1 //===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the debug information generation while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/DeclFriend.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/Expr.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/AST/RecursiveASTVisitor.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/FileManager.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/Version.h" 33 #include "clang/Frontend/FrontendOptions.h" 34 #include "clang/Lex/HeaderSearchOptions.h" 35 #include "clang/Lex/ModuleMap.h" 36 #include "clang/Lex/PreprocessorOptions.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/StringExtras.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/MD5.h" 49 #include "llvm/Support/Path.h" 50 #include "llvm/Support/TimeProfiler.h" 51 using namespace clang; 52 using namespace clang::CodeGen; 53 54 static uint32_t getTypeAlignIfRequired(const Type *Ty, const ASTContext &Ctx) { 55 auto TI = Ctx.getTypeInfo(Ty); 56 return TI.isAlignRequired() ? TI.Align : 0; 57 } 58 59 static uint32_t getTypeAlignIfRequired(QualType Ty, const ASTContext &Ctx) { 60 return getTypeAlignIfRequired(Ty.getTypePtr(), Ctx); 61 } 62 63 static uint32_t getDeclAlignIfRequired(const Decl *D, const ASTContext &Ctx) { 64 return D->hasAttr<AlignedAttr>() ? D->getMaxAlignment() : 0; 65 } 66 67 CGDebugInfo::CGDebugInfo(CodeGenModule &CGM) 68 : CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()), 69 DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs), 70 DBuilder(CGM.getModule()) { 71 for (const auto &KV : CGM.getCodeGenOpts().DebugPrefixMap) 72 DebugPrefixMap[KV.first] = KV.second; 73 CreateCompileUnit(); 74 } 75 76 CGDebugInfo::~CGDebugInfo() { 77 assert(LexicalBlockStack.empty() && 78 "Region stack mismatch, stack not empty!"); 79 } 80 81 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, 82 SourceLocation TemporaryLocation) 83 : CGF(&CGF) { 84 init(TemporaryLocation); 85 } 86 87 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, 88 bool DefaultToEmpty, 89 SourceLocation TemporaryLocation) 90 : CGF(&CGF) { 91 init(TemporaryLocation, DefaultToEmpty); 92 } 93 94 void ApplyDebugLocation::init(SourceLocation TemporaryLocation, 95 bool DefaultToEmpty) { 96 auto *DI = CGF->getDebugInfo(); 97 if (!DI) { 98 CGF = nullptr; 99 return; 100 } 101 102 OriginalLocation = CGF->Builder.getCurrentDebugLocation(); 103 104 if (OriginalLocation && !DI->CGM.getExpressionLocationsEnabled()) 105 return; 106 107 if (TemporaryLocation.isValid()) { 108 DI->EmitLocation(CGF->Builder, TemporaryLocation); 109 return; 110 } 111 112 if (DefaultToEmpty) { 113 CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 114 return; 115 } 116 117 // Construct a location that has a valid scope, but no line info. 118 assert(!DI->LexicalBlockStack.empty()); 119 CGF->Builder.SetCurrentDebugLocation( 120 llvm::DILocation::get(DI->LexicalBlockStack.back()->getContext(), 0, 0, 121 DI->LexicalBlockStack.back(), DI->getInlinedAt())); 122 } 123 124 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E) 125 : CGF(&CGF) { 126 init(E->getExprLoc()); 127 } 128 129 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc) 130 : CGF(&CGF) { 131 if (!CGF.getDebugInfo()) { 132 this->CGF = nullptr; 133 return; 134 } 135 OriginalLocation = CGF.Builder.getCurrentDebugLocation(); 136 if (Loc) 137 CGF.Builder.SetCurrentDebugLocation(std::move(Loc)); 138 } 139 140 ApplyDebugLocation::~ApplyDebugLocation() { 141 // Query CGF so the location isn't overwritten when location updates are 142 // temporarily disabled (for C++ default function arguments) 143 if (CGF) 144 CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation)); 145 } 146 147 ApplyInlineDebugLocation::ApplyInlineDebugLocation(CodeGenFunction &CGF, 148 GlobalDecl InlinedFn) 149 : CGF(&CGF) { 150 if (!CGF.getDebugInfo()) { 151 this->CGF = nullptr; 152 return; 153 } 154 auto &DI = *CGF.getDebugInfo(); 155 SavedLocation = DI.getLocation(); 156 assert((DI.getInlinedAt() == 157 CGF.Builder.getCurrentDebugLocation()->getInlinedAt()) && 158 "CGDebugInfo and IRBuilder are out of sync"); 159 160 DI.EmitInlineFunctionStart(CGF.Builder, InlinedFn); 161 } 162 163 ApplyInlineDebugLocation::~ApplyInlineDebugLocation() { 164 if (!CGF) 165 return; 166 auto &DI = *CGF->getDebugInfo(); 167 DI.EmitInlineFunctionEnd(CGF->Builder); 168 DI.EmitLocation(CGF->Builder, SavedLocation); 169 } 170 171 void CGDebugInfo::setLocation(SourceLocation Loc) { 172 // If the new location isn't valid return. 173 if (Loc.isInvalid()) 174 return; 175 176 CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc); 177 178 // If we've changed files in the middle of a lexical scope go ahead 179 // and create a new lexical scope with file node if it's different 180 // from the one in the scope. 181 if (LexicalBlockStack.empty()) 182 return; 183 184 SourceManager &SM = CGM.getContext().getSourceManager(); 185 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 186 PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc); 187 if (PCLoc.isInvalid() || Scope->getFile() == getOrCreateFile(CurLoc)) 188 return; 189 190 if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) { 191 LexicalBlockStack.pop_back(); 192 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile( 193 LBF->getScope(), getOrCreateFile(CurLoc))); 194 } else if (isa<llvm::DILexicalBlock>(Scope) || 195 isa<llvm::DISubprogram>(Scope)) { 196 LexicalBlockStack.pop_back(); 197 LexicalBlockStack.emplace_back( 198 DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc))); 199 } 200 } 201 202 llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) { 203 llvm::DIScope *Mod = getParentModuleOrNull(D); 204 return getContextDescriptor(cast<Decl>(D->getDeclContext()), 205 Mod ? Mod : TheCU); 206 } 207 208 llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context, 209 llvm::DIScope *Default) { 210 if (!Context) 211 return Default; 212 213 auto I = RegionMap.find(Context); 214 if (I != RegionMap.end()) { 215 llvm::Metadata *V = I->second; 216 return dyn_cast_or_null<llvm::DIScope>(V); 217 } 218 219 // Check namespace. 220 if (const auto *NSDecl = dyn_cast<NamespaceDecl>(Context)) 221 return getOrCreateNamespace(NSDecl); 222 223 if (const auto *RDecl = dyn_cast<RecordDecl>(Context)) 224 if (!RDecl->isDependentType()) 225 return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl), 226 TheCU->getFile()); 227 return Default; 228 } 229 230 PrintingPolicy CGDebugInfo::getPrintingPolicy() const { 231 PrintingPolicy PP = CGM.getContext().getPrintingPolicy(); 232 233 // If we're emitting codeview, it's important to try to match MSVC's naming so 234 // that visualizers written for MSVC will trigger for our class names. In 235 // particular, we can't have spaces between arguments of standard templates 236 // like basic_string and vector, but we must have spaces between consecutive 237 // angle brackets that close nested template argument lists. 238 if (CGM.getCodeGenOpts().EmitCodeView) { 239 PP.MSVCFormatting = true; 240 PP.SplitTemplateClosers = true; 241 } else { 242 // For DWARF, printing rules are underspecified. 243 // SplitTemplateClosers yields better interop with GCC and GDB (PR46052). 244 PP.SplitTemplateClosers = true; 245 } 246 247 PP.SuppressInlineNamespace = false; 248 PP.PrintCanonicalTypes = true; 249 PP.UsePreferredNames = false; 250 PP.AlwaysIncludeTypeForTemplateArgument = true; 251 PP.UseEnumerators = false; 252 253 // Apply -fdebug-prefix-map. 254 PP.Callbacks = &PrintCB; 255 return PP; 256 } 257 258 StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) { 259 return internString(GetName(FD)); 260 } 261 262 StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) { 263 SmallString<256> MethodName; 264 llvm::raw_svector_ostream OS(MethodName); 265 OS << (OMD->isInstanceMethod() ? '-' : '+') << '['; 266 const DeclContext *DC = OMD->getDeclContext(); 267 if (const auto *OID = dyn_cast<ObjCImplementationDecl>(DC)) { 268 OS << OID->getName(); 269 } else if (const auto *OID = dyn_cast<ObjCInterfaceDecl>(DC)) { 270 OS << OID->getName(); 271 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(DC)) { 272 if (OC->IsClassExtension()) { 273 OS << OC->getClassInterface()->getName(); 274 } else { 275 OS << OC->getIdentifier()->getNameStart() << '(' 276 << OC->getIdentifier()->getNameStart() << ')'; 277 } 278 } else if (const auto *OCD = dyn_cast<ObjCCategoryImplDecl>(DC)) { 279 OS << OCD->getClassInterface()->getName() << '(' << OCD->getName() << ')'; 280 } 281 OS << ' ' << OMD->getSelector().getAsString() << ']'; 282 283 return internString(OS.str()); 284 } 285 286 StringRef CGDebugInfo::getSelectorName(Selector S) { 287 return internString(S.getAsString()); 288 } 289 290 StringRef CGDebugInfo::getClassName(const RecordDecl *RD) { 291 if (isa<ClassTemplateSpecializationDecl>(RD)) { 292 // Copy this name on the side and use its reference. 293 return internString(GetName(RD)); 294 } 295 296 // quick optimization to avoid having to intern strings that are already 297 // stored reliably elsewhere 298 if (const IdentifierInfo *II = RD->getIdentifier()) 299 return II->getName(); 300 301 // The CodeView printer in LLVM wants to see the names of unnamed types 302 // because they need to have a unique identifier. 303 // These names are used to reconstruct the fully qualified type names. 304 if (CGM.getCodeGenOpts().EmitCodeView) { 305 if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) { 306 assert(RD->getDeclContext() == D->getDeclContext() && 307 "Typedef should not be in another decl context!"); 308 assert(D->getDeclName().getAsIdentifierInfo() && 309 "Typedef was not named!"); 310 return D->getDeclName().getAsIdentifierInfo()->getName(); 311 } 312 313 if (CGM.getLangOpts().CPlusPlus) { 314 StringRef Name; 315 316 ASTContext &Context = CGM.getContext(); 317 if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD)) 318 // Anonymous types without a name for linkage purposes have their 319 // declarator mangled in if they have one. 320 Name = DD->getName(); 321 else if (const TypedefNameDecl *TND = 322 Context.getTypedefNameForUnnamedTagDecl(RD)) 323 // Anonymous types without a name for linkage purposes have their 324 // associate typedef mangled in if they have one. 325 Name = TND->getName(); 326 327 // Give lambdas a display name based on their name mangling. 328 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 329 if (CXXRD->isLambda()) 330 return internString( 331 CGM.getCXXABI().getMangleContext().getLambdaString(CXXRD)); 332 333 if (!Name.empty()) { 334 SmallString<256> UnnamedType("<unnamed-type-"); 335 UnnamedType += Name; 336 UnnamedType += '>'; 337 return internString(UnnamedType); 338 } 339 } 340 } 341 342 return StringRef(); 343 } 344 345 Optional<llvm::DIFile::ChecksumKind> 346 CGDebugInfo::computeChecksum(FileID FID, SmallString<32> &Checksum) const { 347 Checksum.clear(); 348 349 if (!CGM.getCodeGenOpts().EmitCodeView && 350 CGM.getCodeGenOpts().DwarfVersion < 5) 351 return None; 352 353 SourceManager &SM = CGM.getContext().getSourceManager(); 354 Optional<llvm::MemoryBufferRef> MemBuffer = SM.getBufferOrNone(FID); 355 if (!MemBuffer) 356 return None; 357 358 llvm::toHex( 359 llvm::MD5::hash(llvm::arrayRefFromStringRef(MemBuffer->getBuffer())), 360 /*LowerCase*/ true, Checksum); 361 return llvm::DIFile::CSK_MD5; 362 } 363 364 Optional<StringRef> CGDebugInfo::getSource(const SourceManager &SM, 365 FileID FID) { 366 if (!CGM.getCodeGenOpts().EmbedSource) 367 return None; 368 369 bool SourceInvalid = false; 370 StringRef Source = SM.getBufferData(FID, &SourceInvalid); 371 372 if (SourceInvalid) 373 return None; 374 375 return Source; 376 } 377 378 llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) { 379 SourceManager &SM = CGM.getContext().getSourceManager(); 380 StringRef FileName; 381 FileID FID; 382 383 if (Loc.isInvalid()) { 384 // The DIFile used by the CU is distinct from the main source file. Call 385 // createFile() below for canonicalization if the source file was specified 386 // with an absolute path. 387 FileName = TheCU->getFile()->getFilename(); 388 } else { 389 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 390 FileName = PLoc.getFilename(); 391 392 if (FileName.empty()) { 393 FileName = TheCU->getFile()->getFilename(); 394 } else { 395 FileName = PLoc.getFilename(); 396 } 397 FID = PLoc.getFileID(); 398 } 399 400 // Cache the results. 401 auto It = DIFileCache.find(FileName.data()); 402 if (It != DIFileCache.end()) { 403 // Verify that the information still exists. 404 if (llvm::Metadata *V = It->second) 405 return cast<llvm::DIFile>(V); 406 } 407 408 SmallString<32> Checksum; 409 410 Optional<llvm::DIFile::ChecksumKind> CSKind = computeChecksum(FID, Checksum); 411 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo; 412 if (CSKind) 413 CSInfo.emplace(*CSKind, Checksum); 414 return createFile(FileName, CSInfo, getSource(SM, SM.getFileID(Loc))); 415 } 416 417 llvm::DIFile * 418 CGDebugInfo::createFile(StringRef FileName, 419 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo, 420 Optional<StringRef> Source) { 421 StringRef Dir; 422 StringRef File; 423 std::string RemappedFile = remapDIPath(FileName); 424 std::string CurDir = remapDIPath(getCurrentDirname()); 425 SmallString<128> DirBuf; 426 SmallString<128> FileBuf; 427 if (llvm::sys::path::is_absolute(RemappedFile)) { 428 // Strip the common prefix (if it is more than just "/" or "C:\") from 429 // current directory and FileName for a more space-efficient encoding. 430 auto FileIt = llvm::sys::path::begin(RemappedFile); 431 auto FileE = llvm::sys::path::end(RemappedFile); 432 auto CurDirIt = llvm::sys::path::begin(CurDir); 433 auto CurDirE = llvm::sys::path::end(CurDir); 434 for (; CurDirIt != CurDirE && *CurDirIt == *FileIt; ++CurDirIt, ++FileIt) 435 llvm::sys::path::append(DirBuf, *CurDirIt); 436 if (llvm::sys::path::root_path(DirBuf) == DirBuf) { 437 // Don't strip the common prefix if it is only the root ("/" or "C:\") 438 // since that would make LLVM diagnostic locations confusing. 439 Dir = {}; 440 File = RemappedFile; 441 } else { 442 for (; FileIt != FileE; ++FileIt) 443 llvm::sys::path::append(FileBuf, *FileIt); 444 Dir = DirBuf; 445 File = FileBuf; 446 } 447 } else { 448 if (!llvm::sys::path::is_absolute(FileName)) 449 Dir = CurDir; 450 File = RemappedFile; 451 } 452 llvm::DIFile *F = DBuilder.createFile(File, Dir, CSInfo, Source); 453 DIFileCache[FileName.data()].reset(F); 454 return F; 455 } 456 457 std::string CGDebugInfo::remapDIPath(StringRef Path) const { 458 if (DebugPrefixMap.empty()) 459 return Path.str(); 460 461 SmallString<256> P = Path; 462 for (const auto &Entry : DebugPrefixMap) 463 if (llvm::sys::path::replace_path_prefix(P, Entry.first, Entry.second)) 464 break; 465 return P.str().str(); 466 } 467 468 unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) { 469 if (Loc.isInvalid()) 470 return 0; 471 SourceManager &SM = CGM.getContext().getSourceManager(); 472 return SM.getPresumedLoc(Loc).getLine(); 473 } 474 475 unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) { 476 // We may not want column information at all. 477 if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo) 478 return 0; 479 480 // If the location is invalid then use the current column. 481 if (Loc.isInvalid() && CurLoc.isInvalid()) 482 return 0; 483 SourceManager &SM = CGM.getContext().getSourceManager(); 484 PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc); 485 return PLoc.isValid() ? PLoc.getColumn() : 0; 486 } 487 488 StringRef CGDebugInfo::getCurrentDirname() { 489 if (!CGM.getCodeGenOpts().DebugCompilationDir.empty()) 490 return CGM.getCodeGenOpts().DebugCompilationDir; 491 492 if (!CWDName.empty()) 493 return CWDName; 494 SmallString<256> CWD; 495 llvm::sys::fs::current_path(CWD); 496 return CWDName = internString(CWD); 497 } 498 499 void CGDebugInfo::CreateCompileUnit() { 500 SmallString<32> Checksum; 501 Optional<llvm::DIFile::ChecksumKind> CSKind; 502 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo; 503 504 // Should we be asking the SourceManager for the main file name, instead of 505 // accepting it as an argument? This just causes the main file name to 506 // mismatch with source locations and create extra lexical scopes or 507 // mismatched debug info (a CU with a DW_AT_file of "-", because that's what 508 // the driver passed, but functions/other things have DW_AT_file of "<stdin>" 509 // because that's what the SourceManager says) 510 511 // Get absolute path name. 512 SourceManager &SM = CGM.getContext().getSourceManager(); 513 std::string MainFileName = CGM.getCodeGenOpts().MainFileName; 514 if (MainFileName.empty()) 515 MainFileName = "<stdin>"; 516 517 // The main file name provided via the "-main-file-name" option contains just 518 // the file name itself with no path information. This file name may have had 519 // a relative path, so we look into the actual file entry for the main 520 // file to determine the real absolute path for the file. 521 std::string MainFileDir; 522 if (Optional<FileEntryRef> MainFile = 523 SM.getFileEntryRefForID(SM.getMainFileID())) { 524 MainFileDir = std::string(MainFile->getDir().getName()); 525 if (!llvm::sys::path::is_absolute(MainFileName)) { 526 llvm::SmallString<1024> MainFileDirSS(MainFileDir); 527 llvm::sys::path::append(MainFileDirSS, MainFileName); 528 MainFileName = 529 std::string(llvm::sys::path::remove_leading_dotslash(MainFileDirSS)); 530 } 531 // If the main file name provided is identical to the input file name, and 532 // if the input file is a preprocessed source, use the module name for 533 // debug info. The module name comes from the name specified in the first 534 // linemarker if the input is a preprocessed source. 535 if (MainFile->getName() == MainFileName && 536 FrontendOptions::getInputKindForExtension( 537 MainFile->getName().rsplit('.').second) 538 .isPreprocessed()) 539 MainFileName = CGM.getModule().getName().str(); 540 541 CSKind = computeChecksum(SM.getMainFileID(), Checksum); 542 } 543 544 llvm::dwarf::SourceLanguage LangTag; 545 const LangOptions &LO = CGM.getLangOpts(); 546 if (LO.CPlusPlus) { 547 if (LO.ObjC) 548 LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus; 549 else if (LO.CPlusPlus14 && (!CGM.getCodeGenOpts().DebugStrictDwarf || 550 CGM.getCodeGenOpts().DwarfVersion >= 5)) 551 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_14; 552 else if (LO.CPlusPlus11 && (!CGM.getCodeGenOpts().DebugStrictDwarf || 553 CGM.getCodeGenOpts().DwarfVersion >= 5)) 554 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_11; 555 else 556 LangTag = llvm::dwarf::DW_LANG_C_plus_plus; 557 } else if (LO.ObjC) { 558 LangTag = llvm::dwarf::DW_LANG_ObjC; 559 } else if (LO.OpenCL && (!CGM.getCodeGenOpts().DebugStrictDwarf || 560 CGM.getCodeGenOpts().DwarfVersion >= 5)) { 561 LangTag = llvm::dwarf::DW_LANG_OpenCL; 562 } else if (LO.RenderScript) { 563 LangTag = llvm::dwarf::DW_LANG_GOOGLE_RenderScript; 564 } else if (LO.C99) { 565 LangTag = llvm::dwarf::DW_LANG_C99; 566 } else { 567 LangTag = llvm::dwarf::DW_LANG_C89; 568 } 569 570 std::string Producer = getClangFullVersion(); 571 572 // Figure out which version of the ObjC runtime we have. 573 unsigned RuntimeVers = 0; 574 if (LO.ObjC) 575 RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1; 576 577 llvm::DICompileUnit::DebugEmissionKind EmissionKind; 578 switch (DebugKind) { 579 case codegenoptions::NoDebugInfo: 580 case codegenoptions::LocTrackingOnly: 581 EmissionKind = llvm::DICompileUnit::NoDebug; 582 break; 583 case codegenoptions::DebugLineTablesOnly: 584 EmissionKind = llvm::DICompileUnit::LineTablesOnly; 585 break; 586 case codegenoptions::DebugDirectivesOnly: 587 EmissionKind = llvm::DICompileUnit::DebugDirectivesOnly; 588 break; 589 case codegenoptions::DebugInfoConstructor: 590 case codegenoptions::LimitedDebugInfo: 591 case codegenoptions::FullDebugInfo: 592 case codegenoptions::UnusedTypeInfo: 593 EmissionKind = llvm::DICompileUnit::FullDebug; 594 break; 595 } 596 597 uint64_t DwoId = 0; 598 auto &CGOpts = CGM.getCodeGenOpts(); 599 // The DIFile used by the CU is distinct from the main source 600 // file. Its directory part specifies what becomes the 601 // DW_AT_comp_dir (the compilation directory), even if the source 602 // file was specified with an absolute path. 603 if (CSKind) 604 CSInfo.emplace(*CSKind, Checksum); 605 llvm::DIFile *CUFile = DBuilder.createFile( 606 remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), CSInfo, 607 getSource(SM, SM.getMainFileID())); 608 609 StringRef Sysroot, SDK; 610 if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB) { 611 Sysroot = CGM.getHeaderSearchOpts().Sysroot; 612 auto B = llvm::sys::path::rbegin(Sysroot); 613 auto E = llvm::sys::path::rend(Sysroot); 614 auto It = std::find_if(B, E, [](auto SDK) { return SDK.endswith(".sdk"); }); 615 if (It != E) 616 SDK = *It; 617 } 618 619 // Create new compile unit. 620 TheCU = DBuilder.createCompileUnit( 621 LangTag, CUFile, CGOpts.EmitVersionIdentMetadata ? Producer : "", 622 LO.Optimize || CGOpts.PrepareForLTO || CGOpts.PrepareForThinLTO, 623 CGOpts.DwarfDebugFlags, RuntimeVers, CGOpts.SplitDwarfFile, EmissionKind, 624 DwoId, CGOpts.SplitDwarfInlining, CGOpts.DebugInfoForProfiling, 625 CGM.getTarget().getTriple().isNVPTX() 626 ? llvm::DICompileUnit::DebugNameTableKind::None 627 : static_cast<llvm::DICompileUnit::DebugNameTableKind>( 628 CGOpts.DebugNameTable), 629 CGOpts.DebugRangesBaseAddress, remapDIPath(Sysroot), SDK); 630 } 631 632 llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) { 633 llvm::dwarf::TypeKind Encoding; 634 StringRef BTName; 635 switch (BT->getKind()) { 636 #define BUILTIN_TYPE(Id, SingletonId) 637 #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: 638 #include "clang/AST/BuiltinTypes.def" 639 case BuiltinType::Dependent: 640 llvm_unreachable("Unexpected builtin type"); 641 case BuiltinType::NullPtr: 642 return DBuilder.createNullPtrType(); 643 case BuiltinType::Void: 644 return nullptr; 645 case BuiltinType::ObjCClass: 646 if (!ClassTy) 647 ClassTy = 648 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 649 "objc_class", TheCU, TheCU->getFile(), 0); 650 return ClassTy; 651 case BuiltinType::ObjCId: { 652 // typedef struct objc_class *Class; 653 // typedef struct objc_object { 654 // Class isa; 655 // } *id; 656 657 if (ObjTy) 658 return ObjTy; 659 660 if (!ClassTy) 661 ClassTy = 662 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 663 "objc_class", TheCU, TheCU->getFile(), 0); 664 665 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 666 667 auto *ISATy = DBuilder.createPointerType(ClassTy, Size); 668 669 ObjTy = DBuilder.createStructType(TheCU, "objc_object", TheCU->getFile(), 0, 670 0, 0, llvm::DINode::FlagZero, nullptr, 671 llvm::DINodeArray()); 672 673 DBuilder.replaceArrays( 674 ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType( 675 ObjTy, "isa", TheCU->getFile(), 0, Size, 0, 0, 676 llvm::DINode::FlagZero, ISATy))); 677 return ObjTy; 678 } 679 case BuiltinType::ObjCSel: { 680 if (!SelTy) 681 SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 682 "objc_selector", TheCU, 683 TheCU->getFile(), 0); 684 return SelTy; 685 } 686 687 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 688 case BuiltinType::Id: \ 689 return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \ 690 SingletonId); 691 #include "clang/Basic/OpenCLImageTypes.def" 692 case BuiltinType::OCLSampler: 693 return getOrCreateStructPtrType("opencl_sampler_t", OCLSamplerDITy); 694 case BuiltinType::OCLEvent: 695 return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy); 696 case BuiltinType::OCLClkEvent: 697 return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy); 698 case BuiltinType::OCLQueue: 699 return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy); 700 case BuiltinType::OCLReserveID: 701 return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy); 702 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 703 case BuiltinType::Id: \ 704 return getOrCreateStructPtrType("opencl_" #ExtType, Id##Ty); 705 #include "clang/Basic/OpenCLExtensionTypes.def" 706 707 #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 708 #include "clang/Basic/AArch64SVEACLETypes.def" 709 { 710 ASTContext::BuiltinVectorTypeInfo Info = 711 CGM.getContext().getBuiltinVectorTypeInfo(BT); 712 unsigned NumElemsPerVG = (Info.EC.getKnownMinValue() * Info.NumVectors) / 2; 713 714 // Debuggers can't extract 1bit from a vector, so will display a 715 // bitpattern for svbool_t instead. 716 if (Info.ElementType == CGM.getContext().BoolTy) { 717 NumElemsPerVG /= 8; 718 Info.ElementType = CGM.getContext().UnsignedCharTy; 719 } 720 721 auto *LowerBound = 722 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 723 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); 724 SmallVector<uint64_t, 9> Expr( 725 {llvm::dwarf::DW_OP_constu, NumElemsPerVG, llvm::dwarf::DW_OP_bregx, 726 /* AArch64::VG */ 46, 0, llvm::dwarf::DW_OP_mul, 727 llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus}); 728 auto *UpperBound = DBuilder.createExpression(Expr); 729 730 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( 731 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); 732 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 733 llvm::DIType *ElemTy = 734 getOrCreateType(Info.ElementType, TheCU->getFile()); 735 auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); 736 return DBuilder.createVectorType(/*Size*/ 0, Align, ElemTy, 737 SubscriptArray); 738 } 739 // It doesn't make sense to generate debug info for PowerPC MMA vector types. 740 // So we return a safe type here to avoid generating an error. 741 #define PPC_VECTOR_TYPE(Name, Id, size) \ 742 case BuiltinType::Id: 743 #include "clang/Basic/PPCTypes.def" 744 return CreateType(cast<const BuiltinType>(CGM.getContext().IntTy)); 745 746 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 747 #include "clang/Basic/RISCVVTypes.def" 748 { 749 ASTContext::BuiltinVectorTypeInfo Info = 750 CGM.getContext().getBuiltinVectorTypeInfo(BT); 751 752 unsigned ElementCount = Info.EC.getKnownMinValue(); 753 unsigned SEW = CGM.getContext().getTypeSize(Info.ElementType); 754 755 bool Fractional = false; 756 unsigned LMUL; 757 unsigned FixedSize = ElementCount * SEW; 758 if (Info.ElementType == CGM.getContext().BoolTy) { 759 // Mask type only occupies one vector register. 760 LMUL = 1; 761 } else if (FixedSize < 64) { 762 // In RVV scalable vector types, we encode 64 bits in the fixed part. 763 Fractional = true; 764 LMUL = 64 / FixedSize; 765 } else { 766 LMUL = FixedSize / 64; 767 } 768 769 // Element count = (VLENB / SEW) x LMUL 770 SmallVector<uint64_t, 12> Expr( 771 // The DW_OP_bregx operation has two operands: a register which is 772 // specified by an unsigned LEB128 number, followed by a signed LEB128 773 // offset. 774 {llvm::dwarf::DW_OP_bregx, // Read the contents of a register. 775 4096 + 0xC22, // RISC-V VLENB CSR register. 776 0, // Offset for DW_OP_bregx. It is dummy here. 777 llvm::dwarf::DW_OP_constu, 778 SEW / 8, // SEW is in bits. 779 llvm::dwarf::DW_OP_div, llvm::dwarf::DW_OP_constu, LMUL}); 780 if (Fractional) 781 Expr.push_back(llvm::dwarf::DW_OP_div); 782 else 783 Expr.push_back(llvm::dwarf::DW_OP_mul); 784 // Element max index = count - 1 785 Expr.append({llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus}); 786 787 auto *LowerBound = 788 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 789 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); 790 auto *UpperBound = DBuilder.createExpression(Expr); 791 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( 792 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); 793 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 794 llvm::DIType *ElemTy = 795 getOrCreateType(Info.ElementType, TheCU->getFile()); 796 797 auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); 798 return DBuilder.createVectorType(/*Size=*/0, Align, ElemTy, 799 SubscriptArray); 800 } 801 case BuiltinType::UChar: 802 case BuiltinType::Char_U: 803 Encoding = llvm::dwarf::DW_ATE_unsigned_char; 804 break; 805 case BuiltinType::Char_S: 806 case BuiltinType::SChar: 807 Encoding = llvm::dwarf::DW_ATE_signed_char; 808 break; 809 case BuiltinType::Char8: 810 case BuiltinType::Char16: 811 case BuiltinType::Char32: 812 Encoding = llvm::dwarf::DW_ATE_UTF; 813 break; 814 case BuiltinType::UShort: 815 case BuiltinType::UInt: 816 case BuiltinType::UInt128: 817 case BuiltinType::ULong: 818 case BuiltinType::WChar_U: 819 case BuiltinType::ULongLong: 820 Encoding = llvm::dwarf::DW_ATE_unsigned; 821 break; 822 case BuiltinType::Short: 823 case BuiltinType::Int: 824 case BuiltinType::Int128: 825 case BuiltinType::Long: 826 case BuiltinType::WChar_S: 827 case BuiltinType::LongLong: 828 Encoding = llvm::dwarf::DW_ATE_signed; 829 break; 830 case BuiltinType::Bool: 831 Encoding = llvm::dwarf::DW_ATE_boolean; 832 break; 833 case BuiltinType::Half: 834 case BuiltinType::Float: 835 case BuiltinType::LongDouble: 836 case BuiltinType::Float16: 837 case BuiltinType::BFloat16: 838 case BuiltinType::Float128: 839 case BuiltinType::Double: 840 case BuiltinType::Ibm128: 841 // FIXME: For targets where long double, __ibm128 and __float128 have the 842 // same size, they are currently indistinguishable in the debugger without 843 // some special treatment. However, there is currently no consensus on 844 // encoding and this should be updated once a DWARF encoding exists for 845 // distinct floating point types of the same size. 846 Encoding = llvm::dwarf::DW_ATE_float; 847 break; 848 case BuiltinType::ShortAccum: 849 case BuiltinType::Accum: 850 case BuiltinType::LongAccum: 851 case BuiltinType::ShortFract: 852 case BuiltinType::Fract: 853 case BuiltinType::LongFract: 854 case BuiltinType::SatShortFract: 855 case BuiltinType::SatFract: 856 case BuiltinType::SatLongFract: 857 case BuiltinType::SatShortAccum: 858 case BuiltinType::SatAccum: 859 case BuiltinType::SatLongAccum: 860 Encoding = llvm::dwarf::DW_ATE_signed_fixed; 861 break; 862 case BuiltinType::UShortAccum: 863 case BuiltinType::UAccum: 864 case BuiltinType::ULongAccum: 865 case BuiltinType::UShortFract: 866 case BuiltinType::UFract: 867 case BuiltinType::ULongFract: 868 case BuiltinType::SatUShortAccum: 869 case BuiltinType::SatUAccum: 870 case BuiltinType::SatULongAccum: 871 case BuiltinType::SatUShortFract: 872 case BuiltinType::SatUFract: 873 case BuiltinType::SatULongFract: 874 Encoding = llvm::dwarf::DW_ATE_unsigned_fixed; 875 break; 876 } 877 878 BTName = BT->getName(CGM.getLangOpts()); 879 // Bit size and offset of the type. 880 uint64_t Size = CGM.getContext().getTypeSize(BT); 881 return DBuilder.createBasicType(BTName, Size, Encoding); 882 } 883 884 llvm::DIType *CGDebugInfo::CreateType(const AutoType *Ty) { 885 return DBuilder.createUnspecifiedType("auto"); 886 } 887 888 llvm::DIType *CGDebugInfo::CreateType(const BitIntType *Ty) { 889 890 StringRef Name = Ty->isUnsigned() ? "unsigned _BitInt" : "_BitInt"; 891 llvm::dwarf::TypeKind Encoding = Ty->isUnsigned() 892 ? llvm::dwarf::DW_ATE_unsigned 893 : llvm::dwarf::DW_ATE_signed; 894 895 return DBuilder.createBasicType(Name, CGM.getContext().getTypeSize(Ty), 896 Encoding); 897 } 898 899 llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) { 900 // Bit size and offset of the type. 901 llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float; 902 if (Ty->isComplexIntegerType()) 903 Encoding = llvm::dwarf::DW_ATE_lo_user; 904 905 uint64_t Size = CGM.getContext().getTypeSize(Ty); 906 return DBuilder.createBasicType("complex", Size, Encoding); 907 } 908 909 static void stripUnusedQualifiers(Qualifiers &Q) { 910 // Ignore these qualifiers for now. 911 Q.removeObjCGCAttr(); 912 Q.removeAddressSpace(); 913 Q.removeObjCLifetime(); 914 Q.removeUnaligned(); 915 } 916 917 static llvm::dwarf::Tag getNextQualifier(Qualifiers &Q) { 918 if (Q.hasConst()) { 919 Q.removeConst(); 920 return llvm::dwarf::DW_TAG_const_type; 921 } 922 if (Q.hasVolatile()) { 923 Q.removeVolatile(); 924 return llvm::dwarf::DW_TAG_volatile_type; 925 } 926 if (Q.hasRestrict()) { 927 Q.removeRestrict(); 928 return llvm::dwarf::DW_TAG_restrict_type; 929 } 930 return (llvm::dwarf::Tag)0; 931 } 932 933 llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty, 934 llvm::DIFile *Unit) { 935 QualifierCollector Qc; 936 const Type *T = Qc.strip(Ty); 937 938 stripUnusedQualifiers(Qc); 939 940 // We will create one Derived type for one qualifier and recurse to handle any 941 // additional ones. 942 llvm::dwarf::Tag Tag = getNextQualifier(Qc); 943 if (!Tag) { 944 assert(Qc.empty() && "Unknown type qualifier for debug info"); 945 return getOrCreateType(QualType(T, 0), Unit); 946 } 947 948 auto *FromTy = getOrCreateType(Qc.apply(CGM.getContext(), T), Unit); 949 950 // No need to fill in the Name, Line, Size, Alignment, Offset in case of 951 // CVR derived types. 952 return DBuilder.createQualifiedType(Tag, FromTy); 953 } 954 955 llvm::DIType *CGDebugInfo::CreateQualifiedType(const FunctionProtoType *F, 956 llvm::DIFile *Unit) { 957 FunctionProtoType::ExtProtoInfo EPI = F->getExtProtoInfo(); 958 Qualifiers &Q = EPI.TypeQuals; 959 stripUnusedQualifiers(Q); 960 961 // We will create one Derived type for one qualifier and recurse to handle any 962 // additional ones. 963 llvm::dwarf::Tag Tag = getNextQualifier(Q); 964 if (!Tag) { 965 assert(Q.empty() && "Unknown type qualifier for debug info"); 966 return nullptr; 967 } 968 969 auto *FromTy = 970 getOrCreateType(CGM.getContext().getFunctionType(F->getReturnType(), 971 F->getParamTypes(), EPI), 972 Unit); 973 974 // No need to fill in the Name, Line, Size, Alignment, Offset in case of 975 // CVR derived types. 976 return DBuilder.createQualifiedType(Tag, FromTy); 977 } 978 979 llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty, 980 llvm::DIFile *Unit) { 981 982 // The frontend treats 'id' as a typedef to an ObjCObjectType, 983 // whereas 'id<protocol>' is treated as an ObjCPointerType. For the 984 // debug info, we want to emit 'id' in both cases. 985 if (Ty->isObjCQualifiedIdType()) 986 return getOrCreateType(CGM.getContext().getObjCIdType(), Unit); 987 988 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, 989 Ty->getPointeeType(), Unit); 990 } 991 992 llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty, 993 llvm::DIFile *Unit) { 994 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, 995 Ty->getPointeeType(), Unit); 996 } 997 998 /// \return whether a C++ mangling exists for the type defined by TD. 999 static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) { 1000 switch (TheCU->getSourceLanguage()) { 1001 case llvm::dwarf::DW_LANG_C_plus_plus: 1002 case llvm::dwarf::DW_LANG_C_plus_plus_11: 1003 case llvm::dwarf::DW_LANG_C_plus_plus_14: 1004 return true; 1005 case llvm::dwarf::DW_LANG_ObjC_plus_plus: 1006 return isa<CXXRecordDecl>(TD) || isa<EnumDecl>(TD); 1007 default: 1008 return false; 1009 } 1010 } 1011 1012 // Determines if the debug info for this tag declaration needs a type 1013 // identifier. The purpose of the unique identifier is to deduplicate type 1014 // information for identical types across TUs. Because of the C++ one definition 1015 // rule (ODR), it is valid to assume that the type is defined the same way in 1016 // every TU and its debug info is equivalent. 1017 // 1018 // C does not have the ODR, and it is common for codebases to contain multiple 1019 // different definitions of a struct with the same name in different TUs. 1020 // Therefore, if the type doesn't have a C++ mangling, don't give it an 1021 // identifer. Type information in C is smaller and simpler than C++ type 1022 // information, so the increase in debug info size is negligible. 1023 // 1024 // If the type is not externally visible, it should be unique to the current TU, 1025 // and should not need an identifier to participate in type deduplication. 1026 // However, when emitting CodeView, the format internally uses these 1027 // unique type name identifers for references between debug info. For example, 1028 // the method of a class in an anonymous namespace uses the identifer to refer 1029 // to its parent class. The Microsoft C++ ABI attempts to provide unique names 1030 // for such types, so when emitting CodeView, always use identifiers for C++ 1031 // types. This may create problems when attempting to emit CodeView when the MS 1032 // C++ ABI is not in use. 1033 static bool needsTypeIdentifier(const TagDecl *TD, CodeGenModule &CGM, 1034 llvm::DICompileUnit *TheCU) { 1035 // We only add a type identifier for types with C++ name mangling. 1036 if (!hasCXXMangling(TD, TheCU)) 1037 return false; 1038 1039 // Externally visible types with C++ mangling need a type identifier. 1040 if (TD->isExternallyVisible()) 1041 return true; 1042 1043 // CodeView types with C++ mangling need a type identifier. 1044 if (CGM.getCodeGenOpts().EmitCodeView) 1045 return true; 1046 1047 return false; 1048 } 1049 1050 // Returns a unique type identifier string if one exists, or an empty string. 1051 static SmallString<256> getTypeIdentifier(const TagType *Ty, CodeGenModule &CGM, 1052 llvm::DICompileUnit *TheCU) { 1053 SmallString<256> Identifier; 1054 const TagDecl *TD = Ty->getDecl(); 1055 1056 if (!needsTypeIdentifier(TD, CGM, TheCU)) 1057 return Identifier; 1058 if (const auto *RD = dyn_cast<CXXRecordDecl>(TD)) 1059 if (RD->getDefinition()) 1060 if (RD->isDynamicClass() && 1061 CGM.getVTableLinkage(RD) == llvm::GlobalValue::ExternalLinkage) 1062 return Identifier; 1063 1064 // TODO: This is using the RTTI name. Is there a better way to get 1065 // a unique string for a type? 1066 llvm::raw_svector_ostream Out(Identifier); 1067 CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out); 1068 return Identifier; 1069 } 1070 1071 /// \return the appropriate DWARF tag for a composite type. 1072 static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) { 1073 llvm::dwarf::Tag Tag; 1074 if (RD->isStruct() || RD->isInterface()) 1075 Tag = llvm::dwarf::DW_TAG_structure_type; 1076 else if (RD->isUnion()) 1077 Tag = llvm::dwarf::DW_TAG_union_type; 1078 else { 1079 // FIXME: This could be a struct type giving a default visibility different 1080 // than C++ class type, but needs llvm metadata changes first. 1081 assert(RD->isClass()); 1082 Tag = llvm::dwarf::DW_TAG_class_type; 1083 } 1084 return Tag; 1085 } 1086 1087 llvm::DICompositeType * 1088 CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty, 1089 llvm::DIScope *Ctx) { 1090 const RecordDecl *RD = Ty->getDecl(); 1091 if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD))) 1092 return cast<llvm::DICompositeType>(T); 1093 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); 1094 const unsigned Line = 1095 getLineNumber(RD->getLocation().isValid() ? RD->getLocation() : CurLoc); 1096 StringRef RDName = getClassName(RD); 1097 1098 uint64_t Size = 0; 1099 uint32_t Align = 0; 1100 1101 const RecordDecl *D = RD->getDefinition(); 1102 if (D && D->isCompleteDefinition()) 1103 Size = CGM.getContext().getTypeSize(Ty); 1104 1105 llvm::DINode::DIFlags Flags = llvm::DINode::FlagFwdDecl; 1106 1107 // Add flag to nontrivial forward declarations. To be consistent with MSVC, 1108 // add the flag if a record has no definition because we don't know whether 1109 // it will be trivial or not. 1110 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1111 if (!CXXRD->hasDefinition() || 1112 (CXXRD->hasDefinition() && !CXXRD->isTrivial())) 1113 Flags |= llvm::DINode::FlagNonTrivial; 1114 1115 // Create the type. 1116 SmallString<256> Identifier; 1117 // Don't include a linkage name in line tables only. 1118 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 1119 Identifier = getTypeIdentifier(Ty, CGM, TheCU); 1120 llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType( 1121 getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align, Flags, 1122 Identifier); 1123 if (CGM.getCodeGenOpts().DebugFwdTemplateParams) 1124 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 1125 DBuilder.replaceArrays(RetTy, llvm::DINodeArray(), 1126 CollectCXXTemplateParams(TSpecial, DefUnit)); 1127 ReplaceMap.emplace_back( 1128 std::piecewise_construct, std::make_tuple(Ty), 1129 std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); 1130 return RetTy; 1131 } 1132 1133 llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag, 1134 const Type *Ty, 1135 QualType PointeeTy, 1136 llvm::DIFile *Unit) { 1137 // Bit size, align and offset of the type. 1138 // Size is always the size of a pointer. We can't use getTypeSize here 1139 // because that does not return the correct value for references. 1140 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(PointeeTy); 1141 uint64_t Size = CGM.getTarget().getPointerWidth(AddressSpace); 1142 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 1143 Optional<unsigned> DWARFAddressSpace = 1144 CGM.getTarget().getDWARFAddressSpace(AddressSpace); 1145 1146 SmallVector<llvm::Metadata *, 4> Annots; 1147 auto *BTFAttrTy = dyn_cast<BTFTagAttributedType>(PointeeTy); 1148 while (BTFAttrTy) { 1149 StringRef Tag = BTFAttrTy->getAttr()->getBTFTypeTag(); 1150 if (!Tag.empty()) { 1151 llvm::Metadata *Ops[2] = { 1152 llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_type_tag")), 1153 llvm::MDString::get(CGM.getLLVMContext(), Tag)}; 1154 Annots.insert(Annots.begin(), 1155 llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1156 } 1157 BTFAttrTy = dyn_cast<BTFTagAttributedType>(BTFAttrTy->getWrappedType()); 1158 } 1159 1160 llvm::DINodeArray Annotations = nullptr; 1161 if (Annots.size() > 0) 1162 Annotations = DBuilder.getOrCreateArray(Annots); 1163 1164 if (Tag == llvm::dwarf::DW_TAG_reference_type || 1165 Tag == llvm::dwarf::DW_TAG_rvalue_reference_type) 1166 return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit), 1167 Size, Align, DWARFAddressSpace); 1168 else 1169 return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit), Size, 1170 Align, DWARFAddressSpace, StringRef(), 1171 Annotations); 1172 } 1173 1174 llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name, 1175 llvm::DIType *&Cache) { 1176 if (Cache) 1177 return Cache; 1178 Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name, 1179 TheCU, TheCU->getFile(), 0); 1180 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 1181 Cache = DBuilder.createPointerType(Cache, Size); 1182 return Cache; 1183 } 1184 1185 uint64_t CGDebugInfo::collectDefaultElementTypesForBlockPointer( 1186 const BlockPointerType *Ty, llvm::DIFile *Unit, llvm::DIDerivedType *DescTy, 1187 unsigned LineNo, SmallVectorImpl<llvm::Metadata *> &EltTys) { 1188 QualType FType; 1189 1190 // Advanced by calls to CreateMemberType in increments of FType, then 1191 // returned as the overall size of the default elements. 1192 uint64_t FieldOffset = 0; 1193 1194 // Blocks in OpenCL have unique constraints which make the standard fields 1195 // redundant while requiring size and align fields for enqueue_kernel. See 1196 // initializeForBlockHeader in CGBlocks.cpp 1197 if (CGM.getLangOpts().OpenCL) { 1198 FType = CGM.getContext().IntTy; 1199 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); 1200 EltTys.push_back(CreateMemberType(Unit, FType, "__align", &FieldOffset)); 1201 } else { 1202 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 1203 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); 1204 FType = CGM.getContext().IntTy; 1205 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); 1206 EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset)); 1207 FType = CGM.getContext().getPointerType(Ty->getPointeeType()); 1208 EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset)); 1209 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 1210 uint64_t FieldSize = CGM.getContext().getTypeSize(Ty); 1211 uint32_t FieldAlign = CGM.getContext().getTypeAlign(Ty); 1212 EltTys.push_back(DBuilder.createMemberType( 1213 Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign, 1214 FieldOffset, llvm::DINode::FlagZero, DescTy)); 1215 FieldOffset += FieldSize; 1216 } 1217 1218 return FieldOffset; 1219 } 1220 1221 llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty, 1222 llvm::DIFile *Unit) { 1223 SmallVector<llvm::Metadata *, 8> EltTys; 1224 QualType FType; 1225 uint64_t FieldOffset; 1226 llvm::DINodeArray Elements; 1227 1228 FieldOffset = 0; 1229 FType = CGM.getContext().UnsignedLongTy; 1230 EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset)); 1231 EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset)); 1232 1233 Elements = DBuilder.getOrCreateArray(EltTys); 1234 EltTys.clear(); 1235 1236 llvm::DINode::DIFlags Flags = llvm::DINode::FlagAppleBlock; 1237 1238 auto *EltTy = 1239 DBuilder.createStructType(Unit, "__block_descriptor", nullptr, 0, 1240 FieldOffset, 0, Flags, nullptr, Elements); 1241 1242 // Bit size, align and offset of the type. 1243 uint64_t Size = CGM.getContext().getTypeSize(Ty); 1244 1245 auto *DescTy = DBuilder.createPointerType(EltTy, Size); 1246 1247 FieldOffset = collectDefaultElementTypesForBlockPointer(Ty, Unit, DescTy, 1248 0, EltTys); 1249 1250 Elements = DBuilder.getOrCreateArray(EltTys); 1251 1252 // The __block_literal_generic structs are marked with a special 1253 // DW_AT_APPLE_BLOCK attribute and are an implementation detail only 1254 // the debugger needs to know about. To allow type uniquing, emit 1255 // them without a name or a location. 1256 EltTy = DBuilder.createStructType(Unit, "", nullptr, 0, FieldOffset, 0, 1257 Flags, nullptr, Elements); 1258 1259 return DBuilder.createPointerType(EltTy, Size); 1260 } 1261 1262 llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty, 1263 llvm::DIFile *Unit) { 1264 assert(Ty->isTypeAlias()); 1265 llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit); 1266 1267 auto *AliasDecl = 1268 cast<TypeAliasTemplateDecl>(Ty->getTemplateName().getAsTemplateDecl()) 1269 ->getTemplatedDecl(); 1270 1271 if (AliasDecl->hasAttr<NoDebugAttr>()) 1272 return Src; 1273 1274 SmallString<128> NS; 1275 llvm::raw_svector_ostream OS(NS); 1276 Ty->getTemplateName().print(OS, getPrintingPolicy(), 1277 TemplateName::Qualified::None); 1278 printTemplateArgumentList(OS, Ty->template_arguments(), getPrintingPolicy()); 1279 1280 SourceLocation Loc = AliasDecl->getLocation(); 1281 return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc), 1282 getLineNumber(Loc), 1283 getDeclContextDescriptor(AliasDecl)); 1284 } 1285 1286 llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty, 1287 llvm::DIFile *Unit) { 1288 llvm::DIType *Underlying = 1289 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit); 1290 1291 if (Ty->getDecl()->hasAttr<NoDebugAttr>()) 1292 return Underlying; 1293 1294 // We don't set size information, but do specify where the typedef was 1295 // declared. 1296 SourceLocation Loc = Ty->getDecl()->getLocation(); 1297 1298 uint32_t Align = getDeclAlignIfRequired(Ty->getDecl(), CGM.getContext()); 1299 // Typedefs are derived from some other type. 1300 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(Ty->getDecl()); 1301 return DBuilder.createTypedef(Underlying, Ty->getDecl()->getName(), 1302 getOrCreateFile(Loc), getLineNumber(Loc), 1303 getDeclContextDescriptor(Ty->getDecl()), Align, 1304 Annotations); 1305 } 1306 1307 static unsigned getDwarfCC(CallingConv CC) { 1308 switch (CC) { 1309 case CC_C: 1310 // Avoid emitting DW_AT_calling_convention if the C convention was used. 1311 return 0; 1312 1313 case CC_X86StdCall: 1314 return llvm::dwarf::DW_CC_BORLAND_stdcall; 1315 case CC_X86FastCall: 1316 return llvm::dwarf::DW_CC_BORLAND_msfastcall; 1317 case CC_X86ThisCall: 1318 return llvm::dwarf::DW_CC_BORLAND_thiscall; 1319 case CC_X86VectorCall: 1320 return llvm::dwarf::DW_CC_LLVM_vectorcall; 1321 case CC_X86Pascal: 1322 return llvm::dwarf::DW_CC_BORLAND_pascal; 1323 case CC_Win64: 1324 return llvm::dwarf::DW_CC_LLVM_Win64; 1325 case CC_X86_64SysV: 1326 return llvm::dwarf::DW_CC_LLVM_X86_64SysV; 1327 case CC_AAPCS: 1328 case CC_AArch64VectorCall: 1329 return llvm::dwarf::DW_CC_LLVM_AAPCS; 1330 case CC_AAPCS_VFP: 1331 return llvm::dwarf::DW_CC_LLVM_AAPCS_VFP; 1332 case CC_IntelOclBicc: 1333 return llvm::dwarf::DW_CC_LLVM_IntelOclBicc; 1334 case CC_SpirFunction: 1335 return llvm::dwarf::DW_CC_LLVM_SpirFunction; 1336 case CC_OpenCLKernel: 1337 return llvm::dwarf::DW_CC_LLVM_OpenCLKernel; 1338 case CC_Swift: 1339 return llvm::dwarf::DW_CC_LLVM_Swift; 1340 case CC_SwiftAsync: 1341 // [FIXME: swiftasynccc] Update to SwiftAsync once LLVM support lands. 1342 return llvm::dwarf::DW_CC_LLVM_Swift; 1343 case CC_PreserveMost: 1344 return llvm::dwarf::DW_CC_LLVM_PreserveMost; 1345 case CC_PreserveAll: 1346 return llvm::dwarf::DW_CC_LLVM_PreserveAll; 1347 case CC_X86RegCall: 1348 return llvm::dwarf::DW_CC_LLVM_X86RegCall; 1349 } 1350 return 0; 1351 } 1352 1353 static llvm::DINode::DIFlags getRefFlags(const FunctionProtoType *Func) { 1354 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1355 if (Func->getExtProtoInfo().RefQualifier == RQ_LValue) 1356 Flags |= llvm::DINode::FlagLValueReference; 1357 if (Func->getExtProtoInfo().RefQualifier == RQ_RValue) 1358 Flags |= llvm::DINode::FlagRValueReference; 1359 return Flags; 1360 } 1361 1362 llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty, 1363 llvm::DIFile *Unit) { 1364 const auto *FPT = dyn_cast<FunctionProtoType>(Ty); 1365 if (FPT) { 1366 if (llvm::DIType *QTy = CreateQualifiedType(FPT, Unit)) 1367 return QTy; 1368 } 1369 1370 // Create the type without any qualifiers 1371 1372 SmallVector<llvm::Metadata *, 16> EltTys; 1373 1374 // Add the result type at least. 1375 EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit)); 1376 1377 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1378 // Set up remainder of arguments if there is a prototype. 1379 // otherwise emit it as a variadic function. 1380 if (!FPT) { 1381 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 1382 } else { 1383 Flags = getRefFlags(FPT); 1384 for (const QualType &ParamType : FPT->param_types()) 1385 EltTys.push_back(getOrCreateType(ParamType, Unit)); 1386 if (FPT->isVariadic()) 1387 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 1388 } 1389 1390 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); 1391 llvm::DIType *F = DBuilder.createSubroutineType( 1392 EltTypeArray, Flags, getDwarfCC(Ty->getCallConv())); 1393 return F; 1394 } 1395 1396 /// Convert an AccessSpecifier into the corresponding DINode flag. 1397 /// As an optimization, return 0 if the access specifier equals the 1398 /// default for the containing type. 1399 static llvm::DINode::DIFlags getAccessFlag(AccessSpecifier Access, 1400 const RecordDecl *RD) { 1401 AccessSpecifier Default = clang::AS_none; 1402 if (RD && RD->isClass()) 1403 Default = clang::AS_private; 1404 else if (RD && (RD->isStruct() || RD->isUnion())) 1405 Default = clang::AS_public; 1406 1407 if (Access == Default) 1408 return llvm::DINode::FlagZero; 1409 1410 switch (Access) { 1411 case clang::AS_private: 1412 return llvm::DINode::FlagPrivate; 1413 case clang::AS_protected: 1414 return llvm::DINode::FlagProtected; 1415 case clang::AS_public: 1416 return llvm::DINode::FlagPublic; 1417 case clang::AS_none: 1418 return llvm::DINode::FlagZero; 1419 } 1420 llvm_unreachable("unexpected access enumerator"); 1421 } 1422 1423 llvm::DIType *CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl, 1424 llvm::DIScope *RecordTy, 1425 const RecordDecl *RD) { 1426 StringRef Name = BitFieldDecl->getName(); 1427 QualType Ty = BitFieldDecl->getType(); 1428 SourceLocation Loc = BitFieldDecl->getLocation(); 1429 llvm::DIFile *VUnit = getOrCreateFile(Loc); 1430 llvm::DIType *DebugType = getOrCreateType(Ty, VUnit); 1431 1432 // Get the location for the field. 1433 llvm::DIFile *File = getOrCreateFile(Loc); 1434 unsigned Line = getLineNumber(Loc); 1435 1436 const CGBitFieldInfo &BitFieldInfo = 1437 CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl); 1438 uint64_t SizeInBits = BitFieldInfo.Size; 1439 assert(SizeInBits > 0 && "found named 0-width bitfield"); 1440 uint64_t StorageOffsetInBits = 1441 CGM.getContext().toBits(BitFieldInfo.StorageOffset); 1442 uint64_t Offset = BitFieldInfo.Offset; 1443 // The bit offsets for big endian machines are reversed for big 1444 // endian target, compensate for that as the DIDerivedType requires 1445 // un-reversed offsets. 1446 if (CGM.getDataLayout().isBigEndian()) 1447 Offset = BitFieldInfo.StorageSize - BitFieldInfo.Size - Offset; 1448 uint64_t OffsetInBits = StorageOffsetInBits + Offset; 1449 llvm::DINode::DIFlags Flags = getAccessFlag(BitFieldDecl->getAccess(), RD); 1450 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(BitFieldDecl); 1451 return DBuilder.createBitFieldMemberType( 1452 RecordTy, Name, File, Line, SizeInBits, OffsetInBits, StorageOffsetInBits, 1453 Flags, DebugType, Annotations); 1454 } 1455 1456 llvm::DIType *CGDebugInfo::createFieldType( 1457 StringRef name, QualType type, SourceLocation loc, AccessSpecifier AS, 1458 uint64_t offsetInBits, uint32_t AlignInBits, llvm::DIFile *tunit, 1459 llvm::DIScope *scope, const RecordDecl *RD, llvm::DINodeArray Annotations) { 1460 llvm::DIType *debugType = getOrCreateType(type, tunit); 1461 1462 // Get the location for the field. 1463 llvm::DIFile *file = getOrCreateFile(loc); 1464 const unsigned line = getLineNumber(loc.isValid() ? loc : CurLoc); 1465 1466 uint64_t SizeInBits = 0; 1467 auto Align = AlignInBits; 1468 if (!type->isIncompleteArrayType()) { 1469 TypeInfo TI = CGM.getContext().getTypeInfo(type); 1470 SizeInBits = TI.Width; 1471 if (!Align) 1472 Align = getTypeAlignIfRequired(type, CGM.getContext()); 1473 } 1474 1475 llvm::DINode::DIFlags flags = getAccessFlag(AS, RD); 1476 return DBuilder.createMemberType(scope, name, file, line, SizeInBits, Align, 1477 offsetInBits, flags, debugType, Annotations); 1478 } 1479 1480 void CGDebugInfo::CollectRecordLambdaFields( 1481 const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements, 1482 llvm::DIType *RecordTy) { 1483 // For C++11 Lambdas a Field will be the same as a Capture, but the Capture 1484 // has the name and the location of the variable so we should iterate over 1485 // both concurrently. 1486 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl); 1487 RecordDecl::field_iterator Field = CXXDecl->field_begin(); 1488 unsigned fieldno = 0; 1489 for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(), 1490 E = CXXDecl->captures_end(); 1491 I != E; ++I, ++Field, ++fieldno) { 1492 const LambdaCapture &C = *I; 1493 if (C.capturesVariable()) { 1494 SourceLocation Loc = C.getLocation(); 1495 assert(!Field->isBitField() && "lambdas don't have bitfield members!"); 1496 VarDecl *V = C.getCapturedVar(); 1497 StringRef VName = V->getName(); 1498 llvm::DIFile *VUnit = getOrCreateFile(Loc); 1499 auto Align = getDeclAlignIfRequired(V, CGM.getContext()); 1500 llvm::DIType *FieldType = createFieldType( 1501 VName, Field->getType(), Loc, Field->getAccess(), 1502 layout.getFieldOffset(fieldno), Align, VUnit, RecordTy, CXXDecl); 1503 elements.push_back(FieldType); 1504 } else if (C.capturesThis()) { 1505 // TODO: Need to handle 'this' in some way by probably renaming the 1506 // this of the lambda class and having a field member of 'this' or 1507 // by using AT_object_pointer for the function and having that be 1508 // used as 'this' for semantic references. 1509 FieldDecl *f = *Field; 1510 llvm::DIFile *VUnit = getOrCreateFile(f->getLocation()); 1511 QualType type = f->getType(); 1512 llvm::DIType *fieldType = createFieldType( 1513 "this", type, f->getLocation(), f->getAccess(), 1514 layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl); 1515 1516 elements.push_back(fieldType); 1517 } 1518 } 1519 } 1520 1521 llvm::DIDerivedType * 1522 CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy, 1523 const RecordDecl *RD) { 1524 // Create the descriptor for the static variable, with or without 1525 // constant initializers. 1526 Var = Var->getCanonicalDecl(); 1527 llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation()); 1528 llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit); 1529 1530 unsigned LineNumber = getLineNumber(Var->getLocation()); 1531 StringRef VName = Var->getName(); 1532 llvm::Constant *C = nullptr; 1533 if (Var->getInit()) { 1534 const APValue *Value = Var->evaluateValue(); 1535 if (Value) { 1536 if (Value->isInt()) 1537 C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt()); 1538 if (Value->isFloat()) 1539 C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat()); 1540 } 1541 } 1542 1543 llvm::DINode::DIFlags Flags = getAccessFlag(Var->getAccess(), RD); 1544 auto Align = getDeclAlignIfRequired(Var, CGM.getContext()); 1545 llvm::DIDerivedType *GV = DBuilder.createStaticMemberType( 1546 RecordTy, VName, VUnit, LineNumber, VTy, Flags, C, Align); 1547 StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV); 1548 return GV; 1549 } 1550 1551 void CGDebugInfo::CollectRecordNormalField( 1552 const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit, 1553 SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy, 1554 const RecordDecl *RD) { 1555 StringRef name = field->getName(); 1556 QualType type = field->getType(); 1557 1558 // Ignore unnamed fields unless they're anonymous structs/unions. 1559 if (name.empty() && !type->isRecordType()) 1560 return; 1561 1562 llvm::DIType *FieldType; 1563 if (field->isBitField()) { 1564 FieldType = createBitFieldType(field, RecordTy, RD); 1565 } else { 1566 auto Align = getDeclAlignIfRequired(field, CGM.getContext()); 1567 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(field); 1568 FieldType = 1569 createFieldType(name, type, field->getLocation(), field->getAccess(), 1570 OffsetInBits, Align, tunit, RecordTy, RD, Annotations); 1571 } 1572 1573 elements.push_back(FieldType); 1574 } 1575 1576 void CGDebugInfo::CollectRecordNestedType( 1577 const TypeDecl *TD, SmallVectorImpl<llvm::Metadata *> &elements) { 1578 QualType Ty = CGM.getContext().getTypeDeclType(TD); 1579 // Injected class names are not considered nested records. 1580 if (isa<InjectedClassNameType>(Ty)) 1581 return; 1582 SourceLocation Loc = TD->getLocation(); 1583 llvm::DIType *nestedType = getOrCreateType(Ty, getOrCreateFile(Loc)); 1584 elements.push_back(nestedType); 1585 } 1586 1587 void CGDebugInfo::CollectRecordFields( 1588 const RecordDecl *record, llvm::DIFile *tunit, 1589 SmallVectorImpl<llvm::Metadata *> &elements, 1590 llvm::DICompositeType *RecordTy) { 1591 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(record); 1592 1593 if (CXXDecl && CXXDecl->isLambda()) 1594 CollectRecordLambdaFields(CXXDecl, elements, RecordTy); 1595 else { 1596 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record); 1597 1598 // Field number for non-static fields. 1599 unsigned fieldNo = 0; 1600 1601 // Static and non-static members should appear in the same order as 1602 // the corresponding declarations in the source program. 1603 for (const auto *I : record->decls()) 1604 if (const auto *V = dyn_cast<VarDecl>(I)) { 1605 if (V->hasAttr<NoDebugAttr>()) 1606 continue; 1607 1608 // Skip variable template specializations when emitting CodeView. MSVC 1609 // doesn't emit them. 1610 if (CGM.getCodeGenOpts().EmitCodeView && 1611 isa<VarTemplateSpecializationDecl>(V)) 1612 continue; 1613 1614 if (isa<VarTemplatePartialSpecializationDecl>(V)) 1615 continue; 1616 1617 // Reuse the existing static member declaration if one exists 1618 auto MI = StaticDataMemberCache.find(V->getCanonicalDecl()); 1619 if (MI != StaticDataMemberCache.end()) { 1620 assert(MI->second && 1621 "Static data member declaration should still exist"); 1622 elements.push_back(MI->second); 1623 } else { 1624 auto Field = CreateRecordStaticField(V, RecordTy, record); 1625 elements.push_back(Field); 1626 } 1627 } else if (const auto *field = dyn_cast<FieldDecl>(I)) { 1628 CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit, 1629 elements, RecordTy, record); 1630 1631 // Bump field number for next field. 1632 ++fieldNo; 1633 } else if (CGM.getCodeGenOpts().EmitCodeView) { 1634 // Debug info for nested types is included in the member list only for 1635 // CodeView. 1636 if (const auto *nestedType = dyn_cast<TypeDecl>(I)) 1637 if (!nestedType->isImplicit() && 1638 nestedType->getDeclContext() == record) 1639 CollectRecordNestedType(nestedType, elements); 1640 } 1641 } 1642 } 1643 1644 llvm::DISubroutineType * 1645 CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method, 1646 llvm::DIFile *Unit, bool decl) { 1647 const auto *Func = Method->getType()->castAs<FunctionProtoType>(); 1648 if (Method->isStatic()) 1649 return cast_or_null<llvm::DISubroutineType>( 1650 getOrCreateType(QualType(Func, 0), Unit)); 1651 return getOrCreateInstanceMethodType(Method->getThisType(), Func, Unit, decl); 1652 } 1653 1654 llvm::DISubroutineType * 1655 CGDebugInfo::getOrCreateInstanceMethodType(QualType ThisPtr, 1656 const FunctionProtoType *Func, 1657 llvm::DIFile *Unit, bool decl) { 1658 FunctionProtoType::ExtProtoInfo EPI = Func->getExtProtoInfo(); 1659 Qualifiers &Qc = EPI.TypeQuals; 1660 Qc.removeConst(); 1661 Qc.removeVolatile(); 1662 Qc.removeRestrict(); 1663 Qc.removeUnaligned(); 1664 // Keep the removed qualifiers in sync with 1665 // CreateQualifiedType(const FunctionPrototype*, DIFile *Unit) 1666 // On a 'real' member function type, these qualifiers are carried on the type 1667 // of the first parameter, not as separate DW_TAG_const_type (etc) decorator 1668 // tags around them. (But, in the raw function types with qualifiers, they have 1669 // to use wrapper types.) 1670 1671 // Add "this" pointer. 1672 const auto *OriginalFunc = cast<llvm::DISubroutineType>( 1673 getOrCreateType(CGM.getContext().getFunctionType( 1674 Func->getReturnType(), Func->getParamTypes(), EPI), 1675 Unit)); 1676 llvm::DITypeRefArray Args = OriginalFunc->getTypeArray(); 1677 assert(Args.size() && "Invalid number of arguments!"); 1678 1679 SmallVector<llvm::Metadata *, 16> Elts; 1680 // First element is always return type. For 'void' functions it is NULL. 1681 QualType temp = Func->getReturnType(); 1682 if (temp->getTypeClass() == Type::Auto && decl) 1683 Elts.push_back(CreateType(cast<AutoType>(temp))); 1684 else 1685 Elts.push_back(Args[0]); 1686 1687 // "this" pointer is always first argument. 1688 const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl(); 1689 if (isa<ClassTemplateSpecializationDecl>(RD)) { 1690 // Create pointer type directly in this case. 1691 const PointerType *ThisPtrTy = cast<PointerType>(ThisPtr); 1692 QualType PointeeTy = ThisPtrTy->getPointeeType(); 1693 unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy); 1694 uint64_t Size = CGM.getTarget().getPointerWidth(AS); 1695 auto Align = getTypeAlignIfRequired(ThisPtrTy, CGM.getContext()); 1696 llvm::DIType *PointeeType = getOrCreateType(PointeeTy, Unit); 1697 llvm::DIType *ThisPtrType = 1698 DBuilder.createPointerType(PointeeType, Size, Align); 1699 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); 1700 // TODO: This and the artificial type below are misleading, the 1701 // types aren't artificial the argument is, but the current 1702 // metadata doesn't represent that. 1703 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); 1704 Elts.push_back(ThisPtrType); 1705 } else { 1706 llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit); 1707 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); 1708 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); 1709 Elts.push_back(ThisPtrType); 1710 } 1711 1712 // Copy rest of the arguments. 1713 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1714 Elts.push_back(Args[i]); 1715 1716 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); 1717 1718 return DBuilder.createSubroutineType(EltTypeArray, OriginalFunc->getFlags(), 1719 getDwarfCC(Func->getCallConv())); 1720 } 1721 1722 /// isFunctionLocalClass - Return true if CXXRecordDecl is defined 1723 /// inside a function. 1724 static bool isFunctionLocalClass(const CXXRecordDecl *RD) { 1725 if (const auto *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext())) 1726 return isFunctionLocalClass(NRD); 1727 if (isa<FunctionDecl>(RD->getDeclContext())) 1728 return true; 1729 return false; 1730 } 1731 1732 llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction( 1733 const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) { 1734 bool IsCtorOrDtor = 1735 isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method); 1736 1737 StringRef MethodName = getFunctionName(Method); 1738 llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit, true); 1739 1740 // Since a single ctor/dtor corresponds to multiple functions, it doesn't 1741 // make sense to give a single ctor/dtor a linkage name. 1742 StringRef MethodLinkageName; 1743 // FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional 1744 // property to use here. It may've been intended to model "is non-external 1745 // type" but misses cases of non-function-local but non-external classes such 1746 // as those in anonymous namespaces as well as the reverse - external types 1747 // that are function local, such as those in (non-local) inline functions. 1748 if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent())) 1749 MethodLinkageName = CGM.getMangledName(Method); 1750 1751 // Get the location for the method. 1752 llvm::DIFile *MethodDefUnit = nullptr; 1753 unsigned MethodLine = 0; 1754 if (!Method->isImplicit()) { 1755 MethodDefUnit = getOrCreateFile(Method->getLocation()); 1756 MethodLine = getLineNumber(Method->getLocation()); 1757 } 1758 1759 // Collect virtual method info. 1760 llvm::DIType *ContainingType = nullptr; 1761 unsigned VIndex = 0; 1762 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1763 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 1764 int ThisAdjustment = 0; 1765 1766 if (Method->isVirtual()) { 1767 if (Method->isPure()) 1768 SPFlags |= llvm::DISubprogram::SPFlagPureVirtual; 1769 else 1770 SPFlags |= llvm::DISubprogram::SPFlagVirtual; 1771 1772 if (CGM.getTarget().getCXXABI().isItaniumFamily()) { 1773 // It doesn't make sense to give a virtual destructor a vtable index, 1774 // since a single destructor has two entries in the vtable. 1775 if (!isa<CXXDestructorDecl>(Method)) 1776 VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method); 1777 } else { 1778 // Emit MS ABI vftable information. There is only one entry for the 1779 // deleting dtor. 1780 const auto *DD = dyn_cast<CXXDestructorDecl>(Method); 1781 GlobalDecl GD = DD ? GlobalDecl(DD, Dtor_Deleting) : GlobalDecl(Method); 1782 MethodVFTableLocation ML = 1783 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1784 VIndex = ML.Index; 1785 1786 // CodeView only records the vftable offset in the class that introduces 1787 // the virtual method. This is possible because, unlike Itanium, the MS 1788 // C++ ABI does not include all virtual methods from non-primary bases in 1789 // the vtable for the most derived class. For example, if C inherits from 1790 // A and B, C's primary vftable will not include B's virtual methods. 1791 if (Method->size_overridden_methods() == 0) 1792 Flags |= llvm::DINode::FlagIntroducedVirtual; 1793 1794 // The 'this' adjustment accounts for both the virtual and non-virtual 1795 // portions of the adjustment. Presumably the debugger only uses it when 1796 // it knows the dynamic type of an object. 1797 ThisAdjustment = CGM.getCXXABI() 1798 .getVirtualFunctionPrologueThisAdjustment(GD) 1799 .getQuantity(); 1800 } 1801 ContainingType = RecordTy; 1802 } 1803 1804 // We're checking for deleted C++ special member functions 1805 // [Ctors,Dtors, Copy/Move] 1806 auto checkAttrDeleted = [&](const auto *Method) { 1807 if (Method->getCanonicalDecl()->isDeleted()) 1808 SPFlags |= llvm::DISubprogram::SPFlagDeleted; 1809 }; 1810 1811 switch (Method->getKind()) { 1812 1813 case Decl::CXXConstructor: 1814 case Decl::CXXDestructor: 1815 checkAttrDeleted(Method); 1816 break; 1817 case Decl::CXXMethod: 1818 if (Method->isCopyAssignmentOperator() || 1819 Method->isMoveAssignmentOperator()) 1820 checkAttrDeleted(Method); 1821 break; 1822 default: 1823 break; 1824 } 1825 1826 if (Method->isNoReturn()) 1827 Flags |= llvm::DINode::FlagNoReturn; 1828 1829 if (Method->isStatic()) 1830 Flags |= llvm::DINode::FlagStaticMember; 1831 if (Method->isImplicit()) 1832 Flags |= llvm::DINode::FlagArtificial; 1833 Flags |= getAccessFlag(Method->getAccess(), Method->getParent()); 1834 if (const auto *CXXC = dyn_cast<CXXConstructorDecl>(Method)) { 1835 if (CXXC->isExplicit()) 1836 Flags |= llvm::DINode::FlagExplicit; 1837 } else if (const auto *CXXC = dyn_cast<CXXConversionDecl>(Method)) { 1838 if (CXXC->isExplicit()) 1839 Flags |= llvm::DINode::FlagExplicit; 1840 } 1841 if (Method->hasPrototype()) 1842 Flags |= llvm::DINode::FlagPrototyped; 1843 if (Method->getRefQualifier() == RQ_LValue) 1844 Flags |= llvm::DINode::FlagLValueReference; 1845 if (Method->getRefQualifier() == RQ_RValue) 1846 Flags |= llvm::DINode::FlagRValueReference; 1847 if (!Method->isExternallyVisible()) 1848 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 1849 if (CGM.getLangOpts().Optimize) 1850 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 1851 1852 // In this debug mode, emit type info for a class when its constructor type 1853 // info is emitted. 1854 if (DebugKind == codegenoptions::DebugInfoConstructor) 1855 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1856 completeUnusedClass(*CD->getParent()); 1857 1858 llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit); 1859 llvm::DISubprogram *SP = DBuilder.createMethod( 1860 RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine, 1861 MethodTy, VIndex, ThisAdjustment, ContainingType, Flags, SPFlags, 1862 TParamsArray.get()); 1863 1864 SPCache[Method->getCanonicalDecl()].reset(SP); 1865 1866 return SP; 1867 } 1868 1869 void CGDebugInfo::CollectCXXMemberFunctions( 1870 const CXXRecordDecl *RD, llvm::DIFile *Unit, 1871 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) { 1872 1873 // Since we want more than just the individual member decls if we 1874 // have templated functions iterate over every declaration to gather 1875 // the functions. 1876 for (const auto *I : RD->decls()) { 1877 const auto *Method = dyn_cast<CXXMethodDecl>(I); 1878 // If the member is implicit, don't add it to the member list. This avoids 1879 // the member being added to type units by LLVM, while still allowing it 1880 // to be emitted into the type declaration/reference inside the compile 1881 // unit. 1882 // Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp. 1883 // FIXME: Handle Using(Shadow?)Decls here to create 1884 // DW_TAG_imported_declarations inside the class for base decls brought into 1885 // derived classes. GDB doesn't seem to notice/leverage these when I tried 1886 // it, so I'm not rushing to fix this. (GCC seems to produce them, if 1887 // referenced) 1888 if (!Method || Method->isImplicit() || Method->hasAttr<NoDebugAttr>()) 1889 continue; 1890 1891 if (Method->getType()->castAs<FunctionProtoType>()->getContainedAutoType()) 1892 continue; 1893 1894 // Reuse the existing member function declaration if it exists. 1895 // It may be associated with the declaration of the type & should be 1896 // reused as we're building the definition. 1897 // 1898 // This situation can arise in the vtable-based debug info reduction where 1899 // implicit members are emitted in a non-vtable TU. 1900 auto MI = SPCache.find(Method->getCanonicalDecl()); 1901 EltTys.push_back(MI == SPCache.end() 1902 ? CreateCXXMemberFunction(Method, Unit, RecordTy) 1903 : static_cast<llvm::Metadata *>(MI->second)); 1904 } 1905 } 1906 1907 void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit, 1908 SmallVectorImpl<llvm::Metadata *> &EltTys, 1909 llvm::DIType *RecordTy) { 1910 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> SeenTypes; 1911 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->bases(), SeenTypes, 1912 llvm::DINode::FlagZero); 1913 1914 // If we are generating CodeView debug info, we also need to emit records for 1915 // indirect virtual base classes. 1916 if (CGM.getCodeGenOpts().EmitCodeView) { 1917 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->vbases(), SeenTypes, 1918 llvm::DINode::FlagIndirectVirtualBase); 1919 } 1920 } 1921 1922 void CGDebugInfo::CollectCXXBasesAux( 1923 const CXXRecordDecl *RD, llvm::DIFile *Unit, 1924 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy, 1925 const CXXRecordDecl::base_class_const_range &Bases, 1926 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> &SeenTypes, 1927 llvm::DINode::DIFlags StartingFlags) { 1928 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 1929 for (const auto &BI : Bases) { 1930 const auto *Base = 1931 cast<CXXRecordDecl>(BI.getType()->castAs<RecordType>()->getDecl()); 1932 if (!SeenTypes.insert(Base).second) 1933 continue; 1934 auto *BaseTy = getOrCreateType(BI.getType(), Unit); 1935 llvm::DINode::DIFlags BFlags = StartingFlags; 1936 uint64_t BaseOffset; 1937 uint32_t VBPtrOffset = 0; 1938 1939 if (BI.isVirtual()) { 1940 if (CGM.getTarget().getCXXABI().isItaniumFamily()) { 1941 // virtual base offset offset is -ve. The code generator emits dwarf 1942 // expression where it expects +ve number. 1943 BaseOffset = 0 - CGM.getItaniumVTableContext() 1944 .getVirtualBaseOffsetOffset(RD, Base) 1945 .getQuantity(); 1946 } else { 1947 // In the MS ABI, store the vbtable offset, which is analogous to the 1948 // vbase offset offset in Itanium. 1949 BaseOffset = 1950 4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base); 1951 VBPtrOffset = CGM.getContext() 1952 .getASTRecordLayout(RD) 1953 .getVBPtrOffset() 1954 .getQuantity(); 1955 } 1956 BFlags |= llvm::DINode::FlagVirtual; 1957 } else 1958 BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base)); 1959 // FIXME: Inconsistent units for BaseOffset. It is in bytes when 1960 // BI->isVirtual() and bits when not. 1961 1962 BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD); 1963 llvm::DIType *DTy = DBuilder.createInheritance(RecordTy, BaseTy, BaseOffset, 1964 VBPtrOffset, BFlags); 1965 EltTys.push_back(DTy); 1966 } 1967 } 1968 1969 llvm::DINodeArray 1970 CGDebugInfo::CollectTemplateParams(Optional<TemplateArgs> OArgs, 1971 llvm::DIFile *Unit) { 1972 if (!OArgs) 1973 return llvm::DINodeArray(); 1974 TemplateArgs &Args = *OArgs; 1975 SmallVector<llvm::Metadata *, 16> TemplateParams; 1976 for (unsigned i = 0, e = Args.Args.size(); i != e; ++i) { 1977 const TemplateArgument &TA = Args.Args[i]; 1978 StringRef Name; 1979 bool defaultParameter = false; 1980 if (Args.TList) 1981 Name = Args.TList->getParam(i)->getName(); 1982 switch (TA.getKind()) { 1983 case TemplateArgument::Type: { 1984 llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit); 1985 1986 if (Args.TList) 1987 if (auto *templateType = 1988 dyn_cast_or_null<TemplateTypeParmDecl>(Args.TList->getParam(i))) 1989 if (templateType->hasDefaultArgument()) 1990 defaultParameter = 1991 templateType->getDefaultArgument() == TA.getAsType(); 1992 1993 TemplateParams.push_back(DBuilder.createTemplateTypeParameter( 1994 TheCU, Name, TTy, defaultParameter)); 1995 1996 } break; 1997 case TemplateArgument::Integral: { 1998 llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit); 1999 if (Args.TList && CGM.getCodeGenOpts().DwarfVersion >= 5) 2000 if (auto *templateType = dyn_cast_or_null<NonTypeTemplateParmDecl>( 2001 Args.TList->getParam(i))) 2002 if (templateType->hasDefaultArgument() && 2003 !templateType->getDefaultArgument()->isValueDependent()) 2004 defaultParameter = llvm::APSInt::isSameValue( 2005 templateType->getDefaultArgument()->EvaluateKnownConstInt( 2006 CGM.getContext()), 2007 TA.getAsIntegral()); 2008 2009 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2010 TheCU, Name, TTy, defaultParameter, 2011 llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral()))); 2012 } break; 2013 case TemplateArgument::Declaration: { 2014 const ValueDecl *D = TA.getAsDecl(); 2015 QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext()); 2016 llvm::DIType *TTy = getOrCreateType(T, Unit); 2017 llvm::Constant *V = nullptr; 2018 // Skip retrieve the value if that template parameter has cuda device 2019 // attribute, i.e. that value is not available at the host side. 2020 if (!CGM.getLangOpts().CUDA || CGM.getLangOpts().CUDAIsDevice || 2021 !D->hasAttr<CUDADeviceAttr>()) { 2022 const CXXMethodDecl *MD; 2023 // Variable pointer template parameters have a value that is the address 2024 // of the variable. 2025 if (const auto *VD = dyn_cast<VarDecl>(D)) 2026 V = CGM.GetAddrOfGlobalVar(VD); 2027 // Member function pointers have special support for building them, 2028 // though this is currently unsupported in LLVM CodeGen. 2029 else if ((MD = dyn_cast<CXXMethodDecl>(D)) && MD->isInstance()) 2030 V = CGM.getCXXABI().EmitMemberFunctionPointer(MD); 2031 else if (const auto *FD = dyn_cast<FunctionDecl>(D)) 2032 V = CGM.GetAddrOfFunction(FD); 2033 // Member data pointers have special handling too to compute the fixed 2034 // offset within the object. 2035 else if (const auto *MPT = 2036 dyn_cast<MemberPointerType>(T.getTypePtr())) { 2037 // These five lines (& possibly the above member function pointer 2038 // handling) might be able to be refactored to use similar code in 2039 // CodeGenModule::getMemberPointerConstant 2040 uint64_t fieldOffset = CGM.getContext().getFieldOffset(D); 2041 CharUnits chars = 2042 CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset); 2043 V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars); 2044 } else if (const auto *GD = dyn_cast<MSGuidDecl>(D)) { 2045 V = CGM.GetAddrOfMSGuidDecl(GD).getPointer(); 2046 } else if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 2047 if (T->isRecordType()) 2048 V = ConstantEmitter(CGM).emitAbstract( 2049 SourceLocation(), TPO->getValue(), TPO->getType()); 2050 else 2051 V = CGM.GetAddrOfTemplateParamObject(TPO).getPointer(); 2052 } 2053 assert(V && "Failed to find template parameter pointer"); 2054 V = V->stripPointerCasts(); 2055 } 2056 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2057 TheCU, Name, TTy, defaultParameter, cast_or_null<llvm::Constant>(V))); 2058 } break; 2059 case TemplateArgument::NullPtr: { 2060 QualType T = TA.getNullPtrType(); 2061 llvm::DIType *TTy = getOrCreateType(T, Unit); 2062 llvm::Constant *V = nullptr; 2063 // Special case member data pointer null values since they're actually -1 2064 // instead of zero. 2065 if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr())) 2066 // But treat member function pointers as simple zero integers because 2067 // it's easier than having a special case in LLVM's CodeGen. If LLVM 2068 // CodeGen grows handling for values of non-null member function 2069 // pointers then perhaps we could remove this special case and rely on 2070 // EmitNullMemberPointer for member function pointers. 2071 if (MPT->isMemberDataPointer()) 2072 V = CGM.getCXXABI().EmitNullMemberPointer(MPT); 2073 if (!V) 2074 V = llvm::ConstantInt::get(CGM.Int8Ty, 0); 2075 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2076 TheCU, Name, TTy, defaultParameter, V)); 2077 } break; 2078 case TemplateArgument::Template: { 2079 std::string QualName; 2080 llvm::raw_string_ostream OS(QualName); 2081 TA.getAsTemplate().getAsTemplateDecl()->printQualifiedName( 2082 OS, getPrintingPolicy()); 2083 TemplateParams.push_back(DBuilder.createTemplateTemplateParameter( 2084 TheCU, Name, nullptr, OS.str())); 2085 break; 2086 } 2087 case TemplateArgument::Pack: 2088 TemplateParams.push_back(DBuilder.createTemplateParameterPack( 2089 TheCU, Name, nullptr, 2090 CollectTemplateParams({{nullptr, TA.getPackAsArray()}}, Unit))); 2091 break; 2092 case TemplateArgument::Expression: { 2093 const Expr *E = TA.getAsExpr(); 2094 QualType T = E->getType(); 2095 if (E->isGLValue()) 2096 T = CGM.getContext().getLValueReferenceType(T); 2097 llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(E, T); 2098 assert(V && "Expression in template argument isn't constant"); 2099 llvm::DIType *TTy = getOrCreateType(T, Unit); 2100 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2101 TheCU, Name, TTy, defaultParameter, V->stripPointerCasts())); 2102 } break; 2103 // And the following should never occur: 2104 case TemplateArgument::TemplateExpansion: 2105 case TemplateArgument::Null: 2106 llvm_unreachable( 2107 "These argument types shouldn't exist in concrete types"); 2108 } 2109 } 2110 return DBuilder.getOrCreateArray(TemplateParams); 2111 } 2112 2113 Optional<CGDebugInfo::TemplateArgs> 2114 CGDebugInfo::GetTemplateArgs(const FunctionDecl *FD) const { 2115 if (FD->getTemplatedKind() == 2116 FunctionDecl::TK_FunctionTemplateSpecialization) { 2117 const TemplateParameterList *TList = FD->getTemplateSpecializationInfo() 2118 ->getTemplate() 2119 ->getTemplateParameters(); 2120 return {{TList, FD->getTemplateSpecializationArgs()->asArray()}}; 2121 } 2122 return None; 2123 } 2124 Optional<CGDebugInfo::TemplateArgs> 2125 CGDebugInfo::GetTemplateArgs(const VarDecl *VD) const { 2126 // Always get the full list of parameters, not just the ones from the 2127 // specialization. A partial specialization may have fewer parameters than 2128 // there are arguments. 2129 auto *TS = dyn_cast<VarTemplateSpecializationDecl>(VD); 2130 if (!TS) 2131 return None; 2132 VarTemplateDecl *T = TS->getSpecializedTemplate(); 2133 const TemplateParameterList *TList = T->getTemplateParameters(); 2134 auto TA = TS->getTemplateArgs().asArray(); 2135 return {{TList, TA}}; 2136 } 2137 Optional<CGDebugInfo::TemplateArgs> 2138 CGDebugInfo::GetTemplateArgs(const RecordDecl *RD) const { 2139 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 2140 // Always get the full list of parameters, not just the ones from the 2141 // specialization. A partial specialization may have fewer parameters than 2142 // there are arguments. 2143 TemplateParameterList *TPList = 2144 TSpecial->getSpecializedTemplate()->getTemplateParameters(); 2145 const TemplateArgumentList &TAList = TSpecial->getTemplateArgs(); 2146 return {{TPList, TAList.asArray()}}; 2147 } 2148 return None; 2149 } 2150 2151 llvm::DINodeArray 2152 CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD, 2153 llvm::DIFile *Unit) { 2154 return CollectTemplateParams(GetTemplateArgs(FD), Unit); 2155 } 2156 2157 llvm::DINodeArray CGDebugInfo::CollectVarTemplateParams(const VarDecl *VL, 2158 llvm::DIFile *Unit) { 2159 return CollectTemplateParams(GetTemplateArgs(VL), Unit); 2160 } 2161 2162 llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(const RecordDecl *RD, 2163 llvm::DIFile *Unit) { 2164 return CollectTemplateParams(GetTemplateArgs(RD), Unit); 2165 } 2166 2167 llvm::DINodeArray CGDebugInfo::CollectBTFDeclTagAnnotations(const Decl *D) { 2168 if (!D->hasAttr<BTFDeclTagAttr>()) 2169 return nullptr; 2170 2171 SmallVector<llvm::Metadata *, 4> Annotations; 2172 for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) { 2173 llvm::Metadata *Ops[2] = { 2174 llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_decl_tag")), 2175 llvm::MDString::get(CGM.getLLVMContext(), I->getBTFDeclTag())}; 2176 Annotations.push_back(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2177 } 2178 return DBuilder.getOrCreateArray(Annotations); 2179 } 2180 2181 llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) { 2182 if (VTablePtrType) 2183 return VTablePtrType; 2184 2185 ASTContext &Context = CGM.getContext(); 2186 2187 /* Function type */ 2188 llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit); 2189 llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy); 2190 llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements); 2191 unsigned Size = Context.getTypeSize(Context.VoidPtrTy); 2192 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); 2193 Optional<unsigned> DWARFAddressSpace = 2194 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); 2195 2196 llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType( 2197 SubTy, Size, 0, DWARFAddressSpace, "__vtbl_ptr_type"); 2198 VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size); 2199 return VTablePtrType; 2200 } 2201 2202 StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) { 2203 // Copy the gdb compatible name on the side and use its reference. 2204 return internString("_vptr$", RD->getNameAsString()); 2205 } 2206 2207 StringRef CGDebugInfo::getDynamicInitializerName(const VarDecl *VD, 2208 DynamicInitKind StubKind, 2209 llvm::Function *InitFn) { 2210 // If we're not emitting codeview, use the mangled name. For Itanium, this is 2211 // arbitrary. 2212 if (!CGM.getCodeGenOpts().EmitCodeView || 2213 StubKind == DynamicInitKind::GlobalArrayDestructor) 2214 return InitFn->getName(); 2215 2216 // Print the normal qualified name for the variable, then break off the last 2217 // NNS, and add the appropriate other text. Clang always prints the global 2218 // variable name without template arguments, so we can use rsplit("::") and 2219 // then recombine the pieces. 2220 SmallString<128> QualifiedGV; 2221 StringRef Quals; 2222 StringRef GVName; 2223 { 2224 llvm::raw_svector_ostream OS(QualifiedGV); 2225 VD->printQualifiedName(OS, getPrintingPolicy()); 2226 std::tie(Quals, GVName) = OS.str().rsplit("::"); 2227 if (GVName.empty()) 2228 std::swap(Quals, GVName); 2229 } 2230 2231 SmallString<128> InitName; 2232 llvm::raw_svector_ostream OS(InitName); 2233 if (!Quals.empty()) 2234 OS << Quals << "::"; 2235 2236 switch (StubKind) { 2237 case DynamicInitKind::NoStub: 2238 case DynamicInitKind::GlobalArrayDestructor: 2239 llvm_unreachable("not an initializer"); 2240 case DynamicInitKind::Initializer: 2241 OS << "`dynamic initializer for '"; 2242 break; 2243 case DynamicInitKind::AtExit: 2244 OS << "`dynamic atexit destructor for '"; 2245 break; 2246 } 2247 2248 OS << GVName; 2249 2250 // Add any template specialization args. 2251 if (const auto *VTpl = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2252 printTemplateArgumentList(OS, VTpl->getTemplateArgs().asArray(), 2253 getPrintingPolicy()); 2254 } 2255 2256 OS << '\''; 2257 2258 return internString(OS.str()); 2259 } 2260 2261 void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit, 2262 SmallVectorImpl<llvm::Metadata *> &EltTys) { 2263 // If this class is not dynamic then there is not any vtable info to collect. 2264 if (!RD->isDynamicClass()) 2265 return; 2266 2267 // Don't emit any vtable shape or vptr info if this class doesn't have an 2268 // extendable vfptr. This can happen if the class doesn't have virtual 2269 // methods, or in the MS ABI if those virtual methods only come from virtually 2270 // inherited bases. 2271 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2272 if (!RL.hasExtendableVFPtr()) 2273 return; 2274 2275 // CodeView needs to know how large the vtable of every dynamic class is, so 2276 // emit a special named pointer type into the element list. The vptr type 2277 // points to this type as well. 2278 llvm::DIType *VPtrTy = nullptr; 2279 bool NeedVTableShape = CGM.getCodeGenOpts().EmitCodeView && 2280 CGM.getTarget().getCXXABI().isMicrosoft(); 2281 if (NeedVTableShape) { 2282 uint64_t PtrWidth = 2283 CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 2284 const VTableLayout &VFTLayout = 2285 CGM.getMicrosoftVTableContext().getVFTableLayout(RD, CharUnits::Zero()); 2286 unsigned VSlotCount = 2287 VFTLayout.vtable_components().size() - CGM.getLangOpts().RTTIData; 2288 unsigned VTableWidth = PtrWidth * VSlotCount; 2289 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); 2290 Optional<unsigned> DWARFAddressSpace = 2291 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); 2292 2293 // Create a very wide void* type and insert it directly in the element list. 2294 llvm::DIType *VTableType = DBuilder.createPointerType( 2295 nullptr, VTableWidth, 0, DWARFAddressSpace, "__vtbl_ptr_type"); 2296 EltTys.push_back(VTableType); 2297 2298 // The vptr is a pointer to this special vtable type. 2299 VPtrTy = DBuilder.createPointerType(VTableType, PtrWidth); 2300 } 2301 2302 // If there is a primary base then the artificial vptr member lives there. 2303 if (RL.getPrimaryBase()) 2304 return; 2305 2306 if (!VPtrTy) 2307 VPtrTy = getOrCreateVTablePtrType(Unit); 2308 2309 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 2310 llvm::DIType *VPtrMember = 2311 DBuilder.createMemberType(Unit, getVTableName(RD), Unit, 0, Size, 0, 0, 2312 llvm::DINode::FlagArtificial, VPtrTy); 2313 EltTys.push_back(VPtrMember); 2314 } 2315 2316 llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy, 2317 SourceLocation Loc) { 2318 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 2319 llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc)); 2320 return T; 2321 } 2322 2323 llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D, 2324 SourceLocation Loc) { 2325 return getOrCreateStandaloneType(D, Loc); 2326 } 2327 2328 llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D, 2329 SourceLocation Loc) { 2330 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 2331 assert(!D.isNull() && "null type"); 2332 llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc)); 2333 assert(T && "could not create debug info for type"); 2334 2335 RetainedTypes.push_back(D.getAsOpaquePtr()); 2336 return T; 2337 } 2338 2339 void CGDebugInfo::addHeapAllocSiteMetadata(llvm::CallBase *CI, 2340 QualType AllocatedTy, 2341 SourceLocation Loc) { 2342 if (CGM.getCodeGenOpts().getDebugInfo() <= 2343 codegenoptions::DebugLineTablesOnly) 2344 return; 2345 llvm::MDNode *node; 2346 if (AllocatedTy->isVoidType()) 2347 node = llvm::MDNode::get(CGM.getLLVMContext(), None); 2348 else 2349 node = getOrCreateType(AllocatedTy, getOrCreateFile(Loc)); 2350 2351 CI->setMetadata("heapallocsite", node); 2352 } 2353 2354 void CGDebugInfo::completeType(const EnumDecl *ED) { 2355 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 2356 return; 2357 QualType Ty = CGM.getContext().getEnumType(ED); 2358 void *TyPtr = Ty.getAsOpaquePtr(); 2359 auto I = TypeCache.find(TyPtr); 2360 if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl()) 2361 return; 2362 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>()); 2363 assert(!Res->isForwardDecl()); 2364 TypeCache[TyPtr].reset(Res); 2365 } 2366 2367 void CGDebugInfo::completeType(const RecordDecl *RD) { 2368 if (DebugKind > codegenoptions::LimitedDebugInfo || 2369 !CGM.getLangOpts().CPlusPlus) 2370 completeRequiredType(RD); 2371 } 2372 2373 /// Return true if the class or any of its methods are marked dllimport. 2374 static bool isClassOrMethodDLLImport(const CXXRecordDecl *RD) { 2375 if (RD->hasAttr<DLLImportAttr>()) 2376 return true; 2377 for (const CXXMethodDecl *MD : RD->methods()) 2378 if (MD->hasAttr<DLLImportAttr>()) 2379 return true; 2380 return false; 2381 } 2382 2383 /// Does a type definition exist in an imported clang module? 2384 static bool isDefinedInClangModule(const RecordDecl *RD) { 2385 // Only definitions that where imported from an AST file come from a module. 2386 if (!RD || !RD->isFromASTFile()) 2387 return false; 2388 // Anonymous entities cannot be addressed. Treat them as not from module. 2389 if (!RD->isExternallyVisible() && RD->getName().empty()) 2390 return false; 2391 if (auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) { 2392 if (!CXXDecl->isCompleteDefinition()) 2393 return false; 2394 // Check wether RD is a template. 2395 auto TemplateKind = CXXDecl->getTemplateSpecializationKind(); 2396 if (TemplateKind != TSK_Undeclared) { 2397 // Unfortunately getOwningModule() isn't accurate enough to find the 2398 // owning module of a ClassTemplateSpecializationDecl that is inside a 2399 // namespace spanning multiple modules. 2400 bool Explicit = false; 2401 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(CXXDecl)) 2402 Explicit = TD->isExplicitInstantiationOrSpecialization(); 2403 if (!Explicit && CXXDecl->getEnclosingNamespaceContext()) 2404 return false; 2405 // This is a template, check the origin of the first member. 2406 if (CXXDecl->field_begin() == CXXDecl->field_end()) 2407 return TemplateKind == TSK_ExplicitInstantiationDeclaration; 2408 if (!CXXDecl->field_begin()->isFromASTFile()) 2409 return false; 2410 } 2411 } 2412 return true; 2413 } 2414 2415 void CGDebugInfo::completeClassData(const RecordDecl *RD) { 2416 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 2417 if (CXXRD->isDynamicClass() && 2418 CGM.getVTableLinkage(CXXRD) == 2419 llvm::GlobalValue::AvailableExternallyLinkage && 2420 !isClassOrMethodDLLImport(CXXRD)) 2421 return; 2422 2423 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) 2424 return; 2425 2426 completeClass(RD); 2427 } 2428 2429 void CGDebugInfo::completeClass(const RecordDecl *RD) { 2430 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 2431 return; 2432 QualType Ty = CGM.getContext().getRecordType(RD); 2433 void *TyPtr = Ty.getAsOpaquePtr(); 2434 auto I = TypeCache.find(TyPtr); 2435 if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl()) 2436 return; 2437 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<RecordType>()); 2438 assert(!Res->isForwardDecl()); 2439 TypeCache[TyPtr].reset(Res); 2440 } 2441 2442 static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I, 2443 CXXRecordDecl::method_iterator End) { 2444 for (CXXMethodDecl *MD : llvm::make_range(I, End)) 2445 if (FunctionDecl *Tmpl = MD->getInstantiatedFromMemberFunction()) 2446 if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() && 2447 !MD->getMemberSpecializationInfo()->isExplicitSpecialization()) 2448 return true; 2449 return false; 2450 } 2451 2452 static bool canUseCtorHoming(const CXXRecordDecl *RD) { 2453 // Constructor homing can be used for classes that cannnot be constructed 2454 // without emitting code for one of their constructors. This is classes that 2455 // don't have trivial or constexpr constructors, or can be created from 2456 // aggregate initialization. Also skip lambda objects because they don't call 2457 // constructors. 2458 2459 // Skip this optimization if the class or any of its methods are marked 2460 // dllimport. 2461 if (isClassOrMethodDLLImport(RD)) 2462 return false; 2463 2464 return !RD->isLambda() && !RD->isAggregate() && 2465 !RD->hasTrivialDefaultConstructor() && 2466 !RD->hasConstexprNonCopyMoveConstructor(); 2467 } 2468 2469 static bool shouldOmitDefinition(codegenoptions::DebugInfoKind DebugKind, 2470 bool DebugTypeExtRefs, const RecordDecl *RD, 2471 const LangOptions &LangOpts) { 2472 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) 2473 return true; 2474 2475 if (auto *ES = RD->getASTContext().getExternalSource()) 2476 if (ES->hasExternalDefinitions(RD) == ExternalASTSource::EK_Always) 2477 return true; 2478 2479 // Only emit forward declarations in line tables only to keep debug info size 2480 // small. This only applies to CodeView, since we don't emit types in DWARF 2481 // line tables only. 2482 if (DebugKind == codegenoptions::DebugLineTablesOnly) 2483 return true; 2484 2485 if (DebugKind > codegenoptions::LimitedDebugInfo || 2486 RD->hasAttr<StandaloneDebugAttr>()) 2487 return false; 2488 2489 if (!LangOpts.CPlusPlus) 2490 return false; 2491 2492 if (!RD->isCompleteDefinitionRequired()) 2493 return true; 2494 2495 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD); 2496 2497 if (!CXXDecl) 2498 return false; 2499 2500 // Only emit complete debug info for a dynamic class when its vtable is 2501 // emitted. However, Microsoft debuggers don't resolve type information 2502 // across DLL boundaries, so skip this optimization if the class or any of its 2503 // methods are marked dllimport. This isn't a complete solution, since objects 2504 // without any dllimport methods can be used in one DLL and constructed in 2505 // another, but it is the current behavior of LimitedDebugInfo. 2506 if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass() && 2507 !isClassOrMethodDLLImport(CXXDecl)) 2508 return true; 2509 2510 TemplateSpecializationKind Spec = TSK_Undeclared; 2511 if (const auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 2512 Spec = SD->getSpecializationKind(); 2513 2514 if (Spec == TSK_ExplicitInstantiationDeclaration && 2515 hasExplicitMemberDefinition(CXXDecl->method_begin(), 2516 CXXDecl->method_end())) 2517 return true; 2518 2519 // In constructor homing mode, only emit complete debug info for a class 2520 // when its constructor is emitted. 2521 if ((DebugKind == codegenoptions::DebugInfoConstructor) && 2522 canUseCtorHoming(CXXDecl)) 2523 return true; 2524 2525 return false; 2526 } 2527 2528 void CGDebugInfo::completeRequiredType(const RecordDecl *RD) { 2529 if (shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts())) 2530 return; 2531 2532 QualType Ty = CGM.getContext().getRecordType(RD); 2533 llvm::DIType *T = getTypeOrNull(Ty); 2534 if (T && T->isForwardDecl()) 2535 completeClassData(RD); 2536 } 2537 2538 llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) { 2539 RecordDecl *RD = Ty->getDecl(); 2540 llvm::DIType *T = cast_or_null<llvm::DIType>(getTypeOrNull(QualType(Ty, 0))); 2541 if (T || shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, 2542 CGM.getLangOpts())) { 2543 if (!T) 2544 T = getOrCreateRecordFwdDecl(Ty, getDeclContextDescriptor(RD)); 2545 return T; 2546 } 2547 2548 return CreateTypeDefinition(Ty); 2549 } 2550 2551 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) { 2552 RecordDecl *RD = Ty->getDecl(); 2553 2554 // Get overall information about the record type for the debug info. 2555 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); 2556 2557 // Records and classes and unions can all be recursive. To handle them, we 2558 // first generate a debug descriptor for the struct as a forward declaration. 2559 // Then (if it is a definition) we go through and get debug info for all of 2560 // its members. Finally, we create a descriptor for the complete type (which 2561 // may refer to the forward decl if the struct is recursive) and replace all 2562 // uses of the forward declaration with the final definition. 2563 llvm::DICompositeType *FwdDecl = getOrCreateLimitedType(Ty); 2564 2565 const RecordDecl *D = RD->getDefinition(); 2566 if (!D || !D->isCompleteDefinition()) 2567 return FwdDecl; 2568 2569 if (const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) 2570 CollectContainingType(CXXDecl, FwdDecl); 2571 2572 // Push the struct on region stack. 2573 LexicalBlockStack.emplace_back(&*FwdDecl); 2574 RegionMap[Ty->getDecl()].reset(FwdDecl); 2575 2576 // Convert all the elements. 2577 SmallVector<llvm::Metadata *, 16> EltTys; 2578 // what about nested types? 2579 2580 // Note: The split of CXXDecl information here is intentional, the 2581 // gdb tests will depend on a certain ordering at printout. The debug 2582 // information offsets are still correct if we merge them all together 2583 // though. 2584 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD); 2585 if (CXXDecl) { 2586 CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl); 2587 CollectVTableInfo(CXXDecl, DefUnit, EltTys); 2588 } 2589 2590 // Collect data fields (including static variables and any initializers). 2591 CollectRecordFields(RD, DefUnit, EltTys, FwdDecl); 2592 if (CXXDecl) 2593 CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl); 2594 2595 LexicalBlockStack.pop_back(); 2596 RegionMap.erase(Ty->getDecl()); 2597 2598 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 2599 DBuilder.replaceArrays(FwdDecl, Elements); 2600 2601 if (FwdDecl->isTemporary()) 2602 FwdDecl = 2603 llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl)); 2604 2605 RegionMap[Ty->getDecl()].reset(FwdDecl); 2606 return FwdDecl; 2607 } 2608 2609 llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty, 2610 llvm::DIFile *Unit) { 2611 // Ignore protocols. 2612 return getOrCreateType(Ty->getBaseType(), Unit); 2613 } 2614 2615 llvm::DIType *CGDebugInfo::CreateType(const ObjCTypeParamType *Ty, 2616 llvm::DIFile *Unit) { 2617 // Ignore protocols. 2618 SourceLocation Loc = Ty->getDecl()->getLocation(); 2619 2620 // Use Typedefs to represent ObjCTypeParamType. 2621 return DBuilder.createTypedef( 2622 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit), 2623 Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc), 2624 getDeclContextDescriptor(Ty->getDecl())); 2625 } 2626 2627 /// \return true if Getter has the default name for the property PD. 2628 static bool hasDefaultGetterName(const ObjCPropertyDecl *PD, 2629 const ObjCMethodDecl *Getter) { 2630 assert(PD); 2631 if (!Getter) 2632 return true; 2633 2634 assert(Getter->getDeclName().isObjCZeroArgSelector()); 2635 return PD->getName() == 2636 Getter->getDeclName().getObjCSelector().getNameForSlot(0); 2637 } 2638 2639 /// \return true if Setter has the default name for the property PD. 2640 static bool hasDefaultSetterName(const ObjCPropertyDecl *PD, 2641 const ObjCMethodDecl *Setter) { 2642 assert(PD); 2643 if (!Setter) 2644 return true; 2645 2646 assert(Setter->getDeclName().isObjCOneArgSelector()); 2647 return SelectorTable::constructSetterName(PD->getName()) == 2648 Setter->getDeclName().getObjCSelector().getNameForSlot(0); 2649 } 2650 2651 llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty, 2652 llvm::DIFile *Unit) { 2653 ObjCInterfaceDecl *ID = Ty->getDecl(); 2654 if (!ID) 2655 return nullptr; 2656 2657 // Return a forward declaration if this type was imported from a clang module, 2658 // and this is not the compile unit with the implementation of the type (which 2659 // may contain hidden ivars). 2660 if (DebugTypeExtRefs && ID->isFromASTFile() && ID->getDefinition() && 2661 !ID->getImplementation()) 2662 return DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 2663 ID->getName(), 2664 getDeclContextDescriptor(ID), Unit, 0); 2665 2666 // Get overall information about the record type for the debug info. 2667 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); 2668 unsigned Line = getLineNumber(ID->getLocation()); 2669 auto RuntimeLang = 2670 static_cast<llvm::dwarf::SourceLanguage>(TheCU->getSourceLanguage()); 2671 2672 // If this is just a forward declaration return a special forward-declaration 2673 // debug type since we won't be able to lay out the entire type. 2674 ObjCInterfaceDecl *Def = ID->getDefinition(); 2675 if (!Def || !Def->getImplementation()) { 2676 llvm::DIScope *Mod = getParentModuleOrNull(ID); 2677 llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType( 2678 llvm::dwarf::DW_TAG_structure_type, ID->getName(), Mod ? Mod : TheCU, 2679 DefUnit, Line, RuntimeLang); 2680 ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit)); 2681 return FwdDecl; 2682 } 2683 2684 return CreateTypeDefinition(Ty, Unit); 2685 } 2686 2687 llvm::DIModule *CGDebugInfo::getOrCreateModuleRef(ASTSourceDescriptor Mod, 2688 bool CreateSkeletonCU) { 2689 // Use the Module pointer as the key into the cache. This is a 2690 // nullptr if the "Module" is a PCH, which is safe because we don't 2691 // support chained PCH debug info, so there can only be a single PCH. 2692 const Module *M = Mod.getModuleOrNull(); 2693 auto ModRef = ModuleCache.find(M); 2694 if (ModRef != ModuleCache.end()) 2695 return cast<llvm::DIModule>(ModRef->second); 2696 2697 // Macro definitions that were defined with "-D" on the command line. 2698 SmallString<128> ConfigMacros; 2699 { 2700 llvm::raw_svector_ostream OS(ConfigMacros); 2701 const auto &PPOpts = CGM.getPreprocessorOpts(); 2702 unsigned I = 0; 2703 // Translate the macro definitions back into a command line. 2704 for (auto &M : PPOpts.Macros) { 2705 if (++I > 1) 2706 OS << " "; 2707 const std::string &Macro = M.first; 2708 bool Undef = M.second; 2709 OS << "\"-" << (Undef ? 'U' : 'D'); 2710 for (char c : Macro) 2711 switch (c) { 2712 case '\\': 2713 OS << "\\\\"; 2714 break; 2715 case '"': 2716 OS << "\\\""; 2717 break; 2718 default: 2719 OS << c; 2720 } 2721 OS << '\"'; 2722 } 2723 } 2724 2725 bool IsRootModule = M ? !M->Parent : true; 2726 // When a module name is specified as -fmodule-name, that module gets a 2727 // clang::Module object, but it won't actually be built or imported; it will 2728 // be textual. 2729 if (CreateSkeletonCU && IsRootModule && Mod.getASTFile().empty() && M) 2730 assert(StringRef(M->Name).startswith(CGM.getLangOpts().ModuleName) && 2731 "clang module without ASTFile must be specified by -fmodule-name"); 2732 2733 // Return a StringRef to the remapped Path. 2734 auto RemapPath = [this](StringRef Path) -> std::string { 2735 std::string Remapped = remapDIPath(Path); 2736 StringRef Relative(Remapped); 2737 StringRef CompDir = TheCU->getDirectory(); 2738 if (Relative.consume_front(CompDir)) 2739 Relative.consume_front(llvm::sys::path::get_separator()); 2740 2741 return Relative.str(); 2742 }; 2743 2744 if (CreateSkeletonCU && IsRootModule && !Mod.getASTFile().empty()) { 2745 // PCH files don't have a signature field in the control block, 2746 // but LLVM detects skeleton CUs by looking for a non-zero DWO id. 2747 // We use the lower 64 bits for debug info. 2748 2749 uint64_t Signature = 0; 2750 if (const auto &ModSig = Mod.getSignature()) 2751 Signature = ModSig.truncatedValue(); 2752 else 2753 Signature = ~1ULL; 2754 2755 llvm::DIBuilder DIB(CGM.getModule()); 2756 SmallString<0> PCM; 2757 if (!llvm::sys::path::is_absolute(Mod.getASTFile())) 2758 PCM = Mod.getPath(); 2759 llvm::sys::path::append(PCM, Mod.getASTFile()); 2760 DIB.createCompileUnit( 2761 TheCU->getSourceLanguage(), 2762 // TODO: Support "Source" from external AST providers? 2763 DIB.createFile(Mod.getModuleName(), TheCU->getDirectory()), 2764 TheCU->getProducer(), false, StringRef(), 0, RemapPath(PCM), 2765 llvm::DICompileUnit::FullDebug, Signature); 2766 DIB.finalize(); 2767 } 2768 2769 llvm::DIModule *Parent = 2770 IsRootModule ? nullptr 2771 : getOrCreateModuleRef(ASTSourceDescriptor(*M->Parent), 2772 CreateSkeletonCU); 2773 std::string IncludePath = Mod.getPath().str(); 2774 llvm::DIModule *DIMod = 2775 DBuilder.createModule(Parent, Mod.getModuleName(), ConfigMacros, 2776 RemapPath(IncludePath)); 2777 ModuleCache[M].reset(DIMod); 2778 return DIMod; 2779 } 2780 2781 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty, 2782 llvm::DIFile *Unit) { 2783 ObjCInterfaceDecl *ID = Ty->getDecl(); 2784 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); 2785 unsigned Line = getLineNumber(ID->getLocation()); 2786 unsigned RuntimeLang = TheCU->getSourceLanguage(); 2787 2788 // Bit size, align and offset of the type. 2789 uint64_t Size = CGM.getContext().getTypeSize(Ty); 2790 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 2791 2792 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 2793 if (ID->getImplementation()) 2794 Flags |= llvm::DINode::FlagObjcClassComplete; 2795 2796 llvm::DIScope *Mod = getParentModuleOrNull(ID); 2797 llvm::DICompositeType *RealDecl = DBuilder.createStructType( 2798 Mod ? Mod : Unit, ID->getName(), DefUnit, Line, Size, Align, Flags, 2799 nullptr, llvm::DINodeArray(), RuntimeLang); 2800 2801 QualType QTy(Ty, 0); 2802 TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl); 2803 2804 // Push the struct on region stack. 2805 LexicalBlockStack.emplace_back(RealDecl); 2806 RegionMap[Ty->getDecl()].reset(RealDecl); 2807 2808 // Convert all the elements. 2809 SmallVector<llvm::Metadata *, 16> EltTys; 2810 2811 ObjCInterfaceDecl *SClass = ID->getSuperClass(); 2812 if (SClass) { 2813 llvm::DIType *SClassTy = 2814 getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit); 2815 if (!SClassTy) 2816 return nullptr; 2817 2818 llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0, 2819 llvm::DINode::FlagZero); 2820 EltTys.push_back(InhTag); 2821 } 2822 2823 // Create entries for all of the properties. 2824 auto AddProperty = [&](const ObjCPropertyDecl *PD) { 2825 SourceLocation Loc = PD->getLocation(); 2826 llvm::DIFile *PUnit = getOrCreateFile(Loc); 2827 unsigned PLine = getLineNumber(Loc); 2828 ObjCMethodDecl *Getter = PD->getGetterMethodDecl(); 2829 ObjCMethodDecl *Setter = PD->getSetterMethodDecl(); 2830 llvm::MDNode *PropertyNode = DBuilder.createObjCProperty( 2831 PD->getName(), PUnit, PLine, 2832 hasDefaultGetterName(PD, Getter) ? "" 2833 : getSelectorName(PD->getGetterName()), 2834 hasDefaultSetterName(PD, Setter) ? "" 2835 : getSelectorName(PD->getSetterName()), 2836 PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit)); 2837 EltTys.push_back(PropertyNode); 2838 }; 2839 { 2840 // Use 'char' for the isClassProperty bit as DenseSet requires space for 2841 // empty/tombstone keys in the data type (and bool is too small for that). 2842 typedef std::pair<char, const IdentifierInfo *> IsClassAndIdent; 2843 /// List of already emitted properties. Two distinct class and instance 2844 /// properties can share the same identifier (but not two instance 2845 /// properties or two class properties). 2846 llvm::DenseSet<IsClassAndIdent> PropertySet; 2847 /// Returns the IsClassAndIdent key for the given property. 2848 auto GetIsClassAndIdent = [](const ObjCPropertyDecl *PD) { 2849 return std::make_pair(PD->isClassProperty(), PD->getIdentifier()); 2850 }; 2851 for (const ObjCCategoryDecl *ClassExt : ID->known_extensions()) 2852 for (auto *PD : ClassExt->properties()) { 2853 PropertySet.insert(GetIsClassAndIdent(PD)); 2854 AddProperty(PD); 2855 } 2856 for (const auto *PD : ID->properties()) { 2857 // Don't emit duplicate metadata for properties that were already in a 2858 // class extension. 2859 if (!PropertySet.insert(GetIsClassAndIdent(PD)).second) 2860 continue; 2861 AddProperty(PD); 2862 } 2863 } 2864 2865 const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID); 2866 unsigned FieldNo = 0; 2867 for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field; 2868 Field = Field->getNextIvar(), ++FieldNo) { 2869 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 2870 if (!FieldTy) 2871 return nullptr; 2872 2873 StringRef FieldName = Field->getName(); 2874 2875 // Ignore unnamed fields. 2876 if (FieldName.empty()) 2877 continue; 2878 2879 // Get the location for the field. 2880 llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation()); 2881 unsigned FieldLine = getLineNumber(Field->getLocation()); 2882 QualType FType = Field->getType(); 2883 uint64_t FieldSize = 0; 2884 uint32_t FieldAlign = 0; 2885 2886 if (!FType->isIncompleteArrayType()) { 2887 2888 // Bit size, align and offset of the type. 2889 FieldSize = Field->isBitField() 2890 ? Field->getBitWidthValue(CGM.getContext()) 2891 : CGM.getContext().getTypeSize(FType); 2892 FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); 2893 } 2894 2895 uint64_t FieldOffset; 2896 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2897 // We don't know the runtime offset of an ivar if we're using the 2898 // non-fragile ABI. For bitfields, use the bit offset into the first 2899 // byte of storage of the bitfield. For other fields, use zero. 2900 if (Field->isBitField()) { 2901 FieldOffset = 2902 CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field); 2903 FieldOffset %= CGM.getContext().getCharWidth(); 2904 } else { 2905 FieldOffset = 0; 2906 } 2907 } else { 2908 FieldOffset = RL.getFieldOffset(FieldNo); 2909 } 2910 2911 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 2912 if (Field->getAccessControl() == ObjCIvarDecl::Protected) 2913 Flags = llvm::DINode::FlagProtected; 2914 else if (Field->getAccessControl() == ObjCIvarDecl::Private) 2915 Flags = llvm::DINode::FlagPrivate; 2916 else if (Field->getAccessControl() == ObjCIvarDecl::Public) 2917 Flags = llvm::DINode::FlagPublic; 2918 2919 llvm::MDNode *PropertyNode = nullptr; 2920 if (ObjCImplementationDecl *ImpD = ID->getImplementation()) { 2921 if (ObjCPropertyImplDecl *PImpD = 2922 ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) { 2923 if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) { 2924 SourceLocation Loc = PD->getLocation(); 2925 llvm::DIFile *PUnit = getOrCreateFile(Loc); 2926 unsigned PLine = getLineNumber(Loc); 2927 ObjCMethodDecl *Getter = PImpD->getGetterMethodDecl(); 2928 ObjCMethodDecl *Setter = PImpD->getSetterMethodDecl(); 2929 PropertyNode = DBuilder.createObjCProperty( 2930 PD->getName(), PUnit, PLine, 2931 hasDefaultGetterName(PD, Getter) 2932 ? "" 2933 : getSelectorName(PD->getGetterName()), 2934 hasDefaultSetterName(PD, Setter) 2935 ? "" 2936 : getSelectorName(PD->getSetterName()), 2937 PD->getPropertyAttributes(), 2938 getOrCreateType(PD->getType(), PUnit)); 2939 } 2940 } 2941 } 2942 FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine, 2943 FieldSize, FieldAlign, FieldOffset, Flags, 2944 FieldTy, PropertyNode); 2945 EltTys.push_back(FieldTy); 2946 } 2947 2948 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 2949 DBuilder.replaceArrays(RealDecl, Elements); 2950 2951 LexicalBlockStack.pop_back(); 2952 return RealDecl; 2953 } 2954 2955 llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty, 2956 llvm::DIFile *Unit) { 2957 if (Ty->isExtVectorBoolType()) { 2958 // Boolean ext_vector_type(N) are special because their real element type 2959 // (bits of bit size) is not their Clang element type (_Bool of size byte). 2960 // For now, we pretend the boolean vector were actually a vector of bytes 2961 // (where each byte represents 8 bits of the actual vector). 2962 // FIXME Debug info should actually represent this proper as a vector mask 2963 // type. 2964 auto &Ctx = CGM.getContext(); 2965 uint64_t Size = CGM.getContext().getTypeSize(Ty); 2966 uint64_t NumVectorBytes = Size / Ctx.getCharWidth(); 2967 2968 // Construct the vector of 'char' type. 2969 QualType CharVecTy = Ctx.getVectorType(Ctx.CharTy, NumVectorBytes, 2970 VectorType::GenericVector); 2971 return CreateType(CharVecTy->getAs<VectorType>(), Unit); 2972 } 2973 2974 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); 2975 int64_t Count = Ty->getNumElements(); 2976 2977 llvm::Metadata *Subscript; 2978 QualType QTy(Ty, 0); 2979 auto SizeExpr = SizeExprCache.find(QTy); 2980 if (SizeExpr != SizeExprCache.end()) 2981 Subscript = DBuilder.getOrCreateSubrange( 2982 SizeExpr->getSecond() /*count*/, nullptr /*lowerBound*/, 2983 nullptr /*upperBound*/, nullptr /*stride*/); 2984 else { 2985 auto *CountNode = 2986 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 2987 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count ? Count : -1)); 2988 Subscript = DBuilder.getOrCreateSubrange( 2989 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 2990 nullptr /*stride*/); 2991 } 2992 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 2993 2994 uint64_t Size = CGM.getContext().getTypeSize(Ty); 2995 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 2996 2997 return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray); 2998 } 2999 3000 llvm::DIType *CGDebugInfo::CreateType(const ConstantMatrixType *Ty, 3001 llvm::DIFile *Unit) { 3002 // FIXME: Create another debug type for matrices 3003 // For the time being, it treats it like a nested ArrayType. 3004 3005 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); 3006 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3007 uint32_t Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3008 3009 // Create ranges for both dimensions. 3010 llvm::SmallVector<llvm::Metadata *, 2> Subscripts; 3011 auto *ColumnCountNode = 3012 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3013 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumColumns())); 3014 auto *RowCountNode = 3015 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3016 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumRows())); 3017 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3018 ColumnCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3019 nullptr /*stride*/)); 3020 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3021 RowCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3022 nullptr /*stride*/)); 3023 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); 3024 return DBuilder.createArrayType(Size, Align, ElementTy, SubscriptArray); 3025 } 3026 3027 llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) { 3028 uint64_t Size; 3029 uint32_t Align; 3030 3031 // FIXME: make getTypeAlign() aware of VLAs and incomplete array types 3032 if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) { 3033 Size = 0; 3034 Align = getTypeAlignIfRequired(CGM.getContext().getBaseElementType(VAT), 3035 CGM.getContext()); 3036 } else if (Ty->isIncompleteArrayType()) { 3037 Size = 0; 3038 if (Ty->getElementType()->isIncompleteType()) 3039 Align = 0; 3040 else 3041 Align = getTypeAlignIfRequired(Ty->getElementType(), CGM.getContext()); 3042 } else if (Ty->isIncompleteType()) { 3043 Size = 0; 3044 Align = 0; 3045 } else { 3046 // Size and align of the whole array, not the element type. 3047 Size = CGM.getContext().getTypeSize(Ty); 3048 Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3049 } 3050 3051 // Add the dimensions of the array. FIXME: This loses CV qualifiers from 3052 // interior arrays, do we care? Why aren't nested arrays represented the 3053 // obvious/recursive way? 3054 SmallVector<llvm::Metadata *, 8> Subscripts; 3055 QualType EltTy(Ty, 0); 3056 while ((Ty = dyn_cast<ArrayType>(EltTy))) { 3057 // If the number of elements is known, then count is that number. Otherwise, 3058 // it's -1. This allows us to represent a subrange with an array of 0 3059 // elements, like this: 3060 // 3061 // struct foo { 3062 // int x[0]; 3063 // }; 3064 int64_t Count = -1; // Count == -1 is an unbounded array. 3065 if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty)) 3066 Count = CAT->getSize().getZExtValue(); 3067 else if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) { 3068 if (Expr *Size = VAT->getSizeExpr()) { 3069 Expr::EvalResult Result; 3070 if (Size->EvaluateAsInt(Result, CGM.getContext())) 3071 Count = Result.Val.getInt().getExtValue(); 3072 } 3073 } 3074 3075 auto SizeNode = SizeExprCache.find(EltTy); 3076 if (SizeNode != SizeExprCache.end()) 3077 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3078 SizeNode->getSecond() /*count*/, nullptr /*lowerBound*/, 3079 nullptr /*upperBound*/, nullptr /*stride*/)); 3080 else { 3081 auto *CountNode = 3082 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3083 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count)); 3084 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3085 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3086 nullptr /*stride*/)); 3087 } 3088 EltTy = Ty->getElementType(); 3089 } 3090 3091 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); 3092 3093 return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit), 3094 SubscriptArray); 3095 } 3096 3097 llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty, 3098 llvm::DIFile *Unit) { 3099 return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty, 3100 Ty->getPointeeType(), Unit); 3101 } 3102 3103 llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty, 3104 llvm::DIFile *Unit) { 3105 llvm::dwarf::Tag Tag = llvm::dwarf::DW_TAG_rvalue_reference_type; 3106 // DW_TAG_rvalue_reference_type was introduced in DWARF 4. 3107 if (CGM.getCodeGenOpts().DebugStrictDwarf && 3108 CGM.getCodeGenOpts().DwarfVersion < 4) 3109 Tag = llvm::dwarf::DW_TAG_reference_type; 3110 3111 return CreatePointerLikeType(Tag, Ty, Ty->getPointeeType(), Unit); 3112 } 3113 3114 llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty, 3115 llvm::DIFile *U) { 3116 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 3117 uint64_t Size = 0; 3118 3119 if (!Ty->isIncompleteType()) { 3120 Size = CGM.getContext().getTypeSize(Ty); 3121 3122 // Set the MS inheritance model. There is no flag for the unspecified model. 3123 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3124 switch (Ty->getMostRecentCXXRecordDecl()->getMSInheritanceModel()) { 3125 case MSInheritanceModel::Single: 3126 Flags |= llvm::DINode::FlagSingleInheritance; 3127 break; 3128 case MSInheritanceModel::Multiple: 3129 Flags |= llvm::DINode::FlagMultipleInheritance; 3130 break; 3131 case MSInheritanceModel::Virtual: 3132 Flags |= llvm::DINode::FlagVirtualInheritance; 3133 break; 3134 case MSInheritanceModel::Unspecified: 3135 break; 3136 } 3137 } 3138 } 3139 3140 llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U); 3141 if (Ty->isMemberDataPointerType()) 3142 return DBuilder.createMemberPointerType( 3143 getOrCreateType(Ty->getPointeeType(), U), ClassType, Size, /*Align=*/0, 3144 Flags); 3145 3146 const FunctionProtoType *FPT = 3147 Ty->getPointeeType()->getAs<FunctionProtoType>(); 3148 return DBuilder.createMemberPointerType( 3149 getOrCreateInstanceMethodType( 3150 CXXMethodDecl::getThisType(FPT, Ty->getMostRecentCXXRecordDecl()), 3151 FPT, U, false), 3152 ClassType, Size, /*Align=*/0, Flags); 3153 } 3154 3155 llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) { 3156 auto *FromTy = getOrCreateType(Ty->getValueType(), U); 3157 return DBuilder.createQualifiedType(llvm::dwarf::DW_TAG_atomic_type, FromTy); 3158 } 3159 3160 llvm::DIType *CGDebugInfo::CreateType(const PipeType *Ty, llvm::DIFile *U) { 3161 return getOrCreateType(Ty->getElementType(), U); 3162 } 3163 3164 llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) { 3165 const EnumDecl *ED = Ty->getDecl(); 3166 3167 uint64_t Size = 0; 3168 uint32_t Align = 0; 3169 if (!ED->getTypeForDecl()->isIncompleteType()) { 3170 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); 3171 Align = getDeclAlignIfRequired(ED, CGM.getContext()); 3172 } 3173 3174 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3175 3176 bool isImportedFromModule = 3177 DebugTypeExtRefs && ED->isFromASTFile() && ED->getDefinition(); 3178 3179 // If this is just a forward declaration, construct an appropriately 3180 // marked node and just return it. 3181 if (isImportedFromModule || !ED->getDefinition()) { 3182 // Note that it is possible for enums to be created as part of 3183 // their own declcontext. In this case a FwdDecl will be created 3184 // twice. This doesn't cause a problem because both FwdDecls are 3185 // entered into the ReplaceMap: finalize() will replace the first 3186 // FwdDecl with the second and then replace the second with 3187 // complete type. 3188 llvm::DIScope *EDContext = getDeclContextDescriptor(ED); 3189 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); 3190 llvm::TempDIScope TmpContext(DBuilder.createReplaceableCompositeType( 3191 llvm::dwarf::DW_TAG_enumeration_type, "", TheCU, DefUnit, 0)); 3192 3193 unsigned Line = getLineNumber(ED->getLocation()); 3194 StringRef EDName = ED->getName(); 3195 llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType( 3196 llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line, 3197 0, Size, Align, llvm::DINode::FlagFwdDecl, Identifier); 3198 3199 ReplaceMap.emplace_back( 3200 std::piecewise_construct, std::make_tuple(Ty), 3201 std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); 3202 return RetTy; 3203 } 3204 3205 return CreateTypeDefinition(Ty); 3206 } 3207 3208 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) { 3209 const EnumDecl *ED = Ty->getDecl(); 3210 uint64_t Size = 0; 3211 uint32_t Align = 0; 3212 if (!ED->getTypeForDecl()->isIncompleteType()) { 3213 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); 3214 Align = getDeclAlignIfRequired(ED, CGM.getContext()); 3215 } 3216 3217 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3218 3219 SmallVector<llvm::Metadata *, 16> Enumerators; 3220 ED = ED->getDefinition(); 3221 for (const auto *Enum : ED->enumerators()) { 3222 Enumerators.push_back( 3223 DBuilder.createEnumerator(Enum->getName(), Enum->getInitVal())); 3224 } 3225 3226 // Return a CompositeType for the enum itself. 3227 llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators); 3228 3229 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); 3230 unsigned Line = getLineNumber(ED->getLocation()); 3231 llvm::DIScope *EnumContext = getDeclContextDescriptor(ED); 3232 llvm::DIType *ClassTy = getOrCreateType(ED->getIntegerType(), DefUnit); 3233 return DBuilder.createEnumerationType(EnumContext, ED->getName(), DefUnit, 3234 Line, Size, Align, EltArray, ClassTy, 3235 Identifier, ED->isScoped()); 3236 } 3237 3238 llvm::DIMacro *CGDebugInfo::CreateMacro(llvm::DIMacroFile *Parent, 3239 unsigned MType, SourceLocation LineLoc, 3240 StringRef Name, StringRef Value) { 3241 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); 3242 return DBuilder.createMacro(Parent, Line, MType, Name, Value); 3243 } 3244 3245 llvm::DIMacroFile *CGDebugInfo::CreateTempMacroFile(llvm::DIMacroFile *Parent, 3246 SourceLocation LineLoc, 3247 SourceLocation FileLoc) { 3248 llvm::DIFile *FName = getOrCreateFile(FileLoc); 3249 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); 3250 return DBuilder.createTempMacroFile(Parent, Line, FName); 3251 } 3252 3253 static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) { 3254 Qualifiers Quals; 3255 do { 3256 Qualifiers InnerQuals = T.getLocalQualifiers(); 3257 // Qualifiers::operator+() doesn't like it if you add a Qualifier 3258 // that is already there. 3259 Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals); 3260 Quals += InnerQuals; 3261 QualType LastT = T; 3262 switch (T->getTypeClass()) { 3263 default: 3264 return C.getQualifiedType(T.getTypePtr(), Quals); 3265 case Type::TemplateSpecialization: { 3266 const auto *Spec = cast<TemplateSpecializationType>(T); 3267 if (Spec->isTypeAlias()) 3268 return C.getQualifiedType(T.getTypePtr(), Quals); 3269 T = Spec->desugar(); 3270 break; 3271 } 3272 case Type::TypeOfExpr: 3273 T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType(); 3274 break; 3275 case Type::TypeOf: 3276 T = cast<TypeOfType>(T)->getUnderlyingType(); 3277 break; 3278 case Type::Decltype: 3279 T = cast<DecltypeType>(T)->getUnderlyingType(); 3280 break; 3281 case Type::UnaryTransform: 3282 T = cast<UnaryTransformType>(T)->getUnderlyingType(); 3283 break; 3284 case Type::Attributed: 3285 T = cast<AttributedType>(T)->getEquivalentType(); 3286 break; 3287 case Type::BTFTagAttributed: 3288 T = cast<BTFTagAttributedType>(T)->getWrappedType(); 3289 break; 3290 case Type::Elaborated: 3291 T = cast<ElaboratedType>(T)->getNamedType(); 3292 break; 3293 case Type::Using: 3294 T = cast<UsingType>(T)->getUnderlyingType(); 3295 break; 3296 case Type::Paren: 3297 T = cast<ParenType>(T)->getInnerType(); 3298 break; 3299 case Type::MacroQualified: 3300 T = cast<MacroQualifiedType>(T)->getUnderlyingType(); 3301 break; 3302 case Type::SubstTemplateTypeParm: 3303 T = cast<SubstTemplateTypeParmType>(T)->getReplacementType(); 3304 break; 3305 case Type::Auto: 3306 case Type::DeducedTemplateSpecialization: { 3307 QualType DT = cast<DeducedType>(T)->getDeducedType(); 3308 assert(!DT.isNull() && "Undeduced types shouldn't reach here."); 3309 T = DT; 3310 break; 3311 } 3312 case Type::Adjusted: 3313 case Type::Decayed: 3314 // Decayed and adjusted types use the adjusted type in LLVM and DWARF. 3315 T = cast<AdjustedType>(T)->getAdjustedType(); 3316 break; 3317 } 3318 3319 assert(T != LastT && "Type unwrapping failed to unwrap!"); 3320 (void)LastT; 3321 } while (true); 3322 } 3323 3324 llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) { 3325 assert(Ty == UnwrapTypeForDebugInfo(Ty, CGM.getContext())); 3326 auto It = TypeCache.find(Ty.getAsOpaquePtr()); 3327 if (It != TypeCache.end()) { 3328 // Verify that the debug info still exists. 3329 if (llvm::Metadata *V = It->second) 3330 return cast<llvm::DIType>(V); 3331 } 3332 3333 return nullptr; 3334 } 3335 3336 void CGDebugInfo::completeTemplateDefinition( 3337 const ClassTemplateSpecializationDecl &SD) { 3338 completeUnusedClass(SD); 3339 } 3340 3341 void CGDebugInfo::completeUnusedClass(const CXXRecordDecl &D) { 3342 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 3343 return; 3344 3345 completeClassData(&D); 3346 // In case this type has no member function definitions being emitted, ensure 3347 // it is retained 3348 RetainedTypes.push_back(CGM.getContext().getRecordType(&D).getAsOpaquePtr()); 3349 } 3350 3351 llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit) { 3352 if (Ty.isNull()) 3353 return nullptr; 3354 3355 llvm::TimeTraceScope TimeScope("DebugType", [&]() { 3356 std::string Name; 3357 llvm::raw_string_ostream OS(Name); 3358 Ty.print(OS, getPrintingPolicy()); 3359 return Name; 3360 }); 3361 3362 // Unwrap the type as needed for debug information. 3363 Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext()); 3364 3365 if (auto *T = getTypeOrNull(Ty)) 3366 return T; 3367 3368 llvm::DIType *Res = CreateTypeNode(Ty, Unit); 3369 void *TyPtr = Ty.getAsOpaquePtr(); 3370 3371 // And update the type cache. 3372 TypeCache[TyPtr].reset(Res); 3373 3374 return Res; 3375 } 3376 3377 llvm::DIModule *CGDebugInfo::getParentModuleOrNull(const Decl *D) { 3378 // A forward declaration inside a module header does not belong to the module. 3379 if (isa<RecordDecl>(D) && !cast<RecordDecl>(D)->getDefinition()) 3380 return nullptr; 3381 if (DebugTypeExtRefs && D->isFromASTFile()) { 3382 // Record a reference to an imported clang module or precompiled header. 3383 auto *Reader = CGM.getContext().getExternalSource(); 3384 auto Idx = D->getOwningModuleID(); 3385 auto Info = Reader->getSourceDescriptor(Idx); 3386 if (Info) 3387 return getOrCreateModuleRef(*Info, /*SkeletonCU=*/true); 3388 } else if (ClangModuleMap) { 3389 // We are building a clang module or a precompiled header. 3390 // 3391 // TODO: When D is a CXXRecordDecl or a C++ Enum, the ODR applies 3392 // and it wouldn't be necessary to specify the parent scope 3393 // because the type is already unique by definition (it would look 3394 // like the output of -fno-standalone-debug). On the other hand, 3395 // the parent scope helps a consumer to quickly locate the object 3396 // file where the type's definition is located, so it might be 3397 // best to make this behavior a command line or debugger tuning 3398 // option. 3399 if (Module *M = D->getOwningModule()) { 3400 // This is a (sub-)module. 3401 auto Info = ASTSourceDescriptor(*M); 3402 return getOrCreateModuleRef(Info, /*SkeletonCU=*/false); 3403 } else { 3404 // This the precompiled header being built. 3405 return getOrCreateModuleRef(PCHDescriptor, /*SkeletonCU=*/false); 3406 } 3407 } 3408 3409 return nullptr; 3410 } 3411 3412 llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit) { 3413 // Handle qualifiers, which recursively handles what they refer to. 3414 if (Ty.hasLocalQualifiers()) 3415 return CreateQualifiedType(Ty, Unit); 3416 3417 // Work out details of type. 3418 switch (Ty->getTypeClass()) { 3419 #define TYPE(Class, Base) 3420 #define ABSTRACT_TYPE(Class, Base) 3421 #define NON_CANONICAL_TYPE(Class, Base) 3422 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3423 #include "clang/AST/TypeNodes.inc" 3424 llvm_unreachable("Dependent types cannot show up in debug information"); 3425 3426 case Type::ExtVector: 3427 case Type::Vector: 3428 return CreateType(cast<VectorType>(Ty), Unit); 3429 case Type::ConstantMatrix: 3430 return CreateType(cast<ConstantMatrixType>(Ty), Unit); 3431 case Type::ObjCObjectPointer: 3432 return CreateType(cast<ObjCObjectPointerType>(Ty), Unit); 3433 case Type::ObjCObject: 3434 return CreateType(cast<ObjCObjectType>(Ty), Unit); 3435 case Type::ObjCTypeParam: 3436 return CreateType(cast<ObjCTypeParamType>(Ty), Unit); 3437 case Type::ObjCInterface: 3438 return CreateType(cast<ObjCInterfaceType>(Ty), Unit); 3439 case Type::Builtin: 3440 return CreateType(cast<BuiltinType>(Ty)); 3441 case Type::Complex: 3442 return CreateType(cast<ComplexType>(Ty)); 3443 case Type::Pointer: 3444 return CreateType(cast<PointerType>(Ty), Unit); 3445 case Type::BlockPointer: 3446 return CreateType(cast<BlockPointerType>(Ty), Unit); 3447 case Type::Typedef: 3448 return CreateType(cast<TypedefType>(Ty), Unit); 3449 case Type::Record: 3450 return CreateType(cast<RecordType>(Ty)); 3451 case Type::Enum: 3452 return CreateEnumType(cast<EnumType>(Ty)); 3453 case Type::FunctionProto: 3454 case Type::FunctionNoProto: 3455 return CreateType(cast<FunctionType>(Ty), Unit); 3456 case Type::ConstantArray: 3457 case Type::VariableArray: 3458 case Type::IncompleteArray: 3459 return CreateType(cast<ArrayType>(Ty), Unit); 3460 3461 case Type::LValueReference: 3462 return CreateType(cast<LValueReferenceType>(Ty), Unit); 3463 case Type::RValueReference: 3464 return CreateType(cast<RValueReferenceType>(Ty), Unit); 3465 3466 case Type::MemberPointer: 3467 return CreateType(cast<MemberPointerType>(Ty), Unit); 3468 3469 case Type::Atomic: 3470 return CreateType(cast<AtomicType>(Ty), Unit); 3471 3472 case Type::BitInt: 3473 return CreateType(cast<BitIntType>(Ty)); 3474 case Type::Pipe: 3475 return CreateType(cast<PipeType>(Ty), Unit); 3476 3477 case Type::TemplateSpecialization: 3478 return CreateType(cast<TemplateSpecializationType>(Ty), Unit); 3479 3480 case Type::Auto: 3481 case Type::Attributed: 3482 case Type::BTFTagAttributed: 3483 case Type::Adjusted: 3484 case Type::Decayed: 3485 case Type::DeducedTemplateSpecialization: 3486 case Type::Elaborated: 3487 case Type::Using: 3488 case Type::Paren: 3489 case Type::MacroQualified: 3490 case Type::SubstTemplateTypeParm: 3491 case Type::TypeOfExpr: 3492 case Type::TypeOf: 3493 case Type::Decltype: 3494 case Type::UnaryTransform: 3495 break; 3496 } 3497 3498 llvm_unreachable("type should have been unwrapped!"); 3499 } 3500 3501 llvm::DICompositeType * 3502 CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty) { 3503 QualType QTy(Ty, 0); 3504 3505 auto *T = cast_or_null<llvm::DICompositeType>(getTypeOrNull(QTy)); 3506 3507 // We may have cached a forward decl when we could have created 3508 // a non-forward decl. Go ahead and create a non-forward decl 3509 // now. 3510 if (T && !T->isForwardDecl()) 3511 return T; 3512 3513 // Otherwise create the type. 3514 llvm::DICompositeType *Res = CreateLimitedType(Ty); 3515 3516 // Propagate members from the declaration to the definition 3517 // CreateType(const RecordType*) will overwrite this with the members in the 3518 // correct order if the full type is needed. 3519 DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray()); 3520 3521 // And update the type cache. 3522 TypeCache[QTy.getAsOpaquePtr()].reset(Res); 3523 return Res; 3524 } 3525 3526 // TODO: Currently used for context chains when limiting debug info. 3527 llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) { 3528 RecordDecl *RD = Ty->getDecl(); 3529 3530 // Get overall information about the record type for the debug info. 3531 StringRef RDName = getClassName(RD); 3532 const SourceLocation Loc = RD->getLocation(); 3533 llvm::DIFile *DefUnit = nullptr; 3534 unsigned Line = 0; 3535 if (Loc.isValid()) { 3536 DefUnit = getOrCreateFile(Loc); 3537 Line = getLineNumber(Loc); 3538 } 3539 3540 llvm::DIScope *RDContext = getDeclContextDescriptor(RD); 3541 3542 // If we ended up creating the type during the context chain construction, 3543 // just return that. 3544 auto *T = cast_or_null<llvm::DICompositeType>( 3545 getTypeOrNull(CGM.getContext().getRecordType(RD))); 3546 if (T && (!T->isForwardDecl() || !RD->getDefinition())) 3547 return T; 3548 3549 // If this is just a forward or incomplete declaration, construct an 3550 // appropriately marked node and just return it. 3551 const RecordDecl *D = RD->getDefinition(); 3552 if (!D || !D->isCompleteDefinition()) 3553 return getOrCreateRecordFwdDecl(Ty, RDContext); 3554 3555 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3556 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 3557 3558 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3559 3560 // Explicitly record the calling convention and export symbols for C++ 3561 // records. 3562 auto Flags = llvm::DINode::FlagZero; 3563 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3564 if (CGM.getCXXABI().getRecordArgABI(CXXRD) == CGCXXABI::RAA_Indirect) 3565 Flags |= llvm::DINode::FlagTypePassByReference; 3566 else 3567 Flags |= llvm::DINode::FlagTypePassByValue; 3568 3569 // Record if a C++ record is non-trivial type. 3570 if (!CXXRD->isTrivial()) 3571 Flags |= llvm::DINode::FlagNonTrivial; 3572 3573 // Record exports it symbols to the containing structure. 3574 if (CXXRD->isAnonymousStructOrUnion()) 3575 Flags |= llvm::DINode::FlagExportSymbols; 3576 3577 Flags |= getAccessFlag(CXXRD->getAccess(), 3578 dyn_cast<CXXRecordDecl>(CXXRD->getDeclContext())); 3579 } 3580 3581 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 3582 llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType( 3583 getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align, 3584 Flags, Identifier, Annotations); 3585 3586 // Elements of composite types usually have back to the type, creating 3587 // uniquing cycles. Distinct nodes are more efficient. 3588 switch (RealDecl->getTag()) { 3589 default: 3590 llvm_unreachable("invalid composite type tag"); 3591 3592 case llvm::dwarf::DW_TAG_array_type: 3593 case llvm::dwarf::DW_TAG_enumeration_type: 3594 // Array elements and most enumeration elements don't have back references, 3595 // so they don't tend to be involved in uniquing cycles and there is some 3596 // chance of merging them when linking together two modules. Only make 3597 // them distinct if they are ODR-uniqued. 3598 if (Identifier.empty()) 3599 break; 3600 LLVM_FALLTHROUGH; 3601 3602 case llvm::dwarf::DW_TAG_structure_type: 3603 case llvm::dwarf::DW_TAG_union_type: 3604 case llvm::dwarf::DW_TAG_class_type: 3605 // Immediately resolve to a distinct node. 3606 RealDecl = 3607 llvm::MDNode::replaceWithDistinct(llvm::TempDICompositeType(RealDecl)); 3608 break; 3609 } 3610 3611 RegionMap[Ty->getDecl()].reset(RealDecl); 3612 TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl); 3613 3614 if (const auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 3615 DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(), 3616 CollectCXXTemplateParams(TSpecial, DefUnit)); 3617 return RealDecl; 3618 } 3619 3620 void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD, 3621 llvm::DICompositeType *RealDecl) { 3622 // A class's primary base or the class itself contains the vtable. 3623 llvm::DICompositeType *ContainingType = nullptr; 3624 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 3625 if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) { 3626 // Seek non-virtual primary base root. 3627 while (true) { 3628 const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase); 3629 const CXXRecordDecl *PBT = BRL.getPrimaryBase(); 3630 if (PBT && !BRL.isPrimaryBaseVirtual()) 3631 PBase = PBT; 3632 else 3633 break; 3634 } 3635 ContainingType = cast<llvm::DICompositeType>( 3636 getOrCreateType(QualType(PBase->getTypeForDecl(), 0), 3637 getOrCreateFile(RD->getLocation()))); 3638 } else if (RD->isDynamicClass()) 3639 ContainingType = RealDecl; 3640 3641 DBuilder.replaceVTableHolder(RealDecl, ContainingType); 3642 } 3643 3644 llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType, 3645 StringRef Name, uint64_t *Offset) { 3646 llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit); 3647 uint64_t FieldSize = CGM.getContext().getTypeSize(FType); 3648 auto FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); 3649 llvm::DIType *Ty = 3650 DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize, FieldAlign, 3651 *Offset, llvm::DINode::FlagZero, FieldTy); 3652 *Offset += FieldSize; 3653 return Ty; 3654 } 3655 3656 void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit, 3657 StringRef &Name, 3658 StringRef &LinkageName, 3659 llvm::DIScope *&FDContext, 3660 llvm::DINodeArray &TParamsArray, 3661 llvm::DINode::DIFlags &Flags) { 3662 const auto *FD = cast<FunctionDecl>(GD.getCanonicalDecl().getDecl()); 3663 Name = getFunctionName(FD); 3664 // Use mangled name as linkage name for C/C++ functions. 3665 if (FD->getType()->getAs<FunctionProtoType>()) 3666 LinkageName = CGM.getMangledName(GD); 3667 if (FD->hasPrototype()) 3668 Flags |= llvm::DINode::FlagPrototyped; 3669 // No need to replicate the linkage name if it isn't different from the 3670 // subprogram name, no need to have it at all unless coverage is enabled or 3671 // debug is set to more than just line tables or extra debug info is needed. 3672 if (LinkageName == Name || (!CGM.getCodeGenOpts().EmitGcovArcs && 3673 !CGM.getCodeGenOpts().EmitGcovNotes && 3674 !CGM.getCodeGenOpts().DebugInfoForProfiling && 3675 !CGM.getCodeGenOpts().PseudoProbeForProfiling && 3676 DebugKind <= codegenoptions::DebugLineTablesOnly)) 3677 LinkageName = StringRef(); 3678 3679 // Emit the function scope in line tables only mode (if CodeView) to 3680 // differentiate between function names. 3681 if (CGM.getCodeGenOpts().hasReducedDebugInfo() || 3682 (DebugKind == codegenoptions::DebugLineTablesOnly && 3683 CGM.getCodeGenOpts().EmitCodeView)) { 3684 if (const NamespaceDecl *NSDecl = 3685 dyn_cast_or_null<NamespaceDecl>(FD->getDeclContext())) 3686 FDContext = getOrCreateNamespace(NSDecl); 3687 else if (const RecordDecl *RDecl = 3688 dyn_cast_or_null<RecordDecl>(FD->getDeclContext())) { 3689 llvm::DIScope *Mod = getParentModuleOrNull(RDecl); 3690 FDContext = getContextDescriptor(RDecl, Mod ? Mod : TheCU); 3691 } 3692 } 3693 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 3694 // Check if it is a noreturn-marked function 3695 if (FD->isNoReturn()) 3696 Flags |= llvm::DINode::FlagNoReturn; 3697 // Collect template parameters. 3698 TParamsArray = CollectFunctionTemplateParams(FD, Unit); 3699 } 3700 } 3701 3702 void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit, 3703 unsigned &LineNo, QualType &T, 3704 StringRef &Name, StringRef &LinkageName, 3705 llvm::MDTuple *&TemplateParameters, 3706 llvm::DIScope *&VDContext) { 3707 Unit = getOrCreateFile(VD->getLocation()); 3708 LineNo = getLineNumber(VD->getLocation()); 3709 3710 setLocation(VD->getLocation()); 3711 3712 T = VD->getType(); 3713 if (T->isIncompleteArrayType()) { 3714 // CodeGen turns int[] into int[1] so we'll do the same here. 3715 llvm::APInt ConstVal(32, 1); 3716 QualType ET = CGM.getContext().getAsArrayType(T)->getElementType(); 3717 3718 T = CGM.getContext().getConstantArrayType(ET, ConstVal, nullptr, 3719 ArrayType::Normal, 0); 3720 } 3721 3722 Name = VD->getName(); 3723 if (VD->getDeclContext() && !isa<FunctionDecl>(VD->getDeclContext()) && 3724 !isa<ObjCMethodDecl>(VD->getDeclContext())) 3725 LinkageName = CGM.getMangledName(VD); 3726 if (LinkageName == Name) 3727 LinkageName = StringRef(); 3728 3729 if (isa<VarTemplateSpecializationDecl>(VD)) { 3730 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VD, &*Unit); 3731 TemplateParameters = parameterNodes.get(); 3732 } else { 3733 TemplateParameters = nullptr; 3734 } 3735 3736 // Since we emit declarations (DW_AT_members) for static members, place the 3737 // definition of those static members in the namespace they were declared in 3738 // in the source code (the lexical decl context). 3739 // FIXME: Generalize this for even non-member global variables where the 3740 // declaration and definition may have different lexical decl contexts, once 3741 // we have support for emitting declarations of (non-member) global variables. 3742 const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext() 3743 : VD->getDeclContext(); 3744 // When a record type contains an in-line initialization of a static data 3745 // member, and the record type is marked as __declspec(dllexport), an implicit 3746 // definition of the member will be created in the record context. DWARF 3747 // doesn't seem to have a nice way to describe this in a form that consumers 3748 // are likely to understand, so fake the "normal" situation of a definition 3749 // outside the class by putting it in the global scope. 3750 if (DC->isRecord()) 3751 DC = CGM.getContext().getTranslationUnitDecl(); 3752 3753 llvm::DIScope *Mod = getParentModuleOrNull(VD); 3754 VDContext = getContextDescriptor(cast<Decl>(DC), Mod ? Mod : TheCU); 3755 } 3756 3757 llvm::DISubprogram *CGDebugInfo::getFunctionFwdDeclOrStub(GlobalDecl GD, 3758 bool Stub) { 3759 llvm::DINodeArray TParamsArray; 3760 StringRef Name, LinkageName; 3761 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 3762 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 3763 SourceLocation Loc = GD.getDecl()->getLocation(); 3764 llvm::DIFile *Unit = getOrCreateFile(Loc); 3765 llvm::DIScope *DContext = Unit; 3766 unsigned Line = getLineNumber(Loc); 3767 collectFunctionDeclProps(GD, Unit, Name, LinkageName, DContext, TParamsArray, 3768 Flags); 3769 auto *FD = cast<FunctionDecl>(GD.getDecl()); 3770 3771 // Build function type. 3772 SmallVector<QualType, 16> ArgTypes; 3773 for (const ParmVarDecl *Parm : FD->parameters()) 3774 ArgTypes.push_back(Parm->getType()); 3775 3776 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 3777 QualType FnType = CGM.getContext().getFunctionType( 3778 FD->getReturnType(), ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 3779 if (!FD->isExternallyVisible()) 3780 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 3781 if (CGM.getLangOpts().Optimize) 3782 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 3783 3784 if (Stub) { 3785 Flags |= getCallSiteRelatedAttrs(); 3786 SPFlags |= llvm::DISubprogram::SPFlagDefinition; 3787 return DBuilder.createFunction( 3788 DContext, Name, LinkageName, Unit, Line, 3789 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, 3790 TParamsArray.get(), getFunctionDeclaration(FD)); 3791 } 3792 3793 llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl( 3794 DContext, Name, LinkageName, Unit, Line, 3795 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, 3796 TParamsArray.get(), getFunctionDeclaration(FD)); 3797 const FunctionDecl *CanonDecl = FD->getCanonicalDecl(); 3798 FwdDeclReplaceMap.emplace_back(std::piecewise_construct, 3799 std::make_tuple(CanonDecl), 3800 std::make_tuple(SP)); 3801 return SP; 3802 } 3803 3804 llvm::DISubprogram *CGDebugInfo::getFunctionForwardDeclaration(GlobalDecl GD) { 3805 return getFunctionFwdDeclOrStub(GD, /* Stub = */ false); 3806 } 3807 3808 llvm::DISubprogram *CGDebugInfo::getFunctionStub(GlobalDecl GD) { 3809 return getFunctionFwdDeclOrStub(GD, /* Stub = */ true); 3810 } 3811 3812 llvm::DIGlobalVariable * 3813 CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) { 3814 QualType T; 3815 StringRef Name, LinkageName; 3816 SourceLocation Loc = VD->getLocation(); 3817 llvm::DIFile *Unit = getOrCreateFile(Loc); 3818 llvm::DIScope *DContext = Unit; 3819 unsigned Line = getLineNumber(Loc); 3820 llvm::MDTuple *TemplateParameters = nullptr; 3821 3822 collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, TemplateParameters, 3823 DContext); 3824 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 3825 auto *GV = DBuilder.createTempGlobalVariableFwdDecl( 3826 DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit), 3827 !VD->isExternallyVisible(), nullptr, TemplateParameters, Align); 3828 FwdDeclReplaceMap.emplace_back( 3829 std::piecewise_construct, 3830 std::make_tuple(cast<VarDecl>(VD->getCanonicalDecl())), 3831 std::make_tuple(static_cast<llvm::Metadata *>(GV))); 3832 return GV; 3833 } 3834 3835 llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) { 3836 // We only need a declaration (not a definition) of the type - so use whatever 3837 // we would otherwise do to get a type for a pointee. (forward declarations in 3838 // limited debug info, full definitions (if the type definition is available) 3839 // in unlimited debug info) 3840 if (const auto *TD = dyn_cast<TypeDecl>(D)) 3841 return getOrCreateType(CGM.getContext().getTypeDeclType(TD), 3842 getOrCreateFile(TD->getLocation())); 3843 auto I = DeclCache.find(D->getCanonicalDecl()); 3844 3845 if (I != DeclCache.end()) { 3846 auto N = I->second; 3847 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(N)) 3848 return GVE->getVariable(); 3849 return cast<llvm::DINode>(N); 3850 } 3851 3852 // Search imported declaration cache if it is already defined 3853 // as imported declaration. 3854 auto IE = ImportedDeclCache.find(D->getCanonicalDecl()); 3855 3856 if (IE != ImportedDeclCache.end()) { 3857 auto N = IE->second; 3858 if (auto *GVE = dyn_cast_or_null<llvm::DIImportedEntity>(N)) 3859 return cast<llvm::DINode>(GVE); 3860 return dyn_cast_or_null<llvm::DINode>(N); 3861 } 3862 3863 // No definition for now. Emit a forward definition that might be 3864 // merged with a potential upcoming definition. 3865 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 3866 return getFunctionForwardDeclaration(FD); 3867 else if (const auto *VD = dyn_cast<VarDecl>(D)) 3868 return getGlobalVariableForwardDeclaration(VD); 3869 3870 return nullptr; 3871 } 3872 3873 llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) { 3874 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) 3875 return nullptr; 3876 3877 const auto *FD = dyn_cast<FunctionDecl>(D); 3878 if (!FD) 3879 return nullptr; 3880 3881 // Setup context. 3882 auto *S = getDeclContextDescriptor(D); 3883 3884 auto MI = SPCache.find(FD->getCanonicalDecl()); 3885 if (MI == SPCache.end()) { 3886 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD->getCanonicalDecl())) { 3887 return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()), 3888 cast<llvm::DICompositeType>(S)); 3889 } 3890 } 3891 if (MI != SPCache.end()) { 3892 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); 3893 if (SP && !SP->isDefinition()) 3894 return SP; 3895 } 3896 3897 for (auto NextFD : FD->redecls()) { 3898 auto MI = SPCache.find(NextFD->getCanonicalDecl()); 3899 if (MI != SPCache.end()) { 3900 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); 3901 if (SP && !SP->isDefinition()) 3902 return SP; 3903 } 3904 } 3905 return nullptr; 3906 } 3907 3908 llvm::DISubprogram *CGDebugInfo::getObjCMethodDeclaration( 3909 const Decl *D, llvm::DISubroutineType *FnType, unsigned LineNo, 3910 llvm::DINode::DIFlags Flags, llvm::DISubprogram::DISPFlags SPFlags) { 3911 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) 3912 return nullptr; 3913 3914 const auto *OMD = dyn_cast<ObjCMethodDecl>(D); 3915 if (!OMD) 3916 return nullptr; 3917 3918 if (CGM.getCodeGenOpts().DwarfVersion < 5 && !OMD->isDirectMethod()) 3919 return nullptr; 3920 3921 if (OMD->isDirectMethod()) 3922 SPFlags |= llvm::DISubprogram::SPFlagObjCDirect; 3923 3924 // Starting with DWARF V5 method declarations are emitted as children of 3925 // the interface type. 3926 auto *ID = dyn_cast_or_null<ObjCInterfaceDecl>(D->getDeclContext()); 3927 if (!ID) 3928 ID = OMD->getClassInterface(); 3929 if (!ID) 3930 return nullptr; 3931 QualType QTy(ID->getTypeForDecl(), 0); 3932 auto It = TypeCache.find(QTy.getAsOpaquePtr()); 3933 if (It == TypeCache.end()) 3934 return nullptr; 3935 auto *InterfaceType = cast<llvm::DICompositeType>(It->second); 3936 llvm::DISubprogram *FD = DBuilder.createFunction( 3937 InterfaceType, getObjCMethodName(OMD), StringRef(), 3938 InterfaceType->getFile(), LineNo, FnType, LineNo, Flags, SPFlags); 3939 DBuilder.finalizeSubprogram(FD); 3940 ObjCMethodCache[ID].push_back({FD, OMD->isDirectMethod()}); 3941 return FD; 3942 } 3943 3944 // getOrCreateFunctionType - Construct type. If it is a c++ method, include 3945 // implicit parameter "this". 3946 llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D, 3947 QualType FnType, 3948 llvm::DIFile *F) { 3949 // In CodeView, we emit the function types in line tables only because the 3950 // only way to distinguish between functions is by display name and type. 3951 if (!D || (DebugKind <= codegenoptions::DebugLineTablesOnly && 3952 !CGM.getCodeGenOpts().EmitCodeView)) 3953 // Create fake but valid subroutine type. Otherwise -verify would fail, and 3954 // subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields. 3955 return DBuilder.createSubroutineType(DBuilder.getOrCreateTypeArray(None)); 3956 3957 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) 3958 return getOrCreateMethodType(Method, F, false); 3959 3960 const auto *FTy = FnType->getAs<FunctionType>(); 3961 CallingConv CC = FTy ? FTy->getCallConv() : CallingConv::CC_C; 3962 3963 if (const auto *OMethod = dyn_cast<ObjCMethodDecl>(D)) { 3964 // Add "self" and "_cmd" 3965 SmallVector<llvm::Metadata *, 16> Elts; 3966 3967 // First element is always return type. For 'void' functions it is NULL. 3968 QualType ResultTy = OMethod->getReturnType(); 3969 3970 // Replace the instancetype keyword with the actual type. 3971 if (ResultTy == CGM.getContext().getObjCInstanceType()) 3972 ResultTy = CGM.getContext().getPointerType( 3973 QualType(OMethod->getClassInterface()->getTypeForDecl(), 0)); 3974 3975 Elts.push_back(getOrCreateType(ResultTy, F)); 3976 // "self" pointer is always first argument. 3977 QualType SelfDeclTy; 3978 if (auto *SelfDecl = OMethod->getSelfDecl()) 3979 SelfDeclTy = SelfDecl->getType(); 3980 else if (auto *FPT = dyn_cast<FunctionProtoType>(FnType)) 3981 if (FPT->getNumParams() > 1) 3982 SelfDeclTy = FPT->getParamType(0); 3983 if (!SelfDeclTy.isNull()) 3984 Elts.push_back( 3985 CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F))); 3986 // "_cmd" pointer is always second argument. 3987 Elts.push_back(DBuilder.createArtificialType( 3988 getOrCreateType(CGM.getContext().getObjCSelType(), F))); 3989 // Get rest of the arguments. 3990 for (const auto *PI : OMethod->parameters()) 3991 Elts.push_back(getOrCreateType(PI->getType(), F)); 3992 // Variadic methods need a special marker at the end of the type list. 3993 if (OMethod->isVariadic()) 3994 Elts.push_back(DBuilder.createUnspecifiedParameter()); 3995 3996 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); 3997 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, 3998 getDwarfCC(CC)); 3999 } 4000 4001 // Handle variadic function types; they need an additional 4002 // unspecified parameter. 4003 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 4004 if (FD->isVariadic()) { 4005 SmallVector<llvm::Metadata *, 16> EltTys; 4006 EltTys.push_back(getOrCreateType(FD->getReturnType(), F)); 4007 if (const auto *FPT = dyn_cast<FunctionProtoType>(FnType)) 4008 for (QualType ParamType : FPT->param_types()) 4009 EltTys.push_back(getOrCreateType(ParamType, F)); 4010 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 4011 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); 4012 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, 4013 getDwarfCC(CC)); 4014 } 4015 4016 return cast<llvm::DISubroutineType>(getOrCreateType(FnType, F)); 4017 } 4018 4019 QualType 4020 CGDebugInfo::getFunctionType(const FunctionDecl *FD, QualType RetTy, 4021 const SmallVectorImpl<const VarDecl *> &Args) { 4022 CallingConv CC = CallingConv::CC_C; 4023 if (FD) 4024 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 4025 CC = SrcFnTy->getCallConv(); 4026 SmallVector<QualType, 16> ArgTypes; 4027 for (const VarDecl *VD : Args) 4028 ArgTypes.push_back(VD->getType()); 4029 return CGM.getContext().getFunctionType(RetTy, ArgTypes, 4030 FunctionProtoType::ExtProtoInfo(CC)); 4031 } 4032 4033 void CGDebugInfo::emitFunctionStart(GlobalDecl GD, SourceLocation Loc, 4034 SourceLocation ScopeLoc, QualType FnType, 4035 llvm::Function *Fn, bool CurFuncIsThunk) { 4036 StringRef Name; 4037 StringRef LinkageName; 4038 4039 FnBeginRegionCount.push_back(LexicalBlockStack.size()); 4040 4041 const Decl *D = GD.getDecl(); 4042 bool HasDecl = (D != nullptr); 4043 4044 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4045 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 4046 llvm::DIFile *Unit = getOrCreateFile(Loc); 4047 llvm::DIScope *FDContext = Unit; 4048 llvm::DINodeArray TParamsArray; 4049 if (!HasDecl) { 4050 // Use llvm function name. 4051 LinkageName = Fn->getName(); 4052 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4053 // If there is a subprogram for this function available then use it. 4054 auto FI = SPCache.find(FD->getCanonicalDecl()); 4055 if (FI != SPCache.end()) { 4056 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second); 4057 if (SP && SP->isDefinition()) { 4058 LexicalBlockStack.emplace_back(SP); 4059 RegionMap[D].reset(SP); 4060 return; 4061 } 4062 } 4063 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, 4064 TParamsArray, Flags); 4065 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) { 4066 Name = getObjCMethodName(OMD); 4067 Flags |= llvm::DINode::FlagPrototyped; 4068 } else if (isa<VarDecl>(D) && 4069 GD.getDynamicInitKind() != DynamicInitKind::NoStub) { 4070 // This is a global initializer or atexit destructor for a global variable. 4071 Name = getDynamicInitializerName(cast<VarDecl>(D), GD.getDynamicInitKind(), 4072 Fn); 4073 } else { 4074 Name = Fn->getName(); 4075 4076 if (isa<BlockDecl>(D)) 4077 LinkageName = Name; 4078 4079 Flags |= llvm::DINode::FlagPrototyped; 4080 } 4081 if (Name.startswith("\01")) 4082 Name = Name.substr(1); 4083 4084 if (!HasDecl || D->isImplicit() || D->hasAttr<ArtificialAttr>() || 4085 (isa<VarDecl>(D) && GD.getDynamicInitKind() != DynamicInitKind::NoStub)) { 4086 Flags |= llvm::DINode::FlagArtificial; 4087 // Artificial functions should not silently reuse CurLoc. 4088 CurLoc = SourceLocation(); 4089 } 4090 4091 if (CurFuncIsThunk) 4092 Flags |= llvm::DINode::FlagThunk; 4093 4094 if (Fn->hasLocalLinkage()) 4095 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 4096 if (CGM.getLangOpts().Optimize) 4097 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 4098 4099 llvm::DINode::DIFlags FlagsForDef = Flags | getCallSiteRelatedAttrs(); 4100 llvm::DISubprogram::DISPFlags SPFlagsForDef = 4101 SPFlags | llvm::DISubprogram::SPFlagDefinition; 4102 4103 const unsigned LineNo = getLineNumber(Loc.isValid() ? Loc : CurLoc); 4104 unsigned ScopeLine = getLineNumber(ScopeLoc); 4105 llvm::DISubroutineType *DIFnType = getOrCreateFunctionType(D, FnType, Unit); 4106 llvm::DISubprogram *Decl = nullptr; 4107 llvm::DINodeArray Annotations = nullptr; 4108 if (D) { 4109 Decl = isa<ObjCMethodDecl>(D) 4110 ? getObjCMethodDeclaration(D, DIFnType, LineNo, Flags, SPFlags) 4111 : getFunctionDeclaration(D); 4112 Annotations = CollectBTFDeclTagAnnotations(D); 4113 } 4114 4115 // FIXME: The function declaration we're constructing here is mostly reusing 4116 // declarations from CXXMethodDecl and not constructing new ones for arbitrary 4117 // FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for 4118 // all subprograms instead of the actual context since subprogram definitions 4119 // are emitted as CU level entities by the backend. 4120 llvm::DISubprogram *SP = DBuilder.createFunction( 4121 FDContext, Name, LinkageName, Unit, LineNo, DIFnType, ScopeLine, 4122 FlagsForDef, SPFlagsForDef, TParamsArray.get(), Decl, nullptr, 4123 Annotations); 4124 Fn->setSubprogram(SP); 4125 // We might get here with a VarDecl in the case we're generating 4126 // code for the initialization of globals. Do not record these decls 4127 // as they will overwrite the actual VarDecl Decl in the cache. 4128 if (HasDecl && isa<FunctionDecl>(D)) 4129 DeclCache[D->getCanonicalDecl()].reset(SP); 4130 4131 // Push the function onto the lexical block stack. 4132 LexicalBlockStack.emplace_back(SP); 4133 4134 if (HasDecl) 4135 RegionMap[D].reset(SP); 4136 } 4137 4138 void CGDebugInfo::EmitFunctionDecl(GlobalDecl GD, SourceLocation Loc, 4139 QualType FnType, llvm::Function *Fn) { 4140 StringRef Name; 4141 StringRef LinkageName; 4142 4143 const Decl *D = GD.getDecl(); 4144 if (!D) 4145 return; 4146 4147 llvm::TimeTraceScope TimeScope("DebugFunction", [&]() { 4148 return GetName(D, true); 4149 }); 4150 4151 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4152 llvm::DIFile *Unit = getOrCreateFile(Loc); 4153 bool IsDeclForCallSite = Fn ? true : false; 4154 llvm::DIScope *FDContext = 4155 IsDeclForCallSite ? Unit : getDeclContextDescriptor(D); 4156 llvm::DINodeArray TParamsArray; 4157 if (isa<FunctionDecl>(D)) { 4158 // If there is a DISubprogram for this function available then use it. 4159 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, 4160 TParamsArray, Flags); 4161 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) { 4162 Name = getObjCMethodName(OMD); 4163 Flags |= llvm::DINode::FlagPrototyped; 4164 } else { 4165 llvm_unreachable("not a function or ObjC method"); 4166 } 4167 if (!Name.empty() && Name[0] == '\01') 4168 Name = Name.substr(1); 4169 4170 if (D->isImplicit()) { 4171 Flags |= llvm::DINode::FlagArtificial; 4172 // Artificial functions without a location should not silently reuse CurLoc. 4173 if (Loc.isInvalid()) 4174 CurLoc = SourceLocation(); 4175 } 4176 unsigned LineNo = getLineNumber(Loc); 4177 unsigned ScopeLine = 0; 4178 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 4179 if (CGM.getLangOpts().Optimize) 4180 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 4181 4182 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 4183 llvm::DISubprogram *SP = DBuilder.createFunction( 4184 FDContext, Name, LinkageName, Unit, LineNo, 4185 getOrCreateFunctionType(D, FnType, Unit), ScopeLine, Flags, SPFlags, 4186 TParamsArray.get(), getFunctionDeclaration(D), nullptr, Annotations); 4187 4188 if (IsDeclForCallSite) 4189 Fn->setSubprogram(SP); 4190 4191 DBuilder.finalizeSubprogram(SP); 4192 } 4193 4194 void CGDebugInfo::EmitFuncDeclForCallSite(llvm::CallBase *CallOrInvoke, 4195 QualType CalleeType, 4196 const FunctionDecl *CalleeDecl) { 4197 if (!CallOrInvoke) 4198 return; 4199 auto *Func = CallOrInvoke->getCalledFunction(); 4200 if (!Func) 4201 return; 4202 if (Func->getSubprogram()) 4203 return; 4204 4205 // Do not emit a declaration subprogram for a builtin, a function with nodebug 4206 // attribute, or if call site info isn't required. Also, elide declarations 4207 // for functions with reserved names, as call site-related features aren't 4208 // interesting in this case (& also, the compiler may emit calls to these 4209 // functions without debug locations, which makes the verifier complain). 4210 if (CalleeDecl->getBuiltinID() != 0 || CalleeDecl->hasAttr<NoDebugAttr>() || 4211 getCallSiteRelatedAttrs() == llvm::DINode::FlagZero) 4212 return; 4213 if (CalleeDecl->isReserved(CGM.getLangOpts()) != 4214 ReservedIdentifierStatus::NotReserved) 4215 return; 4216 4217 // If there is no DISubprogram attached to the function being called, 4218 // create the one describing the function in order to have complete 4219 // call site debug info. 4220 if (!CalleeDecl->isStatic() && !CalleeDecl->isInlined()) 4221 EmitFunctionDecl(CalleeDecl, CalleeDecl->getLocation(), CalleeType, Func); 4222 } 4223 4224 void CGDebugInfo::EmitInlineFunctionStart(CGBuilderTy &Builder, GlobalDecl GD) { 4225 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4226 // If there is a subprogram for this function available then use it. 4227 auto FI = SPCache.find(FD->getCanonicalDecl()); 4228 llvm::DISubprogram *SP = nullptr; 4229 if (FI != SPCache.end()) 4230 SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second); 4231 if (!SP || !SP->isDefinition()) 4232 SP = getFunctionStub(GD); 4233 FnBeginRegionCount.push_back(LexicalBlockStack.size()); 4234 LexicalBlockStack.emplace_back(SP); 4235 setInlinedAt(Builder.getCurrentDebugLocation()); 4236 EmitLocation(Builder, FD->getLocation()); 4237 } 4238 4239 void CGDebugInfo::EmitInlineFunctionEnd(CGBuilderTy &Builder) { 4240 assert(CurInlinedAt && "unbalanced inline scope stack"); 4241 EmitFunctionEnd(Builder, nullptr); 4242 setInlinedAt(llvm::DebugLoc(CurInlinedAt).getInlinedAt()); 4243 } 4244 4245 void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) { 4246 // Update our current location 4247 setLocation(Loc); 4248 4249 if (CurLoc.isInvalid() || CurLoc.isMacroID() || LexicalBlockStack.empty()) 4250 return; 4251 4252 llvm::MDNode *Scope = LexicalBlockStack.back(); 4253 Builder.SetCurrentDebugLocation( 4254 llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(CurLoc), 4255 getColumnNumber(CurLoc), Scope, CurInlinedAt)); 4256 } 4257 4258 void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) { 4259 llvm::MDNode *Back = nullptr; 4260 if (!LexicalBlockStack.empty()) 4261 Back = LexicalBlockStack.back().get(); 4262 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock( 4263 cast<llvm::DIScope>(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc), 4264 getColumnNumber(CurLoc))); 4265 } 4266 4267 void CGDebugInfo::AppendAddressSpaceXDeref( 4268 unsigned AddressSpace, SmallVectorImpl<uint64_t> &Expr) const { 4269 Optional<unsigned> DWARFAddressSpace = 4270 CGM.getTarget().getDWARFAddressSpace(AddressSpace); 4271 if (!DWARFAddressSpace) 4272 return; 4273 4274 Expr.push_back(llvm::dwarf::DW_OP_constu); 4275 Expr.push_back(DWARFAddressSpace.getValue()); 4276 Expr.push_back(llvm::dwarf::DW_OP_swap); 4277 Expr.push_back(llvm::dwarf::DW_OP_xderef); 4278 } 4279 4280 void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder, 4281 SourceLocation Loc) { 4282 // Set our current location. 4283 setLocation(Loc); 4284 4285 // Emit a line table change for the current location inside the new scope. 4286 Builder.SetCurrentDebugLocation(llvm::DILocation::get( 4287 CGM.getLLVMContext(), getLineNumber(Loc), getColumnNumber(Loc), 4288 LexicalBlockStack.back(), CurInlinedAt)); 4289 4290 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 4291 return; 4292 4293 // Create a new lexical block and push it on the stack. 4294 CreateLexicalBlock(Loc); 4295 } 4296 4297 void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder, 4298 SourceLocation Loc) { 4299 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4300 4301 // Provide an entry in the line table for the end of the block. 4302 EmitLocation(Builder, Loc); 4303 4304 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 4305 return; 4306 4307 LexicalBlockStack.pop_back(); 4308 } 4309 4310 void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder, llvm::Function *Fn) { 4311 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4312 unsigned RCount = FnBeginRegionCount.back(); 4313 assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch"); 4314 4315 // Pop all regions for this function. 4316 while (LexicalBlockStack.size() != RCount) { 4317 // Provide an entry in the line table for the end of the block. 4318 EmitLocation(Builder, CurLoc); 4319 LexicalBlockStack.pop_back(); 4320 } 4321 FnBeginRegionCount.pop_back(); 4322 4323 if (Fn && Fn->getSubprogram()) 4324 DBuilder.finalizeSubprogram(Fn->getSubprogram()); 4325 } 4326 4327 CGDebugInfo::BlockByRefType 4328 CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD, 4329 uint64_t *XOffset) { 4330 SmallVector<llvm::Metadata *, 5> EltTys; 4331 QualType FType; 4332 uint64_t FieldSize, FieldOffset; 4333 uint32_t FieldAlign; 4334 4335 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 4336 QualType Type = VD->getType(); 4337 4338 FieldOffset = 0; 4339 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4340 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); 4341 EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset)); 4342 FType = CGM.getContext().IntTy; 4343 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); 4344 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); 4345 4346 bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD); 4347 if (HasCopyAndDispose) { 4348 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4349 EltTys.push_back( 4350 CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset)); 4351 EltTys.push_back( 4352 CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset)); 4353 } 4354 bool HasByrefExtendedLayout; 4355 Qualifiers::ObjCLifetime Lifetime; 4356 if (CGM.getContext().getByrefLifetime(Type, Lifetime, 4357 HasByrefExtendedLayout) && 4358 HasByrefExtendedLayout) { 4359 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4360 EltTys.push_back( 4361 CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset)); 4362 } 4363 4364 CharUnits Align = CGM.getContext().getDeclAlign(VD); 4365 if (Align > CGM.getContext().toCharUnitsFromBits( 4366 CGM.getTarget().getPointerAlign(0))) { 4367 CharUnits FieldOffsetInBytes = 4368 CGM.getContext().toCharUnitsFromBits(FieldOffset); 4369 CharUnits AlignedOffsetInBytes = FieldOffsetInBytes.alignTo(Align); 4370 CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes; 4371 4372 if (NumPaddingBytes.isPositive()) { 4373 llvm::APInt pad(32, NumPaddingBytes.getQuantity()); 4374 FType = CGM.getContext().getConstantArrayType( 4375 CGM.getContext().CharTy, pad, nullptr, ArrayType::Normal, 0); 4376 EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset)); 4377 } 4378 } 4379 4380 FType = Type; 4381 llvm::DIType *WrappedTy = getOrCreateType(FType, Unit); 4382 FieldSize = CGM.getContext().getTypeSize(FType); 4383 FieldAlign = CGM.getContext().toBits(Align); 4384 4385 *XOffset = FieldOffset; 4386 llvm::DIType *FieldTy = DBuilder.createMemberType( 4387 Unit, VD->getName(), Unit, 0, FieldSize, FieldAlign, FieldOffset, 4388 llvm::DINode::FlagZero, WrappedTy); 4389 EltTys.push_back(FieldTy); 4390 FieldOffset += FieldSize; 4391 4392 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 4393 return {DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0, 4394 llvm::DINode::FlagZero, nullptr, Elements), 4395 WrappedTy}; 4396 } 4397 4398 llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const VarDecl *VD, 4399 llvm::Value *Storage, 4400 llvm::Optional<unsigned> ArgNo, 4401 CGBuilderTy &Builder, 4402 const bool UsePointerValue) { 4403 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4404 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4405 if (VD->hasAttr<NoDebugAttr>()) 4406 return nullptr; 4407 4408 bool Unwritten = 4409 VD->isImplicit() || (isa<Decl>(VD->getDeclContext()) && 4410 cast<Decl>(VD->getDeclContext())->isImplicit()); 4411 llvm::DIFile *Unit = nullptr; 4412 if (!Unwritten) 4413 Unit = getOrCreateFile(VD->getLocation()); 4414 llvm::DIType *Ty; 4415 uint64_t XOffset = 0; 4416 if (VD->hasAttr<BlocksAttr>()) 4417 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; 4418 else 4419 Ty = getOrCreateType(VD->getType(), Unit); 4420 4421 // If there is no debug info for this type then do not emit debug info 4422 // for this variable. 4423 if (!Ty) 4424 return nullptr; 4425 4426 // Get location information. 4427 unsigned Line = 0; 4428 unsigned Column = 0; 4429 if (!Unwritten) { 4430 Line = getLineNumber(VD->getLocation()); 4431 Column = getColumnNumber(VD->getLocation()); 4432 } 4433 SmallVector<uint64_t, 13> Expr; 4434 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4435 if (VD->isImplicit()) 4436 Flags |= llvm::DINode::FlagArtificial; 4437 4438 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 4439 4440 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(VD->getType()); 4441 AppendAddressSpaceXDeref(AddressSpace, Expr); 4442 4443 // If this is implicit parameter of CXXThis or ObjCSelf kind, then give it an 4444 // object pointer flag. 4445 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) { 4446 if (IPD->getParameterKind() == ImplicitParamDecl::CXXThis || 4447 IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf) 4448 Flags |= llvm::DINode::FlagObjectPointer; 4449 } 4450 4451 // Note: Older versions of clang used to emit byval references with an extra 4452 // DW_OP_deref, because they referenced the IR arg directly instead of 4453 // referencing an alloca. Newer versions of LLVM don't treat allocas 4454 // differently from other function arguments when used in a dbg.declare. 4455 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4456 StringRef Name = VD->getName(); 4457 if (!Name.empty()) { 4458 // __block vars are stored on the heap if they are captured by a block that 4459 // can escape the local scope. 4460 if (VD->isEscapingByref()) { 4461 // Here, we need an offset *into* the alloca. 4462 CharUnits offset = CharUnits::fromQuantity(32); 4463 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4464 // offset of __forwarding field 4465 offset = CGM.getContext().toCharUnitsFromBits( 4466 CGM.getTarget().getPointerWidth(0)); 4467 Expr.push_back(offset.getQuantity()); 4468 Expr.push_back(llvm::dwarf::DW_OP_deref); 4469 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4470 // offset of x field 4471 offset = CGM.getContext().toCharUnitsFromBits(XOffset); 4472 Expr.push_back(offset.getQuantity()); 4473 } 4474 } else if (const auto *RT = dyn_cast<RecordType>(VD->getType())) { 4475 // If VD is an anonymous union then Storage represents value for 4476 // all union fields. 4477 const RecordDecl *RD = RT->getDecl(); 4478 if (RD->isUnion() && RD->isAnonymousStructOrUnion()) { 4479 // GDB has trouble finding local variables in anonymous unions, so we emit 4480 // artificial local variables for each of the members. 4481 // 4482 // FIXME: Remove this code as soon as GDB supports this. 4483 // The debug info verifier in LLVM operates based on the assumption that a 4484 // variable has the same size as its storage and we had to disable the 4485 // check for artificial variables. 4486 for (const auto *Field : RD->fields()) { 4487 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 4488 StringRef FieldName = Field->getName(); 4489 4490 // Ignore unnamed fields. Do not ignore unnamed records. 4491 if (FieldName.empty() && !isa<RecordType>(Field->getType())) 4492 continue; 4493 4494 // Use VarDecl's Tag, Scope and Line number. 4495 auto FieldAlign = getDeclAlignIfRequired(Field, CGM.getContext()); 4496 auto *D = DBuilder.createAutoVariable( 4497 Scope, FieldName, Unit, Line, FieldTy, CGM.getLangOpts().Optimize, 4498 Flags | llvm::DINode::FlagArtificial, FieldAlign); 4499 4500 // Insert an llvm.dbg.declare into the current block. 4501 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4502 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4503 Column, Scope, 4504 CurInlinedAt), 4505 Builder.GetInsertBlock()); 4506 } 4507 } 4508 } 4509 4510 // Clang stores the sret pointer provided by the caller in a static alloca. 4511 // Use DW_OP_deref to tell the debugger to load the pointer and treat it as 4512 // the address of the variable. 4513 if (UsePointerValue) { 4514 assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) && 4515 "Debug info already contains DW_OP_deref."); 4516 Expr.push_back(llvm::dwarf::DW_OP_deref); 4517 } 4518 4519 // Create the descriptor for the variable. 4520 llvm::DILocalVariable *D = nullptr; 4521 if (ArgNo) { 4522 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(VD); 4523 D = DBuilder.createParameterVariable(Scope, Name, *ArgNo, Unit, Line, Ty, 4524 CGM.getLangOpts().Optimize, Flags, 4525 Annotations); 4526 } else { 4527 // For normal local variable, we will try to find out whether 'VD' is the 4528 // copy parameter of coroutine. 4529 // If yes, we are going to use DIVariable of the origin parameter instead 4530 // of creating the new one. 4531 // If no, it might be a normal alloc, we just create a new one for it. 4532 4533 // Check whether the VD is move parameters. 4534 auto RemapCoroArgToLocalVar = [&]() -> llvm::DILocalVariable * { 4535 // The scope of parameter and move-parameter should be distinct 4536 // DISubprogram. 4537 if (!isa<llvm::DISubprogram>(Scope) || !Scope->isDistinct()) 4538 return nullptr; 4539 4540 auto Iter = llvm::find_if(CoroutineParameterMappings, [&](auto &Pair) { 4541 Stmt *StmtPtr = const_cast<Stmt *>(Pair.second); 4542 if (DeclStmt *DeclStmtPtr = dyn_cast<DeclStmt>(StmtPtr)) { 4543 DeclGroupRef DeclGroup = DeclStmtPtr->getDeclGroup(); 4544 Decl *Decl = DeclGroup.getSingleDecl(); 4545 if (VD == dyn_cast_or_null<VarDecl>(Decl)) 4546 return true; 4547 } 4548 return false; 4549 }); 4550 4551 if (Iter != CoroutineParameterMappings.end()) { 4552 ParmVarDecl *PD = const_cast<ParmVarDecl *>(Iter->first); 4553 auto Iter2 = llvm::find_if(ParamDbgMappings, [&](auto &DbgPair) { 4554 return DbgPair.first == PD && DbgPair.second->getScope() == Scope; 4555 }); 4556 if (Iter2 != ParamDbgMappings.end()) 4557 return const_cast<llvm::DILocalVariable *>(Iter2->second); 4558 } 4559 return nullptr; 4560 }; 4561 4562 // If we couldn't find a move param DIVariable, create a new one. 4563 D = RemapCoroArgToLocalVar(); 4564 // Or we will create a new DIVariable for this Decl if D dose not exists. 4565 if (!D) 4566 D = DBuilder.createAutoVariable(Scope, Name, Unit, Line, Ty, 4567 CGM.getLangOpts().Optimize, Flags, Align); 4568 } 4569 // Insert an llvm.dbg.declare into the current block. 4570 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4571 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4572 Column, Scope, CurInlinedAt), 4573 Builder.GetInsertBlock()); 4574 4575 return D; 4576 } 4577 4578 llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const BindingDecl *BD, 4579 llvm::Value *Storage, 4580 llvm::Optional<unsigned> ArgNo, 4581 CGBuilderTy &Builder, 4582 const bool UsePointerValue) { 4583 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4584 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4585 if (BD->hasAttr<NoDebugAttr>()) 4586 return nullptr; 4587 4588 // Skip the tuple like case, we don't handle that here 4589 if (isa<DeclRefExpr>(BD->getBinding())) 4590 return nullptr; 4591 4592 llvm::DIFile *Unit = getOrCreateFile(BD->getLocation()); 4593 llvm::DIType *Ty = getOrCreateType(BD->getType(), Unit); 4594 4595 // If there is no debug info for this type then do not emit debug info 4596 // for this variable. 4597 if (!Ty) 4598 return nullptr; 4599 4600 auto Align = getDeclAlignIfRequired(BD, CGM.getContext()); 4601 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(BD->getType()); 4602 4603 SmallVector<uint64_t, 3> Expr; 4604 AppendAddressSpaceXDeref(AddressSpace, Expr); 4605 4606 // Clang stores the sret pointer provided by the caller in a static alloca. 4607 // Use DW_OP_deref to tell the debugger to load the pointer and treat it as 4608 // the address of the variable. 4609 if (UsePointerValue) { 4610 assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) && 4611 "Debug info already contains DW_OP_deref."); 4612 Expr.push_back(llvm::dwarf::DW_OP_deref); 4613 } 4614 4615 unsigned Line = getLineNumber(BD->getLocation()); 4616 unsigned Column = getColumnNumber(BD->getLocation()); 4617 StringRef Name = BD->getName(); 4618 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4619 // Create the descriptor for the variable. 4620 llvm::DILocalVariable *D = DBuilder.createAutoVariable( 4621 Scope, Name, Unit, Line, Ty, CGM.getLangOpts().Optimize, 4622 llvm::DINode::FlagZero, Align); 4623 4624 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BD->getBinding())) { 4625 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 4626 const unsigned fieldIndex = FD->getFieldIndex(); 4627 const clang::CXXRecordDecl *parent = 4628 (const CXXRecordDecl *)FD->getParent(); 4629 const ASTRecordLayout &layout = 4630 CGM.getContext().getASTRecordLayout(parent); 4631 const uint64_t fieldOffset = layout.getFieldOffset(fieldIndex); 4632 4633 if (fieldOffset != 0) { 4634 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4635 Expr.push_back( 4636 CGM.getContext().toCharUnitsFromBits(fieldOffset).getQuantity()); 4637 } 4638 } 4639 } else if (const ArraySubscriptExpr *ASE = 4640 dyn_cast<ArraySubscriptExpr>(BD->getBinding())) { 4641 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ASE->getIdx())) { 4642 const uint64_t value = IL->getValue().getZExtValue(); 4643 const uint64_t typeSize = CGM.getContext().getTypeSize(BD->getType()); 4644 4645 if (value != 0) { 4646 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4647 Expr.push_back(CGM.getContext() 4648 .toCharUnitsFromBits(value * typeSize) 4649 .getQuantity()); 4650 } 4651 } 4652 } 4653 4654 // Insert an llvm.dbg.declare into the current block. 4655 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4656 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4657 Column, Scope, CurInlinedAt), 4658 Builder.GetInsertBlock()); 4659 4660 return D; 4661 } 4662 4663 llvm::DILocalVariable * 4664 CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD, llvm::Value *Storage, 4665 CGBuilderTy &Builder, 4666 const bool UsePointerValue) { 4667 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4668 4669 if (auto *DD = dyn_cast<DecompositionDecl>(VD)) 4670 for (auto *B : DD->bindings()) { 4671 EmitDeclare(B, Storage, llvm::None, Builder, 4672 VD->getType()->isReferenceType()); 4673 } 4674 4675 return EmitDeclare(VD, Storage, llvm::None, Builder, UsePointerValue); 4676 } 4677 4678 void CGDebugInfo::EmitLabel(const LabelDecl *D, CGBuilderTy &Builder) { 4679 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4680 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4681 4682 if (D->hasAttr<NoDebugAttr>()) 4683 return; 4684 4685 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4686 llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); 4687 4688 // Get location information. 4689 unsigned Line = getLineNumber(D->getLocation()); 4690 unsigned Column = getColumnNumber(D->getLocation()); 4691 4692 StringRef Name = D->getName(); 4693 4694 // Create the descriptor for the label. 4695 auto *L = 4696 DBuilder.createLabel(Scope, Name, Unit, Line, CGM.getLangOpts().Optimize); 4697 4698 // Insert an llvm.dbg.label into the current block. 4699 DBuilder.insertLabel(L, 4700 llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, 4701 Scope, CurInlinedAt), 4702 Builder.GetInsertBlock()); 4703 } 4704 4705 llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy, 4706 llvm::DIType *Ty) { 4707 llvm::DIType *CachedTy = getTypeOrNull(QualTy); 4708 if (CachedTy) 4709 Ty = CachedTy; 4710 return DBuilder.createObjectPointerType(Ty); 4711 } 4712 4713 void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable( 4714 const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder, 4715 const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) { 4716 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4717 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4718 4719 if (Builder.GetInsertBlock() == nullptr) 4720 return; 4721 if (VD->hasAttr<NoDebugAttr>()) 4722 return; 4723 4724 bool isByRef = VD->hasAttr<BlocksAttr>(); 4725 4726 uint64_t XOffset = 0; 4727 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 4728 llvm::DIType *Ty; 4729 if (isByRef) 4730 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; 4731 else 4732 Ty = getOrCreateType(VD->getType(), Unit); 4733 4734 // Self is passed along as an implicit non-arg variable in a 4735 // block. Mark it as the object pointer. 4736 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) 4737 if (IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf) 4738 Ty = CreateSelfType(VD->getType(), Ty); 4739 4740 // Get location information. 4741 const unsigned Line = 4742 getLineNumber(VD->getLocation().isValid() ? VD->getLocation() : CurLoc); 4743 unsigned Column = getColumnNumber(VD->getLocation()); 4744 4745 const llvm::DataLayout &target = CGM.getDataLayout(); 4746 4747 CharUnits offset = CharUnits::fromQuantity( 4748 target.getStructLayout(blockInfo.StructureType) 4749 ->getElementOffset(blockInfo.getCapture(VD).getIndex())); 4750 4751 SmallVector<uint64_t, 9> addr; 4752 addr.push_back(llvm::dwarf::DW_OP_deref); 4753 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4754 addr.push_back(offset.getQuantity()); 4755 if (isByRef) { 4756 addr.push_back(llvm::dwarf::DW_OP_deref); 4757 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4758 // offset of __forwarding field 4759 offset = 4760 CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0)); 4761 addr.push_back(offset.getQuantity()); 4762 addr.push_back(llvm::dwarf::DW_OP_deref); 4763 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4764 // offset of x field 4765 offset = CGM.getContext().toCharUnitsFromBits(XOffset); 4766 addr.push_back(offset.getQuantity()); 4767 } 4768 4769 // Create the descriptor for the variable. 4770 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 4771 auto *D = DBuilder.createAutoVariable( 4772 cast<llvm::DILocalScope>(LexicalBlockStack.back()), VD->getName(), Unit, 4773 Line, Ty, false, llvm::DINode::FlagZero, Align); 4774 4775 // Insert an llvm.dbg.declare into the current block. 4776 auto DL = llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, 4777 LexicalBlockStack.back(), CurInlinedAt); 4778 auto *Expr = DBuilder.createExpression(addr); 4779 if (InsertPoint) 4780 DBuilder.insertDeclare(Storage, D, Expr, DL, InsertPoint); 4781 else 4782 DBuilder.insertDeclare(Storage, D, Expr, DL, Builder.GetInsertBlock()); 4783 } 4784 4785 llvm::DILocalVariable * 4786 CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI, 4787 unsigned ArgNo, CGBuilderTy &Builder) { 4788 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4789 return EmitDeclare(VD, AI, ArgNo, Builder); 4790 } 4791 4792 namespace { 4793 struct BlockLayoutChunk { 4794 uint64_t OffsetInBits; 4795 const BlockDecl::Capture *Capture; 4796 }; 4797 bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) { 4798 return l.OffsetInBits < r.OffsetInBits; 4799 } 4800 } // namespace 4801 4802 void CGDebugInfo::collectDefaultFieldsForBlockLiteralDeclare( 4803 const CGBlockInfo &Block, const ASTContext &Context, SourceLocation Loc, 4804 const llvm::StructLayout &BlockLayout, llvm::DIFile *Unit, 4805 SmallVectorImpl<llvm::Metadata *> &Fields) { 4806 // Blocks in OpenCL have unique constraints which make the standard fields 4807 // redundant while requiring size and align fields for enqueue_kernel. See 4808 // initializeForBlockHeader in CGBlocks.cpp 4809 if (CGM.getLangOpts().OpenCL) { 4810 Fields.push_back(createFieldType("__size", Context.IntTy, Loc, AS_public, 4811 BlockLayout.getElementOffsetInBits(0), 4812 Unit, Unit)); 4813 Fields.push_back(createFieldType("__align", Context.IntTy, Loc, AS_public, 4814 BlockLayout.getElementOffsetInBits(1), 4815 Unit, Unit)); 4816 } else { 4817 Fields.push_back(createFieldType("__isa", Context.VoidPtrTy, Loc, AS_public, 4818 BlockLayout.getElementOffsetInBits(0), 4819 Unit, Unit)); 4820 Fields.push_back(createFieldType("__flags", Context.IntTy, Loc, AS_public, 4821 BlockLayout.getElementOffsetInBits(1), 4822 Unit, Unit)); 4823 Fields.push_back( 4824 createFieldType("__reserved", Context.IntTy, Loc, AS_public, 4825 BlockLayout.getElementOffsetInBits(2), Unit, Unit)); 4826 auto *FnTy = Block.getBlockExpr()->getFunctionType(); 4827 auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar()); 4828 Fields.push_back(createFieldType("__FuncPtr", FnPtrType, Loc, AS_public, 4829 BlockLayout.getElementOffsetInBits(3), 4830 Unit, Unit)); 4831 Fields.push_back(createFieldType( 4832 "__descriptor", 4833 Context.getPointerType(Block.NeedsCopyDispose 4834 ? Context.getBlockDescriptorExtendedType() 4835 : Context.getBlockDescriptorType()), 4836 Loc, AS_public, BlockLayout.getElementOffsetInBits(4), Unit, Unit)); 4837 } 4838 } 4839 4840 void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block, 4841 StringRef Name, 4842 unsigned ArgNo, 4843 llvm::AllocaInst *Alloca, 4844 CGBuilderTy &Builder) { 4845 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4846 ASTContext &C = CGM.getContext(); 4847 const BlockDecl *blockDecl = block.getBlockDecl(); 4848 4849 // Collect some general information about the block's location. 4850 SourceLocation loc = blockDecl->getCaretLocation(); 4851 llvm::DIFile *tunit = getOrCreateFile(loc); 4852 unsigned line = getLineNumber(loc); 4853 unsigned column = getColumnNumber(loc); 4854 4855 // Build the debug-info type for the block literal. 4856 getDeclContextDescriptor(blockDecl); 4857 4858 const llvm::StructLayout *blockLayout = 4859 CGM.getDataLayout().getStructLayout(block.StructureType); 4860 4861 SmallVector<llvm::Metadata *, 16> fields; 4862 collectDefaultFieldsForBlockLiteralDeclare(block, C, loc, *blockLayout, tunit, 4863 fields); 4864 4865 // We want to sort the captures by offset, not because DWARF 4866 // requires this, but because we're paranoid about debuggers. 4867 SmallVector<BlockLayoutChunk, 8> chunks; 4868 4869 // 'this' capture. 4870 if (blockDecl->capturesCXXThis()) { 4871 BlockLayoutChunk chunk; 4872 chunk.OffsetInBits = 4873 blockLayout->getElementOffsetInBits(block.CXXThisIndex); 4874 chunk.Capture = nullptr; 4875 chunks.push_back(chunk); 4876 } 4877 4878 // Variable captures. 4879 for (const auto &capture : blockDecl->captures()) { 4880 const VarDecl *variable = capture.getVariable(); 4881 const CGBlockInfo::Capture &captureInfo = block.getCapture(variable); 4882 4883 // Ignore constant captures. 4884 if (captureInfo.isConstant()) 4885 continue; 4886 4887 BlockLayoutChunk chunk; 4888 chunk.OffsetInBits = 4889 blockLayout->getElementOffsetInBits(captureInfo.getIndex()); 4890 chunk.Capture = &capture; 4891 chunks.push_back(chunk); 4892 } 4893 4894 // Sort by offset. 4895 llvm::array_pod_sort(chunks.begin(), chunks.end()); 4896 4897 for (const BlockLayoutChunk &Chunk : chunks) { 4898 uint64_t offsetInBits = Chunk.OffsetInBits; 4899 const BlockDecl::Capture *capture = Chunk.Capture; 4900 4901 // If we have a null capture, this must be the C++ 'this' capture. 4902 if (!capture) { 4903 QualType type; 4904 if (auto *Method = 4905 cast_or_null<CXXMethodDecl>(blockDecl->getNonClosureContext())) 4906 type = Method->getThisType(); 4907 else if (auto *RDecl = dyn_cast<CXXRecordDecl>(blockDecl->getParent())) 4908 type = QualType(RDecl->getTypeForDecl(), 0); 4909 else 4910 llvm_unreachable("unexpected block declcontext"); 4911 4912 fields.push_back(createFieldType("this", type, loc, AS_public, 4913 offsetInBits, tunit, tunit)); 4914 continue; 4915 } 4916 4917 const VarDecl *variable = capture->getVariable(); 4918 StringRef name = variable->getName(); 4919 4920 llvm::DIType *fieldType; 4921 if (capture->isByRef()) { 4922 TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy); 4923 auto Align = PtrInfo.isAlignRequired() ? PtrInfo.Align : 0; 4924 // FIXME: This recomputes the layout of the BlockByRefWrapper. 4925 uint64_t xoffset; 4926 fieldType = 4927 EmitTypeForVarWithBlocksAttr(variable, &xoffset).BlockByRefWrapper; 4928 fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width); 4929 fieldType = DBuilder.createMemberType(tunit, name, tunit, line, 4930 PtrInfo.Width, Align, offsetInBits, 4931 llvm::DINode::FlagZero, fieldType); 4932 } else { 4933 auto Align = getDeclAlignIfRequired(variable, CGM.getContext()); 4934 fieldType = createFieldType(name, variable->getType(), loc, AS_public, 4935 offsetInBits, Align, tunit, tunit); 4936 } 4937 fields.push_back(fieldType); 4938 } 4939 4940 SmallString<36> typeName; 4941 llvm::raw_svector_ostream(typeName) 4942 << "__block_literal_" << CGM.getUniqueBlockCount(); 4943 4944 llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields); 4945 4946 llvm::DIType *type = 4947 DBuilder.createStructType(tunit, typeName.str(), tunit, line, 4948 CGM.getContext().toBits(block.BlockSize), 0, 4949 llvm::DINode::FlagZero, nullptr, fieldsArray); 4950 type = DBuilder.createPointerType(type, CGM.PointerWidthInBits); 4951 4952 // Get overall information about the block. 4953 llvm::DINode::DIFlags flags = llvm::DINode::FlagArtificial; 4954 auto *scope = cast<llvm::DILocalScope>(LexicalBlockStack.back()); 4955 4956 // Create the descriptor for the parameter. 4957 auto *debugVar = DBuilder.createParameterVariable( 4958 scope, Name, ArgNo, tunit, line, type, CGM.getLangOpts().Optimize, flags); 4959 4960 // Insert an llvm.dbg.declare into the current block. 4961 DBuilder.insertDeclare(Alloca, debugVar, DBuilder.createExpression(), 4962 llvm::DILocation::get(CGM.getLLVMContext(), line, 4963 column, scope, CurInlinedAt), 4964 Builder.GetInsertBlock()); 4965 } 4966 4967 llvm::DIDerivedType * 4968 CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) { 4969 if (!D || !D->isStaticDataMember()) 4970 return nullptr; 4971 4972 auto MI = StaticDataMemberCache.find(D->getCanonicalDecl()); 4973 if (MI != StaticDataMemberCache.end()) { 4974 assert(MI->second && "Static data member declaration should still exist"); 4975 return MI->second; 4976 } 4977 4978 // If the member wasn't found in the cache, lazily construct and add it to the 4979 // type (used when a limited form of the type is emitted). 4980 auto DC = D->getDeclContext(); 4981 auto *Ctxt = cast<llvm::DICompositeType>(getDeclContextDescriptor(D)); 4982 return CreateRecordStaticField(D, Ctxt, cast<RecordDecl>(DC)); 4983 } 4984 4985 llvm::DIGlobalVariableExpression *CGDebugInfo::CollectAnonRecordDecls( 4986 const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo, 4987 StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) { 4988 llvm::DIGlobalVariableExpression *GVE = nullptr; 4989 4990 for (const auto *Field : RD->fields()) { 4991 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 4992 StringRef FieldName = Field->getName(); 4993 4994 // Ignore unnamed fields, but recurse into anonymous records. 4995 if (FieldName.empty()) { 4996 if (const auto *RT = dyn_cast<RecordType>(Field->getType())) 4997 GVE = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName, 4998 Var, DContext); 4999 continue; 5000 } 5001 // Use VarDecl's Tag, Scope and Line number. 5002 GVE = DBuilder.createGlobalVariableExpression( 5003 DContext, FieldName, LinkageName, Unit, LineNo, FieldTy, 5004 Var->hasLocalLinkage()); 5005 Var->addDebugInfo(GVE); 5006 } 5007 return GVE; 5008 } 5009 5010 static bool ReferencesAnonymousEntity(ArrayRef<TemplateArgument> Args); 5011 static bool ReferencesAnonymousEntity(RecordType *RT) { 5012 // Unnamed classes/lambdas can't be reconstituted due to a lack of column 5013 // info we produce in the DWARF, so we can't get Clang's full name back. 5014 // But so long as it's not one of those, it doesn't matter if some sub-type 5015 // of the record (a template parameter) can't be reconstituted - because the 5016 // un-reconstitutable type itself will carry its own name. 5017 const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 5018 if (!RD) 5019 return false; 5020 if (!RD->getIdentifier()) 5021 return true; 5022 auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD); 5023 if (!TSpecial) 5024 return false; 5025 return ReferencesAnonymousEntity(TSpecial->getTemplateArgs().asArray()); 5026 } 5027 static bool ReferencesAnonymousEntity(ArrayRef<TemplateArgument> Args) { 5028 return llvm::any_of(Args, [&](const TemplateArgument &TA) { 5029 switch (TA.getKind()) { 5030 case TemplateArgument::Pack: 5031 return ReferencesAnonymousEntity(TA.getPackAsArray()); 5032 case TemplateArgument::Type: { 5033 struct ReferencesAnonymous 5034 : public RecursiveASTVisitor<ReferencesAnonymous> { 5035 bool RefAnon = false; 5036 bool VisitRecordType(RecordType *RT) { 5037 if (ReferencesAnonymousEntity(RT)) { 5038 RefAnon = true; 5039 return false; 5040 } 5041 return true; 5042 } 5043 }; 5044 ReferencesAnonymous RT; 5045 RT.TraverseType(TA.getAsType()); 5046 if (RT.RefAnon) 5047 return true; 5048 break; 5049 } 5050 default: 5051 break; 5052 } 5053 return false; 5054 }); 5055 } 5056 namespace { 5057 struct ReconstitutableType : public RecursiveASTVisitor<ReconstitutableType> { 5058 bool Reconstitutable = true; 5059 bool VisitVectorType(VectorType *FT) { 5060 Reconstitutable = false; 5061 return false; 5062 } 5063 bool VisitAtomicType(AtomicType *FT) { 5064 Reconstitutable = false; 5065 return false; 5066 } 5067 bool VisitType(Type *T) { 5068 // _BitInt(N) isn't reconstitutable because the bit width isn't encoded in 5069 // the DWARF, only the byte width. 5070 if (T->isBitIntType()) { 5071 Reconstitutable = false; 5072 return false; 5073 } 5074 return true; 5075 } 5076 bool TraverseEnumType(EnumType *ET) { 5077 // Unnamed enums can't be reconstituted due to a lack of column info we 5078 // produce in the DWARF, so we can't get Clang's full name back. 5079 if (const auto *ED = dyn_cast<EnumDecl>(ET->getDecl())) { 5080 if (!ED->getIdentifier()) { 5081 Reconstitutable = false; 5082 return false; 5083 } 5084 if (!ED->isExternallyVisible()) { 5085 Reconstitutable = false; 5086 return false; 5087 } 5088 } 5089 return true; 5090 } 5091 bool VisitFunctionProtoType(FunctionProtoType *FT) { 5092 // noexcept is not encoded in DWARF, so the reversi 5093 Reconstitutable &= !isNoexceptExceptionSpec(FT->getExceptionSpecType()); 5094 Reconstitutable &= !FT->getNoReturnAttr(); 5095 return Reconstitutable; 5096 } 5097 bool VisitRecordType(RecordType *RT) { 5098 if (ReferencesAnonymousEntity(RT)) { 5099 Reconstitutable = false; 5100 return false; 5101 } 5102 return true; 5103 } 5104 }; 5105 } // anonymous namespace 5106 5107 // Test whether a type name could be rebuilt from emitted debug info. 5108 static bool IsReconstitutableType(QualType QT) { 5109 ReconstitutableType T; 5110 T.TraverseType(QT); 5111 return T.Reconstitutable; 5112 } 5113 5114 std::string CGDebugInfo::GetName(const Decl *D, bool Qualified) const { 5115 std::string Name; 5116 llvm::raw_string_ostream OS(Name); 5117 const NamedDecl *ND = dyn_cast<NamedDecl>(D); 5118 if (!ND) 5119 return Name; 5120 codegenoptions::DebugTemplateNamesKind TemplateNamesKind = 5121 CGM.getCodeGenOpts().getDebugSimpleTemplateNames(); 5122 5123 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5124 TemplateNamesKind = codegenoptions::DebugTemplateNamesKind::Full; 5125 5126 Optional<TemplateArgs> Args; 5127 5128 bool IsOperatorOverload = false; // isa<CXXConversionDecl>(ND); 5129 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 5130 Args = GetTemplateArgs(RD); 5131 } else if (auto *FD = dyn_cast<FunctionDecl>(ND)) { 5132 Args = GetTemplateArgs(FD); 5133 auto NameKind = ND->getDeclName().getNameKind(); 5134 IsOperatorOverload |= 5135 NameKind == DeclarationName::CXXOperatorName || 5136 NameKind == DeclarationName::CXXConversionFunctionName; 5137 } else if (auto *VD = dyn_cast<VarDecl>(ND)) { 5138 Args = GetTemplateArgs(VD); 5139 } 5140 std::function<bool(ArrayRef<TemplateArgument>)> HasReconstitutableArgs = 5141 [&](ArrayRef<TemplateArgument> Args) { 5142 return llvm::all_of(Args, [&](const TemplateArgument &TA) { 5143 switch (TA.getKind()) { 5144 case TemplateArgument::Template: 5145 // Easy to reconstitute - the value of the parameter in the debug 5146 // info is the string name of the template. (so the template name 5147 // itself won't benefit from any name rebuilding, but that's a 5148 // representational limitation - maybe DWARF could be 5149 // changed/improved to use some more structural representation) 5150 return true; 5151 case TemplateArgument::Declaration: 5152 // Reference and pointer non-type template parameters point to 5153 // variables, functions, etc and their value is, at best (for 5154 // variables) represented as an address - not a reference to the 5155 // DWARF describing the variable/function/etc. This makes it hard, 5156 // possibly impossible to rebuild the original name - looking up the 5157 // address in the executable file's symbol table would be needed. 5158 return false; 5159 case TemplateArgument::NullPtr: 5160 // These could be rebuilt, but figured they're close enough to the 5161 // declaration case, and not worth rebuilding. 5162 return false; 5163 case TemplateArgument::Pack: 5164 // A pack is invalid if any of the elements of the pack are invalid. 5165 return HasReconstitutableArgs(TA.getPackAsArray()); 5166 case TemplateArgument::Integral: 5167 // Larger integers get encoded as DWARF blocks which are a bit 5168 // harder to parse back into a large integer, etc - so punting on 5169 // this for now. Re-parsing the integers back into APInt is probably 5170 // feasible some day. 5171 return TA.getAsIntegral().getBitWidth() <= 64 && 5172 IsReconstitutableType(TA.getIntegralType()); 5173 case TemplateArgument::Type: 5174 return IsReconstitutableType(TA.getAsType()); 5175 default: 5176 llvm_unreachable("Other, unresolved, template arguments should " 5177 "not be seen here"); 5178 } 5179 }); 5180 }; 5181 // A conversion operator presents complications/ambiguity if there's a 5182 // conversion to class template that is itself a template, eg: 5183 // template<typename T> 5184 // operator ns::t1<T, int>(); 5185 // This should be named, eg: "operator ns::t1<float, int><float>" 5186 // (ignoring clang bug that means this is currently "operator t1<float>") 5187 // but if the arguments were stripped, the consumer couldn't differentiate 5188 // whether the template argument list for the conversion type was the 5189 // function's argument list (& no reconstitution was needed) or not. 5190 // This could be handled if reconstitutable names had a separate attribute 5191 // annotating them as such - this would remove the ambiguity. 5192 // 5193 // Alternatively the template argument list could be parsed enough to check 5194 // whether there's one list or two, then compare that with the DWARF 5195 // description of the return type and the template argument lists to determine 5196 // how many lists there should be and if one is missing it could be assumed(?) 5197 // to be the function's template argument list & then be rebuilt. 5198 // 5199 // Other operator overloads that aren't conversion operators could be 5200 // reconstituted but would require a bit more nuance about detecting the 5201 // difference between these different operators during that rebuilding. 5202 bool Reconstitutable = 5203 Args && HasReconstitutableArgs(Args->Args) && !IsOperatorOverload; 5204 5205 PrintingPolicy PP = getPrintingPolicy(); 5206 5207 if (TemplateNamesKind == codegenoptions::DebugTemplateNamesKind::Full || 5208 !Reconstitutable) { 5209 ND->getNameForDiagnostic(OS, PP, Qualified); 5210 } else { 5211 bool Mangled = 5212 TemplateNamesKind == codegenoptions::DebugTemplateNamesKind::Mangled; 5213 // check if it's a template 5214 if (Mangled) 5215 OS << "_STN|"; 5216 5217 OS << ND->getDeclName(); 5218 std::string EncodedOriginalName; 5219 llvm::raw_string_ostream EncodedOriginalNameOS(EncodedOriginalName); 5220 EncodedOriginalNameOS << ND->getDeclName(); 5221 5222 if (Mangled) { 5223 OS << "|"; 5224 printTemplateArgumentList(OS, Args->Args, PP); 5225 printTemplateArgumentList(EncodedOriginalNameOS, Args->Args, PP); 5226 #ifndef NDEBUG 5227 std::string CanonicalOriginalName; 5228 llvm::raw_string_ostream OriginalOS(CanonicalOriginalName); 5229 ND->getNameForDiagnostic(OriginalOS, PP, Qualified); 5230 assert(EncodedOriginalNameOS.str() == OriginalOS.str()); 5231 #endif 5232 } 5233 } 5234 return Name; 5235 } 5236 5237 void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var, 5238 const VarDecl *D) { 5239 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5240 if (D->hasAttr<NoDebugAttr>()) 5241 return; 5242 5243 llvm::TimeTraceScope TimeScope("DebugGlobalVariable", [&]() { 5244 return GetName(D, true); 5245 }); 5246 5247 // If we already created a DIGlobalVariable for this declaration, just attach 5248 // it to the llvm::GlobalVariable. 5249 auto Cached = DeclCache.find(D->getCanonicalDecl()); 5250 if (Cached != DeclCache.end()) 5251 return Var->addDebugInfo( 5252 cast<llvm::DIGlobalVariableExpression>(Cached->second)); 5253 5254 // Create global variable debug descriptor. 5255 llvm::DIFile *Unit = nullptr; 5256 llvm::DIScope *DContext = nullptr; 5257 unsigned LineNo; 5258 StringRef DeclName, LinkageName; 5259 QualType T; 5260 llvm::MDTuple *TemplateParameters = nullptr; 5261 collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName, 5262 TemplateParameters, DContext); 5263 5264 // Attempt to store one global variable for the declaration - even if we 5265 // emit a lot of fields. 5266 llvm::DIGlobalVariableExpression *GVE = nullptr; 5267 5268 // If this is an anonymous union then we'll want to emit a global 5269 // variable for each member of the anonymous union so that it's possible 5270 // to find the name of any field in the union. 5271 if (T->isUnionType() && DeclName.empty()) { 5272 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 5273 assert(RD->isAnonymousStructOrUnion() && 5274 "unnamed non-anonymous struct or union?"); 5275 GVE = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext); 5276 } else { 5277 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 5278 5279 SmallVector<uint64_t, 4> Expr; 5280 unsigned AddressSpace = 5281 CGM.getContext().getTargetAddressSpace(D->getType()); 5282 if (CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) { 5283 if (D->hasAttr<CUDASharedAttr>()) 5284 AddressSpace = 5285 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared); 5286 else if (D->hasAttr<CUDAConstantAttr>()) 5287 AddressSpace = 5288 CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant); 5289 } 5290 AppendAddressSpaceXDeref(AddressSpace, Expr); 5291 5292 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 5293 GVE = DBuilder.createGlobalVariableExpression( 5294 DContext, DeclName, LinkageName, Unit, LineNo, getOrCreateType(T, Unit), 5295 Var->hasLocalLinkage(), true, 5296 Expr.empty() ? nullptr : DBuilder.createExpression(Expr), 5297 getOrCreateStaticDataMemberDeclarationOrNull(D), TemplateParameters, 5298 Align, Annotations); 5299 Var->addDebugInfo(GVE); 5300 } 5301 DeclCache[D->getCanonicalDecl()].reset(GVE); 5302 } 5303 5304 void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD, const APValue &Init) { 5305 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5306 if (VD->hasAttr<NoDebugAttr>()) 5307 return; 5308 llvm::TimeTraceScope TimeScope("DebugConstGlobalVariable", [&]() { 5309 return GetName(VD, true); 5310 }); 5311 5312 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 5313 // Create the descriptor for the variable. 5314 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 5315 StringRef Name = VD->getName(); 5316 llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit); 5317 5318 if (const auto *ECD = dyn_cast<EnumConstantDecl>(VD)) { 5319 const auto *ED = cast<EnumDecl>(ECD->getDeclContext()); 5320 assert(isa<EnumType>(ED->getTypeForDecl()) && "Enum without EnumType?"); 5321 5322 if (CGM.getCodeGenOpts().EmitCodeView) { 5323 // If CodeView, emit enums as global variables, unless they are defined 5324 // inside a class. We do this because MSVC doesn't emit S_CONSTANTs for 5325 // enums in classes, and because it is difficult to attach this scope 5326 // information to the global variable. 5327 if (isa<RecordDecl>(ED->getDeclContext())) 5328 return; 5329 } else { 5330 // If not CodeView, emit DW_TAG_enumeration_type if necessary. For 5331 // example: for "enum { ZERO };", a DW_TAG_enumeration_type is created the 5332 // first time `ZERO` is referenced in a function. 5333 llvm::DIType *EDTy = 5334 getOrCreateType(QualType(ED->getTypeForDecl(), 0), Unit); 5335 assert (EDTy->getTag() == llvm::dwarf::DW_TAG_enumeration_type); 5336 (void)EDTy; 5337 return; 5338 } 5339 } 5340 5341 // Do not emit separate definitions for function local consts. 5342 if (isa<FunctionDecl>(VD->getDeclContext())) 5343 return; 5344 5345 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 5346 auto *VarD = dyn_cast<VarDecl>(VD); 5347 if (VarD && VarD->isStaticDataMember()) { 5348 auto *RD = cast<RecordDecl>(VarD->getDeclContext()); 5349 getDeclContextDescriptor(VarD); 5350 // Ensure that the type is retained even though it's otherwise unreferenced. 5351 // 5352 // FIXME: This is probably unnecessary, since Ty should reference RD 5353 // through its scope. 5354 RetainedTypes.push_back( 5355 CGM.getContext().getRecordType(RD).getAsOpaquePtr()); 5356 5357 return; 5358 } 5359 llvm::DIScope *DContext = getDeclContextDescriptor(VD); 5360 5361 auto &GV = DeclCache[VD]; 5362 if (GV) 5363 return; 5364 llvm::DIExpression *InitExpr = nullptr; 5365 if (CGM.getContext().getTypeSize(VD->getType()) <= 64) { 5366 // FIXME: Add a representation for integer constants wider than 64 bits. 5367 if (Init.isInt()) 5368 InitExpr = 5369 DBuilder.createConstantValueExpression(Init.getInt().getExtValue()); 5370 else if (Init.isFloat()) 5371 InitExpr = DBuilder.createConstantValueExpression( 5372 Init.getFloat().bitcastToAPInt().getZExtValue()); 5373 } 5374 5375 llvm::MDTuple *TemplateParameters = nullptr; 5376 5377 if (isa<VarTemplateSpecializationDecl>(VD)) 5378 if (VarD) { 5379 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VarD, &*Unit); 5380 TemplateParameters = parameterNodes.get(); 5381 } 5382 5383 GV.reset(DBuilder.createGlobalVariableExpression( 5384 DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty, 5385 true, true, InitExpr, getOrCreateStaticDataMemberDeclarationOrNull(VarD), 5386 TemplateParameters, Align)); 5387 } 5388 5389 void CGDebugInfo::EmitExternalVariable(llvm::GlobalVariable *Var, 5390 const VarDecl *D) { 5391 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5392 if (D->hasAttr<NoDebugAttr>()) 5393 return; 5394 5395 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 5396 llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); 5397 StringRef Name = D->getName(); 5398 llvm::DIType *Ty = getOrCreateType(D->getType(), Unit); 5399 5400 llvm::DIScope *DContext = getDeclContextDescriptor(D); 5401 llvm::DIGlobalVariableExpression *GVE = 5402 DBuilder.createGlobalVariableExpression( 5403 DContext, Name, StringRef(), Unit, getLineNumber(D->getLocation()), 5404 Ty, false, false, nullptr, nullptr, nullptr, Align); 5405 Var->addDebugInfo(GVE); 5406 } 5407 5408 void CGDebugInfo::EmitGlobalAlias(const llvm::GlobalValue *GV, 5409 const GlobalDecl GD) { 5410 5411 assert(GV); 5412 5413 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5414 return; 5415 5416 const auto *D = cast<ValueDecl>(GD.getDecl()); 5417 if (D->hasAttr<NoDebugAttr>()) 5418 return; 5419 5420 auto AliaseeDecl = CGM.getMangledNameDecl(GV->getName()); 5421 llvm::DINode *DI; 5422 5423 if (!AliaseeDecl) 5424 // FIXME: Aliasee not declared yet - possibly declared later 5425 // For example, 5426 // 5427 // 1 extern int newname __attribute__((alias("oldname"))); 5428 // 2 int oldname = 1; 5429 // 5430 // No debug info would be generated for 'newname' in this case. 5431 // 5432 // Fix compiler to generate "newname" as imported_declaration 5433 // pointing to the DIE of "oldname". 5434 return; 5435 if (!(DI = getDeclarationOrDefinition( 5436 AliaseeDecl.getCanonicalDecl().getDecl()))) 5437 return; 5438 5439 llvm::DIScope *DContext = getDeclContextDescriptor(D); 5440 auto Loc = D->getLocation(); 5441 5442 llvm::DIImportedEntity *ImportDI = DBuilder.createImportedDeclaration( 5443 DContext, DI, getOrCreateFile(Loc), getLineNumber(Loc), D->getName()); 5444 5445 // Record this DIE in the cache for nested declaration reference. 5446 ImportedDeclCache[GD.getCanonicalDecl().getDecl()].reset(ImportDI); 5447 } 5448 5449 llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) { 5450 if (!LexicalBlockStack.empty()) 5451 return LexicalBlockStack.back(); 5452 llvm::DIScope *Mod = getParentModuleOrNull(D); 5453 return getContextDescriptor(D, Mod ? Mod : TheCU); 5454 } 5455 5456 void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) { 5457 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5458 return; 5459 const NamespaceDecl *NSDecl = UD.getNominatedNamespace(); 5460 if (!NSDecl->isAnonymousNamespace() || 5461 CGM.getCodeGenOpts().DebugExplicitImport) { 5462 auto Loc = UD.getLocation(); 5463 if (!Loc.isValid()) 5464 Loc = CurLoc; 5465 DBuilder.createImportedModule( 5466 getCurrentContextDescriptor(cast<Decl>(UD.getDeclContext())), 5467 getOrCreateNamespace(NSDecl), getOrCreateFile(Loc), getLineNumber(Loc)); 5468 } 5469 } 5470 5471 void CGDebugInfo::EmitUsingShadowDecl(const UsingShadowDecl &USD) { 5472 if (llvm::DINode *Target = 5473 getDeclarationOrDefinition(USD.getUnderlyingDecl())) { 5474 auto Loc = USD.getLocation(); 5475 DBuilder.createImportedDeclaration( 5476 getCurrentContextDescriptor(cast<Decl>(USD.getDeclContext())), Target, 5477 getOrCreateFile(Loc), getLineNumber(Loc)); 5478 } 5479 } 5480 5481 void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) { 5482 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5483 return; 5484 assert(UD.shadow_size() && 5485 "We shouldn't be codegening an invalid UsingDecl containing no decls"); 5486 5487 for (const auto *USD : UD.shadows()) { 5488 // FIXME: Skip functions with undeduced auto return type for now since we 5489 // don't currently have the plumbing for separate declarations & definitions 5490 // of free functions and mismatched types (auto in the declaration, concrete 5491 // return type in the definition) 5492 if (const auto *FD = dyn_cast<FunctionDecl>(USD->getUnderlyingDecl())) 5493 if (const auto *AT = FD->getType() 5494 ->castAs<FunctionProtoType>() 5495 ->getContainedAutoType()) 5496 if (AT->getDeducedType().isNull()) 5497 continue; 5498 5499 EmitUsingShadowDecl(*USD); 5500 // Emitting one decl is sufficient - debuggers can detect that this is an 5501 // overloaded name & provide lookup for all the overloads. 5502 break; 5503 } 5504 } 5505 5506 void CGDebugInfo::EmitUsingEnumDecl(const UsingEnumDecl &UD) { 5507 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5508 return; 5509 assert(UD.shadow_size() && 5510 "We shouldn't be codegening an invalid UsingEnumDecl" 5511 " containing no decls"); 5512 5513 for (const auto *USD : UD.shadows()) 5514 EmitUsingShadowDecl(*USD); 5515 } 5516 5517 void CGDebugInfo::EmitImportDecl(const ImportDecl &ID) { 5518 if (CGM.getCodeGenOpts().getDebuggerTuning() != llvm::DebuggerKind::LLDB) 5519 return; 5520 if (Module *M = ID.getImportedModule()) { 5521 auto Info = ASTSourceDescriptor(*M); 5522 auto Loc = ID.getLocation(); 5523 DBuilder.createImportedDeclaration( 5524 getCurrentContextDescriptor(cast<Decl>(ID.getDeclContext())), 5525 getOrCreateModuleRef(Info, DebugTypeExtRefs), getOrCreateFile(Loc), 5526 getLineNumber(Loc)); 5527 } 5528 } 5529 5530 llvm::DIImportedEntity * 5531 CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) { 5532 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5533 return nullptr; 5534 auto &VH = NamespaceAliasCache[&NA]; 5535 if (VH) 5536 return cast<llvm::DIImportedEntity>(VH); 5537 llvm::DIImportedEntity *R; 5538 auto Loc = NA.getLocation(); 5539 if (const auto *Underlying = 5540 dyn_cast<NamespaceAliasDecl>(NA.getAliasedNamespace())) 5541 // This could cache & dedup here rather than relying on metadata deduping. 5542 R = DBuilder.createImportedDeclaration( 5543 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), 5544 EmitNamespaceAlias(*Underlying), getOrCreateFile(Loc), 5545 getLineNumber(Loc), NA.getName()); 5546 else 5547 R = DBuilder.createImportedDeclaration( 5548 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), 5549 getOrCreateNamespace(cast<NamespaceDecl>(NA.getAliasedNamespace())), 5550 getOrCreateFile(Loc), getLineNumber(Loc), NA.getName()); 5551 VH.reset(R); 5552 return R; 5553 } 5554 5555 llvm::DINamespace * 5556 CGDebugInfo::getOrCreateNamespace(const NamespaceDecl *NSDecl) { 5557 // Don't canonicalize the NamespaceDecl here: The DINamespace will be uniqued 5558 // if necessary, and this way multiple declarations of the same namespace in 5559 // different parent modules stay distinct. 5560 auto I = NamespaceCache.find(NSDecl); 5561 if (I != NamespaceCache.end()) 5562 return cast<llvm::DINamespace>(I->second); 5563 5564 llvm::DIScope *Context = getDeclContextDescriptor(NSDecl); 5565 // Don't trust the context if it is a DIModule (see comment above). 5566 llvm::DINamespace *NS = 5567 DBuilder.createNameSpace(Context, NSDecl->getName(), NSDecl->isInline()); 5568 NamespaceCache[NSDecl].reset(NS); 5569 return NS; 5570 } 5571 5572 void CGDebugInfo::setDwoId(uint64_t Signature) { 5573 assert(TheCU && "no main compile unit"); 5574 TheCU->setDWOId(Signature); 5575 } 5576 5577 void CGDebugInfo::finalize() { 5578 // Creating types might create further types - invalidating the current 5579 // element and the size(), so don't cache/reference them. 5580 for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) { 5581 ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i]; 5582 llvm::DIType *Ty = E.Type->getDecl()->getDefinition() 5583 ? CreateTypeDefinition(E.Type, E.Unit) 5584 : E.Decl; 5585 DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty); 5586 } 5587 5588 // Add methods to interface. 5589 for (const auto &P : ObjCMethodCache) { 5590 if (P.second.empty()) 5591 continue; 5592 5593 QualType QTy(P.first->getTypeForDecl(), 0); 5594 auto It = TypeCache.find(QTy.getAsOpaquePtr()); 5595 assert(It != TypeCache.end()); 5596 5597 llvm::DICompositeType *InterfaceDecl = 5598 cast<llvm::DICompositeType>(It->second); 5599 5600 auto CurElts = InterfaceDecl->getElements(); 5601 SmallVector<llvm::Metadata *, 16> EltTys(CurElts.begin(), CurElts.end()); 5602 5603 // For DWARF v4 or earlier, only add objc_direct methods. 5604 for (auto &SubprogramDirect : P.second) 5605 if (CGM.getCodeGenOpts().DwarfVersion >= 5 || SubprogramDirect.getInt()) 5606 EltTys.push_back(SubprogramDirect.getPointer()); 5607 5608 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 5609 DBuilder.replaceArrays(InterfaceDecl, Elements); 5610 } 5611 5612 for (const auto &P : ReplaceMap) { 5613 assert(P.second); 5614 auto *Ty = cast<llvm::DIType>(P.second); 5615 assert(Ty->isForwardDecl()); 5616 5617 auto It = TypeCache.find(P.first); 5618 assert(It != TypeCache.end()); 5619 assert(It->second); 5620 5621 DBuilder.replaceTemporary(llvm::TempDIType(Ty), 5622 cast<llvm::DIType>(It->second)); 5623 } 5624 5625 for (const auto &P : FwdDeclReplaceMap) { 5626 assert(P.second); 5627 llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(P.second)); 5628 llvm::Metadata *Repl; 5629 5630 auto It = DeclCache.find(P.first); 5631 // If there has been no definition for the declaration, call RAUW 5632 // with ourselves, that will destroy the temporary MDNode and 5633 // replace it with a standard one, avoiding leaking memory. 5634 if (It == DeclCache.end()) 5635 Repl = P.second; 5636 else 5637 Repl = It->second; 5638 5639 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(Repl)) 5640 Repl = GVE->getVariable(); 5641 DBuilder.replaceTemporary(std::move(FwdDecl), cast<llvm::MDNode>(Repl)); 5642 } 5643 5644 // We keep our own list of retained types, because we need to look 5645 // up the final type in the type cache. 5646 for (auto &RT : RetainedTypes) 5647 if (auto MD = TypeCache[RT]) 5648 DBuilder.retainType(cast<llvm::DIType>(MD)); 5649 5650 DBuilder.finalize(); 5651 } 5652 5653 // Don't ignore in case of explicit cast where it is referenced indirectly. 5654 void CGDebugInfo::EmitExplicitCastType(QualType Ty) { 5655 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 5656 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) 5657 DBuilder.retainType(DieTy); 5658 } 5659 5660 void CGDebugInfo::EmitAndRetainType(QualType Ty) { 5661 if (CGM.getCodeGenOpts().hasMaybeUnusedDebugInfo()) 5662 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) 5663 DBuilder.retainType(DieTy); 5664 } 5665 5666 llvm::DebugLoc CGDebugInfo::SourceLocToDebugLoc(SourceLocation Loc) { 5667 if (LexicalBlockStack.empty()) 5668 return llvm::DebugLoc(); 5669 5670 llvm::MDNode *Scope = LexicalBlockStack.back(); 5671 return llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(Loc), 5672 getColumnNumber(Loc), Scope); 5673 } 5674 5675 llvm::DINode::DIFlags CGDebugInfo::getCallSiteRelatedAttrs() const { 5676 // Call site-related attributes are only useful in optimized programs, and 5677 // when there's a possibility of debugging backtraces. 5678 if (!CGM.getLangOpts().Optimize || DebugKind == codegenoptions::NoDebugInfo || 5679 DebugKind == codegenoptions::LocTrackingOnly) 5680 return llvm::DINode::FlagZero; 5681 5682 // Call site-related attributes are available in DWARF v5. Some debuggers, 5683 // while not fully DWARF v5-compliant, may accept these attributes as if they 5684 // were part of DWARF v4. 5685 bool SupportsDWARFv4Ext = 5686 CGM.getCodeGenOpts().DwarfVersion == 4 && 5687 (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB || 5688 CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::GDB); 5689 5690 if (!SupportsDWARFv4Ext && CGM.getCodeGenOpts().DwarfVersion < 5) 5691 return llvm::DINode::FlagZero; 5692 5693 return llvm::DINode::FlagAllCallsDescribed; 5694 } 5695