 if ((DebugKind == codegenoptions::DebugInfoConstructor) && 2619 canUseCtorHoming(CXXDecl)) 2620 return true; 2621 2622 return false; 2623 } 2624 2625 void CGDebugInfo::completeRequiredType(const RecordDecl *RD) { 2626 if (shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts())) 2627 return; 2628 2629 QualType Ty = CGM.getContext().getRecordType(RD); 2630 llvm::DIType *T = getTypeOrNull(Ty); 2631 if (T && T->isForwardDecl()) 2632 completeClassData(RD); 2633 } 2634 2635 llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) { 2636 RecordDecl *RD = Ty->getDecl(); 2637 llvm::DIType *T = cast_or_null<llvm::DIType>(getTypeOrNull(QualType(Ty, 0))); 2638 if (T || shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, 2639 CGM.getLangOpts())) { 2640 if (!T) 2641 T = getOrCreateRecordFwdDecl(Ty, getDeclContextDescriptor(RD)); 2642 return T; 2643 } 2644 2645 return CreateTypeDefinition(Ty); 2646 } 2647 2648 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) { 2649 RecordDecl *RD = Ty->getDecl(); 2650 2651 // Get overall information about the record type for the debug info. 2652 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); 2653 2654 // Records and classes and unions can all be recursive. To handle them, we 2655 // first generate a debug descriptor for the struct as a forward declaration. 2656 // Then (if it is a definition) we go through and get debug info for all of 2657 // its members. Finally, we create a descriptor for the complete type (which 2658 // may refer to the forward decl if the struct is recursive) and replace all 2659 // uses of the forward declaration with the final definition. 2660 llvm::DICompositeType *FwdDecl = getOrCreateLimitedType(Ty); 2661 2662 const RecordDecl *D = RD->getDefinition(); 2663 if (!D || !D->isCompleteDefinition()) 2664 return FwdDecl; 2665 2666 if (const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) 2667 CollectContainingType(CXXDecl, FwdDecl); 2668 2669 // Push the struct on region stack. 2670 LexicalBlockStack.emplace_back(&*FwdDecl); 2671 RegionMap[Ty->getDecl()].reset(FwdDecl); 2672 2673 // Convert all the elements. 2674 SmallVector<llvm::Metadata *, 16> EltTys; 2675 // what about nested types? 2676 2677 // Note: The split of CXXDecl information here is intentional, the 2678 // gdb tests will depend on a certain ordering at printout. The debug 2679 // information offsets are still correct if we merge them all together 2680 // though. 2681 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD); 2682 if (CXXDecl) { 2683 CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl); 2684 CollectVTableInfo(CXXDecl, DefUnit, EltTys); 2685 } 2686 2687 // Collect data fields (including static variables and any initializers). 2688 CollectRecordFields(RD, DefUnit, EltTys, FwdDecl); 2689 if (CXXDecl) 2690 CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl); 2691 2692 LexicalBlockStack.pop_back(); 2693 RegionMap.erase(Ty->getDecl()); 2694 2695 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 2696 DBuilder.replaceArrays(FwdDecl, Elements); 2697 2698 if (FwdDecl->isTemporary()) 2699 FwdDecl = 2700 llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl)); 2701 2702 RegionMap[Ty->getDecl()].reset(FwdDecl); 2703 return FwdDecl; 2704 } 2705 2706 llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty, 2707 llvm::DIFile *Unit) { 2708 // Ignore protocols. 2709 return getOrCreateType(Ty->getBaseType(), Unit); 2710 } 2711 2712 llvm::DIType *CGDebugInfo::CreateType(const ObjCTypeParamType *Ty, 2713 llvm::DIFile *Unit) { 2714 // Ignore protocols. 2715 SourceLocation Loc = Ty->getDecl()->getLocation(); 2716 2717 // Use Typedefs to represent ObjCTypeParamType. 2718 return DBuilder.createTypedef( 2719 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit), 2720 Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc), 2721 getDeclContextDescriptor(Ty->getDecl())); 2722 } 2723 2724 /// \return true if Getter has the default name for the property PD. 2725 static bool hasDefaultGetterName(const ObjCPropertyDecl *PD, 2726 const ObjCMethodDecl *Getter) { 2727 assert(PD); 2728 if (!Getter) 2729 return true; 2730 2731 assert(Getter->getDeclName().isObjCZeroArgSelector()); 2732 return PD->getName() == 2733 Getter->getDeclName().getObjCSelector().getNameForSlot(0); 2734 } 2735 2736 /// \return true if Setter has the default name for the property PD. 2737 static bool hasDefaultSetterName(const ObjCPropertyDecl *PD, 2738 const ObjCMethodDecl *Setter) { 2739 assert(PD); 2740 if (!Setter) 2741 return true; 2742 2743 assert(Setter->getDeclName().isObjCOneArgSelector()); 2744 return SelectorTable::constructSetterName(PD->getName()) == 2745 Setter->getDeclName().getObjCSelector().getNameForSlot(0); 2746 } 2747 2748 llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty, 2749 llvm::DIFile *Unit) { 2750 ObjCInterfaceDecl *ID = Ty->getDecl(); 2751 if (!ID) 2752 return nullptr; 2753 2754 // Return a forward declaration if this type was imported from a clang module, 2755 // and this is not the compile unit with the implementation of the type (which 2756 // may contain hidden ivars). 2757 if (DebugTypeExtRefs && ID->isFromASTFile() && ID->getDefinition() && 2758 !ID->getImplementation()) 2759 return DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 2760 ID->getName(), 2761 getDeclContextDescriptor(ID), Unit, 0); 2762 2763 // Get overall information about the record type for the debug info. 2764 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); 2765 unsigned Line = getLineNumber(ID->getLocation()); 2766 auto RuntimeLang = 2767 static_cast<llvm::dwarf::SourceLanguage>(TheCU->getSourceLanguage()); 2768 2769 // If this is just a forward declaration return a special forward-declaration 2770 // debug type since we won't be able to lay out the entire type. 2771 ObjCInterfaceDecl *Def = ID->getDefinition(); 2772 if (!Def || !Def->getImplementation()) { 2773 llvm::DIScope *Mod = getParentModuleOrNull(ID); 2774 llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType( 2775 llvm::dwarf::DW_TAG_structure_type, ID->getName(), Mod ? Mod : TheCU, 2776 DefUnit, Line, RuntimeLang); 2777 ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit)); 2778 return FwdDecl; 2779 } 2780 2781 return CreateTypeDefinition(Ty, Unit); 2782 } 2783 2784 llvm::DIModule *CGDebugInfo::getOrCreateModuleRef(ASTSourceDescriptor Mod, 2785 bool CreateSkeletonCU) { 2786 // Use the Module pointer as the key into the cache. This is a 2787 // nullptr if the "Module" is a PCH, which is safe because we don't 2788 // support chained PCH debug info, so there can only be a single PCH. 2789 const Module *M = Mod.getModuleOrNull(); 2790 auto ModRef = ModuleCache.find(M); 2791 if (ModRef != ModuleCache.end()) 2792 return cast<llvm::DIModule>(ModRef->second); 2793 2794 // Macro definitions that were defined with "-D" on the command line. 2795 SmallString<128> ConfigMacros; 2796 { 2797 llvm::raw_svector_ostream OS(ConfigMacros); 2798 const auto &PPOpts = CGM.getPreprocessorOpts(); 2799 unsigned I = 0; 2800 // Translate the macro definitions back into a command line. 2801 for (auto &M : PPOpts.Macros) { 2802 if (++I > 1) 2803 OS << " "; 2804 const std::string &Macro = M.first; 2805 bool Undef = M.second; 2806 OS << "\"-" << (Undef ? 'U' : 'D'); 2807 for (char c : Macro) 2808 switch (c) { 2809 case '\\': 2810 OS << "\\\\"; 2811 break; 2812 case '"': 2813 OS << "\\\""; 2814 break; 2815 default: 2816 OS << c; 2817 } 2818 OS << '\"'; 2819 } 2820 } 2821 2822 bool IsRootModule = M ? !M->Parent : true; 2823 // When a module name is specified as -fmodule-name, that module gets a 2824 // clang::Module object, but it won't actually be built or imported; it will 2825 // be textual. 2826 if (CreateSkeletonCU && IsRootModule && Mod.getASTFile().empty() && M) 2827 assert(StringRef(M->Name).startswith(CGM.getLangOpts().ModuleName) && 2828 "clang module without ASTFile must be specified by -fmodule-name"); 2829 2830 // Return a StringRef to the remapped Path. 2831 auto RemapPath = [this](StringRef Path) -> std::string { 2832 std::string Remapped = remapDIPath(Path); 2833 StringRef Relative(Remapped); 2834 StringRef CompDir = TheCU->getDirectory(); 2835 if (Relative.consume_front(CompDir)) 2836 Relative.consume_front(llvm::sys::path::get_separator()); 2837 2838 return Relative.str(); 2839 }; 2840 2841 if (CreateSkeletonCU && IsRootModule && !Mod.getASTFile().empty()) { 2842 // PCH files don't have a signature field in the control block, 2843 // but LLVM detects skeleton CUs by looking for a non-zero DWO id. 2844 // We use the lower 64 bits for debug info. 2845 2846 uint64_t Signature = 0; 2847 if (const auto &ModSig = Mod.getSignature()) 2848 Signature = ModSig.truncatedValue(); 2849 else 2850 Signature = ~1ULL; 2851 2852 llvm::DIBuilder DIB(CGM.getModule()); 2853 SmallString<0> PCM; 2854 if (!llvm::sys::path::is_absolute(Mod.getASTFile())) 2855 PCM = Mod.getPath(); 2856 llvm::sys::path::append(PCM, Mod.getASTFile()); 2857 DIB.createCompileUnit( 2858 TheCU->getSourceLanguage(), 2859 // TODO: Support "Source" from external AST providers? 2860 DIB.createFile(Mod.getModuleName(), TheCU->getDirectory()), 2861 TheCU->getProducer(), false, StringRef(), 0, RemapPath(PCM), 2862 llvm::DICompileUnit::FullDebug, Signature); 2863 DIB.finalize(); 2864 } 2865 2866 llvm::DIModule *Parent = 2867 IsRootModule ? nullptr 2868 : getOrCreateModuleRef(ASTSourceDescriptor(*M->Parent), 2869 CreateSkeletonCU); 2870 std::string IncludePath = Mod.getPath().str(); 2871 llvm::DIModule *DIMod = 2872 DBuilder.createModule(Parent, Mod.getModuleName(), ConfigMacros, 2873 RemapPath(IncludePath)); 2874 ModuleCache[M].reset(DIMod); 2875 return DIMod; 2876 } 2877 2878 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty, 2879 llvm::DIFile *Unit) { 2880 ObjCInterfaceDecl *ID = Ty->getDecl(); 2881 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); 2882 unsigned Line = getLineNumber(ID->getLocation()); 2883 unsigned RuntimeLang = TheCU->getSourceLanguage(); 2884 2885 // Bit size, align and offset of the type. 2886 uint64_t Size = CGM.getContext().getTypeSize(Ty); 2887 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 2888 2889 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 2890 if (ID->getImplementation()) 2891 Flags |= llvm::DINode::FlagObjcClassComplete; 2892 2893 llvm::DIScope *Mod = getParentModuleOrNull(ID); 2894 llvm::DICompositeType *RealDecl = DBuilder.createStructType( 2895 Mod ? Mod : Unit, ID->getName(), DefUnit, Line, Size, Align, Flags, 2896 nullptr, llvm::DINodeArray(), RuntimeLang); 2897 2898 QualType QTy(Ty, 0); 2899 TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl); 2900 2901 // Push the struct on region stack. 2902 LexicalBlockStack.emplace_back(RealDecl); 2903 RegionMap[Ty->getDecl()].reset(RealDecl); 2904 2905 // Convert all the elements. 2906 SmallVector<llvm::Metadata *, 16> EltTys; 2907 2908 ObjCInterfaceDecl *SClass = ID->getSuperClass(); 2909 if (SClass) { 2910 llvm::DIType *SClassTy = 2911 getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit); 2912 if (!SClassTy) 2913 return nullptr; 2914 2915 llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0, 2916 llvm::DINode::FlagZero); 2917 EltTys.push_back(InhTag); 2918 } 2919 2920 // Create entries for all of the properties. 2921 auto AddProperty = [&](const ObjCPropertyDecl *PD) { 2922 SourceLocation Loc = PD->getLocation(); 2923 llvm::DIFile *PUnit = getOrCreateFile(Loc); 2924 unsigned PLine = getLineNumber(Loc); 2925 ObjCMethodDecl *Getter = PD->getGetterMethodDecl(); 2926 ObjCMethodDecl *Setter = PD->getSetterMethodDecl(); 2927 llvm::MDNode *PropertyNode = DBuilder.createObjCProperty( 2928 PD->getName(), PUnit, PLine, 2929 hasDefaultGetterName(PD, Getter) ? "" 2930 : getSelectorName(PD->getGetterName()), 2931 hasDefaultSetterName(PD, Setter) ? "" 2932 : getSelectorName(PD->getSetterName()), 2933 PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit)); 2934 EltTys.push_back(PropertyNode); 2935 }; 2936 { 2937 // Use 'char' for the isClassProperty bit as DenseSet requires space for 2938 // empty/tombstone keys in the data type (and bool is too small for that). 2939 typedef std::pair<char, const IdentifierInfo *> IsClassAndIdent; 2940 /// List of already emitted properties. Two distinct class and instance 2941 /// properties can share the same identifier (but not two instance 2942 /// properties or two class properties). 2943 llvm::DenseSet<IsClassAndIdent> PropertySet; 2944 /// Returns the IsClassAndIdent key for the given property. 2945 auto GetIsClassAndIdent = [](const ObjCPropertyDecl *PD) { 2946 return std::make_pair(PD->isClassProperty(), PD->getIdentifier()); 2947 }; 2948 for (const ObjCCategoryDecl *ClassExt : ID->known_extensions()) 2949 for (auto *PD : ClassExt->properties()) { 2950 PropertySet.insert(GetIsClassAndIdent(PD)); 2951 AddProperty(PD); 2952 } 2953 for (const auto *PD : ID->properties()) { 2954 // Don't emit duplicate metadata for properties that were already in a 2955 // class extension. 2956 if (!PropertySet.insert(GetIsClassAndIdent(PD)).second) 2957 continue; 2958 AddProperty(PD); 2959 } 2960 } 2961 2962 const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID); 2963 unsigned FieldNo = 0; 2964 for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field; 2965 Field = Field->getNextIvar(), ++FieldNo) { 2966 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 2967 if (!FieldTy) 2968 return nullptr; 2969 2970 StringRef FieldName = Field->getName(); 2971 2972 // Ignore unnamed fields. 2973 if (FieldName.empty()) 2974 continue; 2975 2976 // Get the location for the field. 2977 llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation()); 2978 unsigned FieldLine = getLineNumber(Field->getLocation()); 2979 QualType FType = Field->getType(); 2980 uint64_t FieldSize = 0; 2981 uint32_t FieldAlign = 0; 2982 2983 if (!FType->isIncompleteArrayType()) { 2984 2985 // Bit size, align and offset of the type. 2986 FieldSize = Field->isBitField() 2987 ? Field->getBitWidthValue(CGM.getContext()) 2988 : CGM.getContext().getTypeSize(FType); 2989 FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); 2990 } 2991 2992 uint64_t FieldOffset; 2993 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2994 // We don't know the runtime offset of an ivar if we're using the 2995 // non-fragile ABI. For bitfields, use the bit offset into the first 2996 // byte of storage of the bitfield. For other fields, use zero. 2997 if (Field->isBitField()) { 2998 FieldOffset = 2999 CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field); 3000 FieldOffset %= CGM.getContext().getCharWidth(); 3001 } else { 3002 FieldOffset = 0; 3003 } 3004 } else { 3005 FieldOffset = RL.getFieldOffset(FieldNo); 3006 } 3007 3008 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 3009 if (Field->getAccessControl() == ObjCIvarDecl::Protected) 3010 Flags = llvm::DINode::FlagProtected; 3011 else if (Field->getAccessControl() == ObjCIvarDecl::Private) 3012 Flags = llvm::DINode::FlagPrivate; 3013 else if (Field->getAccessControl() == ObjCIvarDecl::Public) 3014 Flags = llvm::DINode::FlagPublic; 3015 3016 llvm::MDNode *PropertyNode = nullptr; 3017 if (ObjCImplementationDecl *ImpD = ID->getImplementation()) { 3018 if (ObjCPropertyImplDecl *PImpD = 3019 ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) { 3020 if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) { 3021 SourceLocation Loc = PD->getLocation(); 3022 llvm::DIFile *PUnit = getOrCreateFile(Loc); 3023 unsigned PLine = getLineNumber(Loc); 3024 ObjCMethodDecl *Getter = PImpD->getGetterMethodDecl(); 3025 ObjCMethodDecl *Setter = PImpD->getSetterMethodDecl(); 3026 PropertyNode = DBuilder.createObjCProperty( 3027 PD->getName(), PUnit, PLine, 3028 hasDefaultGetterName(PD, Getter) 3029 ? "" 3030 : getSelectorName(PD->getGetterName()), 3031 hasDefaultSetterName(PD, Setter) 3032 ? "" 3033 : getSelectorName(PD->getSetterName()), 3034 PD->getPropertyAttributes(), 3035 getOrCreateType(PD->getType(), PUnit)); 3036 } 3037 } 3038 } 3039 FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine, 3040 FieldSize, FieldAlign, FieldOffset, Flags, 3041 FieldTy, PropertyNode); 3042 EltTys.push_back(FieldTy); 3043 } 3044 3045 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 3046 DBuilder.replaceArrays(RealDecl, Elements); 3047 3048 LexicalBlockStack.pop_back(); 3049 return RealDecl; 3050 } 3051 3052 llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty, 3053 llvm::DIFile *Unit) { 3054 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); 3055 int64_t Count = Ty->getNumElements(); 3056 3057 llvm::Metadata *Subscript; 3058 QualType QTy(Ty, 0); 3059 auto SizeExpr = SizeExprCache.find(QTy); 3060 if (SizeExpr != SizeExprCache.end()) 3061 Subscript = DBuilder.getOrCreateSubrange( 3062 SizeExpr->getSecond() /*count*/, nullptr /*lowerBound*/, 3063 nullptr /*upperBound*/, nullptr /*stride*/); 3064 else { 3065 auto *CountNode = 3066 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3067 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count ? Count : -1)); 3068 Subscript = DBuilder.getOrCreateSubrange( 3069 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3070 nullptr /*stride*/); 3071 } 3072 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 3073 3074 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3075 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3076 3077 return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray); 3078 } 3079 3080 llvm::DIType *CGDebugInfo::CreateType(const ConstantMatrixType *Ty, 3081 llvm::DIFile *Unit) { 3082 // FIXME: Create another debug type for matrices 3083 // For the time being, it treats it like a nested ArrayType. 3084 3085 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); 3086 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3087 uint32_t Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3088 3089 // Create ranges for both dimensions. 3090 llvm::SmallVector<llvm::Metadata *, 2> Subscripts; 3091 auto *ColumnCountNode = 3092 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3093 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumColumns())); 3094 auto *RowCountNode = 3095 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3096 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumRows())); 3097 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3098 ColumnCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3099 nullptr /*stride*/)); 3100 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3101 RowCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3102 nullptr /*stride*/)); 3103 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); 3104 return DBuilder.createArrayType(Size, Align, ElementTy, SubscriptArray); 3105 } 3106 3107 llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) { 3108 uint64_t Size; 3109 uint32_t Align; 3110 3111 // FIXME: make getTypeAlign() aware of VLAs and incomplete array types 3112 if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) { 3113 Size = 0; 3114 Align = getTypeAlignIfRequired(CGM.getContext().getBaseElementType(VAT), 3115 CGM.getContext()); 3116 } else if (Ty->isIncompleteArrayType()) { 3117 Size = 0; 3118 if (Ty->getElementType()->isIncompleteType()) 3119 Align = 0; 3120 else 3121 Align = getTypeAlignIfRequired(Ty->getElementType(), CGM.getContext()); 3122 } else if (Ty->isIncompleteType()) { 3123 Size = 0; 3124 Align = 0; 3125 } else { 3126 // Size and align of the whole array, not the element type. 3127 Size = CGM.getContext().getTypeSize(Ty); 3128 Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3129 } 3130 3131 // Add the dimensions of the array. FIXME: This loses CV qualifiers from 3132 // interior arrays, do we care? Why aren't nested arrays represented the 3133 // obvious/recursive way? 3134 SmallVector<llvm::Metadata *, 8> Subscripts; 3135 QualType EltTy(Ty, 0); 3136 while ((Ty = dyn_cast<ArrayType>(EltTy))) { 3137 // If the number of elements is known, then count is that number. Otherwise, 3138 // it's -1. This allows us to represent a subrange with an array of 0 3139 // elements, like this: 3140 // 3141 // struct foo { 3142 // int x[0]; 3143 // }; 3144 int64_t Count = -1; // Count == -1 is an unbounded array. 3145 if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty)) 3146 Count = CAT->getSize().getZExtValue(); 3147 else if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) { 3148 if (Expr *Size = VAT->getSizeExpr()) { 3149 Expr::EvalResult Result; 3150 if (Size->EvaluateAsInt(Result, CGM.getContext())) 3151 Count = Result.Val.getInt().getExtValue(); 3152 } 3153 } 3154 3155 auto SizeNode = SizeExprCache.find(EltTy); 3156 if (SizeNode != SizeExprCache.end()) 3157 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3158 SizeNode->getSecond() /*count*/, nullptr /*lowerBound*/, 3159 nullptr /*upperBound*/, nullptr /*stride*/)); 3160 else { 3161 auto *CountNode = 3162 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3163 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count)); 3164 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3165 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3166 nullptr /*stride*/)); 3167 } 3168 EltTy = Ty->getElementType(); 3169 } 3170 3171 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); 3172 3173 return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit), 3174 SubscriptArray); 3175 } 3176 3177 llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty, 3178 llvm::DIFile *Unit) { 3179 return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty, 3180 Ty->getPointeeType(), Unit); 3181 } 3182 3183 llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty, 3184 llvm::DIFile *Unit) { 3185 llvm::dwarf::Tag Tag = llvm::dwarf::DW_TAG_rvalue_reference_type; 3186 // DW_TAG_rvalue_reference_type was introduced in DWARF 4. 3187 if (CGM.getCodeGenOpts().DebugStrictDwarf && 3188 CGM.getCodeGenOpts().DwarfVersion < 4) 3189 Tag = llvm::dwarf::DW_TAG_reference_type; 3190 3191 return CreatePointerLikeType(Tag, Ty, Ty->getPointeeType(), Unit); 3192 } 3193 3194 llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty, 3195 llvm::DIFile *U) { 3196 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 3197 uint64_t Size = 0; 3198 3199 if (!Ty->isIncompleteType()) { 3200 Size = CGM.getContext().getTypeSize(Ty); 3201 3202 // Set the MS inheritance model. There is no flag for the unspecified model. 3203 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3204 switch (Ty->getMostRecentCXXRecordDecl()->getMSInheritanceModel()) { 3205 case MSInheritanceModel::Single: 3206 Flags |= llvm::DINode::FlagSingleInheritance; 3207 break; 3208 case MSInheritanceModel::Multiple: 3209 Flags |= llvm::DINode::FlagMultipleInheritance; 3210 break; 3211 case MSInheritanceModel::Virtual: 3212 Flags |= llvm::DINode::FlagVirtualInheritance; 3213 break; 3214 case MSInheritanceModel::Unspecified: 3215 break; 3216 } 3217 } 3218 } 3219 3220 llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U); 3221 if (Ty->isMemberDataPointerType()) 3222 return DBuilder.createMemberPointerType( 3223 getOrCreateType(Ty->getPointeeType(), U), ClassType, Size, /*Align=*/0, 3224 Flags); 3225 3226 const FunctionProtoType *FPT = 3227 Ty->getPointeeType()->getAs<FunctionProtoType>(); 3228 return DBuilder.createMemberPointerType( 3229 getOrCreateInstanceMethodType( 3230 CXXMethodDecl::getThisType(FPT, Ty->getMostRecentCXXRecordDecl()), 3231 FPT, U, false), 3232 ClassType, Size, /*Align=*/0, Flags); 3233 } 3234 3235 llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) { 3236 auto *FromTy = getOrCreateType(Ty->getValueType(), U); 3237 return DBuilder.createQualifiedType(llvm::dwarf::DW_TAG_atomic_type, FromTy); 3238 } 3239 3240 llvm::DIType *CGDebugInfo::CreateType(const PipeType *Ty, llvm::DIFile *U) { 3241 return getOrCreateType(Ty->getElementType(), U); 3242 } 3243 3244 llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) { 3245 const EnumDecl *ED = Ty->getDecl(); 3246 3247 uint64_t Size = 0; 3248 uint32_t Align = 0; 3249 if (!ED->getTypeForDecl()->isIncompleteType()) { 3250 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); 3251 Align = getDeclAlignIfRequired(ED, CGM.getContext()); 3252 } 3253 3254 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3255 3256 bool isImportedFromModule = 3257 DebugTypeExtRefs && ED->isFromASTFile() && ED->getDefinition(); 3258 3259 // If this is just a forward declaration, construct an appropriately 3260 // marked node and just return it. 3261 if (isImportedFromModule || !ED->getDefinition()) { 3262 // Note that it is possible for enums to be created as part of 3263 // their own declcontext. In this case a FwdDecl will be created 3264 // twice. This doesn't cause a problem because both FwdDecls are 3265 // entered into the ReplaceMap: finalize() will replace the first 3266 // FwdDecl with the second and then replace the second with 3267 // complete type. 3268 llvm::DIScope *EDContext = getDeclarationLexicalScope(ED); 3269 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); 3270 llvm::TempDIScope TmpContext(DBuilder.createReplaceableCompositeType( 3271 llvm::dwarf::DW_TAG_enumeration_type, "", TheCU, DefUnit, 0)); 3272 3273 unsigned Line = getLineNumber(ED->getLocation()); 3274 StringRef EDName = ED->getName(); 3275 llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType( 3276 llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line, 3277 0, Size, Align, llvm::DINode::FlagFwdDecl, Identifier); 3278 3279 ReplaceMap.emplace_back( 3280 std::piecewise_construct, std::make_tuple(Ty), 3281 std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); 3282 return RetTy; 3283 } 3284 3285 return CreateTypeDefinition(Ty); 3286 } 3287 3288 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) { 3289 const EnumDecl *ED = Ty->getDecl(); 3290 uint64_t Size = 0; 3291 uint32_t Align = 0; 3292 if (!ED->getTypeForDecl()->isIncompleteType()) { 3293 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); 3294 Align = getDeclAlignIfRequired(ED, CGM.getContext()); 3295 } 3296 3297 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3298 3299 SmallVector<llvm::Metadata *, 16> Enumerators; 3300 ED = ED->getDefinition(); 3301 for (const auto *Enum : ED->enumerators()) { 3302 Enumerators.push_back( 3303 DBuilder.createEnumerator(Enum->getName(), Enum->getInitVal())); 3304 } 3305 3306 // Return a CompositeType for the enum itself. 3307 llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators); 3308 3309 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); 3310 unsigned Line = getLineNumber(ED->getLocation()); 3311 llvm::DIScope *EnumContext = getDeclarationLexicalScope(ED); 3312 llvm::DIType *ClassTy = getOrCreateType(ED->getIntegerType(), DefUnit); 3313 return DBuilder.createEnumerationType(EnumContext, ED->getName(), DefUnit, 3314 Line, Size, Align, EltArray, ClassTy, 3315 Identifier, ED->isScoped()); 3316 } 3317 3318 llvm::DIMacro *CGDebugInfo::CreateMacro(llvm::DIMacroFile *Parent, 3319 unsigned MType, SourceLocation LineLoc, 3320 StringRef Name, StringRef Value) { 3321 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); 3322 return DBuilder.createMacro(Parent, Line, MType, Name, Value); 3323 } 3324 3325 llvm::DIMacroFile *CGDebugInfo::CreateTempMacroFile(llvm::DIMacroFile *Parent, 3326 SourceLocation LineLoc, 3327 SourceLocation FileLoc) { 3328 llvm::DIFile *FName = getOrCreateFile(FileLoc); 3329 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); 3330 return DBuilder.createTempMacroFile(Parent, Line, FName); 3331 } 3332 3333 static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) { 3334 Qualifiers Quals; 3335 do { 3336 Qualifiers InnerQuals = T.getLocalQualifiers(); 3337 // Qualifiers::operator+() doesn't like it if you add a Qualifier 3338 // that is already there. 3339 Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals); 3340 Quals += InnerQuals; 3341 QualType LastT = T; 3342 switch (T->getTypeClass()) { 3343 default: 3344 return C.getQualifiedType(T.getTypePtr(), Quals); 3345 case Type::TemplateSpecialization: { 3346 const auto *Spec = cast<TemplateSpecializationType>(T); 3347 if (Spec->isTypeAlias()) 3348 return C.getQualifiedType(T.getTypePtr(), Quals); 3349 T = Spec->desugar(); 3350 break; 3351 } 3352 case Type::TypeOfExpr: 3353 T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType(); 3354 break; 3355 case Type::TypeOf: 3356 T = cast<TypeOfType>(T)->getUnderlyingType(); 3357 break; 3358 case Type::Decltype: 3359 T = cast<DecltypeType>(T)->getUnderlyingType(); 3360 break; 3361 case Type::UnaryTransform: 3362 T = cast<UnaryTransformType>(T)->getUnderlyingType(); 3363 break; 3364 case Type::Attributed: 3365 T = cast<AttributedType>(T)->getEquivalentType(); 3366 break; 3367 case Type::Elaborated: 3368 T = cast<ElaboratedType>(T)->getNamedType(); 3369 break; 3370 case Type::Paren: 3371 T = cast<ParenType>(T)->getInnerType(); 3372 break; 3373 case Type::MacroQualified: 3374 T = cast<MacroQualifiedType>(T)->getUnderlyingType(); 3375 break; 3376 case Type::SubstTemplateTypeParm: 3377 T = cast<SubstTemplateTypeParmType>(T)->getReplacementType(); 3378 break; 3379 case Type::Auto: 3380 case Type::DeducedTemplateSpecialization: { 3381 QualType DT = cast<DeducedType>(T)->getDeducedType(); 3382 assert(!DT.isNull() && "Undeduced types shouldn't reach here."); 3383 T = DT; 3384 break; 3385 } 3386 case Type::Adjusted: 3387 case Type::Decayed: 3388 // Decayed and adjusted types use the adjusted type in LLVM and DWARF. 3389 T = cast<AdjustedType>(T)->getAdjustedType(); 3390 break; 3391 } 3392 3393 assert(T != LastT && "Type unwrapping failed to unwrap!"); 3394 (void)LastT; 3395 } while (true); 3396 } 3397 3398 llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) { 3399 assert(Ty == UnwrapTypeForDebugInfo(Ty, CGM.getContext())); 3400 auto It = TypeCache.find(Ty.getAsOpaquePtr()); 3401 if (It != TypeCache.end()) { 3402 // Verify that the debug info still exists. 3403 if (llvm::Metadata *V = It->second) 3404 return cast<llvm::DIType>(V); 3405 } 3406 3407 return nullptr; 3408 } 3409 3410 void CGDebugInfo::completeTemplateDefinition( 3411 const ClassTemplateSpecializationDecl &SD) { 3412 completeUnusedClass(SD); 3413 } 3414 3415 void CGDebugInfo::completeUnusedClass(const CXXRecordDecl &D) { 3416 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 3417 return; 3418 3419 completeClassData(&D); 3420 // In case this type has no member function definitions being emitted, ensure 3421 // it is retained 3422 RetainedTypes.push_back(CGM.getContext().getRecordType(&D).getAsOpaquePtr()); 3423 } 3424 3425 llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit, 3426 TypeLoc TL) { 3427 if (Ty.isNull()) 3428 return nullptr; 3429 3430 llvm::TimeTraceScope TimeScope("DebugType", [&]() { 3431 std::string Name; 3432 llvm::raw_string_ostream OS(Name); 3433 Ty.print(OS, getPrintingPolicy()); 3434 return Name; 3435 }); 3436 3437 // Unwrap the type as needed for debug information. 3438 Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext()); 3439 3440 if (auto *T = getTypeOrNull(Ty)) 3441 return T; 3442 3443 llvm::DIType *Res = CreateTypeNode(Ty, Unit, TL); 3444 void *TyPtr = Ty.getAsOpaquePtr(); 3445 3446 // And update the type cache. 3447 TypeCache[TyPtr].reset(Res); 3448 3449 return Res; 3450 } 3451 3452 llvm::DIModule *CGDebugInfo::getParentModuleOrNull(const Decl *D) { 3453 // A forward declaration inside a module header does not belong to the module. 3454 if (isa<RecordDecl>(D) && !cast<RecordDecl>(D)->getDefinition()) 3455 return nullptr; 3456 if (DebugTypeExtRefs && D->isFromASTFile()) { 3457 // Record a reference to an imported clang module or precompiled header. 3458 auto *Reader = CGM.getContext().getExternalSource(); 3459 auto Idx = D->getOwningModuleID(); 3460 auto Info = Reader->getSourceDescriptor(Idx); 3461 if (Info) 3462 return getOrCreateModuleRef(*Info, /*SkeletonCU=*/true); 3463 } else if (ClangModuleMap) { 3464 // We are building a clang module or a precompiled header. 3465 // 3466 // TODO: When D is a CXXRecordDecl or a C++ Enum, the ODR applies 3467 // and it wouldn't be necessary to specify the parent scope 3468 // because the type is already unique by definition (it would look 3469 // like the output of -fno-standalone-debug). On the other hand, 3470 // the parent scope helps a consumer to quickly locate the object 3471 // file where the type's definition is located, so it might be 3472 // best to make this behavior a command line or debugger tuning 3473 // option. 3474 if (Module *M = D->getOwningModule()) { 3475 // This is a (sub-)module. 3476 auto Info = ASTSourceDescriptor(*M); 3477 return getOrCreateModuleRef(Info, /*SkeletonCU=*/false); 3478 } else { 3479 // This the precompiled header being built. 3480 return getOrCreateModuleRef(PCHDescriptor, /*SkeletonCU=*/false); 3481 } 3482 } 3483 3484 return nullptr; 3485 } 3486 3487 llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit, 3488 TypeLoc TL) { 3489 // Handle qualifiers, which recursively handles what they refer to. 3490 if (Ty.hasLocalQualifiers()) 3491 return CreateQualifiedType(Ty, Unit, TL); 3492 3493 // Work out details of type. 3494 switch (Ty->getTypeClass()) { 3495 #define TYPE(Class, Base) 3496 #define ABSTRACT_TYPE(Class, Base) 3497 #define NON_CANONICAL_TYPE(Class, Base) 3498 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3499 #include "clang/AST/TypeNodes.inc" 3500 llvm_unreachable("Dependent types cannot show up in debug information"); 3501 3502 case Type::ExtVector: 3503 case Type::Vector: 3504 return CreateType(cast<VectorType>(Ty), Unit); 3505 case Type::ConstantMatrix: 3506 return CreateType(cast<ConstantMatrixType>(Ty), Unit); 3507 case Type::ObjCObjectPointer: 3508 return CreateType(cast<ObjCObjectPointerType>(Ty), Unit); 3509 case Type::ObjCObject: 3510 return CreateType(cast<ObjCObjectType>(Ty), Unit); 3511 case Type::ObjCTypeParam: 3512 return CreateType(cast<ObjCTypeParamType>(Ty), Unit); 3513 case Type::ObjCInterface: 3514 return CreateType(cast<ObjCInterfaceType>(Ty), Unit); 3515 case Type::Builtin: 3516 return CreateType(cast<BuiltinType>(Ty)); 3517 case Type::Complex: 3518 return CreateType(cast<ComplexType>(Ty)); 3519 case Type::Pointer: 3520 return CreateType(cast<PointerType>(Ty), Unit, TL); 3521 case Type::BlockPointer: 3522 return CreateType(cast<BlockPointerType>(Ty), Unit); 3523 case Type::Typedef: 3524 return CreateType(cast<TypedefType>(Ty), Unit); 3525 case Type::Record: 3526 return CreateType(cast<RecordType>(Ty)); 3527 case Type::Enum: 3528 return CreateEnumType(cast<EnumType>(Ty)); 3529 case Type::FunctionProto: 3530 case Type::FunctionNoProto: 3531 return CreateType(cast<FunctionType>(Ty), Unit, TL); 3532 case Type::ConstantArray: 3533 case Type::VariableArray: 3534 case Type::IncompleteArray: 3535 return CreateType(cast<ArrayType>(Ty), Unit); 3536 3537 case Type::LValueReference: 3538 return CreateType(cast<LValueReferenceType>(Ty), Unit); 3539 case Type::RValueReference: 3540 return CreateType(cast<RValueReferenceType>(Ty), Unit); 3541 3542 case Type::MemberPointer: 3543 return CreateType(cast<MemberPointerType>(Ty), Unit); 3544 3545 case Type::Atomic: 3546 return CreateType(cast<AtomicType>(Ty), Unit); 3547 3548 case Type::ExtInt: 3549 return CreateType(cast<ExtIntType>(Ty)); 3550 case Type::Pipe: 3551 return CreateType(cast<PipeType>(Ty), Unit); 3552 3553 case Type::TemplateSpecialization: 3554 return CreateType(cast<TemplateSpecializationType>(Ty), Unit); 3555 3556 case Type::Auto: 3557 case Type::Attributed: 3558 case Type::Adjusted: 3559 case Type::Decayed: 3560 case Type::DeducedTemplateSpecialization: 3561 case Type::Elaborated: 3562 case Type::Paren: 3563 case Type::MacroQualified: 3564 case Type::SubstTemplateTypeParm: 3565 case Type::TypeOfExpr: 3566 case Type::TypeOf: 3567 case Type::Decltype: 3568 case Type::UnaryTransform: 3569 break; 3570 } 3571 3572 llvm_unreachable("type should have been unwrapped!"); 3573 } 3574 3575 llvm::DICompositeType * 3576 CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty) { 3577 QualType QTy(Ty, 0); 3578 3579 auto *T = cast_or_null<llvm::DICompositeType>(getTypeOrNull(QTy)); 3580 3581 // We may have cached a forward decl when we could have created 3582 // a non-forward decl. Go ahead and create a non-forward decl 3583 // now. 3584 if (T && !T->isForwardDecl()) 3585 return T; 3586 3587 // Otherwise create the type. 3588 llvm::DICompositeType *Res = CreateLimitedType(Ty); 3589 3590 // Propagate members from the declaration to the definition 3591 // CreateType(const RecordType*) will overwrite this with the members in the 3592 // correct order if the full type is needed. 3593 DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray()); 3594 3595 // And update the type cache. 3596 TypeCache[QTy.getAsOpaquePtr()].reset(Res); 3597 return Res; 3598 } 3599 3600 // TODO: Currently used for context chains when limiting debug info. 3601 llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) { 3602 RecordDecl *RD = Ty->getDecl(); 3603 3604 // Get overall information about the record type for the debug info. 3605 StringRef RDName = getClassName(RD); 3606 const SourceLocation Loc = RD->getLocation(); 3607 llvm::DIFile *DefUnit = nullptr; 3608 unsigned Line = 0; 3609 if (Loc.isValid()) { 3610 DefUnit = getOrCreateFile(Loc); 3611 Line = getLineNumber(Loc); 3612 } 3613 3614 llvm::DIScope *RDContext = getDeclarationLexicalScope(RD); 3615 3616 // If we ended up creating the type during the context chain construction, 3617 // just return that. 3618 auto *T = cast_or_null<llvm::DICompositeType>( 3619 getTypeOrNull(CGM.getContext().getRecordType(RD))); 3620 if (T && (!T->isForwardDecl() || !RD->getDefinition())) 3621 return T; 3622 3623 // If this is just a forward or incomplete declaration, construct an 3624 // appropriately marked node and just return it. 3625 const RecordDecl *D = RD->getDefinition(); 3626 if (!D || !D->isCompleteDefinition()) 3627 return getOrCreateRecordFwdDecl(Ty, RDContext); 3628 3629 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3630 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 3631 3632 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3633 3634 // Explicitly record the calling convention and export symbols for C++ 3635 // records. 3636 auto Flags = llvm::DINode::FlagZero; 3637 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3638 if (CGM.getCXXABI().getRecordArgABI(CXXRD) == CGCXXABI::RAA_Indirect) 3639 Flags |= llvm::DINode::FlagTypePassByReference; 3640 else 3641 Flags |= llvm::DINode::FlagTypePassByValue; 3642 3643 // Record if a C++ record is non-trivial type. 3644 if (!CXXRD->isTrivial()) 3645 Flags |= llvm::DINode::FlagNonTrivial; 3646 3647 // Record exports it symbols to the containing structure. 3648 if (CXXRD->isAnonymousStructOrUnion()) 3649 Flags |= llvm::DINode::FlagExportSymbols; 3650 } 3651 3652 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 3653 llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType( 3654 getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align, 3655 Flags, Identifier, Annotations); 3656 3657 // Elements of composite types usually have back to the type, creating 3658 // uniquing cycles. Distinct nodes are more efficient. 3659 switch (RealDecl->getTag()) { 3660 default: 3661 llvm_unreachable("invalid composite type tag"); 3662 3663 case llvm::dwarf::DW_TAG_array_type: 3664 case llvm::dwarf::DW_TAG_enumeration_type: 3665 // Array elements and most enumeration elements don't have back references, 3666 // so they don't tend to be involved in uniquing cycles and there is some 3667 // chance of merging them when linking together two modules. Only make 3668 // them distinct if they are ODR-uniqued. 3669 if (Identifier.empty()) 3670 break; 3671 LLVM_FALLTHROUGH; 3672 3673 case llvm::dwarf::DW_TAG_structure_type: 3674 case llvm::dwarf::DW_TAG_union_type: 3675 case llvm::dwarf::DW_TAG_class_type: 3676 // Immediately resolve to a distinct node. 3677 RealDecl = 3678 llvm::MDNode::replaceWithDistinct(llvm::TempDICompositeType(RealDecl)); 3679 break; 3680 } 3681 3682 RegionMap[Ty->getDecl()].reset(RealDecl); 3683 TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl); 3684 3685 if (const auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 3686 DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(), 3687 CollectCXXTemplateParams(TSpecial, DefUnit)); 3688 return RealDecl; 3689 } 3690 3691 void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD, 3692 llvm::DICompositeType *RealDecl) { 3693 // A class's primary base or the class itself contains the vtable. 3694 llvm::DICompositeType *ContainingType = nullptr; 3695 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 3696 if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) { 3697 // Seek non-virtual primary base root. 3698 while (1) { 3699 const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase); 3700 const CXXRecordDecl *PBT = BRL.getPrimaryBase(); 3701 if (PBT && !BRL.isPrimaryBaseVirtual()) 3702 PBase = PBT; 3703 else 3704 break; 3705 } 3706 ContainingType = cast<llvm::DICompositeType>( 3707 getOrCreateType(QualType(PBase->getTypeForDecl(), 0), 3708 getOrCreateFile(RD->getLocation()))); 3709 } else if (RD->isDynamicClass()) 3710 ContainingType = RealDecl; 3711 3712 DBuilder.replaceVTableHolder(RealDecl, ContainingType); 3713 } 3714 3715 llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType, 3716 StringRef Name, uint64_t *Offset) { 3717 llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit); 3718 uint64_t FieldSize = CGM.getContext().getTypeSize(FType); 3719 auto FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); 3720 llvm::DIType *Ty = 3721 DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize, FieldAlign, 3722 *Offset, llvm::DINode::FlagZero, FieldTy); 3723 *Offset += FieldSize; 3724 return Ty; 3725 } 3726 3727 void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit, 3728 StringRef &Name, 3729 StringRef &LinkageName, 3730 llvm::DIScope *&FDContext, 3731 llvm::DINodeArray &TParamsArray, 3732 llvm::DINode::DIFlags &Flags) { 3733 const auto *FD = cast<FunctionDecl>(GD.getCanonicalDecl().getDecl()); 3734 Name = getFunctionName(FD); 3735 // Use mangled name as linkage name for C/C++ functions. 3736 if (FD->getType()->getAs<FunctionProtoType>()) 3737 LinkageName = CGM.getMangledName(GD); 3738 if (FD->hasPrototype()) 3739 Flags |= llvm::DINode::FlagPrototyped; 3740 // No need to replicate the linkage name if it isn't different from the 3741 // subprogram name, no need to have it at all unless coverage is enabled or 3742 // debug is set to more than just line tables or extra debug info is needed. 3743 if (LinkageName == Name || (!CGM.getCodeGenOpts().EmitGcovArcs && 3744 !CGM.getCodeGenOpts().EmitGcovNotes && 3745 !CGM.getCodeGenOpts().DebugInfoForProfiling && 3746 !CGM.getCodeGenOpts().PseudoProbeForProfiling && 3747 DebugKind <= codegenoptions::DebugLineTablesOnly)) 3748 LinkageName = StringRef(); 3749 3750 // Emit the function scope in line tables only mode (if CodeView) to 3751 // differentiate between function names. 3752 if (CGM.getCodeGenOpts().hasReducedDebugInfo() || 3753 (DebugKind == codegenoptions::DebugLineTablesOnly && 3754 CGM.getCodeGenOpts().EmitCodeView)) { 3755 if (const NamespaceDecl *NSDecl = 3756 dyn_cast_or_null<NamespaceDecl>(FD->getDeclContext())) 3757 FDContext = getOrCreateNamespace(NSDecl); 3758 else if (const RecordDecl *RDecl = 3759 dyn_cast_or_null<RecordDecl>(FD->getDeclContext())) { 3760 llvm::DIScope *Mod = getParentModuleOrNull(RDecl); 3761 FDContext = getContextDescriptor(RDecl, Mod ? Mod : TheCU); 3762 } 3763 } 3764 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 3765 // Check if it is a noreturn-marked function 3766 if (FD->isNoReturn()) 3767 Flags |= llvm::DINode::FlagNoReturn; 3768 // Collect template parameters. 3769 TParamsArray = CollectFunctionTemplateParams(FD, Unit); 3770 } 3771 } 3772 3773 void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit, 3774 unsigned &LineNo, QualType &T, 3775 StringRef &Name, StringRef &LinkageName, 3776 llvm::MDTuple *&TemplateParameters, 3777 llvm::DIScope *&VDContext) { 3778 Unit = getOrCreateFile(VD->getLocation()); 3779 LineNo = getLineNumber(VD->getLocation()); 3780 3781 setLocation(VD->getLocation()); 3782 3783 T = VD->getType(); 3784 if (T->isIncompleteArrayType()) { 3785 // CodeGen turns int[] into int[1] so we'll do the same here. 3786 llvm::APInt ConstVal(32, 1); 3787 QualType ET = CGM.getContext().getAsArrayType(T)->getElementType(); 3788 3789 T = CGM.getContext().getConstantArrayType(ET, ConstVal, nullptr, 3790 ArrayType::Normal, 0); 3791 } 3792 3793 Name = VD->getName(); 3794 if (VD->getDeclContext() && !isa<FunctionDecl>(VD->getDeclContext()) && 3795 !isa<ObjCMethodDecl>(VD->getDeclContext())) 3796 LinkageName = CGM.getMangledName(VD); 3797 if (LinkageName == Name) 3798 LinkageName = StringRef(); 3799 3800 if (isa<VarTemplateSpecializationDecl>(VD)) { 3801 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VD, &*Unit); 3802 TemplateParameters = parameterNodes.get(); 3803 } else { 3804 TemplateParameters = nullptr; 3805 } 3806 3807 // Get context for static locals (that are technically globals) the same way 3808 // we do for "local" locals -- by using current lexical block. 3809 if (VD->isStaticLocal()) { 3810 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 3811 VDContext = LexicalBlockStack.back(); 3812 return; 3813 } 3814 3815 // Since we emit declarations (DW_AT_members) for static members, place the 3816 // definition of those static members in the namespace they were declared in 3817 // in the source code (the lexical decl context). 3818 // FIXME: Generalize this for even non-member global variables where the 3819 // declaration and definition may have different lexical decl contexts, once 3820 // we have support for emitting declarations of (non-member) global variables. 3821 const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext() 3822 : VD->getDeclContext(); 3823 // When a record type contains an in-line initialization of a static data 3824 // member, and the record type is marked as __declspec(dllexport), an implicit 3825 // definition of the member will be created in the record context. DWARF 3826 // doesn't seem to have a nice way to describe this in a form that consumers 3827 // are likely to understand, so fake the "normal" situation of a definition 3828 // outside the class by putting it in the global scope. 3829 if (DC->isRecord()) 3830 DC = CGM.getContext().getTranslationUnitDecl(); 3831 3832 llvm::DIScope *Mod = getParentModuleOrNull(VD); 3833 VDContext = getContextDescriptor(cast<Decl>(DC), Mod ? Mod : TheCU); 3834 } 3835 3836 llvm::DISubprogram *CGDebugInfo::getFunctionFwdDeclOrStub(GlobalDecl GD, 3837 bool Stub) { 3838 llvm::DINodeArray TParamsArray; 3839 StringRef Name, LinkageName; 3840 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 3841 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 3842 SourceLocation Loc = GD.getDecl()->getLocation(); 3843 llvm::DIFile *Unit = getOrCreateFile(Loc); 3844 llvm::DIScope *DContext = Unit; 3845 unsigned Line = getLineNumber(Loc); 3846 collectFunctionDeclProps(GD, Unit, Name, LinkageName, DContext, TParamsArray, 3847 Flags); 3848 auto *FD = cast<FunctionDecl>(GD.getDecl()); 3849 3850 // Build function type. 3851 SmallVector<QualType, 16> ArgTypes; 3852 for (const ParmVarDecl *Parm : FD->parameters()) 3853 ArgTypes.push_back(Parm->getType()); 3854 3855 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 3856 QualType FnType = CGM.getContext().getFunctionType( 3857 FD->getReturnType(), ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 3858 if (!FD->isExternallyVisible()) 3859 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 3860 if (CGM.getLangOpts().Optimize) 3861 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 3862 3863 if (Stub) { 3864 Flags |= getCallSiteRelatedAttrs(); 3865 SPFlags |= llvm::DISubprogram::SPFlagDefinition; 3866 return DBuilder.createFunction( 3867 DContext, Name, LinkageName, Unit, Line, 3868 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, 3869 TParamsArray.get(), getFunctionDeclaration(FD)); 3870 } 3871 3872 llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl( 3873 DContext, Name, LinkageName, Unit, Line, 3874 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, 3875 TParamsArray.get(), getFunctionDeclaration(FD)); 3876 const FunctionDecl *CanonDecl = FD->getCanonicalDecl(); 3877 FwdDeclReplaceMap.emplace_back(std::piecewise_construct, 3878 std::make_tuple(CanonDecl), 3879 std::make_tuple(SP)); 3880 return SP; 3881 } 3882 3883 llvm::DISubprogram *CGDebugInfo::getFunctionForwardDeclaration(GlobalDecl GD) { 3884 return getFunctionFwdDeclOrStub(GD, /* Stub = */ false); 3885 } 3886 3887 llvm::DISubprogram *CGDebugInfo::getFunctionStub(GlobalDecl GD) { 3888 return getFunctionFwdDeclOrStub(GD, /* Stub = */ true); 3889 } 3890 3891 llvm::DIGlobalVariable * 3892 CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) { 3893 QualType T; 3894 StringRef Name, LinkageName; 3895 SourceLocation Loc = VD->getLocation(); 3896 llvm::DIFile *Unit = getOrCreateFile(Loc); 3897 llvm::DIScope *DContext = Unit; 3898 unsigned Line = getLineNumber(Loc); 3899 llvm::MDTuple *TemplateParameters = nullptr; 3900 3901 collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, TemplateParameters, 3902 DContext); 3903 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 3904 auto *GV = DBuilder.createTempGlobalVariableFwdDecl( 3905 DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit), 3906 !VD->isExternallyVisible(), nullptr, TemplateParameters, Align); 3907 FwdDeclReplaceMap.emplace_back( 3908 std::piecewise_construct, 3909 std::make_tuple(cast<VarDecl>(VD->getCanonicalDecl())), 3910 std::make_tuple(static_cast<llvm::Metadata *>(GV))); 3911 return GV; 3912 } 3913 3914 llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) { 3915 // We only need a declaration (not a definition) of the type - so use whatever 3916 // we would otherwise do to get a type for a pointee. (forward declarations in 3917 // limited debug info, full definitions (if the type definition is available) 3918 // in unlimited debug info) 3919 if (const auto *TD = dyn_cast<TypeDecl>(D)) 3920 return getOrCreateType(CGM.getContext().getTypeDeclType(TD), 3921 getOrCreateFile(TD->getLocation())); 3922 auto I = DeclCache.find(D->getCanonicalDecl()); 3923 3924 if (I != DeclCache.end()) { 3925 auto N = I->second; 3926 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(N)) 3927 return GVE->getVariable(); 3928 return dyn_cast_or_null<llvm::DINode>(N); 3929 } 3930 3931 // No definition for now. Emit a forward definition that might be 3932 // merged with a potential upcoming definition. 3933 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 3934 return getFunctionForwardDeclaration(FD); 3935 else if (const auto *VD = dyn_cast<VarDecl>(D)) 3936 return getGlobalVariableForwardDeclaration(VD); 3937 3938 return nullptr; 3939 } 3940 3941 llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) { 3942 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) 3943 return nullptr; 3944 3945 const auto *FD = dyn_cast<FunctionDecl>(D); 3946 if (!FD) 3947 return nullptr; 3948 3949 // Setup context. 3950 auto *S = getDeclContextDescriptor(D); 3951 3952 auto MI = SPCache.find(FD->getCanonicalDecl()); 3953 if (MI == SPCache.end()) { 3954 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD->getCanonicalDecl())) { 3955 return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()), 3956 cast<llvm::DICompositeType>(S)); 3957 } 3958 } 3959 if (MI != SPCache.end()) { 3960 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); 3961 if (SP && !SP->isDefinition()) 3962 return SP; 3963 } 3964 3965 for (auto NextFD : FD->redecls()) { 3966 auto MI = SPCache.find(NextFD->getCanonicalDecl()); 3967 if (MI != SPCache.end()) { 3968 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); 3969 if (SP && !SP->isDefinition()) 3970 return SP; 3971 } 3972 } 3973 return nullptr; 3974 } 3975 3976 llvm::DISubprogram *CGDebugInfo::getObjCMethodDeclaration( 3977 const Decl *D, llvm::DISubroutineType *FnType, unsigned LineNo, 3978 llvm::DINode::DIFlags Flags, llvm::DISubprogram::DISPFlags SPFlags) { 3979 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) 3980 return nullptr; 3981 3982 const auto *OMD = dyn_cast<ObjCMethodDecl>(D); 3983 if (!OMD) 3984 return nullptr; 3985 3986 if (CGM.getCodeGenOpts().DwarfVersion < 5 && !OMD->isDirectMethod()) 3987 return nullptr; 3988 3989 if (OMD->isDirectMethod()) 3990 SPFlags |= llvm::DISubprogram::SPFlagObjCDirect; 3991 3992 // Starting with DWARF V5 method declarations are emitted as children of 3993 // the interface type. 3994 auto *ID = dyn_cast_or_null<ObjCInterfaceDecl>(D->getDeclContext()); 3995 if (!ID) 3996 ID = OMD->getClassInterface(); 3997 if (!ID) 3998 return nullptr; 3999 QualType QTy(ID->getTypeForDecl(), 0); 4000 auto It = TypeCache.find(QTy.getAsOpaquePtr()); 4001 if (It == TypeCache.end()) 4002 return nullptr; 4003 auto *InterfaceType = cast<llvm::DICompositeType>(It->second); 4004 llvm::DISubprogram *FD = DBuilder.createFunction( 4005 InterfaceType, getObjCMethodName(OMD), StringRef(), 4006 InterfaceType->getFile(), LineNo, FnType, LineNo, Flags, SPFlags); 4007 DBuilder.finalizeSubprogram(FD); 4008 ObjCMethodCache[ID].push_back({FD, OMD->isDirectMethod()}); 4009 return FD; 4010 } 4011 4012 // getOrCreateFunctionType - Construct type. If it is a c++ method, include 4013 // implicit parameter "this". 4014 llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D, 4015 QualType FnType, 4016 llvm::DIFile *F) { 4017 // In CodeView, we emit the function types in line tables only because the 4018 // only way to distinguish between functions is by display name and type. 4019 if (!D || (DebugKind <= codegenoptions::DebugLineTablesOnly && 4020 !CGM.getCodeGenOpts().EmitCodeView)) 4021 // Create fake but valid subroutine type. Otherwise -verify would fail, and 4022 // subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields. 4023 return DBuilder.createSubroutineType(DBuilder.getOrCreateTypeArray(None)); 4024 4025 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) 4026 return getOrCreateMethodType(Method, F, false); 4027 4028 const auto *FTy = FnType->getAs<FunctionType>(); 4029 CallingConv CC = FTy ? FTy->getCallConv() : CallingConv::CC_C; 4030 4031 if (const auto *OMethod = dyn_cast<ObjCMethodDecl>(D)) { 4032 // Add "self" and "_cmd" 4033 SmallVector<llvm::Metadata *, 16> Elts; 4034 4035 // First element is always return type. For 'void' functions it is NULL. 4036 QualType ResultTy = OMethod->getReturnType(); 4037 4038 // Replace the instancetype keyword with the actual type. 4039 if (ResultTy == CGM.getContext().getObjCInstanceType()) 4040 ResultTy = CGM.getContext().getPointerType( 4041 QualType(OMethod->getClassInterface()->getTypeForDecl(), 0)); 4042 4043 Elts.push_back(getOrCreateType(ResultTy, F)); 4044 // "self" pointer is always first argument. 4045 QualType SelfDeclTy; 4046 if (auto *SelfDecl = OMethod->getSelfDecl()) 4047 SelfDeclTy = SelfDecl->getType(); 4048 else if (auto *FPT = dyn_cast<FunctionProtoType>(FnType)) 4049 if (FPT->getNumParams() > 1) 4050 SelfDeclTy = FPT->getParamType(0); 4051 if (!SelfDeclTy.isNull()) 4052 Elts.push_back( 4053 CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F))); 4054 // "_cmd" pointer is always second argument. 4055 Elts.push_back(DBuilder.createArtificialType( 4056 getOrCreateType(CGM.getContext().getObjCSelType(), F))); 4057 // Get rest of the arguments. 4058 for (const auto *PI : OMethod->parameters()) 4059 Elts.push_back(getOrCreateType(PI->getType(), F)); 4060 // Variadic methods need a special marker at the end of the type list. 4061 if (OMethod->isVariadic()) 4062 Elts.push_back(DBuilder.createUnspecifiedParameter()); 4063 4064 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); 4065 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, 4066 getDwarfCC(CC)); 4067 } 4068 4069 // Handle variadic function types; they need an additional 4070 // unspecified parameter. 4071 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 4072 if (FD->isVariadic()) { 4073 SmallVector<llvm::Metadata *, 16> EltTys; 4074 EltTys.push_back(getOrCreateType(FD->getReturnType(), F)); 4075 if (const auto *FPT = dyn_cast<FunctionProtoType>(FnType)) 4076 for (QualType ParamType : FPT->param_types()) 4077 EltTys.push_back(getOrCreateType(ParamType, F)); 4078 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 4079 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); 4080 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, 4081 getDwarfCC(CC)); 4082 } 4083 4084 TypeLoc TL; 4085 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4086 if (const TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 4087 TL = TSI->getTypeLoc(); 4088 } 4089 return cast<llvm::DISubroutineType>(getOrCreateType(FnType, F, TL)); 4090 } 4091 4092 QualType 4093 CGDebugInfo::getFunctionType(const FunctionDecl *FD, QualType RetTy, 4094 const SmallVectorImpl<const VarDecl *> &Args) { 4095 CallingConv CC = CallingConv::CC_C; 4096 if (FD) 4097 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 4098 CC = SrcFnTy->getCallConv(); 4099 SmallVector<QualType, 16> ArgTypes; 4100 for (const VarDecl *VD : Args) 4101 ArgTypes.push_back(VD->getType()); 4102 return CGM.getContext().getFunctionType(RetTy, ArgTypes, 4103 FunctionProtoType::ExtProtoInfo(CC)); 4104 } 4105 4106 void CGDebugInfo::emitFunctionStart(GlobalDecl GD, SourceLocation Loc, 4107 SourceLocation ScopeLoc, QualType FnType, 4108 llvm::Function *Fn, bool CurFuncIsThunk) { 4109 StringRef Name; 4110 StringRef LinkageName; 4111 4112 FnBeginRegionCount.push_back(LexicalBlockStack.size()); 4113 4114 const Decl *D = GD.getDecl(); 4115 bool HasDecl = (D != nullptr); 4116 4117 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4118 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 4119 llvm::DIFile *Unit = getOrCreateFile(Loc); 4120 llvm::DIScope *FDContext = Unit; 4121 llvm::DINodeArray TParamsArray; 4122 if (!HasDecl) { 4123 // Use llvm function name. 4124 LinkageName = Fn->getName(); 4125 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4126 // If there is a subprogram for this function available then use it. 4127 auto FI = SPCache.find(FD->getCanonicalDecl()); 4128 if (FI != SPCache.end()) { 4129 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second); 4130 if (SP && SP->isDefinition()) { 4131 LexicalBlockStack.emplace_back(SP); 4132 RegionMap[D].reset(SP); 4133 return; 4134 } 4135 } 4136 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, 4137 TParamsArray, Flags); 4138 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) { 4139 Name = getObjCMethodName(OMD); 4140 Flags |= llvm::DINode::FlagPrototyped; 4141 } else if (isa<VarDecl>(D) && 4142 GD.getDynamicInitKind() != DynamicInitKind::NoStub) { 4143 // This is a global initializer or atexit destructor for a global variable. 4144 Name = getDynamicInitializerName(cast<VarDecl>(D), GD.getDynamicInitKind(), 4145 Fn); 4146 } else { 4147 Name = Fn->getName(); 4148 4149 if (isa<BlockDecl>(D)) 4150 LinkageName = Name; 4151 4152 Flags |= llvm::DINode::FlagPrototyped; 4153 } 4154 if (Name.startswith("\01")) 4155 Name = Name.substr(1); 4156 4157 if (!HasDecl || D->isImplicit() || D->hasAttr<ArtificialAttr>() || 4158 (isa<VarDecl>(D) && GD.getDynamicInitKind() != DynamicInitKind::NoStub)) { 4159 Flags |= llvm::DINode::FlagArtificial; 4160 // Artificial functions should not silently reuse CurLoc. 4161 CurLoc = SourceLocation(); 4162 } 4163 4164 if (CurFuncIsThunk) 4165 Flags |= llvm::DINode::FlagThunk; 4166 4167 if (Fn->hasLocalLinkage()) 4168 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 4169 if (CGM.getLangOpts().Optimize) 4170 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 4171 4172 llvm::DINode::DIFlags FlagsForDef = Flags | getCallSiteRelatedAttrs(); 4173 llvm::DISubprogram::DISPFlags SPFlagsForDef = 4174 SPFlags | llvm::DISubprogram::SPFlagDefinition; 4175 4176 const unsigned LineNo = getLineNumber(Loc.isValid() ? Loc : CurLoc); 4177 unsigned ScopeLine = getLineNumber(ScopeLoc); 4178 llvm::DISubroutineType *DIFnType = getOrCreateFunctionType(D, FnType, Unit); 4179 llvm::DISubprogram *Decl = nullptr; 4180 llvm::DINodeArray Annotations = nullptr; 4181 if (D) { 4182 Decl = isa<ObjCMethodDecl>(D) 4183 ? getObjCMethodDeclaration(D, DIFnType, LineNo, Flags, SPFlags) 4184 : getFunctionDeclaration(D); 4185 Annotations = CollectBTFDeclTagAnnotations(D); 4186 } 4187 4188 // FIXME: The function declaration we're constructing here is mostly reusing 4189 // declarations from CXXMethodDecl and not constructing new ones for arbitrary 4190 // FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for 4191 // all subprograms instead of the actual context since subprogram definitions 4192 // are emitted as CU level entities by the backend. 4193 llvm::DISubprogram *SP = DBuilder.createFunction( 4194 FDContext, Name, LinkageName, Unit, LineNo, DIFnType, ScopeLine, 4195 FlagsForDef, SPFlagsForDef, TParamsArray.get(), Decl, nullptr, 4196 Annotations); 4197 Fn->setSubprogram(SP); 4198 // We might get here with a VarDecl in the case we're generating 4199 // code for the initialization of globals. Do not record these decls 4200 // as they will overwrite the actual VarDecl Decl in the cache. 4201 if (HasDecl && isa<FunctionDecl>(D)) 4202 DeclCache[D->getCanonicalDecl()].reset(SP); 4203 4204 // Push the function onto the lexical block stack. 4205 LexicalBlockStack.emplace_back(SP); 4206 4207 if (HasDecl) 4208 RegionMap[D].reset(SP); 4209 } 4210 4211 void CGDebugInfo::EmitFunctionDecl(GlobalDecl GD, SourceLocation Loc, 4212 QualType FnType, llvm::Function *Fn) { 4213 StringRef Name; 4214 StringRef LinkageName; 4215 4216 const Decl *D = GD.getDecl(); 4217 if (!D) 4218 return; 4219 4220 llvm::TimeTraceScope TimeScope("DebugFunction", [&]() { 4221 return GetName(D, true); 4222 }); 4223 4224 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4225 llvm::DIFile *Unit = getOrCreateFile(Loc); 4226 bool IsDeclForCallSite = Fn ? true : false; 4227 llvm::DIScope *FDContext = 4228 IsDeclForCallSite ? Unit : getDeclContextDescriptor(D); 4229 llvm::DINodeArray TParamsArray; 4230 if (isa<FunctionDecl>(D)) { 4231 // If there is a DISubprogram for this function available then use it. 4232 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, 4233 TParamsArray, Flags); 4234 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) { 4235 Name = getObjCMethodName(OMD); 4236 Flags |= llvm::DINode::FlagPrototyped; 4237 } else { 4238 llvm_unreachable("not a function or ObjC method"); 4239 } 4240 if (!Name.empty() && Name[0] == '\01') 4241 Name = Name.substr(1); 4242 4243 if (D->isImplicit()) { 4244 Flags |= llvm::DINode::FlagArtificial; 4245 // Artificial functions without a location should not silently reuse CurLoc. 4246 if (Loc.isInvalid()) 4247 CurLoc = SourceLocation(); 4248 } 4249 unsigned LineNo = getLineNumber(Loc); 4250 unsigned ScopeLine = 0; 4251 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 4252 if (CGM.getLangOpts().Optimize) 4253 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 4254 4255 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 4256 llvm::DISubprogram *SP = DBuilder.createFunction( 4257 FDContext, Name, LinkageName, Unit, LineNo, 4258 getOrCreateFunctionType(D, FnType, Unit), ScopeLine, Flags, SPFlags, 4259 TParamsArray.get(), getFunctionDeclaration(D), nullptr, Annotations); 4260 4261 if (IsDeclForCallSite) 4262 Fn->setSubprogram(SP); 4263 4264 DBuilder.finalizeSubprogram(SP); 4265 } 4266 4267 void CGDebugInfo::EmitFuncDeclForCallSite(llvm::CallBase *CallOrInvoke, 4268 QualType CalleeType, 4269 const FunctionDecl *CalleeDecl) { 4270 if (!CallOrInvoke) 4271 return; 4272 auto *Func = CallOrInvoke->getCalledFunction(); 4273 if (!Func) 4274 return; 4275 if (Func->getSubprogram()) 4276 return; 4277 4278 // Do not emit a declaration subprogram for a builtin, a function with nodebug 4279 // attribute, or if call site info isn't required. Also, elide declarations 4280 // for functions with reserved names, as call site-related features aren't 4281 // interesting in this case (& also, the compiler may emit calls to these 4282 // functions without debug locations, which makes the verifier complain). 4283 if (CalleeDecl->getBuiltinID() != 0 || CalleeDecl->hasAttr<NoDebugAttr>() || 4284 getCallSiteRelatedAttrs() == llvm::DINode::FlagZero) 4285 return; 4286 if (CalleeDecl->isReserved(CGM.getLangOpts()) != 4287 ReservedIdentifierStatus::NotReserved) 4288 return; 4289 4290 // If there is no DISubprogram attached to the function being called, 4291 // create the one describing the function in order to have complete 4292 // call site debug info. 4293 if (!CalleeDecl->isStatic() && !CalleeDecl->isInlined()) 4294 EmitFunctionDecl(CalleeDecl, CalleeDecl->getLocation(), CalleeType, Func); 4295 } 4296 4297 void CGDebugInfo::EmitInlineFunctionStart(CGBuilderTy &Builder, GlobalDecl GD) { 4298 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4299 // If there is a subprogram for this function available then use it. 4300 auto FI = SPCache.find(FD->getCanonicalDecl()); 4301 llvm::DISubprogram *SP = nullptr; 4302 if (FI != SPCache.end()) 4303 SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second); 4304 if (!SP || !SP->isDefinition()) 4305 SP = getFunctionStub(GD); 4306 FnBeginRegionCount.push_back(LexicalBlockStack.size()); 4307 LexicalBlockStack.emplace_back(SP); 4308 setInlinedAt(Builder.getCurrentDebugLocation()); 4309 EmitLocation(Builder, FD->getLocation()); 4310 } 4311 4312 void CGDebugInfo::EmitInlineFunctionEnd(CGBuilderTy &Builder) { 4313 assert(CurInlinedAt && "unbalanced inline scope stack"); 4314 EmitFunctionEnd(Builder, nullptr); 4315 setInlinedAt(llvm::DebugLoc(CurInlinedAt).getInlinedAt()); 4316 } 4317 4318 void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) { 4319 // Update our current location 4320 setLocation(Loc); 4321 4322 if (CurLoc.isInvalid() || CurLoc.isMacroID() || LexicalBlockStack.empty()) 4323 return; 4324 4325 llvm::MDNode *Scope = LexicalBlockStack.back(); 4326 Builder.SetCurrentDebugLocation( 4327 llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(CurLoc), 4328 getColumnNumber(CurLoc), Scope, CurInlinedAt)); 4329 } 4330 4331 void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) { 4332 llvm::MDNode *Back = nullptr; 4333 if (!LexicalBlockStack.empty()) 4334 Back = LexicalBlockStack.back().get(); 4335 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock( 4336 cast<llvm::DIScope>(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc), 4337 getColumnNumber(CurLoc))); 4338 } 4339 4340 void CGDebugInfo::AppendAddressSpaceXDeref( 4341 unsigned AddressSpace, SmallVectorImpl<int64_t> &Expr) const { 4342 Optional<unsigned> DWARFAddressSpace = 4343 CGM.getTarget().getDWARFAddressSpace(AddressSpace); 4344 if (!DWARFAddressSpace) 4345 return; 4346 4347 Expr.push_back(llvm::dwarf::DW_OP_constu); 4348 Expr.push_back(DWARFAddressSpace.getValue()); 4349 Expr.push_back(llvm::dwarf::DW_OP_swap); 4350 Expr.push_back(llvm::dwarf::DW_OP_xderef); 4351 } 4352 4353 void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder, 4354 SourceLocation Loc) { 4355 // Set our current location. 4356 setLocation(Loc); 4357 4358 // Emit a line table change for the current location inside the new scope. 4359 Builder.SetCurrentDebugLocation(llvm::DILocation::get( 4360 CGM.getLLVMContext(), getLineNumber(Loc), getColumnNumber(Loc), 4361 LexicalBlockStack.back(), CurInlinedAt)); 4362 4363 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 4364 return; 4365 4366 // Create a new lexical block and push it on the stack. 4367 CreateLexicalBlock(Loc); 4368 } 4369 4370 void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder, 4371 SourceLocation Loc) { 4372 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4373 4374 // Provide an entry in the line table for the end of the block. 4375 EmitLocation(Builder, Loc); 4376 4377 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 4378 return; 4379 4380 LexicalBlockStack.pop_back(); 4381 } 4382 4383 void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder, llvm::Function *Fn) { 4384 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4385 unsigned RCount = FnBeginRegionCount.back(); 4386 assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch"); 4387 4388 // Pop all regions for this function. 4389 while (LexicalBlockStack.size() != RCount) { 4390 // Provide an entry in the line table for the end of the block. 4391 EmitLocation(Builder, CurLoc); 4392 LexicalBlockStack.pop_back(); 4393 } 4394 FnBeginRegionCount.pop_back(); 4395 4396 if (Fn && Fn->getSubprogram()) 4397 DBuilder.finalizeSubprogram(Fn->getSubprogram()); 4398 } 4399 4400 CGDebugInfo::BlockByRefType 4401 CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD, 4402 uint64_t *XOffset) { 4403 SmallVector<llvm::Metadata *, 5> EltTys; 4404 QualType FType; 4405 uint64_t FieldSize, FieldOffset; 4406 uint32_t FieldAlign; 4407 4408 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 4409 QualType Type = VD->getType(); 4410 4411 FieldOffset = 0; 4412 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4413 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); 4414 EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset)); 4415 FType = CGM.getContext().IntTy; 4416 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); 4417 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); 4418 4419 bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD); 4420 if (HasCopyAndDispose) { 4421 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4422 EltTys.push_back( 4423 CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset)); 4424 EltTys.push_back( 4425 CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset)); 4426 } 4427 bool HasByrefExtendedLayout; 4428 Qualifiers::ObjCLifetime Lifetime; 4429 if (CGM.getContext().getByrefLifetime(Type, Lifetime, 4430 HasByrefExtendedLayout) && 4431 HasByrefExtendedLayout) { 4432 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4433 EltTys.push_back( 4434 CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset)); 4435 } 4436 4437 CharUnits Align = CGM.getContext().getDeclAlign(VD); 4438 if (Align > CGM.getContext().toCharUnitsFromBits( 4439 CGM.getTarget().getPointerAlign(0))) { 4440 CharUnits FieldOffsetInBytes = 4441 CGM.getContext().toCharUnitsFromBits(FieldOffset); 4442 CharUnits AlignedOffsetInBytes = FieldOffsetInBytes.alignTo(Align); 4443 CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes; 4444 4445 if (NumPaddingBytes.isPositive()) { 4446 llvm::APInt pad(32, NumPaddingBytes.getQuantity()); 4447 FType = CGM.getContext().getConstantArrayType( 4448 CGM.getContext().CharTy, pad, nullptr, ArrayType::Normal, 0); 4449 EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset)); 4450 } 4451 } 4452 4453 FType = Type; 4454 llvm::DIType *WrappedTy = getOrCreateType(FType, Unit); 4455 FieldSize = CGM.getContext().getTypeSize(FType); 4456 FieldAlign = CGM.getContext().toBits(Align); 4457 4458 *XOffset = FieldOffset; 4459 llvm::DIType *FieldTy = DBuilder.createMemberType( 4460 Unit, VD->getName(), Unit, 0, FieldSize, FieldAlign, FieldOffset, 4461 llvm::DINode::FlagZero, WrappedTy); 4462 EltTys.push_back(FieldTy); 4463 FieldOffset += FieldSize; 4464 4465 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 4466 return {DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0, 4467 llvm::DINode::FlagZero, nullptr, Elements), 4468 WrappedTy}; 4469 } 4470 4471 llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const VarDecl *VD, 4472 llvm::Value *Storage, 4473 llvm::Optional<unsigned> ArgNo, 4474 CGBuilderTy &Builder, 4475 const bool UsePointerValue) { 4476 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4477 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4478 if (VD->hasAttr<NoDebugAttr>()) 4479 return nullptr; 4480 4481 bool Unwritten = 4482 VD->isImplicit() || (isa<Decl>(VD->getDeclContext()) && 4483 cast<Decl>(VD->getDeclContext())->isImplicit()); 4484 llvm::DIFile *Unit = nullptr; 4485 if (!Unwritten) 4486 Unit = getOrCreateFile(VD->getLocation()); 4487 llvm::DIType *Ty; 4488 uint64_t XOffset = 0; 4489 if (VD->hasAttr<BlocksAttr>()) 4490 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; 4491 else { 4492 TypeLoc TL; 4493 if (const TypeSourceInfo *TSI = VD->getTypeSourceInfo()) 4494 TL = TSI->getTypeLoc(); 4495 Ty = getOrCreateType(VD->getType(), Unit, TL); 4496 } 4497 4498 // If there is no debug info for this type then do not emit debug info 4499 // for this variable. 4500 if (!Ty) 4501 return nullptr; 4502 4503 // Get location information. 4504 unsigned Line = 0; 4505 unsigned Column = 0; 4506 if (!Unwritten) { 4507 Line = getLineNumber(VD->getLocation()); 4508 Column = getColumnNumber(VD->getLocation()); 4509 } 4510 SmallVector<int64_t, 13> Expr; 4511 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4512 if (VD->isImplicit()) 4513 Flags |= llvm::DINode::FlagArtificial; 4514 4515 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 4516 4517 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(VD->getType()); 4518 AppendAddressSpaceXDeref(AddressSpace, Expr); 4519 4520 // If this is implicit parameter of CXXThis or ObjCSelf kind, then give it an 4521 // object pointer flag. 4522 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) { 4523 if (IPD->getParameterKind() == ImplicitParamDecl::CXXThis || 4524 IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf) 4525 Flags |= llvm::DINode::FlagObjectPointer; 4526 } 4527 4528 // Note: Older versions of clang used to emit byval references with an extra 4529 // DW_OP_deref, because they referenced the IR arg directly instead of 4530 // referencing an alloca. Newer versions of LLVM don't treat allocas 4531 // differently from other function arguments when used in a dbg.declare. 4532 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4533 StringRef Name = VD->getName(); 4534 if (!Name.empty()) { 4535 // __block vars are stored on the heap if they are captured by a block that 4536 // can escape the local scope. 4537 if (VD->isEscapingByref()) { 4538 // Here, we need an offset *into* the alloca. 4539 CharUnits offset = CharUnits::fromQuantity(32); 4540 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4541 // offset of __forwarding field 4542 offset = CGM.getContext().toCharUnitsFromBits( 4543 CGM.getTarget().getPointerWidth(0)); 4544 Expr.push_back(offset.getQuantity()); 4545 Expr.push_back(llvm::dwarf::DW_OP_deref); 4546 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4547 // offset of x field 4548 offset = CGM.getContext().toCharUnitsFromBits(XOffset); 4549 Expr.push_back(offset.getQuantity()); 4550 } 4551 } else if (const auto *RT = dyn_cast<RecordType>(VD->getType())) { 4552 // If VD is an anonymous union then Storage represents value for 4553 // all union fields. 4554 const RecordDecl *RD = RT->getDecl(); 4555 if (RD->isUnion() && RD->isAnonymousStructOrUnion()) { 4556 // GDB has trouble finding local variables in anonymous unions, so we emit 4557 // artificial local variables for each of the members. 4558 // 4559 // FIXME: Remove this code as soon as GDB supports this. 4560 // The debug info verifier in LLVM operates based on the assumption that a 4561 // variable has the same size as its storage and we had to disable the 4562 // check for artificial variables. 4563 for (const auto *Field : RD->fields()) { 4564 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 4565 StringRef FieldName = Field->getName(); 4566 4567 // Ignore unnamed fields. Do not ignore unnamed records. 4568 if (FieldName.empty() && !isa<RecordType>(Field->getType())) 4569 continue; 4570 4571 // Use VarDecl's Tag, Scope and Line number. 4572 auto FieldAlign = getDeclAlignIfRequired(Field, CGM.getContext()); 4573 auto *D = DBuilder.createAutoVariable( 4574 Scope, FieldName, Unit, Line, FieldTy, CGM.getLangOpts().Optimize, 4575 Flags | llvm::DINode::FlagArtificial, FieldAlign); 4576 4577 // Insert an llvm.dbg.declare into the current block. 4578 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4579 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4580 Column, Scope, 4581 CurInlinedAt), 4582 Builder.GetInsertBlock()); 4583 } 4584 } 4585 } 4586 4587 // Clang stores the sret pointer provided by the caller in a static alloca. 4588 // Use DW_OP_deref to tell the debugger to load the pointer and treat it as 4589 // the address of the variable. 4590 if (UsePointerValue) { 4591 assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) && 4592 "Debug info already contains DW_OP_deref."); 4593 Expr.push_back(llvm::dwarf::DW_OP_deref); 4594 } 4595 4596 // Create the descriptor for the variable. 4597 llvm::DILocalVariable *D = nullptr; 4598 if (ArgNo) { 4599 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(VD); 4600 D = DBuilder.createParameterVariable(Scope, Name, *ArgNo, Unit, Line, Ty, 4601 CGM.getLangOpts().Optimize, Flags, 4602 Annotations); 4603 } else { 4604 // For normal local variable, we will try to find out whether 'VD' is the 4605 // copy parameter of coroutine. 4606 // If yes, we are going to use DIVariable of the origin parameter instead 4607 // of creating the new one. 4608 // If no, it might be a normal alloc, we just create a new one for it. 4609 4610 // Check whether the VD is move parameters. 4611 auto RemapCoroArgToLocalVar = [&]() -> llvm::DILocalVariable * { 4612 // The scope of parameter and move-parameter should be distinct 4613 // DISubprogram. 4614 if (!isa<llvm::DISubprogram>(Scope) || !Scope->isDistinct()) 4615 return nullptr; 4616 4617 auto Iter = llvm::find_if(CoroutineParameterMappings, [&](auto &Pair) { 4618 Stmt *StmtPtr = const_cast<Stmt *>(Pair.second); 4619 if (DeclStmt *DeclStmtPtr = dyn_cast<DeclStmt>(StmtPtr)) { 4620 DeclGroupRef DeclGroup = DeclStmtPtr->getDeclGroup(); 4621 Decl *Decl = DeclGroup.getSingleDecl(); 4622 if (VD == dyn_cast_or_null<VarDecl>(Decl)) 4623 return true; 4624 } 4625 return false; 4626 }); 4627 4628 if (Iter != CoroutineParameterMappings.end()) { 4629 ParmVarDecl *PD = const_cast<ParmVarDecl *>(Iter->first); 4630 auto Iter2 = llvm::find_if(ParamDbgMappings, [&](auto &DbgPair) { 4631 return DbgPair.first == PD && DbgPair.second->getScope() == Scope; 4632 }); 4633 if (Iter2 != ParamDbgMappings.end()) 4634 return const_cast<llvm::DILocalVariable *>(Iter2->second); 4635 } 4636 return nullptr; 4637 }; 4638 4639 // If we couldn't find a move param DIVariable, create a new one. 4640 D = RemapCoroArgToLocalVar(); 4641 // Or we will create a new DIVariable for this Decl if D dose not exists. 4642 if (!D) 4643 D = DBuilder.createAutoVariable(Scope, Name, Unit, Line, Ty, 4644 CGM.getLangOpts().Optimize, Flags, Align); 4645 } 4646 // Insert an llvm.dbg.declare into the current block. 4647 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4648 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4649 Column, Scope, CurInlinedAt), 4650 Builder.GetInsertBlock()); 4651 4652 return D; 4653 } 4654 4655 llvm::DILocalVariable * 4656 CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD, llvm::Value *Storage, 4657 CGBuilderTy &Builder, 4658 const bool UsePointerValue) { 4659 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4660 return EmitDeclare(VD, Storage, llvm::None, Builder, UsePointerValue); 4661 } 4662 4663 void CGDebugInfo::EmitLabel(const LabelDecl *D, CGBuilderTy &Builder) { 4664 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4665 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4666 4667 if (D->hasAttr<NoDebugAttr>()) 4668 return; 4669 4670 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4671 llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); 4672 4673 // Get location information. 4674 unsigned Line = getLineNumber(D->getLocation()); 4675 unsigned Column = getColumnNumber(D->getLocation()); 4676 4677 StringRef Name = D->getName(); 4678 4679 // Create the descriptor for the label. 4680 auto *L = 4681 DBuilder.createLabel(Scope, Name, Unit, Line, CGM.getLangOpts().Optimize); 4682 4683 // Insert an llvm.dbg.label into the current block. 4684 DBuilder.insertLabel(L, 4685 llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, 4686 Scope, CurInlinedAt), 4687 Builder.GetInsertBlock()); 4688 } 4689 4690 llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy, 4691 llvm::DIType *Ty) { 4692 llvm::DIType *CachedTy = getTypeOrNull(QualTy); 4693 if (CachedTy) 4694 Ty = CachedTy; 4695 return DBuilder.createObjectPointerType(Ty); 4696 } 4697 4698 void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable( 4699 const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder, 4700 const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) { 4701 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4702 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4703 4704 if (Builder.GetInsertBlock() == nullptr) 4705 return; 4706 if (VD->hasAttr<NoDebugAttr>()) 4707 return; 4708 4709 bool isByRef = VD->hasAttr<BlocksAttr>(); 4710 4711 uint64_t XOffset = 0; 4712 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 4713 llvm::DIType *Ty; 4714 if (isByRef) 4715 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; 4716 else 4717 Ty = getOrCreateType(VD->getType(), Unit); 4718 4719 // Self is passed along as an implicit non-arg variable in a 4720 // block. Mark it as the object pointer. 4721 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) 4722 if (IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf) 4723 Ty = CreateSelfType(VD->getType(), Ty); 4724 4725 // Get location information. 4726 const unsigned Line = 4727 getLineNumber(VD->getLocation().isValid() ? VD->getLocation() : CurLoc); 4728 unsigned Column = getColumnNumber(VD->getLocation()); 4729 4730 const llvm::DataLayout &target = CGM.getDataLayout(); 4731 4732 CharUnits offset = CharUnits::fromQuantity( 4733 target.getStructLayout(blockInfo.StructureType) 4734 ->getElementOffset(blockInfo.getCapture(VD).getIndex())); 4735 4736 SmallVector<int64_t, 9> addr; 4737 addr.push_back(llvm::dwarf::DW_OP_deref); 4738 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4739 addr.push_back(offset.getQuantity()); 4740 if (isByRef) { 4741 addr.push_back(llvm::dwarf::DW_OP_deref); 4742 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4743 // offset of __forwarding field 4744 offset = 4745 CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0)); 4746 addr.push_back(offset.getQuantity()); 4747 addr.push_back(llvm::dwarf::DW_OP_deref); 4748 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4749 // offset of x field 4750 offset = CGM.getContext().toCharUnitsFromBits(XOffset); 4751 addr.push_back(offset.getQuantity()); 4752 } 4753 4754 // Create the descriptor for the variable. 4755 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 4756 auto *D = DBuilder.createAutoVariable( 4757 cast<llvm::DILocalScope>(LexicalBlockStack.back()), VD->getName(), Unit, 4758 Line, Ty, false, llvm::DINode::FlagZero, Align); 4759 4760 // Insert an llvm.dbg.declare into the current block. 4761 auto DL = llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, 4762 LexicalBlockStack.back(), CurInlinedAt); 4763 auto *Expr = DBuilder.createExpression(addr); 4764 if (InsertPoint) 4765 DBuilder.insertDeclare(Storage, D, Expr, DL, InsertPoint); 4766 else 4767 DBuilder.insertDeclare(Storage, D, Expr, DL, Builder.GetInsertBlock()); 4768 } 4769 4770 llvm::DILocalVariable * 4771 CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI, 4772 unsigned ArgNo, CGBuilderTy &Builder) { 4773 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4774 return EmitDeclare(VD, AI, ArgNo, Builder); 4775 } 4776 4777 namespace { 4778 struct BlockLayoutChunk { 4779 uint64_t OffsetInBits; 4780 const BlockDecl::Capture *Capture; 4781 }; 4782 bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) { 4783 return l.OffsetInBits < r.OffsetInBits; 4784 } 4785 } // namespace 4786 4787 void CGDebugInfo::collectDefaultFieldsForBlockLiteralDeclare( 4788 const CGBlockInfo &Block, const ASTContext &Context, SourceLocation Loc, 4789 const llvm::StructLayout &BlockLayout, llvm::DIFile *Unit, 4790 SmallVectorImpl<llvm::Metadata *> &Fields) { 4791 // Blocks in OpenCL have unique constraints which make the standard fields 4792 // redundant while requiring size and align fields for enqueue_kernel. See 4793 // initializeForBlockHeader in CGBlocks.cpp 4794 if (CGM.getLangOpts().OpenCL) { 4795 Fields.push_back(createFieldType("__size", Context.IntTy, Loc, AS_public, 4796 BlockLayout.getElementOffsetInBits(0), 4797 Unit, Unit)); 4798 Fields.push_back(createFieldType("__align", Context.IntTy, Loc, AS_public, 4799 BlockLayout.getElementOffsetInBits(1), 4800 Unit, Unit)); 4801 } else { 4802 Fields.push_back(createFieldType("__isa", Context.VoidPtrTy, Loc, AS_public, 4803 BlockLayout.getElementOffsetInBits(0), 4804 Unit, Unit)); 4805 Fields.push_back(createFieldType("__flags", Context.IntTy, Loc, AS_public, 4806 BlockLayout.getElementOffsetInBits(1), 4807 Unit, Unit)); 4808 Fields.push_back( 4809 createFieldType("__reserved", Context.IntTy, Loc, AS_public, 4810 BlockLayout.getElementOffsetInBits(2), Unit, Unit)); 4811 auto *FnTy = Block.getBlockExpr()->getFunctionType(); 4812 auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar()); 4813 Fields.push_back(createFieldType("__FuncPtr", FnPtrType, Loc, AS_public, 4814 BlockLayout.getElementOffsetInBits(3), 4815 Unit, Unit)); 4816 Fields.push_back(createFieldType( 4817 "__descriptor", 4818 Context.getPointerType(Block.NeedsCopyDispose 4819 ? Context.getBlockDescriptorExtendedType() 4820 : Context.getBlockDescriptorType()), 4821 Loc, AS_public, BlockLayout.getElementOffsetInBits(4), Unit, Unit)); 4822 } 4823 } 4824 4825 void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block, 4826 StringRef Name, 4827 unsigned ArgNo, 4828 llvm::AllocaInst *Alloca, 4829 CGBuilderTy &Builder) { 4830 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4831 ASTContext &C = CGM.getContext(); 4832 const BlockDecl *blockDecl = block.getBlockDecl(); 4833 4834 // Collect some general information about the block's location. 4835 SourceLocation loc = blockDecl->getCaretLocation(); 4836 llvm::DIFile *tunit = getOrCreateFile(loc); 4837 unsigned line = getLineNumber(loc); 4838 unsigned column = getColumnNumber(loc); 4839 4840 // Build the debug-info type for the block literal. 4841 getDeclContextDescriptor(blockDecl); 4842 4843 const llvm::StructLayout *blockLayout = 4844 CGM.getDataLayout().getStructLayout(block.StructureType); 4845 4846 SmallVector<llvm::Metadata *, 16> fields; 4847 collectDefaultFieldsForBlockLiteralDeclare(block, C, loc, *blockLayout, tunit, 4848 fields); 4849 4850 // We want to sort the captures by offset, not because DWARF 4851 // requires this, but because we're paranoid about debuggers. 4852 SmallVector<BlockLayoutChunk, 8> chunks; 4853 4854 // 'this' capture. 4855 if (blockDecl->capturesCXXThis()) { 4856 BlockLayoutChunk chunk; 4857 chunk.OffsetInBits = 4858 blockLayout->getElementOffsetInBits(block.CXXThisIndex); 4859 chunk.Capture = nullptr; 4860 chunks.push_back(chunk); 4861 } 4862 4863 // Variable captures. 4864 for (const auto &capture : blockDecl->captures()) { 4865 const VarDecl *variable = capture.getVariable(); 4866 const CGBlockInfo::Capture &captureInfo = block.getCapture(variable); 4867 4868 // Ignore constant captures. 4869 if (captureInfo.isConstant()) 4870 continue; 4871 4872 BlockLayoutChunk chunk; 4873 chunk.OffsetInBits = 4874 blockLayout->getElementOffsetInBits(captureInfo.getIndex()); 4875 chunk.Capture = &capture; 4876 chunks.push_back(chunk); 4877 } 4878 4879 // Sort by offset. 4880 llvm::array_pod_sort(chunks.begin(), chunks.end()); 4881 4882 for (const BlockLayoutChunk &Chunk : chunks) { 4883 uint64_t offsetInBits = Chunk.OffsetInBits; 4884 const BlockDecl::Capture *capture = Chunk.Capture; 4885 4886 // If we have a null capture, this must be the C++ 'this' capture. 4887 if (!capture) { 4888 QualType type; 4889 if (auto *Method = 4890 cast_or_null<CXXMethodDecl>(blockDecl->getNonClosureContext())) 4891 type = Method->getThisType(); 4892 else if (auto *RDecl = dyn_cast<CXXRecordDecl>(blockDecl->getParent())) 4893 type = QualType(RDecl->getTypeForDecl(), 0); 4894 else 4895 llvm_unreachable("unexpected block declcontext"); 4896 4897 fields.push_back(createFieldType("this", type, loc, AS_public, 4898 offsetInBits, tunit, tunit)); 4899 continue; 4900 } 4901 4902 const VarDecl *variable = capture->getVariable(); 4903 StringRef name = variable->getName(); 4904 4905 llvm::DIType *fieldType; 4906 if (capture->isByRef()) { 4907 TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy); 4908 auto Align = PtrInfo.isAlignRequired() ? PtrInfo.Align : 0; 4909 // FIXME: This recomputes the layout of the BlockByRefWrapper. 4910 uint64_t xoffset; 4911 fieldType = 4912 EmitTypeForVarWithBlocksAttr(variable, &xoffset).BlockByRefWrapper; 4913 fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width); 4914 fieldType = DBuilder.createMemberType(tunit, name, tunit, line, 4915 PtrInfo.Width, Align, offsetInBits, 4916 llvm::DINode::FlagZero, fieldType); 4917 } else { 4918 auto Align = getDeclAlignIfRequired(variable, CGM.getContext()); 4919 fieldType = createFieldType(name, variable->getType(), loc, AS_public, 4920 offsetInBits, Align, tunit, tunit); 4921 } 4922 fields.push_back(fieldType); 4923 } 4924 4925 SmallString<36> typeName; 4926 llvm::raw_svector_ostream(typeName) 4927 << "__block_literal_" << CGM.getUniqueBlockCount(); 4928 4929 llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields); 4930 4931 llvm::DIType *type = 4932 DBuilder.createStructType(tunit, typeName.str(), tunit, line, 4933 CGM.getContext().toBits(block.BlockSize), 0, 4934 llvm::DINode::FlagZero, nullptr, fieldsArray); 4935 type = DBuilder.createPointerType(type, CGM.PointerWidthInBits); 4936 4937 // Get overall information about the block. 4938 llvm::DINode::DIFlags flags = llvm::DINode::FlagArtificial; 4939 auto *scope = cast<llvm::DILocalScope>(LexicalBlockStack.back()); 4940 4941 // Create the descriptor for the parameter. 4942 auto *debugVar = DBuilder.createParameterVariable( 4943 scope, Name, ArgNo, tunit, line, type, CGM.getLangOpts().Optimize, flags); 4944 4945 // Insert an llvm.dbg.declare into the current block. 4946 DBuilder.insertDeclare(Alloca, debugVar, DBuilder.createExpression(), 4947 llvm::DILocation::get(CGM.getLLVMContext(), line, 4948 column, scope, CurInlinedAt), 4949 Builder.GetInsertBlock()); 4950 } 4951 4952 llvm::DIDerivedType * 4953 CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) { 4954 if (!D || !D->isStaticDataMember()) 4955 return nullptr; 4956 4957 auto MI = StaticDataMemberCache.find(D->getCanonicalDecl()); 4958 if (MI != StaticDataMemberCache.end()) { 4959 assert(MI->second && "Static data member declaration should still exist"); 4960 return MI->second; 4961 } 4962 4963 // If the member wasn't found in the cache, lazily construct and add it to the 4964 // type (used when a limited form of the type is emitted). 4965 auto DC = D->getDeclContext(); 4966 auto *Ctxt = cast<llvm::DICompositeType>(getDeclContextDescriptor(D)); 4967 return CreateRecordStaticField(D, Ctxt, cast<RecordDecl>(DC)); 4968 } 4969 4970 llvm::DIGlobalVariableExpression *CGDebugInfo::CollectAnonRecordDecls( 4971 const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo, 4972 StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) { 4973 llvm::DIGlobalVariableExpression *GVE = nullptr; 4974 4975 for (const auto *Field : RD->fields()) { 4976 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 4977 StringRef FieldName = Field->getName(); 4978 4979 // Ignore unnamed fields, but recurse into anonymous records. 4980 if (FieldName.empty()) { 4981 if (const auto *RT = dyn_cast<RecordType>(Field->getType())) 4982 GVE = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName, 4983 Var, DContext); 4984 continue; 4985 } 4986 // Use VarDecl's Tag, Scope and Line number. 4987 GVE = DBuilder.createGlobalVariableExpression( 4988 DContext, FieldName, LinkageName, Unit, LineNo, FieldTy, 4989 Var->hasLocalLinkage()); 4990 Var->addDebugInfo(GVE); 4991 } 4992 return GVE; 4993 } 4994 4995 namespace { 4996 struct ReconstitutableType : public RecursiveASTVisitor<ReconstitutableType> { 4997 bool Reconstitutable = true; 4998 bool VisitVectorType(VectorType *FT) { 4999 Reconstitutable = false; 5000 return false; 5001 } 5002 bool VisitAtomicType(AtomicType *FT) { 5003 Reconstitutable = false; 5004 return false; 5005 } 5006 bool TraverseEnumType(EnumType *ET) { 5007 // Unnamed enums can't be reconstituted due to a lack of column info we 5008 // produce in the DWARF, so we can't get Clang's full name back. 5009 if (const auto *ED = dyn_cast<EnumDecl>(ET->getDecl())) { 5010 if (!ED->getIdentifier()) { 5011 Reconstitutable = false; 5012 return false; 5013 } 5014 } 5015 return true; 5016 } 5017 bool VisitFunctionProtoType(FunctionProtoType *FT) { 5018 // noexcept is not encoded in DWARF, so the reversi 5019 Reconstitutable &= !isNoexceptExceptionSpec(FT->getExceptionSpecType()); 5020 return Reconstitutable; 5021 } 5022 bool TraverseRecordType(RecordType *RT) { 5023 // Unnamed classes/lambdas can't be reconstituted due to a lack of column 5024 // info we produce in the DWARF, so we can't get Clang's full name back. 5025 // But so long as it's not one of those, it doesn't matter if some sub-type 5026 // of the record (a template parameter) can't be reconstituted - because the 5027 // un-reconstitutable type itself will carry its own name. 5028 const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 5029 if (!RD) 5030 return true; 5031 if (RD->isLambda() || !RD->getIdentifier()) { 5032 Reconstitutable = false; 5033 return false; 5034 } 5035 return true; 5036 } 5037 }; 5038 } // anonymous namespace 5039 5040 // Test whether a type name could be rebuilt from emitted debug info. 5041 static bool IsReconstitutableType(QualType QT) { 5042 ReconstitutableType T; 5043 T.TraverseType(QT); 5044 return T.Reconstitutable; 5045 } 5046 5047 std::string CGDebugInfo::GetName(const Decl *D, bool Qualified) const { 5048 std::string Name; 5049 llvm::raw_string_ostream OS(Name); 5050 const NamedDecl *ND = dyn_cast<NamedDecl>(D); 5051 if (!ND) 5052 return Name; 5053 codegenoptions::DebugTemplateNamesKind TemplateNamesKind = 5054 CGM.getCodeGenOpts().getDebugSimpleTemplateNames(); 5055 Optional<TemplateArgs> Args; 5056 5057 bool IsOperatorOverload = false; // isa<CXXConversionDecl>(ND); 5058 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 5059 Args = GetTemplateArgs(RD); 5060 } else if (auto *FD = dyn_cast<FunctionDecl>(ND)) { 5061 Args = GetTemplateArgs(FD); 5062 auto NameKind = ND->getDeclName().getNameKind(); 5063 IsOperatorOverload |= 5064 NameKind == DeclarationName::CXXOperatorName || 5065 NameKind == DeclarationName::CXXConversionFunctionName; 5066 } else if (auto *VD = dyn_cast<VarDecl>(ND)) { 5067 Args = GetTemplateArgs(VD); 5068 } 5069 std::function<bool(ArrayRef<TemplateArgument>)> HasReconstitutableArgs = 5070 [&](ArrayRef<TemplateArgument> Args) { 5071 return llvm::all_of(Args, [&](const TemplateArgument &TA) { 5072 switch (TA.getKind()) { 5073 case TemplateArgument::Template: 5074 // Easy to reconstitute - the value of the parameter in the debug 5075 // info is the string name of the template. (so the template name 5076 // itself won't benefit from any name rebuilding, but that's a 5077 // representational limitation - maybe DWARF could be 5078 // changed/improved to use some more structural representation) 5079 return true; 5080 case TemplateArgument::Declaration: 5081 // Reference and pointer non-type template parameters point to 5082 // variables, functions, etc and their value is, at best (for 5083 // variables) represented as an address - not a reference to the 5084 // DWARF describing the variable/function/etc. This makes it hard, 5085 // possibly impossible to rebuild the original name - looking up the 5086 // address in the executable file's symbol table would be needed. 5087 return false; 5088 case TemplateArgument::NullPtr: 5089 // These could be rebuilt, but figured they're close enough to the 5090 // declaration case, and not worth rebuilding. 5091 return false; 5092 case TemplateArgument::Pack: 5093 // A pack is invalid if any of the elements of the pack are invalid. 5094 return HasReconstitutableArgs(TA.getPackAsArray()); 5095 case TemplateArgument::Integral: 5096 // Larger integers get encoded as DWARF blocks which are a bit 5097 // harder to parse back into a large integer, etc - so punting on 5098 // this for now. Re-parsing the integers back into APInt is probably 5099 // feasible some day. 5100 return TA.getAsIntegral().getBitWidth() <= 64; 5101 case TemplateArgument::Type: 5102 return IsReconstitutableType(TA.getAsType()); 5103 default: 5104 llvm_unreachable("Other, unresolved, template arguments should " 5105 "not be seen here"); 5106 } 5107 }); 5108 }; 5109 // A conversion operator presents complications/ambiguity if there's a 5110 // conversion to class template that is itself a template, eg: 5111 // template<typename T> 5112 // operator ns::t1<T, int>(); 5113 // This should be named, eg: "operator ns::t1<float, int><float>" 5114 // (ignoring clang bug that means this is currently "operator t1<float>") 5115 // but if the arguments were stripped, the consumer couldn't differentiate 5116 // whether the template argument list for the conversion type was the 5117 // function's argument list (& no reconstitution was needed) or not. 5118 // This could be handled if reconstitutable names had a separate attribute 5119 // annotating them as such - this would remove the ambiguity. 5120 // 5121 // Alternatively the template argument list could be parsed enough to check 5122 // whether there's one list or two, then compare that with the DWARF 5123 // description of the return type and the template argument lists to determine 5124 // how many lists there should be and if one is missing it could be assumed(?) 5125 // to be the function's template argument list & then be rebuilt. 5126 // 5127 // Other operator overloads that aren't conversion operators could be 5128 // reconstituted but would require a bit more nuance about detecting the 5129 // difference between these different operators during that rebuilding. 5130 bool Reconstitutable = 5131 Args && HasReconstitutableArgs(Args->Args) && !IsOperatorOverload; 5132 5133 PrintingPolicy PP = getPrintingPolicy(); 5134 5135 if (TemplateNamesKind == codegenoptions::DebugTemplateNamesKind::Full || 5136 !Reconstitutable) { 5137 ND->getNameForDiagnostic(OS, PP, Qualified); 5138 } else { 5139 bool Mangled = 5140 TemplateNamesKind == codegenoptions::DebugTemplateNamesKind::Mangled; 5141 // check if it's a template 5142 if (Mangled) 5143 OS << "_STN"; 5144 5145 OS << ND->getDeclName(); 5146 std::string EncodedOriginalName; 5147 llvm::raw_string_ostream EncodedOriginalNameOS(EncodedOriginalName); 5148 EncodedOriginalNameOS << ND->getDeclName(); 5149 5150 if (Mangled) { 5151 OS << "|"; 5152 printTemplateArgumentList(OS, Args->Args, PP); 5153 printTemplateArgumentList(EncodedOriginalNameOS, Args->Args, PP); 5154 #ifndef NDEBUG 5155 std::string CanonicalOriginalName; 5156 llvm::raw_string_ostream OriginalOS(CanonicalOriginalName); 5157 ND->getNameForDiagnostic(OriginalOS, PP, Qualified); 5158 assert(EncodedOriginalNameOS.str() == OriginalOS.str()); 5159 #endif 5160 } 5161 } 5162 return Name; 5163 } 5164 5165 void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var, 5166 const VarDecl *D) { 5167 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5168 if (D->hasAttr<NoDebugAttr>()) 5169 return; 5170 5171 llvm::TimeTraceScope TimeScope("DebugGlobalVariable", [&]() { 5172 return GetName(D, true); 5173 }); 5174 5175 // If we already created a DIGlobalVariable for this declaration, just attach 5176 // it to the llvm::GlobalVariable. 5177 auto Cached = DeclCache.find(D->getCanonicalDecl()); 5178 if (Cached != DeclCache.end()) 5179 return Var->addDebugInfo( 5180 cast<llvm::DIGlobalVariableExpression>(Cached->second)); 5181 5182 // Create global variable debug descriptor. 5183 llvm::DIFile *Unit = nullptr; 5184 llvm::DIScope *DContext = nullptr; 5185 unsigned LineNo; 5186 StringRef DeclName, LinkageName; 5187 QualType T; 5188 llvm::MDTuple *TemplateParameters = nullptr; 5189 collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName, 5190 TemplateParameters, DContext); 5191 5192 // Attempt to store one global variable for the declaration - even if we 5193 // emit a lot of fields. 5194 llvm::DIGlobalVariableExpression *GVE = nullptr; 5195 5196 // If this is an anonymous union then we'll want to emit a global 5197 // variable for each member of the anonymous union so that it's possible 5198 // to find the name of any field in the union. 5199 if (T->isUnionType() && DeclName.empty()) { 5200 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 5201 assert(RD->isAnonymousStructOrUnion() && 5202 "unnamed non-anonymous struct or union?"); 5203 GVE = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext); 5204 } else { 5205 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 5206 5207 SmallVector<int64_t, 4> Expr; 5208 unsigned AddressSpace = 5209 CGM.getContext().getTargetAddressSpace(D->getType()); 5210 if (CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) { 5211 if (D->hasAttr<CUDASharedAttr>()) 5212 AddressSpace = 5213 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared); 5214 else if (D->hasAttr<CUDAConstantAttr>()) 5215 AddressSpace = 5216 CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant); 5217 } 5218 AppendAddressSpaceXDeref(AddressSpace, Expr); 5219 5220 TypeLoc TL; 5221 if (const TypeSourceInfo *TSI = D->getTypeSourceInfo()) 5222 TL = TSI->getTypeLoc(); 5223 5224 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 5225 GVE = DBuilder.createGlobalVariableExpression( 5226 DContext, DeclName, LinkageName, Unit, LineNo, 5227 getOrCreateType(T, Unit, TL), Var->hasLocalLinkage(), true, 5228 Expr.empty() ? nullptr : DBuilder.createExpression(Expr), 5229 getOrCreateStaticDataMemberDeclarationOrNull(D), TemplateParameters, 5230 Align, Annotations); 5231 Var->addDebugInfo(GVE); 5232 } 5233 DeclCache[D->getCanonicalDecl()].reset(GVE); 5234 } 5235 5236 void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD, const APValue &Init) { 5237 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5238 if (VD->hasAttr<NoDebugAttr>()) 5239 return; 5240 llvm::TimeTraceScope TimeScope("DebugConstGlobalVariable", [&]() { 5241 return GetName(VD, true); 5242 }); 5243 5244 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 5245 // Create the descriptor for the variable. 5246 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 5247 StringRef Name = VD->getName(); 5248 llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit); 5249 5250 if (const auto *ECD = dyn_cast<EnumConstantDecl>(VD)) { 5251 const auto *ED = cast<EnumDecl>(ECD->getDeclContext()); 5252 assert(isa<EnumType>(ED->getTypeForDecl()) && "Enum without EnumType?"); 5253 5254 if (CGM.getCodeGenOpts().EmitCodeView) { 5255 // If CodeView, emit enums as global variables, unless they are defined 5256 // inside a class. We do this because MSVC doesn't emit S_CONSTANTs for 5257 // enums in classes, and because it is difficult to attach this scope 5258 // information to the global variable. 5259 if (isa<RecordDecl>(ED->getDeclContext())) 5260 return; 5261 } else { 5262 // If not CodeView, emit DW_TAG_enumeration_type if necessary. For 5263 // example: for "enum { ZERO };", a DW_TAG_enumeration_type is created the 5264 // first time `ZERO` is referenced in a function. 5265 llvm::DIType *EDTy = 5266 getOrCreateType(QualType(ED->getTypeForDecl(), 0), Unit); 5267 assert (EDTy->getTag() == llvm::dwarf::DW_TAG_enumeration_type); 5268 (void)EDTy; 5269 return; 5270 } 5271 } 5272 5273 // Do not emit separate definitions for function local consts. 5274 if (isa<FunctionDecl>(VD->getDeclContext())) 5275 return; 5276 5277 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 5278 auto *VarD = dyn_cast<VarDecl>(VD); 5279 if (VarD && VarD->isStaticDataMember()) { 5280 auto *RD = cast<RecordDecl>(VarD->getDeclContext()); 5281 getDeclContextDescriptor(VarD); 5282 // Ensure that the type is retained even though it's otherwise unreferenced. 5283 // 5284 // FIXME: This is probably unnecessary, since Ty should reference RD 5285 // through its scope. 5286 RetainedTypes.push_back( 5287 CGM.getContext().getRecordType(RD).getAsOpaquePtr()); 5288 5289 return; 5290 } 5291 llvm::DIScope *DContext = getDeclContextDescriptor(VD); 5292 5293 auto &GV = DeclCache[VD]; 5294 if (GV) 5295 return; 5296 llvm::DIExpression *InitExpr = nullptr; 5297 if (CGM.getContext().getTypeSize(VD->getType()) <= 64) { 5298 // FIXME: Add a representation for integer constants wider than 64 bits. 5299 if (Init.isInt()) 5300 InitExpr = 5301 DBuilder.createConstantValueExpression(Init.getInt().getExtValue()); 5302 else if (Init.isFloat()) 5303 InitExpr = DBuilder.createConstantValueExpression( 5304 Init.getFloat().bitcastToAPInt().getZExtValue()); 5305 } 5306 5307 llvm::MDTuple *TemplateParameters = nullptr; 5308 5309 if (isa<VarTemplateSpecializationDecl>(VD)) 5310 if (VarD) { 5311 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VarD, &*Unit); 5312 TemplateParameters = parameterNodes.get(); 5313 } 5314 5315 GV.reset(DBuilder.createGlobalVariableExpression( 5316 DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty, 5317 true, true, InitExpr, getOrCreateStaticDataMemberDeclarationOrNull(VarD), 5318 TemplateParameters, Align)); 5319 } 5320 5321 void CGDebugInfo::EmitExternalVariable(llvm::GlobalVariable *Var, 5322 const VarDecl *D) { 5323 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5324 if (D->hasAttr<NoDebugAttr>()) 5325 return; 5326 5327 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 5328 llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); 5329 StringRef Name = D->getName(); 5330 llvm::DIType *Ty = getOrCreateType(D->getType(), Unit); 5331 5332 llvm::DIScope *DContext = getDeclContextDescriptor(D); 5333 llvm::DIGlobalVariableExpression *GVE = 5334 DBuilder.createGlobalVariableExpression( 5335 DContext, Name, StringRef(), Unit, getLineNumber(D->getLocation()), 5336 Ty, false, false, nullptr, nullptr, nullptr, Align); 5337 Var->addDebugInfo(GVE); 5338 } 5339 5340 llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) { 5341 if (!LexicalBlockStack.empty()) 5342 return LexicalBlockStack.back(); 5343 llvm::DIScope *Mod = getParentModuleOrNull(D); 5344 return getContextDescriptor(D, Mod ? Mod : TheCU); 5345 } 5346 5347 void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) { 5348 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5349 return; 5350 const NamespaceDecl *NSDecl = UD.getNominatedNamespace(); 5351 if (!NSDecl->isAnonymousNamespace() || 5352 CGM.getCodeGenOpts().DebugExplicitImport) { 5353 auto Loc = UD.getLocation(); 5354 if (!Loc.isValid()) 5355 Loc = CurLoc; 5356 DBuilder.createImportedModule( 5357 getCurrentContextDescriptor(cast<Decl>(UD.getDeclContext())), 5358 getOrCreateNamespace(NSDecl), getOrCreateFile(Loc), getLineNumber(Loc)); 5359 } 5360 } 5361 5362 void CGDebugInfo::EmitUsingShadowDecl(const UsingShadowDecl &USD) { 5363 if (llvm::DINode *Target = 5364 getDeclarationOrDefinition(USD.getUnderlyingDecl())) { 5365 auto Loc = USD.getLocation(); 5366 DBuilder.createImportedDeclaration( 5367 getCurrentContextDescriptor(cast<Decl>(USD.getDeclContext())), Target, 5368 getOrCreateFile(Loc), getLineNumber(Loc)); 5369 } 5370 } 5371 5372 void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) { 5373 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5374 return; 5375 assert(UD.shadow_size() && 5376 "We shouldn't be codegening an invalid UsingDecl containing no decls"); 5377 5378 for (const auto *USD : UD.shadows()) { 5379 // FIXME: Skip functions with undeduced auto return type for now since we 5380 // don't currently have the plumbing for separate declarations & definitions 5381 // of free functions and mismatched types (auto in the declaration, concrete 5382 // return type in the definition) 5383 if (const auto *FD = dyn_cast<FunctionDecl>(USD->getUnderlyingDecl())) 5384 if (const auto *AT = FD->getType() 5385 ->castAs<FunctionProtoType>() 5386 ->getContainedAutoType()) 5387 if (AT->getDeducedType().isNull()) 5388 continue; 5389 5390 EmitUsingShadowDecl(*USD); 5391 // Emitting one decl is sufficient - debuggers can detect that this is an 5392 // overloaded name & provide lookup for all the overloads. 5393 break; 5394 } 5395 } 5396 5397 void CGDebugInfo::EmitUsingEnumDecl(const UsingEnumDecl &UD) { 5398 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5399 return; 5400 assert(UD.shadow_size() && 5401 "We shouldn't be codegening an invalid UsingEnumDecl" 5402 " containing no decls"); 5403 5404 for (const auto *USD : UD.shadows()) 5405 EmitUsingShadowDecl(*USD); 5406 } 5407 5408 void CGDebugInfo::EmitImportDecl(const ImportDecl &ID) { 5409 if (CGM.getCodeGenOpts().getDebuggerTuning() != llvm::DebuggerKind::LLDB) 5410 return; 5411 if (Module *M = ID.getImportedModule()) { 5412 auto Info = ASTSourceDescriptor(*M); 5413 auto Loc = ID.getLocation(); 5414 DBuilder.createImportedDeclaration( 5415 getCurrentContextDescriptor(cast<Decl>(ID.getDeclContext())), 5416 getOrCreateModuleRef(Info, DebugTypeExtRefs), getOrCreateFile(Loc), 5417 getLineNumber(Loc)); 5418 } 5419 } 5420 5421 llvm::DIImportedEntity * 5422 CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) { 5423 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5424 return nullptr; 5425 auto &VH = NamespaceAliasCache[&NA]; 5426 if (VH) 5427 return cast<llvm::DIImportedEntity>(VH); 5428 llvm::DIImportedEntity *R; 5429 auto Loc = NA.getLocation(); 5430 if (const auto *Underlying = 5431 dyn_cast<NamespaceAliasDecl>(NA.getAliasedNamespace())) 5432 // This could cache & dedup here rather than relying on metadata deduping. 5433 R = DBuilder.createImportedDeclaration( 5434 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), 5435 EmitNamespaceAlias(*Underlying), getOrCreateFile(Loc), 5436 getLineNumber(Loc), NA.getName()); 5437 else 5438 R = DBuilder.createImportedDeclaration( 5439 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), 5440 getOrCreateNamespace(cast<NamespaceDecl>(NA.getAliasedNamespace())), 5441 getOrCreateFile(Loc), getLineNumber(Loc), NA.getName()); 5442 VH.reset(R); 5443 return R; 5444 } 5445 5446 llvm::DINamespace * 5447 CGDebugInfo::getOrCreateNamespace(const NamespaceDecl *NSDecl) { 5448 // Don't canonicalize the NamespaceDecl here: The DINamespace will be uniqued 5449 // if necessary, and this way multiple declarations of the same namespace in 5450 // different parent modules stay distinct. 5451 auto I = NamespaceCache.find(NSDecl); 5452 if (I != NamespaceCache.end()) 5453 return cast<llvm::DINamespace>(I->second); 5454 5455 llvm::DIScope *Context = getDeclContextDescriptor(NSDecl); 5456 // Don't trust the context if it is a DIModule (see comment above). 5457 llvm::DINamespace *NS = 5458 DBuilder.createNameSpace(Context, NSDecl->getName(), NSDecl->isInline()); 5459 NamespaceCache[NSDecl].reset(NS); 5460 return NS; 5461 } 5462 5463 void CGDebugInfo::setDwoId(uint64_t Signature) { 5464 assert(TheCU && "no main compile unit"); 5465 TheCU->setDWOId(Signature); 5466 } 5467 5468 void CGDebugInfo::finalize() { 5469 // Creating types might create further types - invalidating the current 5470 // element and the size(), so don't cache/reference them. 5471 for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) { 5472 ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i]; 5473 llvm::DIType *Ty = E.Type->getDecl()->getDefinition() 5474 ? CreateTypeDefinition(E.Type, E.Unit) 5475 : E.Decl; 5476 DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty); 5477 } 5478 5479 // Add methods to interface. 5480 for (const auto &P : ObjCMethodCache) { 5481 if (P.second.empty()) 5482 continue; 5483 5484 QualType QTy(P.first->getTypeForDecl(), 0); 5485 auto It = TypeCache.find(QTy.getAsOpaquePtr()); 5486 assert(It != TypeCache.end()); 5487 5488 llvm::DICompositeType *InterfaceDecl = 5489 cast<llvm::DICompositeType>(It->second); 5490 5491 auto CurElts = InterfaceDecl->getElements(); 5492 SmallVector<llvm::Metadata *, 16> EltTys(CurElts.begin(), CurElts.end()); 5493 5494 // For DWARF v4 or earlier, only add objc_direct methods. 5495 for (auto &SubprogramDirect : P.second) 5496 if (CGM.getCodeGenOpts().DwarfVersion >= 5 || SubprogramDirect.getInt()) 5497 EltTys.push_back(SubprogramDirect.getPointer()); 5498 5499 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 5500 DBuilder.replaceArrays(InterfaceDecl, Elements); 5501 } 5502 5503 for (const auto &P : ReplaceMap) { 5504 assert(P.second); 5505 auto *Ty = cast<llvm::DIType>(P.second); 5506 assert(Ty->isForwardDecl()); 5507 5508 auto It = TypeCache.find(P.first); 5509 assert(It != TypeCache.end()); 5510 assert(It->second); 5511 5512 DBuilder.replaceTemporary(llvm::TempDIType(Ty), 5513 cast<llvm::DIType>(It->second)); 5514 } 5515 5516 for (const auto &P : FwdDeclReplaceMap) { 5517 assert(P.second); 5518 llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(P.second)); 5519 llvm::Metadata *Repl; 5520 5521 auto It = DeclCache.find(P.first); 5522 // If there has been no definition for the declaration, call RAUW 5523 // with ourselves, that will destroy the temporary MDNode and 5524 // replace it with a standard one, avoiding leaking memory. 5525 if (It == DeclCache.end()) 5526 Repl = P.second; 5527 else 5528 Repl = It->second; 5529 5530 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(Repl)) 5531 Repl = GVE->getVariable(); 5532 DBuilder.replaceTemporary(std::move(FwdDecl), cast<llvm::MDNode>(Repl)); 5533 } 5534 5535 // We keep our own list of retained types, because we need to look 5536 // up the final type in the type cache. 5537 for (auto &RT : RetainedTypes) 5538 if (auto MD = TypeCache[RT]) 5539 DBuilder.retainType(cast<llvm::DIType>(MD)); 5540 5541 DBuilder.finalize(); 5542 } 5543 5544 // Don't ignore in case of explicit cast where it is referenced indirectly. 5545 void CGDebugInfo::EmitExplicitCastType(QualType Ty) { 5546 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 5547 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) 5548 DBuilder.retainType(DieTy); 5549 } 5550 5551 void CGDebugInfo::EmitAndRetainType(QualType Ty) { 5552 if (CGM.getCodeGenOpts().hasMaybeUnusedDebugInfo()) 5553 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) 5554 DBuilder.retainType(DieTy); 5555 } 5556 5557 llvm::DebugLoc CGDebugInfo::SourceLocToDebugLoc(SourceLocation Loc) { 5558 if (LexicalBlockStack.empty()) 5559 return llvm::DebugLoc(); 5560 5561 llvm::MDNode *Scope = LexicalBlockStack.back(); 5562 return llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(Loc), 5563 getColumnNumber(Loc), Scope); 5564 } 5565 5566 llvm::DINode::DIFlags CGDebugInfo::getCallSiteRelatedAttrs() const { 5567 // Call site-related attributes are only useful in optimized programs, and 5568 // when there's a possibility of debugging backtraces. 5569 if (!CGM.getLangOpts().Optimize || DebugKind == codegenoptions::NoDebugInfo || 5570 DebugKind == codegenoptions::LocTrackingOnly) 5571 return llvm::DINode::FlagZero; 5572 5573 // Call site-related attributes are available in DWARF v5. Some debuggers, 5574 // while not fully DWARF v5-compliant, may accept these attributes as if they 5575 // were part of DWARF v4. 5576 bool SupportsDWARFv4Ext = 5577 CGM.getCodeGenOpts().DwarfVersion == 4 && 5578 (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB || 5579 CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::GDB); 5580 5581 if (!SupportsDWARFv4Ext && CGM.getCodeGenOpts().DwarfVersion < 5) 5582 return llvm::DINode::FlagZero; 5583 5584 return llvm::DINode::FlagAllCallsDescribed; 5585 } 5586