1 //===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the debug information generation while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/DeclFriend.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/Expr.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/AST/RecursiveASTVisitor.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/FileManager.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/Version.h" 33 #include "clang/Frontend/FrontendOptions.h" 34 #include "clang/Lex/HeaderSearchOptions.h" 35 #include "clang/Lex/ModuleMap.h" 36 #include "clang/Lex/PreprocessorOptions.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/StringExtras.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/MD5.h" 49 #include "llvm/Support/Path.h" 50 #include "llvm/Support/TimeProfiler.h" 51 using namespace clang; 52 using namespace clang::CodeGen; 53 54 static uint32_t getTypeAlignIfRequired(const Type *Ty, const ASTContext &Ctx) { 55 auto TI = Ctx.getTypeInfo(Ty); 56 return TI.isAlignRequired() ? TI.Align : 0; 57 } 58 59 static uint32_t getTypeAlignIfRequired(QualType Ty, const ASTContext &Ctx) { 60 return getTypeAlignIfRequired(Ty.getTypePtr(), Ctx); 61 } 62 63 static uint32_t getDeclAlignIfRequired(const Decl *D, const ASTContext &Ctx) { 64 return D->hasAttr<AlignedAttr>() ? D->getMaxAlignment() : 0; 65 } 66 67 CGDebugInfo::CGDebugInfo(CodeGenModule &CGM) 68 : CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()), 69 DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs), 70 DBuilder(CGM.getModule()) { 71 for (const auto &KV : CGM.getCodeGenOpts().DebugPrefixMap) 72 DebugPrefixMap[KV.first] = KV.second; 73 CreateCompileUnit(); 74 } 75 76 CGDebugInfo::~CGDebugInfo() { 77 assert(LexicalBlockStack.empty() && 78 "Region stack mismatch, stack not empty!"); 79 } 80 81 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, 82 SourceLocation TemporaryLocation) 83 : CGF(&CGF) { 84 init(TemporaryLocation); 85 } 86 87 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, 88 bool DefaultToEmpty, 89 SourceLocation TemporaryLocation) 90 : CGF(&CGF) { 91 init(TemporaryLocation, DefaultToEmpty); 92 } 93 94 void ApplyDebugLocation::init(SourceLocation TemporaryLocation, 95 bool DefaultToEmpty) { 96 auto *DI = CGF->getDebugInfo(); 97 if (!DI) { 98 CGF = nullptr; 99 return; 100 } 101 102 OriginalLocation = CGF->Builder.getCurrentDebugLocation(); 103 104 if (OriginalLocation && !DI->CGM.getExpressionLocationsEnabled()) 105 return; 106 107 if (TemporaryLocation.isValid()) { 108 DI->EmitLocation(CGF->Builder, TemporaryLocation); 109 return; 110 } 111 112 if (DefaultToEmpty) { 113 CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 114 return; 115 } 116 117 // Construct a location that has a valid scope, but no line info. 118 assert(!DI->LexicalBlockStack.empty()); 119 CGF->Builder.SetCurrentDebugLocation( 120 llvm::DILocation::get(DI->LexicalBlockStack.back()->getContext(), 0, 0, 121 DI->LexicalBlockStack.back(), DI->getInlinedAt())); 122 } 123 124 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E) 125 : CGF(&CGF) { 126 init(E->getExprLoc()); 127 } 128 129 ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc) 130 : CGF(&CGF) { 131 if (!CGF.getDebugInfo()) { 132 this->CGF = nullptr; 133 return; 134 } 135 OriginalLocation = CGF.Builder.getCurrentDebugLocation(); 136 if (Loc) 137 CGF.Builder.SetCurrentDebugLocation(std::move(Loc)); 138 } 139 140 ApplyDebugLocation::~ApplyDebugLocation() { 141 // Query CGF so the location isn't overwritten when location updates are 142 // temporarily disabled (for C++ default function arguments) 143 if (CGF) 144 CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation)); 145 } 146 147 ApplyInlineDebugLocation::ApplyInlineDebugLocation(CodeGenFunction &CGF, 148 GlobalDecl InlinedFn) 149 : CGF(&CGF) { 150 if (!CGF.getDebugInfo()) { 151 this->CGF = nullptr; 152 return; 153 } 154 auto &DI = *CGF.getDebugInfo(); 155 SavedLocation = DI.getLocation(); 156 assert((DI.getInlinedAt() == 157 CGF.Builder.getCurrentDebugLocation()->getInlinedAt()) && 158 "CGDebugInfo and IRBuilder are out of sync"); 159 160 DI.EmitInlineFunctionStart(CGF.Builder, InlinedFn); 161 } 162 163 ApplyInlineDebugLocation::~ApplyInlineDebugLocation() { 164 if (!CGF) 165 return; 166 auto &DI = *CGF->getDebugInfo(); 167 DI.EmitInlineFunctionEnd(CGF->Builder); 168 DI.EmitLocation(CGF->Builder, SavedLocation); 169 } 170 171 void CGDebugInfo::setLocation(SourceLocation Loc) { 172 // If the new location isn't valid return. 173 if (Loc.isInvalid()) 174 return; 175 176 CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc); 177 178 // If we've changed files in the middle of a lexical scope go ahead 179 // and create a new lexical scope with file node if it's different 180 // from the one in the scope. 181 if (LexicalBlockStack.empty()) 182 return; 183 184 SourceManager &SM = CGM.getContext().getSourceManager(); 185 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 186 PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc); 187 if (PCLoc.isInvalid() || Scope->getFile() == getOrCreateFile(CurLoc)) 188 return; 189 190 if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) { 191 LexicalBlockStack.pop_back(); 192 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile( 193 LBF->getScope(), getOrCreateFile(CurLoc))); 194 } else if (isa<llvm::DILexicalBlock>(Scope) || 195 isa<llvm::DISubprogram>(Scope)) { 196 LexicalBlockStack.pop_back(); 197 LexicalBlockStack.emplace_back( 198 DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc))); 199 } 200 } 201 202 llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) { 203 llvm::DIScope *Mod = getParentModuleOrNull(D); 204 return getContextDescriptor(cast<Decl>(D->getDeclContext()), 205 Mod ? Mod : TheCU); 206 } 207 208 llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context, 209 llvm::DIScope *Default) { 210 if (!Context) 211 return Default; 212 213 auto I = RegionMap.find(Context); 214 if (I != RegionMap.end()) { 215 llvm::Metadata *V = I->second; 216 return dyn_cast_or_null<llvm::DIScope>(V); 217 } 218 219 // Check namespace. 220 if (const auto *NSDecl = dyn_cast<NamespaceDecl>(Context)) 221 return getOrCreateNamespace(NSDecl); 222 223 if (const auto *RDecl = dyn_cast<RecordDecl>(Context)) 224 if (!RDecl->isDependentType()) 225 return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl), 226 TheCU->getFile()); 227 return Default; 228 } 229 230 PrintingPolicy CGDebugInfo::getPrintingPolicy() const { 231 PrintingPolicy PP = CGM.getContext().getPrintingPolicy(); 232 233 // If we're emitting codeview, it's important to try to match MSVC's naming so 234 // that visualizers written for MSVC will trigger for our class names. In 235 // particular, we can't have spaces between arguments of standard templates 236 // like basic_string and vector, but we must have spaces between consecutive 237 // angle brackets that close nested template argument lists. 238 if (CGM.getCodeGenOpts().EmitCodeView) { 239 PP.MSVCFormatting = true; 240 PP.SplitTemplateClosers = true; 241 } else { 242 // For DWARF, printing rules are underspecified. 243 // SplitTemplateClosers yields better interop with GCC and GDB (PR46052). 244 PP.SplitTemplateClosers = true; 245 } 246 247 PP.SuppressInlineNamespace = false; 248 PP.PrintCanonicalTypes = true; 249 PP.UsePreferredNames = false; 250 PP.AlwaysIncludeTypeForTemplateArgument = true; 251 PP.UseEnumerators = false; 252 253 // Apply -fdebug-prefix-map. 254 PP.Callbacks = &PrintCB; 255 return PP; 256 } 257 258 StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) { 259 return internString(GetName(FD)); 260 } 261 262 StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) { 263 SmallString<256> MethodName; 264 llvm::raw_svector_ostream OS(MethodName); 265 OS << (OMD->isInstanceMethod() ? '-' : '+') << '['; 266 const DeclContext *DC = OMD->getDeclContext(); 267 if (const auto *OID = dyn_cast<ObjCImplementationDecl>(DC)) { 268 OS << OID->getName(); 269 } else if (const auto *OID = dyn_cast<ObjCInterfaceDecl>(DC)) { 270 OS << OID->getName(); 271 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(DC)) { 272 if (OC->IsClassExtension()) { 273 OS << OC->getClassInterface()->getName(); 274 } else { 275 OS << OC->getIdentifier()->getNameStart() << '(' 276 << OC->getIdentifier()->getNameStart() << ')'; 277 } 278 } else if (const auto *OCD = dyn_cast<ObjCCategoryImplDecl>(DC)) { 279 OS << OCD->getClassInterface()->getName() << '(' << OCD->getName() << ')'; 280 } 281 OS << ' ' << OMD->getSelector().getAsString() << ']'; 282 283 return internString(OS.str()); 284 } 285 286 StringRef CGDebugInfo::getSelectorName(Selector S) { 287 return internString(S.getAsString()); 288 } 289 290 StringRef CGDebugInfo::getClassName(const RecordDecl *RD) { 291 if (isa<ClassTemplateSpecializationDecl>(RD)) { 292 // Copy this name on the side and use its reference. 293 return internString(GetName(RD)); 294 } 295 296 // quick optimization to avoid having to intern strings that are already 297 // stored reliably elsewhere 298 if (const IdentifierInfo *II = RD->getIdentifier()) 299 return II->getName(); 300 301 // The CodeView printer in LLVM wants to see the names of unnamed types 302 // because they need to have a unique identifier. 303 // These names are used to reconstruct the fully qualified type names. 304 if (CGM.getCodeGenOpts().EmitCodeView) { 305 if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) { 306 assert(RD->getDeclContext() == D->getDeclContext() && 307 "Typedef should not be in another decl context!"); 308 assert(D->getDeclName().getAsIdentifierInfo() && 309 "Typedef was not named!"); 310 return D->getDeclName().getAsIdentifierInfo()->getName(); 311 } 312 313 if (CGM.getLangOpts().CPlusPlus) { 314 StringRef Name; 315 316 ASTContext &Context = CGM.getContext(); 317 if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD)) 318 // Anonymous types without a name for linkage purposes have their 319 // declarator mangled in if they have one. 320 Name = DD->getName(); 321 else if (const TypedefNameDecl *TND = 322 Context.getTypedefNameForUnnamedTagDecl(RD)) 323 // Anonymous types without a name for linkage purposes have their 324 // associate typedef mangled in if they have one. 325 Name = TND->getName(); 326 327 // Give lambdas a display name based on their name mangling. 328 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 329 if (CXXRD->isLambda()) 330 return internString( 331 CGM.getCXXABI().getMangleContext().getLambdaString(CXXRD)); 332 333 if (!Name.empty()) { 334 SmallString<256> UnnamedType("<unnamed-type-"); 335 UnnamedType += Name; 336 UnnamedType += '>'; 337 return internString(UnnamedType); 338 } 339 } 340 } 341 342 return StringRef(); 343 } 344 345 Optional<llvm::DIFile::ChecksumKind> 346 CGDebugInfo::computeChecksum(FileID FID, SmallString<32> &Checksum) const { 347 Checksum.clear(); 348 349 if (!CGM.getCodeGenOpts().EmitCodeView && 350 CGM.getCodeGenOpts().DwarfVersion < 5) 351 return None; 352 353 SourceManager &SM = CGM.getContext().getSourceManager(); 354 Optional<llvm::MemoryBufferRef> MemBuffer = SM.getBufferOrNone(FID); 355 if (!MemBuffer) 356 return None; 357 358 llvm::toHex( 359 llvm::MD5::hash(llvm::arrayRefFromStringRef(MemBuffer->getBuffer())), 360 /*LowerCase*/ true, Checksum); 361 return llvm::DIFile::CSK_MD5; 362 } 363 364 Optional<StringRef> CGDebugInfo::getSource(const SourceManager &SM, 365 FileID FID) { 366 if (!CGM.getCodeGenOpts().EmbedSource) 367 return None; 368 369 bool SourceInvalid = false; 370 StringRef Source = SM.getBufferData(FID, &SourceInvalid); 371 372 if (SourceInvalid) 373 return None; 374 375 return Source; 376 } 377 378 llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) { 379 SourceManager &SM = CGM.getContext().getSourceManager(); 380 StringRef FileName; 381 FileID FID; 382 383 if (Loc.isInvalid()) { 384 // The DIFile used by the CU is distinct from the main source file. Call 385 // createFile() below for canonicalization if the source file was specified 386 // with an absolute path. 387 FileName = TheCU->getFile()->getFilename(); 388 } else { 389 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 390 FileName = PLoc.getFilename(); 391 392 if (FileName.empty()) { 393 FileName = TheCU->getFile()->getFilename(); 394 } else { 395 FileName = PLoc.getFilename(); 396 } 397 FID = PLoc.getFileID(); 398 } 399 400 // Cache the results. 401 auto It = DIFileCache.find(FileName.data()); 402 if (It != DIFileCache.end()) { 403 // Verify that the information still exists. 404 if (llvm::Metadata *V = It->second) 405 return cast<llvm::DIFile>(V); 406 } 407 408 SmallString<32> Checksum; 409 410 Optional<llvm::DIFile::ChecksumKind> CSKind = computeChecksum(FID, Checksum); 411 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo; 412 if (CSKind) 413 CSInfo.emplace(*CSKind, Checksum); 414 return createFile(FileName, CSInfo, getSource(SM, SM.getFileID(Loc))); 415 } 416 417 llvm::DIFile * 418 CGDebugInfo::createFile(StringRef FileName, 419 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo, 420 Optional<StringRef> Source) { 421 StringRef Dir; 422 StringRef File; 423 std::string RemappedFile = remapDIPath(FileName); 424 std::string CurDir = remapDIPath(getCurrentDirname()); 425 SmallString<128> DirBuf; 426 SmallString<128> FileBuf; 427 if (llvm::sys::path::is_absolute(RemappedFile)) { 428 // Strip the common prefix (if it is more than just "/" or "C:\") from 429 // current directory and FileName for a more space-efficient encoding. 430 auto FileIt = llvm::sys::path::begin(RemappedFile); 431 auto FileE = llvm::sys::path::end(RemappedFile); 432 auto CurDirIt = llvm::sys::path::begin(CurDir); 433 auto CurDirE = llvm::sys::path::end(CurDir); 434 for (; CurDirIt != CurDirE && *CurDirIt == *FileIt; ++CurDirIt, ++FileIt) 435 llvm::sys::path::append(DirBuf, *CurDirIt); 436 if (llvm::sys::path::root_path(DirBuf) == DirBuf) { 437 // Don't strip the common prefix if it is only the root ("/" or "C:\") 438 // since that would make LLVM diagnostic locations confusing. 439 Dir = {}; 440 File = RemappedFile; 441 } else { 442 for (; FileIt != FileE; ++FileIt) 443 llvm::sys::path::append(FileBuf, *FileIt); 444 Dir = DirBuf; 445 File = FileBuf; 446 } 447 } else { 448 if (!llvm::sys::path::is_absolute(FileName)) 449 Dir = CurDir; 450 File = RemappedFile; 451 } 452 llvm::DIFile *F = DBuilder.createFile(File, Dir, CSInfo, Source); 453 DIFileCache[FileName.data()].reset(F); 454 return F; 455 } 456 457 std::string CGDebugInfo::remapDIPath(StringRef Path) const { 458 if (DebugPrefixMap.empty()) 459 return Path.str(); 460 461 SmallString<256> P = Path; 462 for (const auto &Entry : DebugPrefixMap) 463 if (llvm::sys::path::replace_path_prefix(P, Entry.first, Entry.second)) 464 break; 465 return P.str().str(); 466 } 467 468 unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) { 469 if (Loc.isInvalid()) 470 return 0; 471 SourceManager &SM = CGM.getContext().getSourceManager(); 472 return SM.getPresumedLoc(Loc).getLine(); 473 } 474 475 unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) { 476 // We may not want column information at all. 477 if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo) 478 return 0; 479 480 // If the location is invalid then use the current column. 481 if (Loc.isInvalid() && CurLoc.isInvalid()) 482 return 0; 483 SourceManager &SM = CGM.getContext().getSourceManager(); 484 PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc); 485 return PLoc.isValid() ? PLoc.getColumn() : 0; 486 } 487 488 StringRef CGDebugInfo::getCurrentDirname() { 489 if (!CGM.getCodeGenOpts().DebugCompilationDir.empty()) 490 return CGM.getCodeGenOpts().DebugCompilationDir; 491 492 if (!CWDName.empty()) 493 return CWDName; 494 SmallString<256> CWD; 495 llvm::sys::fs::current_path(CWD); 496 return CWDName = internString(CWD); 497 } 498 499 void CGDebugInfo::CreateCompileUnit() { 500 SmallString<32> Checksum; 501 Optional<llvm::DIFile::ChecksumKind> CSKind; 502 Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo; 503 504 // Should we be asking the SourceManager for the main file name, instead of 505 // accepting it as an argument? This just causes the main file name to 506 // mismatch with source locations and create extra lexical scopes or 507 // mismatched debug info (a CU with a DW_AT_file of "-", because that's what 508 // the driver passed, but functions/other things have DW_AT_file of "<stdin>" 509 // because that's what the SourceManager says) 510 511 // Get absolute path name. 512 SourceManager &SM = CGM.getContext().getSourceManager(); 513 std::string MainFileName = CGM.getCodeGenOpts().MainFileName; 514 if (MainFileName.empty()) 515 MainFileName = "<stdin>"; 516 517 // The main file name provided via the "-main-file-name" option contains just 518 // the file name itself with no path information. This file name may have had 519 // a relative path, so we look into the actual file entry for the main 520 // file to determine the real absolute path for the file. 521 std::string MainFileDir; 522 if (Optional<FileEntryRef> MainFile = 523 SM.getFileEntryRefForID(SM.getMainFileID())) { 524 MainFileDir = std::string(MainFile->getDir().getName()); 525 if (!llvm::sys::path::is_absolute(MainFileName)) { 526 llvm::SmallString<1024> MainFileDirSS(MainFileDir); 527 llvm::sys::path::append(MainFileDirSS, MainFileName); 528 MainFileName = 529 std::string(llvm::sys::path::remove_leading_dotslash(MainFileDirSS)); 530 } 531 // If the main file name provided is identical to the input file name, and 532 // if the input file is a preprocessed source, use the module name for 533 // debug info. The module name comes from the name specified in the first 534 // linemarker if the input is a preprocessed source. 535 if (MainFile->getName() == MainFileName && 536 FrontendOptions::getInputKindForExtension( 537 MainFile->getName().rsplit('.').second) 538 .isPreprocessed()) 539 MainFileName = CGM.getModule().getName().str(); 540 541 CSKind = computeChecksum(SM.getMainFileID(), Checksum); 542 } 543 544 llvm::dwarf::SourceLanguage LangTag; 545 const LangOptions &LO = CGM.getLangOpts(); 546 if (LO.CPlusPlus) { 547 if (LO.ObjC) 548 LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus; 549 else if (LO.CPlusPlus14 && (!CGM.getCodeGenOpts().DebugStrictDwarf || 550 CGM.getCodeGenOpts().DwarfVersion >= 5)) 551 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_14; 552 else if (LO.CPlusPlus11 && (!CGM.getCodeGenOpts().DebugStrictDwarf || 553 CGM.getCodeGenOpts().DwarfVersion >= 5)) 554 LangTag = llvm::dwarf::DW_LANG_C_plus_plus_11; 555 else 556 LangTag = llvm::dwarf::DW_LANG_C_plus_plus; 557 } else if (LO.ObjC) { 558 LangTag = llvm::dwarf::DW_LANG_ObjC; 559 } else if (LO.OpenCL && (!CGM.getCodeGenOpts().DebugStrictDwarf || 560 CGM.getCodeGenOpts().DwarfVersion >= 5)) { 561 LangTag = llvm::dwarf::DW_LANG_OpenCL; 562 } else if (LO.RenderScript) { 563 LangTag = llvm::dwarf::DW_LANG_GOOGLE_RenderScript; 564 } else if (LO.C99) { 565 LangTag = llvm::dwarf::DW_LANG_C99; 566 } else { 567 LangTag = llvm::dwarf::DW_LANG_C89; 568 } 569 570 std::string Producer = getClangFullVersion(); 571 572 // Figure out which version of the ObjC runtime we have. 573 unsigned RuntimeVers = 0; 574 if (LO.ObjC) 575 RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1; 576 577 llvm::DICompileUnit::DebugEmissionKind EmissionKind; 578 switch (DebugKind) { 579 case codegenoptions::NoDebugInfo: 580 case codegenoptions::LocTrackingOnly: 581 EmissionKind = llvm::DICompileUnit::NoDebug; 582 break; 583 case codegenoptions::DebugLineTablesOnly: 584 EmissionKind = llvm::DICompileUnit::LineTablesOnly; 585 break; 586 case codegenoptions::DebugDirectivesOnly: 587 EmissionKind = llvm::DICompileUnit::DebugDirectivesOnly; 588 break; 589 case codegenoptions::DebugInfoConstructor: 590 case codegenoptions::LimitedDebugInfo: 591 case codegenoptions::FullDebugInfo: 592 case codegenoptions::UnusedTypeInfo: 593 EmissionKind = llvm::DICompileUnit::FullDebug; 594 break; 595 } 596 597 uint64_t DwoId = 0; 598 auto &CGOpts = CGM.getCodeGenOpts(); 599 // The DIFile used by the CU is distinct from the main source 600 // file. Its directory part specifies what becomes the 601 // DW_AT_comp_dir (the compilation directory), even if the source 602 // file was specified with an absolute path. 603 if (CSKind) 604 CSInfo.emplace(*CSKind, Checksum); 605 llvm::DIFile *CUFile = DBuilder.createFile( 606 remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), CSInfo, 607 getSource(SM, SM.getMainFileID())); 608 609 StringRef Sysroot, SDK; 610 if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB) { 611 Sysroot = CGM.getHeaderSearchOpts().Sysroot; 612 auto B = llvm::sys::path::rbegin(Sysroot); 613 auto E = llvm::sys::path::rend(Sysroot); 614 auto It = std::find_if(B, E, [](auto SDK) { return SDK.endswith(".sdk"); }); 615 if (It != E) 616 SDK = *It; 617 } 618 619 // Create new compile unit. 620 TheCU = DBuilder.createCompileUnit( 621 LangTag, CUFile, CGOpts.EmitVersionIdentMetadata ? Producer : "", 622 LO.Optimize || CGOpts.PrepareForLTO || CGOpts.PrepareForThinLTO, 623 CGOpts.DwarfDebugFlags, RuntimeVers, CGOpts.SplitDwarfFile, EmissionKind, 624 DwoId, CGOpts.SplitDwarfInlining, CGOpts.DebugInfoForProfiling, 625 CGM.getTarget().getTriple().isNVPTX() 626 ? llvm::DICompileUnit::DebugNameTableKind::None 627 : static_cast<llvm::DICompileUnit::DebugNameTableKind>( 628 CGOpts.DebugNameTable), 629 CGOpts.DebugRangesBaseAddress, remapDIPath(Sysroot), SDK); 630 } 631 632 llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) { 633 llvm::dwarf::TypeKind Encoding; 634 StringRef BTName; 635 switch (BT->getKind()) { 636 #define BUILTIN_TYPE(Id, SingletonId) 637 #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: 638 #include "clang/AST/BuiltinTypes.def" 639 case BuiltinType::Dependent: 640 llvm_unreachable("Unexpected builtin type"); 641 case BuiltinType::NullPtr: 642 return DBuilder.createNullPtrType(); 643 case BuiltinType::Void: 644 return nullptr; 645 case BuiltinType::ObjCClass: 646 if (!ClassTy) 647 ClassTy = 648 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 649 "objc_class", TheCU, TheCU->getFile(), 0); 650 return ClassTy; 651 case BuiltinType::ObjCId: { 652 // typedef struct objc_class *Class; 653 // typedef struct objc_object { 654 // Class isa; 655 // } *id; 656 657 if (ObjTy) 658 return ObjTy; 659 660 if (!ClassTy) 661 ClassTy = 662 DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 663 "objc_class", TheCU, TheCU->getFile(), 0); 664 665 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 666 667 auto *ISATy = DBuilder.createPointerType(ClassTy, Size); 668 669 ObjTy = DBuilder.createStructType(TheCU, "objc_object", TheCU->getFile(), 0, 670 0, 0, llvm::DINode::FlagZero, nullptr, 671 llvm::DINodeArray()); 672 673 DBuilder.replaceArrays( 674 ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType( 675 ObjTy, "isa", TheCU->getFile(), 0, Size, 0, 0, 676 llvm::DINode::FlagZero, ISATy))); 677 return ObjTy; 678 } 679 case BuiltinType::ObjCSel: { 680 if (!SelTy) 681 SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 682 "objc_selector", TheCU, 683 TheCU->getFile(), 0); 684 return SelTy; 685 } 686 687 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 688 case BuiltinType::Id: \ 689 return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \ 690 SingletonId); 691 #include "clang/Basic/OpenCLImageTypes.def" 692 case BuiltinType::OCLSampler: 693 return getOrCreateStructPtrType("opencl_sampler_t", OCLSamplerDITy); 694 case BuiltinType::OCLEvent: 695 return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy); 696 case BuiltinType::OCLClkEvent: 697 return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy); 698 case BuiltinType::OCLQueue: 699 return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy); 700 case BuiltinType::OCLReserveID: 701 return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy); 702 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 703 case BuiltinType::Id: \ 704 return getOrCreateStructPtrType("opencl_" #ExtType, Id##Ty); 705 #include "clang/Basic/OpenCLExtensionTypes.def" 706 707 #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 708 #include "clang/Basic/AArch64SVEACLETypes.def" 709 { 710 ASTContext::BuiltinVectorTypeInfo Info = 711 CGM.getContext().getBuiltinVectorTypeInfo(BT); 712 unsigned NumElemsPerVG = (Info.EC.getKnownMinValue() * Info.NumVectors) / 2; 713 714 // Debuggers can't extract 1bit from a vector, so will display a 715 // bitpattern for svbool_t instead. 716 if (Info.ElementType == CGM.getContext().BoolTy) { 717 NumElemsPerVG /= 8; 718 Info.ElementType = CGM.getContext().UnsignedCharTy; 719 } 720 721 auto *LowerBound = 722 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 723 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); 724 SmallVector<uint64_t, 9> Expr( 725 {llvm::dwarf::DW_OP_constu, NumElemsPerVG, llvm::dwarf::DW_OP_bregx, 726 /* AArch64::VG */ 46, 0, llvm::dwarf::DW_OP_mul, 727 llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus}); 728 auto *UpperBound = DBuilder.createExpression(Expr); 729 730 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( 731 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); 732 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 733 llvm::DIType *ElemTy = 734 getOrCreateType(Info.ElementType, TheCU->getFile()); 735 auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); 736 return DBuilder.createVectorType(/*Size*/ 0, Align, ElemTy, 737 SubscriptArray); 738 } 739 // It doesn't make sense to generate debug info for PowerPC MMA vector types. 740 // So we return a safe type here to avoid generating an error. 741 #define PPC_VECTOR_TYPE(Name, Id, size) \ 742 case BuiltinType::Id: 743 #include "clang/Basic/PPCTypes.def" 744 return CreateType(cast<const BuiltinType>(CGM.getContext().IntTy)); 745 746 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 747 #include "clang/Basic/RISCVVTypes.def" 748 { 749 ASTContext::BuiltinVectorTypeInfo Info = 750 CGM.getContext().getBuiltinVectorTypeInfo(BT); 751 752 unsigned ElementCount = Info.EC.getKnownMinValue(); 753 unsigned SEW = CGM.getContext().getTypeSize(Info.ElementType); 754 755 bool Fractional = false; 756 unsigned LMUL; 757 unsigned FixedSize = ElementCount * SEW; 758 if (Info.ElementType == CGM.getContext().BoolTy) { 759 // Mask type only occupies one vector register. 760 LMUL = 1; 761 } else if (FixedSize < 64) { 762 // In RVV scalable vector types, we encode 64 bits in the fixed part. 763 Fractional = true; 764 LMUL = 64 / FixedSize; 765 } else { 766 LMUL = FixedSize / 64; 767 } 768 769 // Element count = (VLENB / SEW) x LMUL 770 SmallVector<uint64_t, 12> Expr( 771 // The DW_OP_bregx operation has two operands: a register which is 772 // specified by an unsigned LEB128 number, followed by a signed LEB128 773 // offset. 774 {llvm::dwarf::DW_OP_bregx, // Read the contents of a register. 775 4096 + 0xC22, // RISC-V VLENB CSR register. 776 0, // Offset for DW_OP_bregx. It is dummy here. 777 llvm::dwarf::DW_OP_constu, 778 SEW / 8, // SEW is in bits. 779 llvm::dwarf::DW_OP_div, llvm::dwarf::DW_OP_constu, LMUL}); 780 if (Fractional) 781 Expr.push_back(llvm::dwarf::DW_OP_div); 782 else 783 Expr.push_back(llvm::dwarf::DW_OP_mul); 784 // Element max index = count - 1 785 Expr.append({llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus}); 786 787 auto *LowerBound = 788 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 789 llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); 790 auto *UpperBound = DBuilder.createExpression(Expr); 791 llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( 792 /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); 793 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 794 llvm::DIType *ElemTy = 795 getOrCreateType(Info.ElementType, TheCU->getFile()); 796 797 auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); 798 return DBuilder.createVectorType(/*Size=*/0, Align, ElemTy, 799 SubscriptArray); 800 } 801 case BuiltinType::UChar: 802 case BuiltinType::Char_U: 803 Encoding = llvm::dwarf::DW_ATE_unsigned_char; 804 break; 805 case BuiltinType::Char_S: 806 case BuiltinType::SChar: 807 Encoding = llvm::dwarf::DW_ATE_signed_char; 808 break; 809 case BuiltinType::Char8: 810 case BuiltinType::Char16: 811 case BuiltinType::Char32: 812 Encoding = llvm::dwarf::DW_ATE_UTF; 813 break; 814 case BuiltinType::UShort: 815 case BuiltinType::UInt: 816 case BuiltinType::UInt128: 817 case BuiltinType::ULong: 818 case BuiltinType::WChar_U: 819 case BuiltinType::ULongLong: 820 Encoding = llvm::dwarf::DW_ATE_unsigned; 821 break; 822 case BuiltinType::Short: 823 case BuiltinType::Int: 824 case BuiltinType::Int128: 825 case BuiltinType::Long: 826 case BuiltinType::WChar_S: 827 case BuiltinType::LongLong: 828 Encoding = llvm::dwarf::DW_ATE_signed; 829 break; 830 case BuiltinType::Bool: 831 Encoding = llvm::dwarf::DW_ATE_boolean; 832 break; 833 case BuiltinType::Half: 834 case BuiltinType::Float: 835 case BuiltinType::LongDouble: 836 case BuiltinType::Float16: 837 case BuiltinType::BFloat16: 838 case BuiltinType::Float128: 839 case BuiltinType::Double: 840 case BuiltinType::Ibm128: 841 // FIXME: For targets where long double, __ibm128 and __float128 have the 842 // same size, they are currently indistinguishable in the debugger without 843 // some special treatment. However, there is currently no consensus on 844 // encoding and this should be updated once a DWARF encoding exists for 845 // distinct floating point types of the same size. 846 Encoding = llvm::dwarf::DW_ATE_float; 847 break; 848 case BuiltinType::ShortAccum: 849 case BuiltinType::Accum: 850 case BuiltinType::LongAccum: 851 case BuiltinType::ShortFract: 852 case BuiltinType::Fract: 853 case BuiltinType::LongFract: 854 case BuiltinType::SatShortFract: 855 case BuiltinType::SatFract: 856 case BuiltinType::SatLongFract: 857 case BuiltinType::SatShortAccum: 858 case BuiltinType::SatAccum: 859 case BuiltinType::SatLongAccum: 860 Encoding = llvm::dwarf::DW_ATE_signed_fixed; 861 break; 862 case BuiltinType::UShortAccum: 863 case BuiltinType::UAccum: 864 case BuiltinType::ULongAccum: 865 case BuiltinType::UShortFract: 866 case BuiltinType::UFract: 867 case BuiltinType::ULongFract: 868 case BuiltinType::SatUShortAccum: 869 case BuiltinType::SatUAccum: 870 case BuiltinType::SatULongAccum: 871 case BuiltinType::SatUShortFract: 872 case BuiltinType::SatUFract: 873 case BuiltinType::SatULongFract: 874 Encoding = llvm::dwarf::DW_ATE_unsigned_fixed; 875 break; 876 } 877 878 BTName = BT->getName(CGM.getLangOpts()); 879 // Bit size and offset of the type. 880 uint64_t Size = CGM.getContext().getTypeSize(BT); 881 return DBuilder.createBasicType(BTName, Size, Encoding); 882 } 883 884 llvm::DIType *CGDebugInfo::CreateType(const AutoType *Ty) { 885 return DBuilder.createUnspecifiedType("auto"); 886 } 887 888 llvm::DIType *CGDebugInfo::CreateType(const BitIntType *Ty) { 889 890 StringRef Name = Ty->isUnsigned() ? "unsigned _BitInt" : "_BitInt"; 891 llvm::dwarf::TypeKind Encoding = Ty->isUnsigned() 892 ? llvm::dwarf::DW_ATE_unsigned 893 : llvm::dwarf::DW_ATE_signed; 894 895 return DBuilder.createBasicType(Name, CGM.getContext().getTypeSize(Ty), 896 Encoding); 897 } 898 899 llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) { 900 // Bit size and offset of the type. 901 llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float; 902 if (Ty->isComplexIntegerType()) 903 Encoding = llvm::dwarf::DW_ATE_lo_user; 904 905 uint64_t Size = CGM.getContext().getTypeSize(Ty); 906 return DBuilder.createBasicType("complex", Size, Encoding); 907 } 908 909 static void stripUnusedQualifiers(Qualifiers &Q) { 910 // Ignore these qualifiers for now. 911 Q.removeObjCGCAttr(); 912 Q.removeAddressSpace(); 913 Q.removeObjCLifetime(); 914 Q.removeUnaligned(); 915 } 916 917 static llvm::dwarf::Tag getNextQualifier(Qualifiers &Q) { 918 if (Q.hasConst()) { 919 Q.removeConst(); 920 return llvm::dwarf::DW_TAG_const_type; 921 } 922 if (Q.hasVolatile()) { 923 Q.removeVolatile(); 924 return llvm::dwarf::DW_TAG_volatile_type; 925 } 926 if (Q.hasRestrict()) { 927 Q.removeRestrict(); 928 return llvm::dwarf::DW_TAG_restrict_type; 929 } 930 return (llvm::dwarf::Tag)0; 931 } 932 933 llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty, 934 llvm::DIFile *Unit) { 935 QualifierCollector Qc; 936 const Type *T = Qc.strip(Ty); 937 938 stripUnusedQualifiers(Qc); 939 940 // We will create one Derived type for one qualifier and recurse to handle any 941 // additional ones. 942 llvm::dwarf::Tag Tag = getNextQualifier(Qc); 943 if (!Tag) { 944 assert(Qc.empty() && "Unknown type qualifier for debug info"); 945 return getOrCreateType(QualType(T, 0), Unit); 946 } 947 948 auto *FromTy = getOrCreateType(Qc.apply(CGM.getContext(), T), Unit); 949 950 // No need to fill in the Name, Line, Size, Alignment, Offset in case of 951 // CVR derived types. 952 return DBuilder.createQualifiedType(Tag, FromTy); 953 } 954 955 llvm::DIType *CGDebugInfo::CreateQualifiedType(const FunctionProtoType *F, 956 llvm::DIFile *Unit) { 957 FunctionProtoType::ExtProtoInfo EPI = F->getExtProtoInfo(); 958 Qualifiers &Q = EPI.TypeQuals; 959 stripUnusedQualifiers(Q); 960 961 // We will create one Derived type for one qualifier and recurse to handle any 962 // additional ones. 963 llvm::dwarf::Tag Tag = getNextQualifier(Q); 964 if (!Tag) { 965 assert(Q.empty() && "Unknown type qualifier for debug info"); 966 return nullptr; 967 } 968 969 auto *FromTy = 970 getOrCreateType(CGM.getContext().getFunctionType(F->getReturnType(), 971 F->getParamTypes(), EPI), 972 Unit); 973 974 // No need to fill in the Name, Line, Size, Alignment, Offset in case of 975 // CVR derived types. 976 return DBuilder.createQualifiedType(Tag, FromTy); 977 } 978 979 llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty, 980 llvm::DIFile *Unit) { 981 982 // The frontend treats 'id' as a typedef to an ObjCObjectType, 983 // whereas 'id<protocol>' is treated as an ObjCPointerType. For the 984 // debug info, we want to emit 'id' in both cases. 985 if (Ty->isObjCQualifiedIdType()) 986 return getOrCreateType(CGM.getContext().getObjCIdType(), Unit); 987 988 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, 989 Ty->getPointeeType(), Unit); 990 } 991 992 llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty, 993 llvm::DIFile *Unit) { 994 return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, 995 Ty->getPointeeType(), Unit); 996 } 997 998 /// \return whether a C++ mangling exists for the type defined by TD. 999 static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) { 1000 switch (TheCU->getSourceLanguage()) { 1001 case llvm::dwarf::DW_LANG_C_plus_plus: 1002 case llvm::dwarf::DW_LANG_C_plus_plus_11: 1003 case llvm::dwarf::DW_LANG_C_plus_plus_14: 1004 return true; 1005 case llvm::dwarf::DW_LANG_ObjC_plus_plus: 1006 return isa<CXXRecordDecl>(TD) || isa<EnumDecl>(TD); 1007 default: 1008 return false; 1009 } 1010 } 1011 1012 // Determines if the debug info for this tag declaration needs a type 1013 // identifier. The purpose of the unique identifier is to deduplicate type 1014 // information for identical types across TUs. Because of the C++ one definition 1015 // rule (ODR), it is valid to assume that the type is defined the same way in 1016 // every TU and its debug info is equivalent. 1017 // 1018 // C does not have the ODR, and it is common for codebases to contain multiple 1019 // different definitions of a struct with the same name in different TUs. 1020 // Therefore, if the type doesn't have a C++ mangling, don't give it an 1021 // identifer. Type information in C is smaller and simpler than C++ type 1022 // information, so the increase in debug info size is negligible. 1023 // 1024 // If the type is not externally visible, it should be unique to the current TU, 1025 // and should not need an identifier to participate in type deduplication. 1026 // However, when emitting CodeView, the format internally uses these 1027 // unique type name identifers for references between debug info. For example, 1028 // the method of a class in an anonymous namespace uses the identifer to refer 1029 // to its parent class. The Microsoft C++ ABI attempts to provide unique names 1030 // for such types, so when emitting CodeView, always use identifiers for C++ 1031 // types. This may create problems when attempting to emit CodeView when the MS 1032 // C++ ABI is not in use. 1033 static bool needsTypeIdentifier(const TagDecl *TD, CodeGenModule &CGM, 1034 llvm::DICompileUnit *TheCU) { 1035 // We only add a type identifier for types with C++ name mangling. 1036 if (!hasCXXMangling(TD, TheCU)) 1037 return false; 1038 1039 // Externally visible types with C++ mangling need a type identifier. 1040 if (TD->isExternallyVisible()) 1041 return true; 1042 1043 // CodeView types with C++ mangling need a type identifier. 1044 if (CGM.getCodeGenOpts().EmitCodeView) 1045 return true; 1046 1047 return false; 1048 } 1049 1050 // Returns a unique type identifier string if one exists, or an empty string. 1051 static SmallString<256> getTypeIdentifier(const TagType *Ty, CodeGenModule &CGM, 1052 llvm::DICompileUnit *TheCU) { 1053 SmallString<256> Identifier; 1054 const TagDecl *TD = Ty->getDecl(); 1055 1056 if (!needsTypeIdentifier(TD, CGM, TheCU)) 1057 return Identifier; 1058 if (const auto *RD = dyn_cast<CXXRecordDecl>(TD)) 1059 if (RD->getDefinition()) 1060 if (RD->isDynamicClass() && 1061 CGM.getVTableLinkage(RD) == llvm::GlobalValue::ExternalLinkage) 1062 return Identifier; 1063 1064 // TODO: This is using the RTTI name. Is there a better way to get 1065 // a unique string for a type? 1066 llvm::raw_svector_ostream Out(Identifier); 1067 CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out); 1068 return Identifier; 1069 } 1070 1071 /// \return the appropriate DWARF tag for a composite type. 1072 static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) { 1073 llvm::dwarf::Tag Tag; 1074 if (RD->isStruct() || RD->isInterface()) 1075 Tag = llvm::dwarf::DW_TAG_structure_type; 1076 else if (RD->isUnion()) 1077 Tag = llvm::dwarf::DW_TAG_union_type; 1078 else { 1079 // FIXME: This could be a struct type giving a default visibility different 1080 // than C++ class type, but needs llvm metadata changes first. 1081 assert(RD->isClass()); 1082 Tag = llvm::dwarf::DW_TAG_class_type; 1083 } 1084 return Tag; 1085 } 1086 1087 llvm::DICompositeType * 1088 CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty, 1089 llvm::DIScope *Ctx) { 1090 const RecordDecl *RD = Ty->getDecl(); 1091 if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD))) 1092 return cast<llvm::DICompositeType>(T); 1093 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); 1094 const unsigned Line = 1095 getLineNumber(RD->getLocation().isValid() ? RD->getLocation() : CurLoc); 1096 StringRef RDName = getClassName(RD); 1097 1098 uint64_t Size = 0; 1099 uint32_t Align = 0; 1100 1101 const RecordDecl *D = RD->getDefinition(); 1102 if (D && D->isCompleteDefinition()) 1103 Size = CGM.getContext().getTypeSize(Ty); 1104 1105 llvm::DINode::DIFlags Flags = llvm::DINode::FlagFwdDecl; 1106 1107 // Add flag to nontrivial forward declarations. To be consistent with MSVC, 1108 // add the flag if a record has no definition because we don't know whether 1109 // it will be trivial or not. 1110 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1111 if (!CXXRD->hasDefinition() || 1112 (CXXRD->hasDefinition() && !CXXRD->isTrivial())) 1113 Flags |= llvm::DINode::FlagNonTrivial; 1114 1115 // Create the type. 1116 SmallString<256> Identifier; 1117 // Don't include a linkage name in line tables only. 1118 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 1119 Identifier = getTypeIdentifier(Ty, CGM, TheCU); 1120 llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType( 1121 getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align, Flags, 1122 Identifier); 1123 if (CGM.getCodeGenOpts().DebugFwdTemplateParams) 1124 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 1125 DBuilder.replaceArrays(RetTy, llvm::DINodeArray(), 1126 CollectCXXTemplateParams(TSpecial, DefUnit)); 1127 ReplaceMap.emplace_back( 1128 std::piecewise_construct, std::make_tuple(Ty), 1129 std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); 1130 return RetTy; 1131 } 1132 1133 llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag, 1134 const Type *Ty, 1135 QualType PointeeTy, 1136 llvm::DIFile *Unit) { 1137 // Bit size, align and offset of the type. 1138 // Size is always the size of a pointer. We can't use getTypeSize here 1139 // because that does not return the correct value for references. 1140 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(PointeeTy); 1141 uint64_t Size = CGM.getTarget().getPointerWidth(AddressSpace); 1142 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 1143 Optional<unsigned> DWARFAddressSpace = 1144 CGM.getTarget().getDWARFAddressSpace(AddressSpace); 1145 1146 SmallVector<llvm::Metadata *, 4> Annots; 1147 auto *BTFAttrTy = dyn_cast<BTFTagAttributedType>(PointeeTy); 1148 while (BTFAttrTy) { 1149 StringRef Tag = BTFAttrTy->getAttr()->getBTFTypeTag(); 1150 if (!Tag.empty()) { 1151 llvm::Metadata *Ops[2] = { 1152 llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_type_tag")), 1153 llvm::MDString::get(CGM.getLLVMContext(), Tag)}; 1154 Annots.insert(Annots.begin(), 1155 llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1156 } 1157 BTFAttrTy = dyn_cast<BTFTagAttributedType>(BTFAttrTy->getWrappedType()); 1158 } 1159 1160 llvm::DINodeArray Annotations = nullptr; 1161 if (Annots.size() > 0) 1162 Annotations = DBuilder.getOrCreateArray(Annots); 1163 1164 if (Tag == llvm::dwarf::DW_TAG_reference_type || 1165 Tag == llvm::dwarf::DW_TAG_rvalue_reference_type) 1166 return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit), 1167 Size, Align, DWARFAddressSpace); 1168 else 1169 return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit), Size, 1170 Align, DWARFAddressSpace, StringRef(), 1171 Annotations); 1172 } 1173 1174 llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name, 1175 llvm::DIType *&Cache) { 1176 if (Cache) 1177 return Cache; 1178 Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name, 1179 TheCU, TheCU->getFile(), 0); 1180 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 1181 Cache = DBuilder.createPointerType(Cache, Size); 1182 return Cache; 1183 } 1184 1185 uint64_t CGDebugInfo::collectDefaultElementTypesForBlockPointer( 1186 const BlockPointerType *Ty, llvm::DIFile *Unit, llvm::DIDerivedType *DescTy, 1187 unsigned LineNo, SmallVectorImpl<llvm::Metadata *> &EltTys) { 1188 QualType FType; 1189 1190 // Advanced by calls to CreateMemberType in increments of FType, then 1191 // returned as the overall size of the default elements. 1192 uint64_t FieldOffset = 0; 1193 1194 // Blocks in OpenCL have unique constraints which make the standard fields 1195 // redundant while requiring size and align fields for enqueue_kernel. See 1196 // initializeForBlockHeader in CGBlocks.cpp 1197 if (CGM.getLangOpts().OpenCL) { 1198 FType = CGM.getContext().IntTy; 1199 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); 1200 EltTys.push_back(CreateMemberType(Unit, FType, "__align", &FieldOffset)); 1201 } else { 1202 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 1203 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); 1204 FType = CGM.getContext().IntTy; 1205 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); 1206 EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset)); 1207 FType = CGM.getContext().getPointerType(Ty->getPointeeType()); 1208 EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset)); 1209 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 1210 uint64_t FieldSize = CGM.getContext().getTypeSize(Ty); 1211 uint32_t FieldAlign = CGM.getContext().getTypeAlign(Ty); 1212 EltTys.push_back(DBuilder.createMemberType( 1213 Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign, 1214 FieldOffset, llvm::DINode::FlagZero, DescTy)); 1215 FieldOffset += FieldSize; 1216 } 1217 1218 return FieldOffset; 1219 } 1220 1221 llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty, 1222 llvm::DIFile *Unit) { 1223 SmallVector<llvm::Metadata *, 8> EltTys; 1224 QualType FType; 1225 uint64_t FieldOffset; 1226 llvm::DINodeArray Elements; 1227 1228 FieldOffset = 0; 1229 FType = CGM.getContext().UnsignedLongTy; 1230 EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset)); 1231 EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset)); 1232 1233 Elements = DBuilder.getOrCreateArray(EltTys); 1234 EltTys.clear(); 1235 1236 llvm::DINode::DIFlags Flags = llvm::DINode::FlagAppleBlock; 1237 1238 auto *EltTy = 1239 DBuilder.createStructType(Unit, "__block_descriptor", nullptr, 0, 1240 FieldOffset, 0, Flags, nullptr, Elements); 1241 1242 // Bit size, align and offset of the type. 1243 uint64_t Size = CGM.getContext().getTypeSize(Ty); 1244 1245 auto *DescTy = DBuilder.createPointerType(EltTy, Size); 1246 1247 FieldOffset = collectDefaultElementTypesForBlockPointer(Ty, Unit, DescTy, 1248 0, EltTys); 1249 1250 Elements = DBuilder.getOrCreateArray(EltTys); 1251 1252 // The __block_literal_generic structs are marked with a special 1253 // DW_AT_APPLE_BLOCK attribute and are an implementation detail only 1254 // the debugger needs to know about. To allow type uniquing, emit 1255 // them without a name or a location. 1256 EltTy = DBuilder.createStructType(Unit, "", nullptr, 0, FieldOffset, 0, 1257 Flags, nullptr, Elements); 1258 1259 return DBuilder.createPointerType(EltTy, Size); 1260 } 1261 1262 llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty, 1263 llvm::DIFile *Unit) { 1264 assert(Ty->isTypeAlias()); 1265 llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit); 1266 1267 auto *AliasDecl = 1268 cast<TypeAliasTemplateDecl>(Ty->getTemplateName().getAsTemplateDecl()) 1269 ->getTemplatedDecl(); 1270 1271 if (AliasDecl->hasAttr<NoDebugAttr>()) 1272 return Src; 1273 1274 SmallString<128> NS; 1275 llvm::raw_svector_ostream OS(NS); 1276 Ty->getTemplateName().print(OS, getPrintingPolicy(), 1277 TemplateName::Qualified::None); 1278 printTemplateArgumentList(OS, Ty->template_arguments(), getPrintingPolicy()); 1279 1280 SourceLocation Loc = AliasDecl->getLocation(); 1281 return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc), 1282 getLineNumber(Loc), 1283 getDeclContextDescriptor(AliasDecl)); 1284 } 1285 1286 llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty, 1287 llvm::DIFile *Unit) { 1288 llvm::DIType *Underlying = 1289 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit); 1290 1291 if (Ty->getDecl()->hasAttr<NoDebugAttr>()) 1292 return Underlying; 1293 1294 // We don't set size information, but do specify where the typedef was 1295 // declared. 1296 SourceLocation Loc = Ty->getDecl()->getLocation(); 1297 1298 uint32_t Align = getDeclAlignIfRequired(Ty->getDecl(), CGM.getContext()); 1299 // Typedefs are derived from some other type. 1300 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(Ty->getDecl()); 1301 return DBuilder.createTypedef(Underlying, Ty->getDecl()->getName(), 1302 getOrCreateFile(Loc), getLineNumber(Loc), 1303 getDeclContextDescriptor(Ty->getDecl()), Align, 1304 Annotations); 1305 } 1306 1307 static unsigned getDwarfCC(CallingConv CC) { 1308 switch (CC) { 1309 case CC_C: 1310 // Avoid emitting DW_AT_calling_convention if the C convention was used. 1311 return 0; 1312 1313 case CC_X86StdCall: 1314 return llvm::dwarf::DW_CC_BORLAND_stdcall; 1315 case CC_X86FastCall: 1316 return llvm::dwarf::DW_CC_BORLAND_msfastcall; 1317 case CC_X86ThisCall: 1318 return llvm::dwarf::DW_CC_BORLAND_thiscall; 1319 case CC_X86VectorCall: 1320 return llvm::dwarf::DW_CC_LLVM_vectorcall; 1321 case CC_X86Pascal: 1322 return llvm::dwarf::DW_CC_BORLAND_pascal; 1323 case CC_Win64: 1324 return llvm::dwarf::DW_CC_LLVM_Win64; 1325 case CC_X86_64SysV: 1326 return llvm::dwarf::DW_CC_LLVM_X86_64SysV; 1327 case CC_AAPCS: 1328 case CC_AArch64VectorCall: 1329 return llvm::dwarf::DW_CC_LLVM_AAPCS; 1330 case CC_AAPCS_VFP: 1331 return llvm::dwarf::DW_CC_LLVM_AAPCS_VFP; 1332 case CC_IntelOclBicc: 1333 return llvm::dwarf::DW_CC_LLVM_IntelOclBicc; 1334 case CC_SpirFunction: 1335 return llvm::dwarf::DW_CC_LLVM_SpirFunction; 1336 case CC_OpenCLKernel: 1337 return llvm::dwarf::DW_CC_LLVM_OpenCLKernel; 1338 case CC_Swift: 1339 return llvm::dwarf::DW_CC_LLVM_Swift; 1340 case CC_SwiftAsync: 1341 // [FIXME: swiftasynccc] Update to SwiftAsync once LLVM support lands. 1342 return llvm::dwarf::DW_CC_LLVM_Swift; 1343 case CC_PreserveMost: 1344 return llvm::dwarf::DW_CC_LLVM_PreserveMost; 1345 case CC_PreserveAll: 1346 return llvm::dwarf::DW_CC_LLVM_PreserveAll; 1347 case CC_X86RegCall: 1348 return llvm::dwarf::DW_CC_LLVM_X86RegCall; 1349 } 1350 return 0; 1351 } 1352 1353 static llvm::DINode::DIFlags getRefFlags(const FunctionProtoType *Func) { 1354 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1355 if (Func->getExtProtoInfo().RefQualifier == RQ_LValue) 1356 Flags |= llvm::DINode::FlagLValueReference; 1357 if (Func->getExtProtoInfo().RefQualifier == RQ_RValue) 1358 Flags |= llvm::DINode::FlagRValueReference; 1359 return Flags; 1360 } 1361 1362 llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty, 1363 llvm::DIFile *Unit) { 1364 const auto *FPT = dyn_cast<FunctionProtoType>(Ty); 1365 if (FPT) { 1366 if (llvm::DIType *QTy = CreateQualifiedType(FPT, Unit)) 1367 return QTy; 1368 } 1369 1370 // Create the type without any qualifiers 1371 1372 SmallVector<llvm::Metadata *, 16> EltTys; 1373 1374 // Add the result type at least. 1375 EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit)); 1376 1377 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1378 // Set up remainder of arguments if there is a prototype. 1379 // otherwise emit it as a variadic function. 1380 if (!FPT) { 1381 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 1382 } else { 1383 Flags = getRefFlags(FPT); 1384 for (const QualType &ParamType : FPT->param_types()) 1385 EltTys.push_back(getOrCreateType(ParamType, Unit)); 1386 if (FPT->isVariadic()) 1387 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 1388 } 1389 1390 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); 1391 llvm::DIType *F = DBuilder.createSubroutineType( 1392 EltTypeArray, Flags, getDwarfCC(Ty->getCallConv())); 1393 return F; 1394 } 1395 1396 /// Convert an AccessSpecifier into the corresponding DINode flag. 1397 /// As an optimization, return 0 if the access specifier equals the 1398 /// default for the containing type. 1399 static llvm::DINode::DIFlags getAccessFlag(AccessSpecifier Access, 1400 const RecordDecl *RD) { 1401 AccessSpecifier Default = clang::AS_none; 1402 if (RD && RD->isClass()) 1403 Default = clang::AS_private; 1404 else if (RD && (RD->isStruct() || RD->isUnion())) 1405 Default = clang::AS_public; 1406 1407 if (Access == Default) 1408 return llvm::DINode::FlagZero; 1409 1410 switch (Access) { 1411 case clang::AS_private: 1412 return llvm::DINode::FlagPrivate; 1413 case clang::AS_protected: 1414 return llvm::DINode::FlagProtected; 1415 case clang::AS_public: 1416 return llvm::DINode::FlagPublic; 1417 case clang::AS_none: 1418 return llvm::DINode::FlagZero; 1419 } 1420 llvm_unreachable("unexpected access enumerator"); 1421 } 1422 1423 llvm::DIType *CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl, 1424 llvm::DIScope *RecordTy, 1425 const RecordDecl *RD) { 1426 StringRef Name = BitFieldDecl->getName(); 1427 QualType Ty = BitFieldDecl->getType(); 1428 SourceLocation Loc = BitFieldDecl->getLocation(); 1429 llvm::DIFile *VUnit = getOrCreateFile(Loc); 1430 llvm::DIType *DebugType = getOrCreateType(Ty, VUnit); 1431 1432 // Get the location for the field. 1433 llvm::DIFile *File = getOrCreateFile(Loc); 1434 unsigned Line = getLineNumber(Loc); 1435 1436 const CGBitFieldInfo &BitFieldInfo = 1437 CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl); 1438 uint64_t SizeInBits = BitFieldInfo.Size; 1439 assert(SizeInBits > 0 && "found named 0-width bitfield"); 1440 uint64_t StorageOffsetInBits = 1441 CGM.getContext().toBits(BitFieldInfo.StorageOffset); 1442 uint64_t Offset = BitFieldInfo.Offset; 1443 // The bit offsets for big endian machines are reversed for big 1444 // endian target, compensate for that as the DIDerivedType requires 1445 // un-reversed offsets. 1446 if (CGM.getDataLayout().isBigEndian()) 1447 Offset = BitFieldInfo.StorageSize - BitFieldInfo.Size - Offset; 1448 uint64_t OffsetInBits = StorageOffsetInBits + Offset; 1449 llvm::DINode::DIFlags Flags = getAccessFlag(BitFieldDecl->getAccess(), RD); 1450 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(BitFieldDecl); 1451 return DBuilder.createBitFieldMemberType( 1452 RecordTy, Name, File, Line, SizeInBits, OffsetInBits, StorageOffsetInBits, 1453 Flags, DebugType, Annotations); 1454 } 1455 1456 llvm::DIType *CGDebugInfo::createFieldType( 1457 StringRef name, QualType type, SourceLocation loc, AccessSpecifier AS, 1458 uint64_t offsetInBits, uint32_t AlignInBits, llvm::DIFile *tunit, 1459 llvm::DIScope *scope, const RecordDecl *RD, llvm::DINodeArray Annotations) { 1460 llvm::DIType *debugType = getOrCreateType(type, tunit); 1461 1462 // Get the location for the field. 1463 llvm::DIFile *file = getOrCreateFile(loc); 1464 const unsigned line = getLineNumber(loc.isValid() ? loc : CurLoc); 1465 1466 uint64_t SizeInBits = 0; 1467 auto Align = AlignInBits; 1468 if (!type->isIncompleteArrayType()) { 1469 TypeInfo TI = CGM.getContext().getTypeInfo(type); 1470 SizeInBits = TI.Width; 1471 if (!Align) 1472 Align = getTypeAlignIfRequired(type, CGM.getContext()); 1473 } 1474 1475 llvm::DINode::DIFlags flags = getAccessFlag(AS, RD); 1476 return DBuilder.createMemberType(scope, name, file, line, SizeInBits, Align, 1477 offsetInBits, flags, debugType, Annotations); 1478 } 1479 1480 void CGDebugInfo::CollectRecordLambdaFields( 1481 const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements, 1482 llvm::DIType *RecordTy) { 1483 // For C++11 Lambdas a Field will be the same as a Capture, but the Capture 1484 // has the name and the location of the variable so we should iterate over 1485 // both concurrently. 1486 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl); 1487 RecordDecl::field_iterator Field = CXXDecl->field_begin(); 1488 unsigned fieldno = 0; 1489 for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(), 1490 E = CXXDecl->captures_end(); 1491 I != E; ++I, ++Field, ++fieldno) { 1492 const LambdaCapture &C = *I; 1493 if (C.capturesVariable()) { 1494 SourceLocation Loc = C.getLocation(); 1495 assert(!Field->isBitField() && "lambdas don't have bitfield members!"); 1496 VarDecl *V = C.getCapturedVar(); 1497 StringRef VName = V->getName(); 1498 llvm::DIFile *VUnit = getOrCreateFile(Loc); 1499 auto Align = getDeclAlignIfRequired(V, CGM.getContext()); 1500 llvm::DIType *FieldType = createFieldType( 1501 VName, Field->getType(), Loc, Field->getAccess(), 1502 layout.getFieldOffset(fieldno), Align, VUnit, RecordTy, CXXDecl); 1503 elements.push_back(FieldType); 1504 } else if (C.capturesThis()) { 1505 // TODO: Need to handle 'this' in some way by probably renaming the 1506 // this of the lambda class and having a field member of 'this' or 1507 // by using AT_object_pointer for the function and having that be 1508 // used as 'this' for semantic references. 1509 FieldDecl *f = *Field; 1510 llvm::DIFile *VUnit = getOrCreateFile(f->getLocation()); 1511 QualType type = f->getType(); 1512 llvm::DIType *fieldType = createFieldType( 1513 "this", type, f->getLocation(), f->getAccess(), 1514 layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl); 1515 1516 elements.push_back(fieldType); 1517 } 1518 } 1519 } 1520 1521 llvm::DIDerivedType * 1522 CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy, 1523 const RecordDecl *RD) { 1524 // Create the descriptor for the static variable, with or without 1525 // constant initializers. 1526 Var = Var->getCanonicalDecl(); 1527 llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation()); 1528 llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit); 1529 1530 unsigned LineNumber = getLineNumber(Var->getLocation()); 1531 StringRef VName = Var->getName(); 1532 llvm::Constant *C = nullptr; 1533 if (Var->getInit()) { 1534 const APValue *Value = Var->evaluateValue(); 1535 if (Value) { 1536 if (Value->isInt()) 1537 C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt()); 1538 if (Value->isFloat()) 1539 C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat()); 1540 } 1541 } 1542 1543 llvm::DINode::DIFlags Flags = getAccessFlag(Var->getAccess(), RD); 1544 auto Align = getDeclAlignIfRequired(Var, CGM.getContext()); 1545 llvm::DIDerivedType *GV = DBuilder.createStaticMemberType( 1546 RecordTy, VName, VUnit, LineNumber, VTy, Flags, C, Align); 1547 StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV); 1548 return GV; 1549 } 1550 1551 void CGDebugInfo::CollectRecordNormalField( 1552 const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit, 1553 SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy, 1554 const RecordDecl *RD) { 1555 StringRef name = field->getName(); 1556 QualType type = field->getType(); 1557 1558 // Ignore unnamed fields unless they're anonymous structs/unions. 1559 if (name.empty() && !type->isRecordType()) 1560 return; 1561 1562 llvm::DIType *FieldType; 1563 if (field->isBitField()) { 1564 FieldType = createBitFieldType(field, RecordTy, RD); 1565 } else { 1566 auto Align = getDeclAlignIfRequired(field, CGM.getContext()); 1567 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(field); 1568 FieldType = 1569 createFieldType(name, type, field->getLocation(), field->getAccess(), 1570 OffsetInBits, Align, tunit, RecordTy, RD, Annotations); 1571 } 1572 1573 elements.push_back(FieldType); 1574 } 1575 1576 void CGDebugInfo::CollectRecordNestedType( 1577 const TypeDecl *TD, SmallVectorImpl<llvm::Metadata *> &elements) { 1578 QualType Ty = CGM.getContext().getTypeDeclType(TD); 1579 // Injected class names are not considered nested records. 1580 if (isa<InjectedClassNameType>(Ty)) 1581 return; 1582 SourceLocation Loc = TD->getLocation(); 1583 llvm::DIType *nestedType = getOrCreateType(Ty, getOrCreateFile(Loc)); 1584 elements.push_back(nestedType); 1585 } 1586 1587 void CGDebugInfo::CollectRecordFields( 1588 const RecordDecl *record, llvm::DIFile *tunit, 1589 SmallVectorImpl<llvm::Metadata *> &elements, 1590 llvm::DICompositeType *RecordTy) { 1591 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(record); 1592 1593 if (CXXDecl && CXXDecl->isLambda()) 1594 CollectRecordLambdaFields(CXXDecl, elements, RecordTy); 1595 else { 1596 const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record); 1597 1598 // Field number for non-static fields. 1599 unsigned fieldNo = 0; 1600 1601 // Static and non-static members should appear in the same order as 1602 // the corresponding declarations in the source program. 1603 for (const auto *I : record->decls()) 1604 if (const auto *V = dyn_cast<VarDecl>(I)) { 1605 if (V->hasAttr<NoDebugAttr>()) 1606 continue; 1607 1608 // Skip variable template specializations when emitting CodeView. MSVC 1609 // doesn't emit them. 1610 if (CGM.getCodeGenOpts().EmitCodeView && 1611 isa<VarTemplateSpecializationDecl>(V)) 1612 continue; 1613 1614 if (isa<VarTemplatePartialSpecializationDecl>(V)) 1615 continue; 1616 1617 // Reuse the existing static member declaration if one exists 1618 auto MI = StaticDataMemberCache.find(V->getCanonicalDecl()); 1619 if (MI != StaticDataMemberCache.end()) { 1620 assert(MI->second && 1621 "Static data member declaration should still exist"); 1622 elements.push_back(MI->second); 1623 } else { 1624 auto Field = CreateRecordStaticField(V, RecordTy, record); 1625 elements.push_back(Field); 1626 } 1627 } else if (const auto *field = dyn_cast<FieldDecl>(I)) { 1628 CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit, 1629 elements, RecordTy, record); 1630 1631 // Bump field number for next field. 1632 ++fieldNo; 1633 } else if (CGM.getCodeGenOpts().EmitCodeView) { 1634 // Debug info for nested types is included in the member list only for 1635 // CodeView. 1636 if (const auto *nestedType = dyn_cast<TypeDecl>(I)) 1637 if (!nestedType->isImplicit() && 1638 nestedType->getDeclContext() == record) 1639 CollectRecordNestedType(nestedType, elements); 1640 } 1641 } 1642 } 1643 1644 llvm::DISubroutineType * 1645 CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method, 1646 llvm::DIFile *Unit, bool decl) { 1647 const auto *Func = Method->getType()->castAs<FunctionProtoType>(); 1648 if (Method->isStatic()) 1649 return cast_or_null<llvm::DISubroutineType>( 1650 getOrCreateType(QualType(Func, 0), Unit)); 1651 return getOrCreateInstanceMethodType(Method->getThisType(), Func, Unit, decl); 1652 } 1653 1654 llvm::DISubroutineType * 1655 CGDebugInfo::getOrCreateInstanceMethodType(QualType ThisPtr, 1656 const FunctionProtoType *Func, 1657 llvm::DIFile *Unit, bool decl) { 1658 FunctionProtoType::ExtProtoInfo EPI = Func->getExtProtoInfo(); 1659 Qualifiers &Qc = EPI.TypeQuals; 1660 Qc.removeConst(); 1661 Qc.removeVolatile(); 1662 Qc.removeRestrict(); 1663 Qc.removeUnaligned(); 1664 // Keep the removed qualifiers in sync with 1665 // CreateQualifiedType(const FunctionPrototype*, DIFile *Unit) 1666 // On a 'real' member function type, these qualifiers are carried on the type 1667 // of the first parameter, not as separate DW_TAG_const_type (etc) decorator 1668 // tags around them. (But, in the raw function types with qualifiers, they have 1669 // to use wrapper types.) 1670 1671 // Add "this" pointer. 1672 const auto *OriginalFunc = cast<llvm::DISubroutineType>( 1673 getOrCreateType(CGM.getContext().getFunctionType( 1674 Func->getReturnType(), Func->getParamTypes(), EPI), 1675 Unit)); 1676 llvm::DITypeRefArray Args = OriginalFunc->getTypeArray(); 1677 assert(Args.size() && "Invalid number of arguments!"); 1678 1679 SmallVector<llvm::Metadata *, 16> Elts; 1680 // First element is always return type. For 'void' functions it is NULL. 1681 QualType temp = Func->getReturnType(); 1682 if (temp->getTypeClass() == Type::Auto && decl) { 1683 const AutoType *AT = cast<AutoType>(temp); 1684 1685 // It may be tricky in some cases to link the specification back the lambda 1686 // call operator and so we skip emitting "auto" for lambdas. This is 1687 // consistent with gcc as well. 1688 if (AT->isDeduced() && ThisPtr->getPointeeCXXRecordDecl()->isLambda()) 1689 Elts.push_back(getOrCreateType(AT->getDeducedType(), Unit)); 1690 else 1691 Elts.push_back(CreateType(AT)); 1692 } else 1693 Elts.push_back(Args[0]); 1694 1695 // "this" pointer is always first argument. 1696 const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl(); 1697 if (isa<ClassTemplateSpecializationDecl>(RD)) { 1698 // Create pointer type directly in this case. 1699 const PointerType *ThisPtrTy = cast<PointerType>(ThisPtr); 1700 QualType PointeeTy = ThisPtrTy->getPointeeType(); 1701 unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy); 1702 uint64_t Size = CGM.getTarget().getPointerWidth(AS); 1703 auto Align = getTypeAlignIfRequired(ThisPtrTy, CGM.getContext()); 1704 llvm::DIType *PointeeType = getOrCreateType(PointeeTy, Unit); 1705 llvm::DIType *ThisPtrType = 1706 DBuilder.createPointerType(PointeeType, Size, Align); 1707 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); 1708 // TODO: This and the artificial type below are misleading, the 1709 // types aren't artificial the argument is, but the current 1710 // metadata doesn't represent that. 1711 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); 1712 Elts.push_back(ThisPtrType); 1713 } else { 1714 llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit); 1715 TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); 1716 ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); 1717 Elts.push_back(ThisPtrType); 1718 } 1719 1720 // Copy rest of the arguments. 1721 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1722 Elts.push_back(Args[i]); 1723 1724 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); 1725 1726 return DBuilder.createSubroutineType(EltTypeArray, OriginalFunc->getFlags(), 1727 getDwarfCC(Func->getCallConv())); 1728 } 1729 1730 /// isFunctionLocalClass - Return true if CXXRecordDecl is defined 1731 /// inside a function. 1732 static bool isFunctionLocalClass(const CXXRecordDecl *RD) { 1733 if (const auto *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext())) 1734 return isFunctionLocalClass(NRD); 1735 if (isa<FunctionDecl>(RD->getDeclContext())) 1736 return true; 1737 return false; 1738 } 1739 1740 llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction( 1741 const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) { 1742 bool IsCtorOrDtor = 1743 isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method); 1744 1745 StringRef MethodName = getFunctionName(Method); 1746 llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit, true); 1747 1748 // Since a single ctor/dtor corresponds to multiple functions, it doesn't 1749 // make sense to give a single ctor/dtor a linkage name. 1750 StringRef MethodLinkageName; 1751 // FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional 1752 // property to use here. It may've been intended to model "is non-external 1753 // type" but misses cases of non-function-local but non-external classes such 1754 // as those in anonymous namespaces as well as the reverse - external types 1755 // that are function local, such as those in (non-local) inline functions. 1756 if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent())) 1757 MethodLinkageName = CGM.getMangledName(Method); 1758 1759 // Get the location for the method. 1760 llvm::DIFile *MethodDefUnit = nullptr; 1761 unsigned MethodLine = 0; 1762 if (!Method->isImplicit()) { 1763 MethodDefUnit = getOrCreateFile(Method->getLocation()); 1764 MethodLine = getLineNumber(Method->getLocation()); 1765 } 1766 1767 // Collect virtual method info. 1768 llvm::DIType *ContainingType = nullptr; 1769 unsigned VIndex = 0; 1770 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 1771 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 1772 int ThisAdjustment = 0; 1773 1774 if (Method->isVirtual()) { 1775 if (Method->isPure()) 1776 SPFlags |= llvm::DISubprogram::SPFlagPureVirtual; 1777 else 1778 SPFlags |= llvm::DISubprogram::SPFlagVirtual; 1779 1780 if (CGM.getTarget().getCXXABI().isItaniumFamily()) { 1781 // It doesn't make sense to give a virtual destructor a vtable index, 1782 // since a single destructor has two entries in the vtable. 1783 if (!isa<CXXDestructorDecl>(Method)) 1784 VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method); 1785 } else { 1786 // Emit MS ABI vftable information. There is only one entry for the 1787 // deleting dtor. 1788 const auto *DD = dyn_cast<CXXDestructorDecl>(Method); 1789 GlobalDecl GD = DD ? GlobalDecl(DD, Dtor_Deleting) : GlobalDecl(Method); 1790 MethodVFTableLocation ML = 1791 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1792 VIndex = ML.Index; 1793 1794 // CodeView only records the vftable offset in the class that introduces 1795 // the virtual method. This is possible because, unlike Itanium, the MS 1796 // C++ ABI does not include all virtual methods from non-primary bases in 1797 // the vtable for the most derived class. For example, if C inherits from 1798 // A and B, C's primary vftable will not include B's virtual methods. 1799 if (Method->size_overridden_methods() == 0) 1800 Flags |= llvm::DINode::FlagIntroducedVirtual; 1801 1802 // The 'this' adjustment accounts for both the virtual and non-virtual 1803 // portions of the adjustment. Presumably the debugger only uses it when 1804 // it knows the dynamic type of an object. 1805 ThisAdjustment = CGM.getCXXABI() 1806 .getVirtualFunctionPrologueThisAdjustment(GD) 1807 .getQuantity(); 1808 } 1809 ContainingType = RecordTy; 1810 } 1811 1812 // We're checking for deleted C++ special member functions 1813 // [Ctors,Dtors, Copy/Move] 1814 auto checkAttrDeleted = [&](const auto *Method) { 1815 if (Method->getCanonicalDecl()->isDeleted()) 1816 SPFlags |= llvm::DISubprogram::SPFlagDeleted; 1817 }; 1818 1819 switch (Method->getKind()) { 1820 1821 case Decl::CXXConstructor: 1822 case Decl::CXXDestructor: 1823 checkAttrDeleted(Method); 1824 break; 1825 case Decl::CXXMethod: 1826 if (Method->isCopyAssignmentOperator() || 1827 Method->isMoveAssignmentOperator()) 1828 checkAttrDeleted(Method); 1829 break; 1830 default: 1831 break; 1832 } 1833 1834 if (Method->isNoReturn()) 1835 Flags |= llvm::DINode::FlagNoReturn; 1836 1837 if (Method->isStatic()) 1838 Flags |= llvm::DINode::FlagStaticMember; 1839 if (Method->isImplicit()) 1840 Flags |= llvm::DINode::FlagArtificial; 1841 Flags |= getAccessFlag(Method->getAccess(), Method->getParent()); 1842 if (const auto *CXXC = dyn_cast<CXXConstructorDecl>(Method)) { 1843 if (CXXC->isExplicit()) 1844 Flags |= llvm::DINode::FlagExplicit; 1845 } else if (const auto *CXXC = dyn_cast<CXXConversionDecl>(Method)) { 1846 if (CXXC->isExplicit()) 1847 Flags |= llvm::DINode::FlagExplicit; 1848 } 1849 if (Method->hasPrototype()) 1850 Flags |= llvm::DINode::FlagPrototyped; 1851 if (Method->getRefQualifier() == RQ_LValue) 1852 Flags |= llvm::DINode::FlagLValueReference; 1853 if (Method->getRefQualifier() == RQ_RValue) 1854 Flags |= llvm::DINode::FlagRValueReference; 1855 if (!Method->isExternallyVisible()) 1856 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 1857 if (CGM.getLangOpts().Optimize) 1858 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 1859 1860 // In this debug mode, emit type info for a class when its constructor type 1861 // info is emitted. 1862 if (DebugKind == codegenoptions::DebugInfoConstructor) 1863 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1864 completeUnusedClass(*CD->getParent()); 1865 1866 llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit); 1867 llvm::DISubprogram *SP = DBuilder.createMethod( 1868 RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine, 1869 MethodTy, VIndex, ThisAdjustment, ContainingType, Flags, SPFlags, 1870 TParamsArray.get()); 1871 1872 SPCache[Method->getCanonicalDecl()].reset(SP); 1873 1874 return SP; 1875 } 1876 1877 void CGDebugInfo::CollectCXXMemberFunctions( 1878 const CXXRecordDecl *RD, llvm::DIFile *Unit, 1879 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) { 1880 1881 // Since we want more than just the individual member decls if we 1882 // have templated functions iterate over every declaration to gather 1883 // the functions. 1884 for (const auto *I : RD->decls()) { 1885 const auto *Method = dyn_cast<CXXMethodDecl>(I); 1886 // If the member is implicit, don't add it to the member list. This avoids 1887 // the member being added to type units by LLVM, while still allowing it 1888 // to be emitted into the type declaration/reference inside the compile 1889 // unit. 1890 // Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp. 1891 // FIXME: Handle Using(Shadow?)Decls here to create 1892 // DW_TAG_imported_declarations inside the class for base decls brought into 1893 // derived classes. GDB doesn't seem to notice/leverage these when I tried 1894 // it, so I'm not rushing to fix this. (GCC seems to produce them, if 1895 // referenced) 1896 if (!Method || Method->isImplicit() || Method->hasAttr<NoDebugAttr>()) 1897 continue; 1898 1899 if (Method->getType()->castAs<FunctionProtoType>()->getContainedAutoType()) 1900 continue; 1901 1902 // Reuse the existing member function declaration if it exists. 1903 // It may be associated with the declaration of the type & should be 1904 // reused as we're building the definition. 1905 // 1906 // This situation can arise in the vtable-based debug info reduction where 1907 // implicit members are emitted in a non-vtable TU. 1908 auto MI = SPCache.find(Method->getCanonicalDecl()); 1909 EltTys.push_back(MI == SPCache.end() 1910 ? CreateCXXMemberFunction(Method, Unit, RecordTy) 1911 : static_cast<llvm::Metadata *>(MI->second)); 1912 } 1913 } 1914 1915 void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit, 1916 SmallVectorImpl<llvm::Metadata *> &EltTys, 1917 llvm::DIType *RecordTy) { 1918 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> SeenTypes; 1919 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->bases(), SeenTypes, 1920 llvm::DINode::FlagZero); 1921 1922 // If we are generating CodeView debug info, we also need to emit records for 1923 // indirect virtual base classes. 1924 if (CGM.getCodeGenOpts().EmitCodeView) { 1925 CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->vbases(), SeenTypes, 1926 llvm::DINode::FlagIndirectVirtualBase); 1927 } 1928 } 1929 1930 void CGDebugInfo::CollectCXXBasesAux( 1931 const CXXRecordDecl *RD, llvm::DIFile *Unit, 1932 SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy, 1933 const CXXRecordDecl::base_class_const_range &Bases, 1934 llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> &SeenTypes, 1935 llvm::DINode::DIFlags StartingFlags) { 1936 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 1937 for (const auto &BI : Bases) { 1938 const auto *Base = 1939 cast<CXXRecordDecl>(BI.getType()->castAs<RecordType>()->getDecl()); 1940 if (!SeenTypes.insert(Base).second) 1941 continue; 1942 auto *BaseTy = getOrCreateType(BI.getType(), Unit); 1943 llvm::DINode::DIFlags BFlags = StartingFlags; 1944 uint64_t BaseOffset; 1945 uint32_t VBPtrOffset = 0; 1946 1947 if (BI.isVirtual()) { 1948 if (CGM.getTarget().getCXXABI().isItaniumFamily()) { 1949 // virtual base offset offset is -ve. The code generator emits dwarf 1950 // expression where it expects +ve number. 1951 BaseOffset = 0 - CGM.getItaniumVTableContext() 1952 .getVirtualBaseOffsetOffset(RD, Base) 1953 .getQuantity(); 1954 } else { 1955 // In the MS ABI, store the vbtable offset, which is analogous to the 1956 // vbase offset offset in Itanium. 1957 BaseOffset = 1958 4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base); 1959 VBPtrOffset = CGM.getContext() 1960 .getASTRecordLayout(RD) 1961 .getVBPtrOffset() 1962 .getQuantity(); 1963 } 1964 BFlags |= llvm::DINode::FlagVirtual; 1965 } else 1966 BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base)); 1967 // FIXME: Inconsistent units for BaseOffset. It is in bytes when 1968 // BI->isVirtual() and bits when not. 1969 1970 BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD); 1971 llvm::DIType *DTy = DBuilder.createInheritance(RecordTy, BaseTy, BaseOffset, 1972 VBPtrOffset, BFlags); 1973 EltTys.push_back(DTy); 1974 } 1975 } 1976 1977 llvm::DINodeArray 1978 CGDebugInfo::CollectTemplateParams(Optional<TemplateArgs> OArgs, 1979 llvm::DIFile *Unit) { 1980 if (!OArgs) 1981 return llvm::DINodeArray(); 1982 TemplateArgs &Args = *OArgs; 1983 SmallVector<llvm::Metadata *, 16> TemplateParams; 1984 for (unsigned i = 0, e = Args.Args.size(); i != e; ++i) { 1985 const TemplateArgument &TA = Args.Args[i]; 1986 StringRef Name; 1987 bool defaultParameter = false; 1988 if (Args.TList) 1989 Name = Args.TList->getParam(i)->getName(); 1990 switch (TA.getKind()) { 1991 case TemplateArgument::Type: { 1992 llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit); 1993 1994 if (Args.TList) 1995 if (auto *templateType = 1996 dyn_cast_or_null<TemplateTypeParmDecl>(Args.TList->getParam(i))) 1997 if (templateType->hasDefaultArgument()) 1998 defaultParameter = 1999 templateType->getDefaultArgument() == TA.getAsType(); 2000 2001 TemplateParams.push_back(DBuilder.createTemplateTypeParameter( 2002 TheCU, Name, TTy, defaultParameter)); 2003 2004 } break; 2005 case TemplateArgument::Integral: { 2006 llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit); 2007 if (Args.TList && CGM.getCodeGenOpts().DwarfVersion >= 5) 2008 if (auto *templateType = dyn_cast_or_null<NonTypeTemplateParmDecl>( 2009 Args.TList->getParam(i))) 2010 if (templateType->hasDefaultArgument() && 2011 !templateType->getDefaultArgument()->isValueDependent()) 2012 defaultParameter = llvm::APSInt::isSameValue( 2013 templateType->getDefaultArgument()->EvaluateKnownConstInt( 2014 CGM.getContext()), 2015 TA.getAsIntegral()); 2016 2017 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2018 TheCU, Name, TTy, defaultParameter, 2019 llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral()))); 2020 } break; 2021 case TemplateArgument::Declaration: { 2022 const ValueDecl *D = TA.getAsDecl(); 2023 QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext()); 2024 llvm::DIType *TTy = getOrCreateType(T, Unit); 2025 llvm::Constant *V = nullptr; 2026 // Skip retrieve the value if that template parameter has cuda device 2027 // attribute, i.e. that value is not available at the host side. 2028 if (!CGM.getLangOpts().CUDA || CGM.getLangOpts().CUDAIsDevice || 2029 !D->hasAttr<CUDADeviceAttr>()) { 2030 const CXXMethodDecl *MD; 2031 // Variable pointer template parameters have a value that is the address 2032 // of the variable. 2033 if (const auto *VD = dyn_cast<VarDecl>(D)) 2034 V = CGM.GetAddrOfGlobalVar(VD); 2035 // Member function pointers have special support for building them, 2036 // though this is currently unsupported in LLVM CodeGen. 2037 else if ((MD = dyn_cast<CXXMethodDecl>(D)) && MD->isInstance()) 2038 V = CGM.getCXXABI().EmitMemberFunctionPointer(MD); 2039 else if (const auto *FD = dyn_cast<FunctionDecl>(D)) 2040 V = CGM.GetAddrOfFunction(FD); 2041 // Member data pointers have special handling too to compute the fixed 2042 // offset within the object. 2043 else if (const auto *MPT = 2044 dyn_cast<MemberPointerType>(T.getTypePtr())) { 2045 // These five lines (& possibly the above member function pointer 2046 // handling) might be able to be refactored to use similar code in 2047 // CodeGenModule::getMemberPointerConstant 2048 uint64_t fieldOffset = CGM.getContext().getFieldOffset(D); 2049 CharUnits chars = 2050 CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset); 2051 V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars); 2052 } else if (const auto *GD = dyn_cast<MSGuidDecl>(D)) { 2053 V = CGM.GetAddrOfMSGuidDecl(GD).getPointer(); 2054 } else if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 2055 if (T->isRecordType()) 2056 V = ConstantEmitter(CGM).emitAbstract( 2057 SourceLocation(), TPO->getValue(), TPO->getType()); 2058 else 2059 V = CGM.GetAddrOfTemplateParamObject(TPO).getPointer(); 2060 } 2061 assert(V && "Failed to find template parameter pointer"); 2062 V = V->stripPointerCasts(); 2063 } 2064 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2065 TheCU, Name, TTy, defaultParameter, cast_or_null<llvm::Constant>(V))); 2066 } break; 2067 case TemplateArgument::NullPtr: { 2068 QualType T = TA.getNullPtrType(); 2069 llvm::DIType *TTy = getOrCreateType(T, Unit); 2070 llvm::Constant *V = nullptr; 2071 // Special case member data pointer null values since they're actually -1 2072 // instead of zero. 2073 if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr())) 2074 // But treat member function pointers as simple zero integers because 2075 // it's easier than having a special case in LLVM's CodeGen. If LLVM 2076 // CodeGen grows handling for values of non-null member function 2077 // pointers then perhaps we could remove this special case and rely on 2078 // EmitNullMemberPointer for member function pointers. 2079 if (MPT->isMemberDataPointer()) 2080 V = CGM.getCXXABI().EmitNullMemberPointer(MPT); 2081 if (!V) 2082 V = llvm::ConstantInt::get(CGM.Int8Ty, 0); 2083 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2084 TheCU, Name, TTy, defaultParameter, V)); 2085 } break; 2086 case TemplateArgument::Template: { 2087 std::string QualName; 2088 llvm::raw_string_ostream OS(QualName); 2089 TA.getAsTemplate().getAsTemplateDecl()->printQualifiedName( 2090 OS, getPrintingPolicy()); 2091 TemplateParams.push_back(DBuilder.createTemplateTemplateParameter( 2092 TheCU, Name, nullptr, OS.str())); 2093 break; 2094 } 2095 case TemplateArgument::Pack: 2096 TemplateParams.push_back(DBuilder.createTemplateParameterPack( 2097 TheCU, Name, nullptr, 2098 CollectTemplateParams({{nullptr, TA.getPackAsArray()}}, Unit))); 2099 break; 2100 case TemplateArgument::Expression: { 2101 const Expr *E = TA.getAsExpr(); 2102 QualType T = E->getType(); 2103 if (E->isGLValue()) 2104 T = CGM.getContext().getLValueReferenceType(T); 2105 llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(E, T); 2106 assert(V && "Expression in template argument isn't constant"); 2107 llvm::DIType *TTy = getOrCreateType(T, Unit); 2108 TemplateParams.push_back(DBuilder.createTemplateValueParameter( 2109 TheCU, Name, TTy, defaultParameter, V->stripPointerCasts())); 2110 } break; 2111 // And the following should never occur: 2112 case TemplateArgument::TemplateExpansion: 2113 case TemplateArgument::Null: 2114 llvm_unreachable( 2115 "These argument types shouldn't exist in concrete types"); 2116 } 2117 } 2118 return DBuilder.getOrCreateArray(TemplateParams); 2119 } 2120 2121 Optional<CGDebugInfo::TemplateArgs> 2122 CGDebugInfo::GetTemplateArgs(const FunctionDecl *FD) const { 2123 if (FD->getTemplatedKind() == 2124 FunctionDecl::TK_FunctionTemplateSpecialization) { 2125 const TemplateParameterList *TList = FD->getTemplateSpecializationInfo() 2126 ->getTemplate() 2127 ->getTemplateParameters(); 2128 return {{TList, FD->getTemplateSpecializationArgs()->asArray()}}; 2129 } 2130 return None; 2131 } 2132 Optional<CGDebugInfo::TemplateArgs> 2133 CGDebugInfo::GetTemplateArgs(const VarDecl *VD) const { 2134 // Always get the full list of parameters, not just the ones from the 2135 // specialization. A partial specialization may have fewer parameters than 2136 // there are arguments. 2137 auto *TS = dyn_cast<VarTemplateSpecializationDecl>(VD); 2138 if (!TS) 2139 return None; 2140 VarTemplateDecl *T = TS->getSpecializedTemplate(); 2141 const TemplateParameterList *TList = T->getTemplateParameters(); 2142 auto TA = TS->getTemplateArgs().asArray(); 2143 return {{TList, TA}}; 2144 } 2145 Optional<CGDebugInfo::TemplateArgs> 2146 CGDebugInfo::GetTemplateArgs(const RecordDecl *RD) const { 2147 if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 2148 // Always get the full list of parameters, not just the ones from the 2149 // specialization. A partial specialization may have fewer parameters than 2150 // there are arguments. 2151 TemplateParameterList *TPList = 2152 TSpecial->getSpecializedTemplate()->getTemplateParameters(); 2153 const TemplateArgumentList &TAList = TSpecial->getTemplateArgs(); 2154 return {{TPList, TAList.asArray()}}; 2155 } 2156 return None; 2157 } 2158 2159 llvm::DINodeArray 2160 CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD, 2161 llvm::DIFile *Unit) { 2162 return CollectTemplateParams(GetTemplateArgs(FD), Unit); 2163 } 2164 2165 llvm::DINodeArray CGDebugInfo::CollectVarTemplateParams(const VarDecl *VL, 2166 llvm::DIFile *Unit) { 2167 return CollectTemplateParams(GetTemplateArgs(VL), Unit); 2168 } 2169 2170 llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(const RecordDecl *RD, 2171 llvm::DIFile *Unit) { 2172 return CollectTemplateParams(GetTemplateArgs(RD), Unit); 2173 } 2174 2175 llvm::DINodeArray CGDebugInfo::CollectBTFDeclTagAnnotations(const Decl *D) { 2176 if (!D->hasAttr<BTFDeclTagAttr>()) 2177 return nullptr; 2178 2179 SmallVector<llvm::Metadata *, 4> Annotations; 2180 for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) { 2181 llvm::Metadata *Ops[2] = { 2182 llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_decl_tag")), 2183 llvm::MDString::get(CGM.getLLVMContext(), I->getBTFDeclTag())}; 2184 Annotations.push_back(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2185 } 2186 return DBuilder.getOrCreateArray(Annotations); 2187 } 2188 2189 llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) { 2190 if (VTablePtrType) 2191 return VTablePtrType; 2192 2193 ASTContext &Context = CGM.getContext(); 2194 2195 /* Function type */ 2196 llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit); 2197 llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy); 2198 llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements); 2199 unsigned Size = Context.getTypeSize(Context.VoidPtrTy); 2200 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); 2201 Optional<unsigned> DWARFAddressSpace = 2202 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); 2203 2204 llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType( 2205 SubTy, Size, 0, DWARFAddressSpace, "__vtbl_ptr_type"); 2206 VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size); 2207 return VTablePtrType; 2208 } 2209 2210 StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) { 2211 // Copy the gdb compatible name on the side and use its reference. 2212 return internString("_vptr$", RD->getNameAsString()); 2213 } 2214 2215 StringRef CGDebugInfo::getDynamicInitializerName(const VarDecl *VD, 2216 DynamicInitKind StubKind, 2217 llvm::Function *InitFn) { 2218 // If we're not emitting codeview, use the mangled name. For Itanium, this is 2219 // arbitrary. 2220 if (!CGM.getCodeGenOpts().EmitCodeView || 2221 StubKind == DynamicInitKind::GlobalArrayDestructor) 2222 return InitFn->getName(); 2223 2224 // Print the normal qualified name for the variable, then break off the last 2225 // NNS, and add the appropriate other text. Clang always prints the global 2226 // variable name without template arguments, so we can use rsplit("::") and 2227 // then recombine the pieces. 2228 SmallString<128> QualifiedGV; 2229 StringRef Quals; 2230 StringRef GVName; 2231 { 2232 llvm::raw_svector_ostream OS(QualifiedGV); 2233 VD->printQualifiedName(OS, getPrintingPolicy()); 2234 std::tie(Quals, GVName) = OS.str().rsplit("::"); 2235 if (GVName.empty()) 2236 std::swap(Quals, GVName); 2237 } 2238 2239 SmallString<128> InitName; 2240 llvm::raw_svector_ostream OS(InitName); 2241 if (!Quals.empty()) 2242 OS << Quals << "::"; 2243 2244 switch (StubKind) { 2245 case DynamicInitKind::NoStub: 2246 case DynamicInitKind::GlobalArrayDestructor: 2247 llvm_unreachable("not an initializer"); 2248 case DynamicInitKind::Initializer: 2249 OS << "`dynamic initializer for '"; 2250 break; 2251 case DynamicInitKind::AtExit: 2252 OS << "`dynamic atexit destructor for '"; 2253 break; 2254 } 2255 2256 OS << GVName; 2257 2258 // Add any template specialization args. 2259 if (const auto *VTpl = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2260 printTemplateArgumentList(OS, VTpl->getTemplateArgs().asArray(), 2261 getPrintingPolicy()); 2262 } 2263 2264 OS << '\''; 2265 2266 return internString(OS.str()); 2267 } 2268 2269 void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit, 2270 SmallVectorImpl<llvm::Metadata *> &EltTys) { 2271 // If this class is not dynamic then there is not any vtable info to collect. 2272 if (!RD->isDynamicClass()) 2273 return; 2274 2275 // Don't emit any vtable shape or vptr info if this class doesn't have an 2276 // extendable vfptr. This can happen if the class doesn't have virtual 2277 // methods, or in the MS ABI if those virtual methods only come from virtually 2278 // inherited bases. 2279 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2280 if (!RL.hasExtendableVFPtr()) 2281 return; 2282 2283 // CodeView needs to know how large the vtable of every dynamic class is, so 2284 // emit a special named pointer type into the element list. The vptr type 2285 // points to this type as well. 2286 llvm::DIType *VPtrTy = nullptr; 2287 bool NeedVTableShape = CGM.getCodeGenOpts().EmitCodeView && 2288 CGM.getTarget().getCXXABI().isMicrosoft(); 2289 if (NeedVTableShape) { 2290 uint64_t PtrWidth = 2291 CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 2292 const VTableLayout &VFTLayout = 2293 CGM.getMicrosoftVTableContext().getVFTableLayout(RD, CharUnits::Zero()); 2294 unsigned VSlotCount = 2295 VFTLayout.vtable_components().size() - CGM.getLangOpts().RTTIData; 2296 unsigned VTableWidth = PtrWidth * VSlotCount; 2297 unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); 2298 Optional<unsigned> DWARFAddressSpace = 2299 CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); 2300 2301 // Create a very wide void* type and insert it directly in the element list. 2302 llvm::DIType *VTableType = DBuilder.createPointerType( 2303 nullptr, VTableWidth, 0, DWARFAddressSpace, "__vtbl_ptr_type"); 2304 EltTys.push_back(VTableType); 2305 2306 // The vptr is a pointer to this special vtable type. 2307 VPtrTy = DBuilder.createPointerType(VTableType, PtrWidth); 2308 } 2309 2310 // If there is a primary base then the artificial vptr member lives there. 2311 if (RL.getPrimaryBase()) 2312 return; 2313 2314 if (!VPtrTy) 2315 VPtrTy = getOrCreateVTablePtrType(Unit); 2316 2317 unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); 2318 llvm::DIType *VPtrMember = 2319 DBuilder.createMemberType(Unit, getVTableName(RD), Unit, 0, Size, 0, 0, 2320 llvm::DINode::FlagArtificial, VPtrTy); 2321 EltTys.push_back(VPtrMember); 2322 } 2323 2324 llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy, 2325 SourceLocation Loc) { 2326 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 2327 llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc)); 2328 return T; 2329 } 2330 2331 llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D, 2332 SourceLocation Loc) { 2333 return getOrCreateStandaloneType(D, Loc); 2334 } 2335 2336 llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D, 2337 SourceLocation Loc) { 2338 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 2339 assert(!D.isNull() && "null type"); 2340 llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc)); 2341 assert(T && "could not create debug info for type"); 2342 2343 RetainedTypes.push_back(D.getAsOpaquePtr()); 2344 return T; 2345 } 2346 2347 void CGDebugInfo::addHeapAllocSiteMetadata(llvm::CallBase *CI, 2348 QualType AllocatedTy, 2349 SourceLocation Loc) { 2350 if (CGM.getCodeGenOpts().getDebugInfo() <= 2351 codegenoptions::DebugLineTablesOnly) 2352 return; 2353 llvm::MDNode *node; 2354 if (AllocatedTy->isVoidType()) 2355 node = llvm::MDNode::get(CGM.getLLVMContext(), None); 2356 else 2357 node = getOrCreateType(AllocatedTy, getOrCreateFile(Loc)); 2358 2359 CI->setMetadata("heapallocsite", node); 2360 } 2361 2362 void CGDebugInfo::completeType(const EnumDecl *ED) { 2363 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 2364 return; 2365 QualType Ty = CGM.getContext().getEnumType(ED); 2366 void *TyPtr = Ty.getAsOpaquePtr(); 2367 auto I = TypeCache.find(TyPtr); 2368 if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl()) 2369 return; 2370 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>()); 2371 assert(!Res->isForwardDecl()); 2372 TypeCache[TyPtr].reset(Res); 2373 } 2374 2375 void CGDebugInfo::completeType(const RecordDecl *RD) { 2376 if (DebugKind > codegenoptions::LimitedDebugInfo || 2377 !CGM.getLangOpts().CPlusPlus) 2378 completeRequiredType(RD); 2379 } 2380 2381 /// Return true if the class or any of its methods are marked dllimport. 2382 static bool isClassOrMethodDLLImport(const CXXRecordDecl *RD) { 2383 if (RD->hasAttr<DLLImportAttr>()) 2384 return true; 2385 for (const CXXMethodDecl *MD : RD->methods()) 2386 if (MD->hasAttr<DLLImportAttr>()) 2387 return true; 2388 return false; 2389 } 2390 2391 /// Does a type definition exist in an imported clang module? 2392 static bool isDefinedInClangModule(const RecordDecl *RD) { 2393 // Only definitions that where imported from an AST file come from a module. 2394 if (!RD || !RD->isFromASTFile()) 2395 return false; 2396 // Anonymous entities cannot be addressed. Treat them as not from module. 2397 if (!RD->isExternallyVisible() && RD->getName().empty()) 2398 return false; 2399 if (auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) { 2400 if (!CXXDecl->isCompleteDefinition()) 2401 return false; 2402 // Check wether RD is a template. 2403 auto TemplateKind = CXXDecl->getTemplateSpecializationKind(); 2404 if (TemplateKind != TSK_Undeclared) { 2405 // Unfortunately getOwningModule() isn't accurate enough to find the 2406 // owning module of a ClassTemplateSpecializationDecl that is inside a 2407 // namespace spanning multiple modules. 2408 bool Explicit = false; 2409 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(CXXDecl)) 2410 Explicit = TD->isExplicitInstantiationOrSpecialization(); 2411 if (!Explicit && CXXDecl->getEnclosingNamespaceContext()) 2412 return false; 2413 // This is a template, check the origin of the first member. 2414 if (CXXDecl->field_begin() == CXXDecl->field_end()) 2415 return TemplateKind == TSK_ExplicitInstantiationDeclaration; 2416 if (!CXXDecl->field_begin()->isFromASTFile()) 2417 return false; 2418 } 2419 } 2420 return true; 2421 } 2422 2423 void CGDebugInfo::completeClassData(const RecordDecl *RD) { 2424 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 2425 if (CXXRD->isDynamicClass() && 2426 CGM.getVTableLinkage(CXXRD) == 2427 llvm::GlobalValue::AvailableExternallyLinkage && 2428 !isClassOrMethodDLLImport(CXXRD)) 2429 return; 2430 2431 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) 2432 return; 2433 2434 completeClass(RD); 2435 } 2436 2437 void CGDebugInfo::completeClass(const RecordDecl *RD) { 2438 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 2439 return; 2440 QualType Ty = CGM.getContext().getRecordType(RD); 2441 void *TyPtr = Ty.getAsOpaquePtr(); 2442 auto I = TypeCache.find(TyPtr); 2443 if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl()) 2444 return; 2445 llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<RecordType>()); 2446 assert(!Res->isForwardDecl()); 2447 TypeCache[TyPtr].reset(Res); 2448 } 2449 2450 static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I, 2451 CXXRecordDecl::method_iterator End) { 2452 for (CXXMethodDecl *MD : llvm::make_range(I, End)) 2453 if (FunctionDecl *Tmpl = MD->getInstantiatedFromMemberFunction()) 2454 if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() && 2455 !MD->getMemberSpecializationInfo()->isExplicitSpecialization()) 2456 return true; 2457 return false; 2458 } 2459 2460 static bool canUseCtorHoming(const CXXRecordDecl *RD) { 2461 // Constructor homing can be used for classes that cannnot be constructed 2462 // without emitting code for one of their constructors. This is classes that 2463 // don't have trivial or constexpr constructors, or can be created from 2464 // aggregate initialization. Also skip lambda objects because they don't call 2465 // constructors. 2466 2467 // Skip this optimization if the class or any of its methods are marked 2468 // dllimport. 2469 if (isClassOrMethodDLLImport(RD)) 2470 return false; 2471 2472 return !RD->isLambda() && !RD->isAggregate() && 2473 !RD->hasTrivialDefaultConstructor() && 2474 !RD->hasConstexprNonCopyMoveConstructor(); 2475 } 2476 2477 static bool shouldOmitDefinition(codegenoptions::DebugInfoKind DebugKind, 2478 bool DebugTypeExtRefs, const RecordDecl *RD, 2479 const LangOptions &LangOpts) { 2480 if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) 2481 return true; 2482 2483 if (auto *ES = RD->getASTContext().getExternalSource()) 2484 if (ES->hasExternalDefinitions(RD) == ExternalASTSource::EK_Always) 2485 return true; 2486 2487 // Only emit forward declarations in line tables only to keep debug info size 2488 // small. This only applies to CodeView, since we don't emit types in DWARF 2489 // line tables only. 2490 if (DebugKind == codegenoptions::DebugLineTablesOnly) 2491 return true; 2492 2493 if (DebugKind > codegenoptions::LimitedDebugInfo || 2494 RD->hasAttr<StandaloneDebugAttr>()) 2495 return false; 2496 2497 if (!LangOpts.CPlusPlus) 2498 return false; 2499 2500 if (!RD->isCompleteDefinitionRequired()) 2501 return true; 2502 2503 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD); 2504 2505 if (!CXXDecl) 2506 return false; 2507 2508 // Only emit complete debug info for a dynamic class when its vtable is 2509 // emitted. However, Microsoft debuggers don't resolve type information 2510 // across DLL boundaries, so skip this optimization if the class or any of its 2511 // methods are marked dllimport. This isn't a complete solution, since objects 2512 // without any dllimport methods can be used in one DLL and constructed in 2513 // another, but it is the current behavior of LimitedDebugInfo. 2514 if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass() && 2515 !isClassOrMethodDLLImport(CXXDecl)) 2516 return true; 2517 2518 TemplateSpecializationKind Spec = TSK_Undeclared; 2519 if (const auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 2520 Spec = SD->getSpecializationKind(); 2521 2522 if (Spec == TSK_ExplicitInstantiationDeclaration && 2523 hasExplicitMemberDefinition(CXXDecl->method_begin(), 2524 CXXDecl->method_end())) 2525 return true; 2526 2527 // In constructor homing mode, only emit complete debug info for a class 2528 // when its constructor is emitted. 2529 if ((DebugKind == codegenoptions::DebugInfoConstructor) && 2530 canUseCtorHoming(CXXDecl)) 2531 return true; 2532 2533 return false; 2534 } 2535 2536 void CGDebugInfo::completeRequiredType(const RecordDecl *RD) { 2537 if (shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts())) 2538 return; 2539 2540 QualType Ty = CGM.getContext().getRecordType(RD); 2541 llvm::DIType *T = getTypeOrNull(Ty); 2542 if (T && T->isForwardDecl()) 2543 completeClassData(RD); 2544 } 2545 2546 llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) { 2547 RecordDecl *RD = Ty->getDecl(); 2548 llvm::DIType *T = cast_or_null<llvm::DIType>(getTypeOrNull(QualType(Ty, 0))); 2549 if (T || shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, 2550 CGM.getLangOpts())) { 2551 if (!T) 2552 T = getOrCreateRecordFwdDecl(Ty, getDeclContextDescriptor(RD)); 2553 return T; 2554 } 2555 2556 return CreateTypeDefinition(Ty); 2557 } 2558 2559 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) { 2560 RecordDecl *RD = Ty->getDecl(); 2561 2562 // Get overall information about the record type for the debug info. 2563 llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); 2564 2565 // Records and classes and unions can all be recursive. To handle them, we 2566 // first generate a debug descriptor for the struct as a forward declaration. 2567 // Then (if it is a definition) we go through and get debug info for all of 2568 // its members. Finally, we create a descriptor for the complete type (which 2569 // may refer to the forward decl if the struct is recursive) and replace all 2570 // uses of the forward declaration with the final definition. 2571 llvm::DICompositeType *FwdDecl = getOrCreateLimitedType(Ty); 2572 2573 const RecordDecl *D = RD->getDefinition(); 2574 if (!D || !D->isCompleteDefinition()) 2575 return FwdDecl; 2576 2577 if (const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) 2578 CollectContainingType(CXXDecl, FwdDecl); 2579 2580 // Push the struct on region stack. 2581 LexicalBlockStack.emplace_back(&*FwdDecl); 2582 RegionMap[Ty->getDecl()].reset(FwdDecl); 2583 2584 // Convert all the elements. 2585 SmallVector<llvm::Metadata *, 16> EltTys; 2586 // what about nested types? 2587 2588 // Note: The split of CXXDecl information here is intentional, the 2589 // gdb tests will depend on a certain ordering at printout. The debug 2590 // information offsets are still correct if we merge them all together 2591 // though. 2592 const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD); 2593 if (CXXDecl) { 2594 CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl); 2595 CollectVTableInfo(CXXDecl, DefUnit, EltTys); 2596 } 2597 2598 // Collect data fields (including static variables and any initializers). 2599 CollectRecordFields(RD, DefUnit, EltTys, FwdDecl); 2600 if (CXXDecl) 2601 CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl); 2602 2603 LexicalBlockStack.pop_back(); 2604 RegionMap.erase(Ty->getDecl()); 2605 2606 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 2607 DBuilder.replaceArrays(FwdDecl, Elements); 2608 2609 if (FwdDecl->isTemporary()) 2610 FwdDecl = 2611 llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl)); 2612 2613 RegionMap[Ty->getDecl()].reset(FwdDecl); 2614 return FwdDecl; 2615 } 2616 2617 llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty, 2618 llvm::DIFile *Unit) { 2619 // Ignore protocols. 2620 return getOrCreateType(Ty->getBaseType(), Unit); 2621 } 2622 2623 llvm::DIType *CGDebugInfo::CreateType(const ObjCTypeParamType *Ty, 2624 llvm::DIFile *Unit) { 2625 // Ignore protocols. 2626 SourceLocation Loc = Ty->getDecl()->getLocation(); 2627 2628 // Use Typedefs to represent ObjCTypeParamType. 2629 return DBuilder.createTypedef( 2630 getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit), 2631 Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc), 2632 getDeclContextDescriptor(Ty->getDecl())); 2633 } 2634 2635 /// \return true if Getter has the default name for the property PD. 2636 static bool hasDefaultGetterName(const ObjCPropertyDecl *PD, 2637 const ObjCMethodDecl *Getter) { 2638 assert(PD); 2639 if (!Getter) 2640 return true; 2641 2642 assert(Getter->getDeclName().isObjCZeroArgSelector()); 2643 return PD->getName() == 2644 Getter->getDeclName().getObjCSelector().getNameForSlot(0); 2645 } 2646 2647 /// \return true if Setter has the default name for the property PD. 2648 static bool hasDefaultSetterName(const ObjCPropertyDecl *PD, 2649 const ObjCMethodDecl *Setter) { 2650 assert(PD); 2651 if (!Setter) 2652 return true; 2653 2654 assert(Setter->getDeclName().isObjCOneArgSelector()); 2655 return SelectorTable::constructSetterName(PD->getName()) == 2656 Setter->getDeclName().getObjCSelector().getNameForSlot(0); 2657 } 2658 2659 llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty, 2660 llvm::DIFile *Unit) { 2661 ObjCInterfaceDecl *ID = Ty->getDecl(); 2662 if (!ID) 2663 return nullptr; 2664 2665 // Return a forward declaration if this type was imported from a clang module, 2666 // and this is not the compile unit with the implementation of the type (which 2667 // may contain hidden ivars). 2668 if (DebugTypeExtRefs && ID->isFromASTFile() && ID->getDefinition() && 2669 !ID->getImplementation()) 2670 return DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, 2671 ID->getName(), 2672 getDeclContextDescriptor(ID), Unit, 0); 2673 2674 // Get overall information about the record type for the debug info. 2675 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); 2676 unsigned Line = getLineNumber(ID->getLocation()); 2677 auto RuntimeLang = 2678 static_cast<llvm::dwarf::SourceLanguage>(TheCU->getSourceLanguage()); 2679 2680 // If this is just a forward declaration return a special forward-declaration 2681 // debug type since we won't be able to lay out the entire type. 2682 ObjCInterfaceDecl *Def = ID->getDefinition(); 2683 if (!Def || !Def->getImplementation()) { 2684 llvm::DIScope *Mod = getParentModuleOrNull(ID); 2685 llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType( 2686 llvm::dwarf::DW_TAG_structure_type, ID->getName(), Mod ? Mod : TheCU, 2687 DefUnit, Line, RuntimeLang); 2688 ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit)); 2689 return FwdDecl; 2690 } 2691 2692 return CreateTypeDefinition(Ty, Unit); 2693 } 2694 2695 llvm::DIModule *CGDebugInfo::getOrCreateModuleRef(ASTSourceDescriptor Mod, 2696 bool CreateSkeletonCU) { 2697 // Use the Module pointer as the key into the cache. This is a 2698 // nullptr if the "Module" is a PCH, which is safe because we don't 2699 // support chained PCH debug info, so there can only be a single PCH. 2700 const Module *M = Mod.getModuleOrNull(); 2701 auto ModRef = ModuleCache.find(M); 2702 if (ModRef != ModuleCache.end()) 2703 return cast<llvm::DIModule>(ModRef->second); 2704 2705 // Macro definitions that were defined with "-D" on the command line. 2706 SmallString<128> ConfigMacros; 2707 { 2708 llvm::raw_svector_ostream OS(ConfigMacros); 2709 const auto &PPOpts = CGM.getPreprocessorOpts(); 2710 unsigned I = 0; 2711 // Translate the macro definitions back into a command line. 2712 for (auto &M : PPOpts.Macros) { 2713 if (++I > 1) 2714 OS << " "; 2715 const std::string &Macro = M.first; 2716 bool Undef = M.second; 2717 OS << "\"-" << (Undef ? 'U' : 'D'); 2718 for (char c : Macro) 2719 switch (c) { 2720 case '\\': 2721 OS << "\\\\"; 2722 break; 2723 case '"': 2724 OS << "\\\""; 2725 break; 2726 default: 2727 OS << c; 2728 } 2729 OS << '\"'; 2730 } 2731 } 2732 2733 bool IsRootModule = M ? !M->Parent : true; 2734 // When a module name is specified as -fmodule-name, that module gets a 2735 // clang::Module object, but it won't actually be built or imported; it will 2736 // be textual. 2737 if (CreateSkeletonCU && IsRootModule && Mod.getASTFile().empty() && M) 2738 assert(StringRef(M->Name).startswith(CGM.getLangOpts().ModuleName) && 2739 "clang module without ASTFile must be specified by -fmodule-name"); 2740 2741 // Return a StringRef to the remapped Path. 2742 auto RemapPath = [this](StringRef Path) -> std::string { 2743 std::string Remapped = remapDIPath(Path); 2744 StringRef Relative(Remapped); 2745 StringRef CompDir = TheCU->getDirectory(); 2746 if (Relative.consume_front(CompDir)) 2747 Relative.consume_front(llvm::sys::path::get_separator()); 2748 2749 return Relative.str(); 2750 }; 2751 2752 if (CreateSkeletonCU && IsRootModule && !Mod.getASTFile().empty()) { 2753 // PCH files don't have a signature field in the control block, 2754 // but LLVM detects skeleton CUs by looking for a non-zero DWO id. 2755 // We use the lower 64 bits for debug info. 2756 2757 uint64_t Signature = 0; 2758 if (const auto &ModSig = Mod.getSignature()) 2759 Signature = ModSig.truncatedValue(); 2760 else 2761 Signature = ~1ULL; 2762 2763 llvm::DIBuilder DIB(CGM.getModule()); 2764 SmallString<0> PCM; 2765 if (!llvm::sys::path::is_absolute(Mod.getASTFile())) 2766 PCM = Mod.getPath(); 2767 llvm::sys::path::append(PCM, Mod.getASTFile()); 2768 DIB.createCompileUnit( 2769 TheCU->getSourceLanguage(), 2770 // TODO: Support "Source" from external AST providers? 2771 DIB.createFile(Mod.getModuleName(), TheCU->getDirectory()), 2772 TheCU->getProducer(), false, StringRef(), 0, RemapPath(PCM), 2773 llvm::DICompileUnit::FullDebug, Signature); 2774 DIB.finalize(); 2775 } 2776 2777 llvm::DIModule *Parent = 2778 IsRootModule ? nullptr 2779 : getOrCreateModuleRef(ASTSourceDescriptor(*M->Parent), 2780 CreateSkeletonCU); 2781 std::string IncludePath = Mod.getPath().str(); 2782 llvm::DIModule *DIMod = 2783 DBuilder.createModule(Parent, Mod.getModuleName(), ConfigMacros, 2784 RemapPath(IncludePath)); 2785 ModuleCache[M].reset(DIMod); 2786 return DIMod; 2787 } 2788 2789 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty, 2790 llvm::DIFile *Unit) { 2791 ObjCInterfaceDecl *ID = Ty->getDecl(); 2792 llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); 2793 unsigned Line = getLineNumber(ID->getLocation()); 2794 unsigned RuntimeLang = TheCU->getSourceLanguage(); 2795 2796 // Bit size, align and offset of the type. 2797 uint64_t Size = CGM.getContext().getTypeSize(Ty); 2798 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 2799 2800 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 2801 if (ID->getImplementation()) 2802 Flags |= llvm::DINode::FlagObjcClassComplete; 2803 2804 llvm::DIScope *Mod = getParentModuleOrNull(ID); 2805 llvm::DICompositeType *RealDecl = DBuilder.createStructType( 2806 Mod ? Mod : Unit, ID->getName(), DefUnit, Line, Size, Align, Flags, 2807 nullptr, llvm::DINodeArray(), RuntimeLang); 2808 2809 QualType QTy(Ty, 0); 2810 TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl); 2811 2812 // Push the struct on region stack. 2813 LexicalBlockStack.emplace_back(RealDecl); 2814 RegionMap[Ty->getDecl()].reset(RealDecl); 2815 2816 // Convert all the elements. 2817 SmallVector<llvm::Metadata *, 16> EltTys; 2818 2819 ObjCInterfaceDecl *SClass = ID->getSuperClass(); 2820 if (SClass) { 2821 llvm::DIType *SClassTy = 2822 getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit); 2823 if (!SClassTy) 2824 return nullptr; 2825 2826 llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0, 2827 llvm::DINode::FlagZero); 2828 EltTys.push_back(InhTag); 2829 } 2830 2831 // Create entries for all of the properties. 2832 auto AddProperty = [&](const ObjCPropertyDecl *PD) { 2833 SourceLocation Loc = PD->getLocation(); 2834 llvm::DIFile *PUnit = getOrCreateFile(Loc); 2835 unsigned PLine = getLineNumber(Loc); 2836 ObjCMethodDecl *Getter = PD->getGetterMethodDecl(); 2837 ObjCMethodDecl *Setter = PD->getSetterMethodDecl(); 2838 llvm::MDNode *PropertyNode = DBuilder.createObjCProperty( 2839 PD->getName(), PUnit, PLine, 2840 hasDefaultGetterName(PD, Getter) ? "" 2841 : getSelectorName(PD->getGetterName()), 2842 hasDefaultSetterName(PD, Setter) ? "" 2843 : getSelectorName(PD->getSetterName()), 2844 PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit)); 2845 EltTys.push_back(PropertyNode); 2846 }; 2847 { 2848 // Use 'char' for the isClassProperty bit as DenseSet requires space for 2849 // empty/tombstone keys in the data type (and bool is too small for that). 2850 typedef std::pair<char, const IdentifierInfo *> IsClassAndIdent; 2851 /// List of already emitted properties. Two distinct class and instance 2852 /// properties can share the same identifier (but not two instance 2853 /// properties or two class properties). 2854 llvm::DenseSet<IsClassAndIdent> PropertySet; 2855 /// Returns the IsClassAndIdent key for the given property. 2856 auto GetIsClassAndIdent = [](const ObjCPropertyDecl *PD) { 2857 return std::make_pair(PD->isClassProperty(), PD->getIdentifier()); 2858 }; 2859 for (const ObjCCategoryDecl *ClassExt : ID->known_extensions()) 2860 for (auto *PD : ClassExt->properties()) { 2861 PropertySet.insert(GetIsClassAndIdent(PD)); 2862 AddProperty(PD); 2863 } 2864 for (const auto *PD : ID->properties()) { 2865 // Don't emit duplicate metadata for properties that were already in a 2866 // class extension. 2867 if (!PropertySet.insert(GetIsClassAndIdent(PD)).second) 2868 continue; 2869 AddProperty(PD); 2870 } 2871 } 2872 2873 const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID); 2874 unsigned FieldNo = 0; 2875 for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field; 2876 Field = Field->getNextIvar(), ++FieldNo) { 2877 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 2878 if (!FieldTy) 2879 return nullptr; 2880 2881 StringRef FieldName = Field->getName(); 2882 2883 // Ignore unnamed fields. 2884 if (FieldName.empty()) 2885 continue; 2886 2887 // Get the location for the field. 2888 llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation()); 2889 unsigned FieldLine = getLineNumber(Field->getLocation()); 2890 QualType FType = Field->getType(); 2891 uint64_t FieldSize = 0; 2892 uint32_t FieldAlign = 0; 2893 2894 if (!FType->isIncompleteArrayType()) { 2895 2896 // Bit size, align and offset of the type. 2897 FieldSize = Field->isBitField() 2898 ? Field->getBitWidthValue(CGM.getContext()) 2899 : CGM.getContext().getTypeSize(FType); 2900 FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); 2901 } 2902 2903 uint64_t FieldOffset; 2904 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { 2905 // We don't know the runtime offset of an ivar if we're using the 2906 // non-fragile ABI. For bitfields, use the bit offset into the first 2907 // byte of storage of the bitfield. For other fields, use zero. 2908 if (Field->isBitField()) { 2909 FieldOffset = 2910 CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field); 2911 FieldOffset %= CGM.getContext().getCharWidth(); 2912 } else { 2913 FieldOffset = 0; 2914 } 2915 } else { 2916 FieldOffset = RL.getFieldOffset(FieldNo); 2917 } 2918 2919 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 2920 if (Field->getAccessControl() == ObjCIvarDecl::Protected) 2921 Flags = llvm::DINode::FlagProtected; 2922 else if (Field->getAccessControl() == ObjCIvarDecl::Private) 2923 Flags = llvm::DINode::FlagPrivate; 2924 else if (Field->getAccessControl() == ObjCIvarDecl::Public) 2925 Flags = llvm::DINode::FlagPublic; 2926 2927 llvm::MDNode *PropertyNode = nullptr; 2928 if (ObjCImplementationDecl *ImpD = ID->getImplementation()) { 2929 if (ObjCPropertyImplDecl *PImpD = 2930 ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) { 2931 if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) { 2932 SourceLocation Loc = PD->getLocation(); 2933 llvm::DIFile *PUnit = getOrCreateFile(Loc); 2934 unsigned PLine = getLineNumber(Loc); 2935 ObjCMethodDecl *Getter = PImpD->getGetterMethodDecl(); 2936 ObjCMethodDecl *Setter = PImpD->getSetterMethodDecl(); 2937 PropertyNode = DBuilder.createObjCProperty( 2938 PD->getName(), PUnit, PLine, 2939 hasDefaultGetterName(PD, Getter) 2940 ? "" 2941 : getSelectorName(PD->getGetterName()), 2942 hasDefaultSetterName(PD, Setter) 2943 ? "" 2944 : getSelectorName(PD->getSetterName()), 2945 PD->getPropertyAttributes(), 2946 getOrCreateType(PD->getType(), PUnit)); 2947 } 2948 } 2949 } 2950 FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine, 2951 FieldSize, FieldAlign, FieldOffset, Flags, 2952 FieldTy, PropertyNode); 2953 EltTys.push_back(FieldTy); 2954 } 2955 2956 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 2957 DBuilder.replaceArrays(RealDecl, Elements); 2958 2959 LexicalBlockStack.pop_back(); 2960 return RealDecl; 2961 } 2962 2963 llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty, 2964 llvm::DIFile *Unit) { 2965 if (Ty->isExtVectorBoolType()) { 2966 // Boolean ext_vector_type(N) are special because their real element type 2967 // (bits of bit size) is not their Clang element type (_Bool of size byte). 2968 // For now, we pretend the boolean vector were actually a vector of bytes 2969 // (where each byte represents 8 bits of the actual vector). 2970 // FIXME Debug info should actually represent this proper as a vector mask 2971 // type. 2972 auto &Ctx = CGM.getContext(); 2973 uint64_t Size = CGM.getContext().getTypeSize(Ty); 2974 uint64_t NumVectorBytes = Size / Ctx.getCharWidth(); 2975 2976 // Construct the vector of 'char' type. 2977 QualType CharVecTy = Ctx.getVectorType(Ctx.CharTy, NumVectorBytes, 2978 VectorType::GenericVector); 2979 return CreateType(CharVecTy->getAs<VectorType>(), Unit); 2980 } 2981 2982 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); 2983 int64_t Count = Ty->getNumElements(); 2984 2985 llvm::Metadata *Subscript; 2986 QualType QTy(Ty, 0); 2987 auto SizeExpr = SizeExprCache.find(QTy); 2988 if (SizeExpr != SizeExprCache.end()) 2989 Subscript = DBuilder.getOrCreateSubrange( 2990 SizeExpr->getSecond() /*count*/, nullptr /*lowerBound*/, 2991 nullptr /*upperBound*/, nullptr /*stride*/); 2992 else { 2993 auto *CountNode = 2994 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 2995 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count ? Count : -1)); 2996 Subscript = DBuilder.getOrCreateSubrange( 2997 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 2998 nullptr /*stride*/); 2999 } 3000 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); 3001 3002 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3003 auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3004 3005 return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray); 3006 } 3007 3008 llvm::DIType *CGDebugInfo::CreateType(const ConstantMatrixType *Ty, 3009 llvm::DIFile *Unit) { 3010 // FIXME: Create another debug type for matrices 3011 // For the time being, it treats it like a nested ArrayType. 3012 3013 llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); 3014 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3015 uint32_t Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3016 3017 // Create ranges for both dimensions. 3018 llvm::SmallVector<llvm::Metadata *, 2> Subscripts; 3019 auto *ColumnCountNode = 3020 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3021 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumColumns())); 3022 auto *RowCountNode = 3023 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3024 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumRows())); 3025 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3026 ColumnCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3027 nullptr /*stride*/)); 3028 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3029 RowCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3030 nullptr /*stride*/)); 3031 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); 3032 return DBuilder.createArrayType(Size, Align, ElementTy, SubscriptArray); 3033 } 3034 3035 llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) { 3036 uint64_t Size; 3037 uint32_t Align; 3038 3039 // FIXME: make getTypeAlign() aware of VLAs and incomplete array types 3040 if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) { 3041 Size = 0; 3042 Align = getTypeAlignIfRequired(CGM.getContext().getBaseElementType(VAT), 3043 CGM.getContext()); 3044 } else if (Ty->isIncompleteArrayType()) { 3045 Size = 0; 3046 if (Ty->getElementType()->isIncompleteType()) 3047 Align = 0; 3048 else 3049 Align = getTypeAlignIfRequired(Ty->getElementType(), CGM.getContext()); 3050 } else if (Ty->isIncompleteType()) { 3051 Size = 0; 3052 Align = 0; 3053 } else { 3054 // Size and align of the whole array, not the element type. 3055 Size = CGM.getContext().getTypeSize(Ty); 3056 Align = getTypeAlignIfRequired(Ty, CGM.getContext()); 3057 } 3058 3059 // Add the dimensions of the array. FIXME: This loses CV qualifiers from 3060 // interior arrays, do we care? Why aren't nested arrays represented the 3061 // obvious/recursive way? 3062 SmallVector<llvm::Metadata *, 8> Subscripts; 3063 QualType EltTy(Ty, 0); 3064 while ((Ty = dyn_cast<ArrayType>(EltTy))) { 3065 // If the number of elements is known, then count is that number. Otherwise, 3066 // it's -1. This allows us to represent a subrange with an array of 0 3067 // elements, like this: 3068 // 3069 // struct foo { 3070 // int x[0]; 3071 // }; 3072 int64_t Count = -1; // Count == -1 is an unbounded array. 3073 if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty)) 3074 Count = CAT->getSize().getZExtValue(); 3075 else if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) { 3076 if (Expr *Size = VAT->getSizeExpr()) { 3077 Expr::EvalResult Result; 3078 if (Size->EvaluateAsInt(Result, CGM.getContext())) 3079 Count = Result.Val.getInt().getExtValue(); 3080 } 3081 } 3082 3083 auto SizeNode = SizeExprCache.find(EltTy); 3084 if (SizeNode != SizeExprCache.end()) 3085 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3086 SizeNode->getSecond() /*count*/, nullptr /*lowerBound*/, 3087 nullptr /*upperBound*/, nullptr /*stride*/)); 3088 else { 3089 auto *CountNode = 3090 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( 3091 llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count)); 3092 Subscripts.push_back(DBuilder.getOrCreateSubrange( 3093 CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, 3094 nullptr /*stride*/)); 3095 } 3096 EltTy = Ty->getElementType(); 3097 } 3098 3099 llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); 3100 3101 return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit), 3102 SubscriptArray); 3103 } 3104 3105 llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty, 3106 llvm::DIFile *Unit) { 3107 return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty, 3108 Ty->getPointeeType(), Unit); 3109 } 3110 3111 llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty, 3112 llvm::DIFile *Unit) { 3113 llvm::dwarf::Tag Tag = llvm::dwarf::DW_TAG_rvalue_reference_type; 3114 // DW_TAG_rvalue_reference_type was introduced in DWARF 4. 3115 if (CGM.getCodeGenOpts().DebugStrictDwarf && 3116 CGM.getCodeGenOpts().DwarfVersion < 4) 3117 Tag = llvm::dwarf::DW_TAG_reference_type; 3118 3119 return CreatePointerLikeType(Tag, Ty, Ty->getPointeeType(), Unit); 3120 } 3121 3122 llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty, 3123 llvm::DIFile *U) { 3124 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 3125 uint64_t Size = 0; 3126 3127 if (!Ty->isIncompleteType()) { 3128 Size = CGM.getContext().getTypeSize(Ty); 3129 3130 // Set the MS inheritance model. There is no flag for the unspecified model. 3131 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3132 switch (Ty->getMostRecentCXXRecordDecl()->getMSInheritanceModel()) { 3133 case MSInheritanceModel::Single: 3134 Flags |= llvm::DINode::FlagSingleInheritance; 3135 break; 3136 case MSInheritanceModel::Multiple: 3137 Flags |= llvm::DINode::FlagMultipleInheritance; 3138 break; 3139 case MSInheritanceModel::Virtual: 3140 Flags |= llvm::DINode::FlagVirtualInheritance; 3141 break; 3142 case MSInheritanceModel::Unspecified: 3143 break; 3144 } 3145 } 3146 } 3147 3148 llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U); 3149 if (Ty->isMemberDataPointerType()) 3150 return DBuilder.createMemberPointerType( 3151 getOrCreateType(Ty->getPointeeType(), U), ClassType, Size, /*Align=*/0, 3152 Flags); 3153 3154 const FunctionProtoType *FPT = 3155 Ty->getPointeeType()->getAs<FunctionProtoType>(); 3156 return DBuilder.createMemberPointerType( 3157 getOrCreateInstanceMethodType( 3158 CXXMethodDecl::getThisType(FPT, Ty->getMostRecentCXXRecordDecl()), 3159 FPT, U, false), 3160 ClassType, Size, /*Align=*/0, Flags); 3161 } 3162 3163 llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) { 3164 auto *FromTy = getOrCreateType(Ty->getValueType(), U); 3165 return DBuilder.createQualifiedType(llvm::dwarf::DW_TAG_atomic_type, FromTy); 3166 } 3167 3168 llvm::DIType *CGDebugInfo::CreateType(const PipeType *Ty, llvm::DIFile *U) { 3169 return getOrCreateType(Ty->getElementType(), U); 3170 } 3171 3172 llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) { 3173 const EnumDecl *ED = Ty->getDecl(); 3174 3175 uint64_t Size = 0; 3176 uint32_t Align = 0; 3177 if (!ED->getTypeForDecl()->isIncompleteType()) { 3178 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); 3179 Align = getDeclAlignIfRequired(ED, CGM.getContext()); 3180 } 3181 3182 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3183 3184 bool isImportedFromModule = 3185 DebugTypeExtRefs && ED->isFromASTFile() && ED->getDefinition(); 3186 3187 // If this is just a forward declaration, construct an appropriately 3188 // marked node and just return it. 3189 if (isImportedFromModule || !ED->getDefinition()) { 3190 // Note that it is possible for enums to be created as part of 3191 // their own declcontext. In this case a FwdDecl will be created 3192 // twice. This doesn't cause a problem because both FwdDecls are 3193 // entered into the ReplaceMap: finalize() will replace the first 3194 // FwdDecl with the second and then replace the second with 3195 // complete type. 3196 llvm::DIScope *EDContext = getDeclContextDescriptor(ED); 3197 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); 3198 llvm::TempDIScope TmpContext(DBuilder.createReplaceableCompositeType( 3199 llvm::dwarf::DW_TAG_enumeration_type, "", TheCU, DefUnit, 0)); 3200 3201 unsigned Line = getLineNumber(ED->getLocation()); 3202 StringRef EDName = ED->getName(); 3203 llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType( 3204 llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line, 3205 0, Size, Align, llvm::DINode::FlagFwdDecl, Identifier); 3206 3207 ReplaceMap.emplace_back( 3208 std::piecewise_construct, std::make_tuple(Ty), 3209 std::make_tuple(static_cast<llvm::Metadata *>(RetTy))); 3210 return RetTy; 3211 } 3212 3213 return CreateTypeDefinition(Ty); 3214 } 3215 3216 llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) { 3217 const EnumDecl *ED = Ty->getDecl(); 3218 uint64_t Size = 0; 3219 uint32_t Align = 0; 3220 if (!ED->getTypeForDecl()->isIncompleteType()) { 3221 Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); 3222 Align = getDeclAlignIfRequired(ED, CGM.getContext()); 3223 } 3224 3225 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3226 3227 SmallVector<llvm::Metadata *, 16> Enumerators; 3228 ED = ED->getDefinition(); 3229 for (const auto *Enum : ED->enumerators()) { 3230 Enumerators.push_back( 3231 DBuilder.createEnumerator(Enum->getName(), Enum->getInitVal())); 3232 } 3233 3234 // Return a CompositeType for the enum itself. 3235 llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators); 3236 3237 llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); 3238 unsigned Line = getLineNumber(ED->getLocation()); 3239 llvm::DIScope *EnumContext = getDeclContextDescriptor(ED); 3240 llvm::DIType *ClassTy = getOrCreateType(ED->getIntegerType(), DefUnit); 3241 return DBuilder.createEnumerationType(EnumContext, ED->getName(), DefUnit, 3242 Line, Size, Align, EltArray, ClassTy, 3243 Identifier, ED->isScoped()); 3244 } 3245 3246 llvm::DIMacro *CGDebugInfo::CreateMacro(llvm::DIMacroFile *Parent, 3247 unsigned MType, SourceLocation LineLoc, 3248 StringRef Name, StringRef Value) { 3249 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); 3250 return DBuilder.createMacro(Parent, Line, MType, Name, Value); 3251 } 3252 3253 llvm::DIMacroFile *CGDebugInfo::CreateTempMacroFile(llvm::DIMacroFile *Parent, 3254 SourceLocation LineLoc, 3255 SourceLocation FileLoc) { 3256 llvm::DIFile *FName = getOrCreateFile(FileLoc); 3257 unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); 3258 return DBuilder.createTempMacroFile(Parent, Line, FName); 3259 } 3260 3261 static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) { 3262 Qualifiers Quals; 3263 do { 3264 Qualifiers InnerQuals = T.getLocalQualifiers(); 3265 // Qualifiers::operator+() doesn't like it if you add a Qualifier 3266 // that is already there. 3267 Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals); 3268 Quals += InnerQuals; 3269 QualType LastT = T; 3270 switch (T->getTypeClass()) { 3271 default: 3272 return C.getQualifiedType(T.getTypePtr(), Quals); 3273 case Type::TemplateSpecialization: { 3274 const auto *Spec = cast<TemplateSpecializationType>(T); 3275 if (Spec->isTypeAlias()) 3276 return C.getQualifiedType(T.getTypePtr(), Quals); 3277 T = Spec->desugar(); 3278 break; 3279 } 3280 case Type::TypeOfExpr: 3281 T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType(); 3282 break; 3283 case Type::TypeOf: 3284 T = cast<TypeOfType>(T)->getUnderlyingType(); 3285 break; 3286 case Type::Decltype: 3287 T = cast<DecltypeType>(T)->getUnderlyingType(); 3288 break; 3289 case Type::UnaryTransform: 3290 T = cast<UnaryTransformType>(T)->getUnderlyingType(); 3291 break; 3292 case Type::Attributed: 3293 T = cast<AttributedType>(T)->getEquivalentType(); 3294 break; 3295 case Type::BTFTagAttributed: 3296 T = cast<BTFTagAttributedType>(T)->getWrappedType(); 3297 break; 3298 case Type::Elaborated: 3299 T = cast<ElaboratedType>(T)->getNamedType(); 3300 break; 3301 case Type::Using: 3302 T = cast<UsingType>(T)->getUnderlyingType(); 3303 break; 3304 case Type::Paren: 3305 T = cast<ParenType>(T)->getInnerType(); 3306 break; 3307 case Type::MacroQualified: 3308 T = cast<MacroQualifiedType>(T)->getUnderlyingType(); 3309 break; 3310 case Type::SubstTemplateTypeParm: 3311 T = cast<SubstTemplateTypeParmType>(T)->getReplacementType(); 3312 break; 3313 case Type::Auto: 3314 case Type::DeducedTemplateSpecialization: { 3315 QualType DT = cast<DeducedType>(T)->getDeducedType(); 3316 assert(!DT.isNull() && "Undeduced types shouldn't reach here."); 3317 T = DT; 3318 break; 3319 } 3320 case Type::Adjusted: 3321 case Type::Decayed: 3322 // Decayed and adjusted types use the adjusted type in LLVM and DWARF. 3323 T = cast<AdjustedType>(T)->getAdjustedType(); 3324 break; 3325 } 3326 3327 assert(T != LastT && "Type unwrapping failed to unwrap!"); 3328 (void)LastT; 3329 } while (true); 3330 } 3331 3332 llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) { 3333 assert(Ty == UnwrapTypeForDebugInfo(Ty, CGM.getContext())); 3334 auto It = TypeCache.find(Ty.getAsOpaquePtr()); 3335 if (It != TypeCache.end()) { 3336 // Verify that the debug info still exists. 3337 if (llvm::Metadata *V = It->second) 3338 return cast<llvm::DIType>(V); 3339 } 3340 3341 return nullptr; 3342 } 3343 3344 void CGDebugInfo::completeTemplateDefinition( 3345 const ClassTemplateSpecializationDecl &SD) { 3346 completeUnusedClass(SD); 3347 } 3348 3349 void CGDebugInfo::completeUnusedClass(const CXXRecordDecl &D) { 3350 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 3351 return; 3352 3353 completeClassData(&D); 3354 // In case this type has no member function definitions being emitted, ensure 3355 // it is retained 3356 RetainedTypes.push_back(CGM.getContext().getRecordType(&D).getAsOpaquePtr()); 3357 } 3358 3359 llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit) { 3360 if (Ty.isNull()) 3361 return nullptr; 3362 3363 llvm::TimeTraceScope TimeScope("DebugType", [&]() { 3364 std::string Name; 3365 llvm::raw_string_ostream OS(Name); 3366 Ty.print(OS, getPrintingPolicy()); 3367 return Name; 3368 }); 3369 3370 // Unwrap the type as needed for debug information. 3371 Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext()); 3372 3373 if (auto *T = getTypeOrNull(Ty)) 3374 return T; 3375 3376 llvm::DIType *Res = CreateTypeNode(Ty, Unit); 3377 void *TyPtr = Ty.getAsOpaquePtr(); 3378 3379 // And update the type cache. 3380 TypeCache[TyPtr].reset(Res); 3381 3382 return Res; 3383 } 3384 3385 llvm::DIModule *CGDebugInfo::getParentModuleOrNull(const Decl *D) { 3386 // A forward declaration inside a module header does not belong to the module. 3387 if (isa<RecordDecl>(D) && !cast<RecordDecl>(D)->getDefinition()) 3388 return nullptr; 3389 if (DebugTypeExtRefs && D->isFromASTFile()) { 3390 // Record a reference to an imported clang module or precompiled header. 3391 auto *Reader = CGM.getContext().getExternalSource(); 3392 auto Idx = D->getOwningModuleID(); 3393 auto Info = Reader->getSourceDescriptor(Idx); 3394 if (Info) 3395 return getOrCreateModuleRef(*Info, /*SkeletonCU=*/true); 3396 } else if (ClangModuleMap) { 3397 // We are building a clang module or a precompiled header. 3398 // 3399 // TODO: When D is a CXXRecordDecl or a C++ Enum, the ODR applies 3400 // and it wouldn't be necessary to specify the parent scope 3401 // because the type is already unique by definition (it would look 3402 // like the output of -fno-standalone-debug). On the other hand, 3403 // the parent scope helps a consumer to quickly locate the object 3404 // file where the type's definition is located, so it might be 3405 // best to make this behavior a command line or debugger tuning 3406 // option. 3407 if (Module *M = D->getOwningModule()) { 3408 // This is a (sub-)module. 3409 auto Info = ASTSourceDescriptor(*M); 3410 return getOrCreateModuleRef(Info, /*SkeletonCU=*/false); 3411 } else { 3412 // This the precompiled header being built. 3413 return getOrCreateModuleRef(PCHDescriptor, /*SkeletonCU=*/false); 3414 } 3415 } 3416 3417 return nullptr; 3418 } 3419 3420 llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit) { 3421 // Handle qualifiers, which recursively handles what they refer to. 3422 if (Ty.hasLocalQualifiers()) 3423 return CreateQualifiedType(Ty, Unit); 3424 3425 // Work out details of type. 3426 switch (Ty->getTypeClass()) { 3427 #define TYPE(Class, Base) 3428 #define ABSTRACT_TYPE(Class, Base) 3429 #define NON_CANONICAL_TYPE(Class, Base) 3430 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3431 #include "clang/AST/TypeNodes.inc" 3432 llvm_unreachable("Dependent types cannot show up in debug information"); 3433 3434 case Type::ExtVector: 3435 case Type::Vector: 3436 return CreateType(cast<VectorType>(Ty), Unit); 3437 case Type::ConstantMatrix: 3438 return CreateType(cast<ConstantMatrixType>(Ty), Unit); 3439 case Type::ObjCObjectPointer: 3440 return CreateType(cast<ObjCObjectPointerType>(Ty), Unit); 3441 case Type::ObjCObject: 3442 return CreateType(cast<ObjCObjectType>(Ty), Unit); 3443 case Type::ObjCTypeParam: 3444 return CreateType(cast<ObjCTypeParamType>(Ty), Unit); 3445 case Type::ObjCInterface: 3446 return CreateType(cast<ObjCInterfaceType>(Ty), Unit); 3447 case Type::Builtin: 3448 return CreateType(cast<BuiltinType>(Ty)); 3449 case Type::Complex: 3450 return CreateType(cast<ComplexType>(Ty)); 3451 case Type::Pointer: 3452 return CreateType(cast<PointerType>(Ty), Unit); 3453 case Type::BlockPointer: 3454 return CreateType(cast<BlockPointerType>(Ty), Unit); 3455 case Type::Typedef: 3456 return CreateType(cast<TypedefType>(Ty), Unit); 3457 case Type::Record: 3458 return CreateType(cast<RecordType>(Ty)); 3459 case Type::Enum: 3460 return CreateEnumType(cast<EnumType>(Ty)); 3461 case Type::FunctionProto: 3462 case Type::FunctionNoProto: 3463 return CreateType(cast<FunctionType>(Ty), Unit); 3464 case Type::ConstantArray: 3465 case Type::VariableArray: 3466 case Type::IncompleteArray: 3467 return CreateType(cast<ArrayType>(Ty), Unit); 3468 3469 case Type::LValueReference: 3470 return CreateType(cast<LValueReferenceType>(Ty), Unit); 3471 case Type::RValueReference: 3472 return CreateType(cast<RValueReferenceType>(Ty), Unit); 3473 3474 case Type::MemberPointer: 3475 return CreateType(cast<MemberPointerType>(Ty), Unit); 3476 3477 case Type::Atomic: 3478 return CreateType(cast<AtomicType>(Ty), Unit); 3479 3480 case Type::BitInt: 3481 return CreateType(cast<BitIntType>(Ty)); 3482 case Type::Pipe: 3483 return CreateType(cast<PipeType>(Ty), Unit); 3484 3485 case Type::TemplateSpecialization: 3486 return CreateType(cast<TemplateSpecializationType>(Ty), Unit); 3487 3488 case Type::Auto: 3489 case Type::Attributed: 3490 case Type::BTFTagAttributed: 3491 case Type::Adjusted: 3492 case Type::Decayed: 3493 case Type::DeducedTemplateSpecialization: 3494 case Type::Elaborated: 3495 case Type::Using: 3496 case Type::Paren: 3497 case Type::MacroQualified: 3498 case Type::SubstTemplateTypeParm: 3499 case Type::TypeOfExpr: 3500 case Type::TypeOf: 3501 case Type::Decltype: 3502 case Type::UnaryTransform: 3503 break; 3504 } 3505 3506 llvm_unreachable("type should have been unwrapped!"); 3507 } 3508 3509 llvm::DICompositeType * 3510 CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty) { 3511 QualType QTy(Ty, 0); 3512 3513 auto *T = cast_or_null<llvm::DICompositeType>(getTypeOrNull(QTy)); 3514 3515 // We may have cached a forward decl when we could have created 3516 // a non-forward decl. Go ahead and create a non-forward decl 3517 // now. 3518 if (T && !T->isForwardDecl()) 3519 return T; 3520 3521 // Otherwise create the type. 3522 llvm::DICompositeType *Res = CreateLimitedType(Ty); 3523 3524 // Propagate members from the declaration to the definition 3525 // CreateType(const RecordType*) will overwrite this with the members in the 3526 // correct order if the full type is needed. 3527 DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray()); 3528 3529 // And update the type cache. 3530 TypeCache[QTy.getAsOpaquePtr()].reset(Res); 3531 return Res; 3532 } 3533 3534 // TODO: Currently used for context chains when limiting debug info. 3535 llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) { 3536 RecordDecl *RD = Ty->getDecl(); 3537 3538 // Get overall information about the record type for the debug info. 3539 StringRef RDName = getClassName(RD); 3540 const SourceLocation Loc = RD->getLocation(); 3541 llvm::DIFile *DefUnit = nullptr; 3542 unsigned Line = 0; 3543 if (Loc.isValid()) { 3544 DefUnit = getOrCreateFile(Loc); 3545 Line = getLineNumber(Loc); 3546 } 3547 3548 llvm::DIScope *RDContext = getDeclContextDescriptor(RD); 3549 3550 // If we ended up creating the type during the context chain construction, 3551 // just return that. 3552 auto *T = cast_or_null<llvm::DICompositeType>( 3553 getTypeOrNull(CGM.getContext().getRecordType(RD))); 3554 if (T && (!T->isForwardDecl() || !RD->getDefinition())) 3555 return T; 3556 3557 // If this is just a forward or incomplete declaration, construct an 3558 // appropriately marked node and just return it. 3559 const RecordDecl *D = RD->getDefinition(); 3560 if (!D || !D->isCompleteDefinition()) 3561 return getOrCreateRecordFwdDecl(Ty, RDContext); 3562 3563 uint64_t Size = CGM.getContext().getTypeSize(Ty); 3564 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 3565 3566 SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); 3567 3568 // Explicitly record the calling convention and export symbols for C++ 3569 // records. 3570 auto Flags = llvm::DINode::FlagZero; 3571 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3572 if (CGM.getCXXABI().getRecordArgABI(CXXRD) == CGCXXABI::RAA_Indirect) 3573 Flags |= llvm::DINode::FlagTypePassByReference; 3574 else 3575 Flags |= llvm::DINode::FlagTypePassByValue; 3576 3577 // Record if a C++ record is non-trivial type. 3578 if (!CXXRD->isTrivial()) 3579 Flags |= llvm::DINode::FlagNonTrivial; 3580 3581 // Record exports it symbols to the containing structure. 3582 if (CXXRD->isAnonymousStructOrUnion()) 3583 Flags |= llvm::DINode::FlagExportSymbols; 3584 3585 Flags |= getAccessFlag(CXXRD->getAccess(), 3586 dyn_cast<CXXRecordDecl>(CXXRD->getDeclContext())); 3587 } 3588 3589 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 3590 llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType( 3591 getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align, 3592 Flags, Identifier, Annotations); 3593 3594 // Elements of composite types usually have back to the type, creating 3595 // uniquing cycles. Distinct nodes are more efficient. 3596 switch (RealDecl->getTag()) { 3597 default: 3598 llvm_unreachable("invalid composite type tag"); 3599 3600 case llvm::dwarf::DW_TAG_array_type: 3601 case llvm::dwarf::DW_TAG_enumeration_type: 3602 // Array elements and most enumeration elements don't have back references, 3603 // so they don't tend to be involved in uniquing cycles and there is some 3604 // chance of merging them when linking together two modules. Only make 3605 // them distinct if they are ODR-uniqued. 3606 if (Identifier.empty()) 3607 break; 3608 LLVM_FALLTHROUGH; 3609 3610 case llvm::dwarf::DW_TAG_structure_type: 3611 case llvm::dwarf::DW_TAG_union_type: 3612 case llvm::dwarf::DW_TAG_class_type: 3613 // Immediately resolve to a distinct node. 3614 RealDecl = 3615 llvm::MDNode::replaceWithDistinct(llvm::TempDICompositeType(RealDecl)); 3616 break; 3617 } 3618 3619 RegionMap[Ty->getDecl()].reset(RealDecl); 3620 TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl); 3621 3622 if (const auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) 3623 DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(), 3624 CollectCXXTemplateParams(TSpecial, DefUnit)); 3625 return RealDecl; 3626 } 3627 3628 void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD, 3629 llvm::DICompositeType *RealDecl) { 3630 // A class's primary base or the class itself contains the vtable. 3631 llvm::DICompositeType *ContainingType = nullptr; 3632 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 3633 if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) { 3634 // Seek non-virtual primary base root. 3635 while (true) { 3636 const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase); 3637 const CXXRecordDecl *PBT = BRL.getPrimaryBase(); 3638 if (PBT && !BRL.isPrimaryBaseVirtual()) 3639 PBase = PBT; 3640 else 3641 break; 3642 } 3643 ContainingType = cast<llvm::DICompositeType>( 3644 getOrCreateType(QualType(PBase->getTypeForDecl(), 0), 3645 getOrCreateFile(RD->getLocation()))); 3646 } else if (RD->isDynamicClass()) 3647 ContainingType = RealDecl; 3648 3649 DBuilder.replaceVTableHolder(RealDecl, ContainingType); 3650 } 3651 3652 llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType, 3653 StringRef Name, uint64_t *Offset) { 3654 llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit); 3655 uint64_t FieldSize = CGM.getContext().getTypeSize(FType); 3656 auto FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); 3657 llvm::DIType *Ty = 3658 DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize, FieldAlign, 3659 *Offset, llvm::DINode::FlagZero, FieldTy); 3660 *Offset += FieldSize; 3661 return Ty; 3662 } 3663 3664 void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit, 3665 StringRef &Name, 3666 StringRef &LinkageName, 3667 llvm::DIScope *&FDContext, 3668 llvm::DINodeArray &TParamsArray, 3669 llvm::DINode::DIFlags &Flags) { 3670 const auto *FD = cast<FunctionDecl>(GD.getCanonicalDecl().getDecl()); 3671 Name = getFunctionName(FD); 3672 // Use mangled name as linkage name for C/C++ functions. 3673 if (FD->getType()->getAs<FunctionProtoType>()) 3674 LinkageName = CGM.getMangledName(GD); 3675 if (FD->hasPrototype()) 3676 Flags |= llvm::DINode::FlagPrototyped; 3677 // No need to replicate the linkage name if it isn't different from the 3678 // subprogram name, no need to have it at all unless coverage is enabled or 3679 // debug is set to more than just line tables or extra debug info is needed. 3680 if (LinkageName == Name || (!CGM.getCodeGenOpts().EmitGcovArcs && 3681 !CGM.getCodeGenOpts().EmitGcovNotes && 3682 !CGM.getCodeGenOpts().DebugInfoForProfiling && 3683 !CGM.getCodeGenOpts().PseudoProbeForProfiling && 3684 DebugKind <= codegenoptions::DebugLineTablesOnly)) 3685 LinkageName = StringRef(); 3686 3687 // Emit the function scope in line tables only mode (if CodeView) to 3688 // differentiate between function names. 3689 if (CGM.getCodeGenOpts().hasReducedDebugInfo() || 3690 (DebugKind == codegenoptions::DebugLineTablesOnly && 3691 CGM.getCodeGenOpts().EmitCodeView)) { 3692 if (const NamespaceDecl *NSDecl = 3693 dyn_cast_or_null<NamespaceDecl>(FD->getDeclContext())) 3694 FDContext = getOrCreateNamespace(NSDecl); 3695 else if (const RecordDecl *RDecl = 3696 dyn_cast_or_null<RecordDecl>(FD->getDeclContext())) { 3697 llvm::DIScope *Mod = getParentModuleOrNull(RDecl); 3698 FDContext = getContextDescriptor(RDecl, Mod ? Mod : TheCU); 3699 } 3700 } 3701 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 3702 // Check if it is a noreturn-marked function 3703 if (FD->isNoReturn()) 3704 Flags |= llvm::DINode::FlagNoReturn; 3705 // Collect template parameters. 3706 TParamsArray = CollectFunctionTemplateParams(FD, Unit); 3707 } 3708 } 3709 3710 void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit, 3711 unsigned &LineNo, QualType &T, 3712 StringRef &Name, StringRef &LinkageName, 3713 llvm::MDTuple *&TemplateParameters, 3714 llvm::DIScope *&VDContext) { 3715 Unit = getOrCreateFile(VD->getLocation()); 3716 LineNo = getLineNumber(VD->getLocation()); 3717 3718 setLocation(VD->getLocation()); 3719 3720 T = VD->getType(); 3721 if (T->isIncompleteArrayType()) { 3722 // CodeGen turns int[] into int[1] so we'll do the same here. 3723 llvm::APInt ConstVal(32, 1); 3724 QualType ET = CGM.getContext().getAsArrayType(T)->getElementType(); 3725 3726 T = CGM.getContext().getConstantArrayType(ET, ConstVal, nullptr, 3727 ArrayType::Normal, 0); 3728 } 3729 3730 Name = VD->getName(); 3731 if (VD->getDeclContext() && !isa<FunctionDecl>(VD->getDeclContext()) && 3732 !isa<ObjCMethodDecl>(VD->getDeclContext())) 3733 LinkageName = CGM.getMangledName(VD); 3734 if (LinkageName == Name) 3735 LinkageName = StringRef(); 3736 3737 if (isa<VarTemplateSpecializationDecl>(VD)) { 3738 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VD, &*Unit); 3739 TemplateParameters = parameterNodes.get(); 3740 } else { 3741 TemplateParameters = nullptr; 3742 } 3743 3744 // Since we emit declarations (DW_AT_members) for static members, place the 3745 // definition of those static members in the namespace they were declared in 3746 // in the source code (the lexical decl context). 3747 // FIXME: Generalize this for even non-member global variables where the 3748 // declaration and definition may have different lexical decl contexts, once 3749 // we have support for emitting declarations of (non-member) global variables. 3750 const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext() 3751 : VD->getDeclContext(); 3752 // When a record type contains an in-line initialization of a static data 3753 // member, and the record type is marked as __declspec(dllexport), an implicit 3754 // definition of the member will be created in the record context. DWARF 3755 // doesn't seem to have a nice way to describe this in a form that consumers 3756 // are likely to understand, so fake the "normal" situation of a definition 3757 // outside the class by putting it in the global scope. 3758 if (DC->isRecord()) 3759 DC = CGM.getContext().getTranslationUnitDecl(); 3760 3761 llvm::DIScope *Mod = getParentModuleOrNull(VD); 3762 VDContext = getContextDescriptor(cast<Decl>(DC), Mod ? Mod : TheCU); 3763 } 3764 3765 llvm::DISubprogram *CGDebugInfo::getFunctionFwdDeclOrStub(GlobalDecl GD, 3766 bool Stub) { 3767 llvm::DINodeArray TParamsArray; 3768 StringRef Name, LinkageName; 3769 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 3770 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 3771 SourceLocation Loc = GD.getDecl()->getLocation(); 3772 llvm::DIFile *Unit = getOrCreateFile(Loc); 3773 llvm::DIScope *DContext = Unit; 3774 unsigned Line = getLineNumber(Loc); 3775 collectFunctionDeclProps(GD, Unit, Name, LinkageName, DContext, TParamsArray, 3776 Flags); 3777 auto *FD = cast<FunctionDecl>(GD.getDecl()); 3778 3779 // Build function type. 3780 SmallVector<QualType, 16> ArgTypes; 3781 for (const ParmVarDecl *Parm : FD->parameters()) 3782 ArgTypes.push_back(Parm->getType()); 3783 3784 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 3785 QualType FnType = CGM.getContext().getFunctionType( 3786 FD->getReturnType(), ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 3787 if (!FD->isExternallyVisible()) 3788 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 3789 if (CGM.getLangOpts().Optimize) 3790 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 3791 3792 if (Stub) { 3793 Flags |= getCallSiteRelatedAttrs(); 3794 SPFlags |= llvm::DISubprogram::SPFlagDefinition; 3795 return DBuilder.createFunction( 3796 DContext, Name, LinkageName, Unit, Line, 3797 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, 3798 TParamsArray.get(), getFunctionDeclaration(FD)); 3799 } 3800 3801 llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl( 3802 DContext, Name, LinkageName, Unit, Line, 3803 getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, 3804 TParamsArray.get(), getFunctionDeclaration(FD)); 3805 const FunctionDecl *CanonDecl = FD->getCanonicalDecl(); 3806 FwdDeclReplaceMap.emplace_back(std::piecewise_construct, 3807 std::make_tuple(CanonDecl), 3808 std::make_tuple(SP)); 3809 return SP; 3810 } 3811 3812 llvm::DISubprogram *CGDebugInfo::getFunctionForwardDeclaration(GlobalDecl GD) { 3813 return getFunctionFwdDeclOrStub(GD, /* Stub = */ false); 3814 } 3815 3816 llvm::DISubprogram *CGDebugInfo::getFunctionStub(GlobalDecl GD) { 3817 return getFunctionFwdDeclOrStub(GD, /* Stub = */ true); 3818 } 3819 3820 llvm::DIGlobalVariable * 3821 CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) { 3822 QualType T; 3823 StringRef Name, LinkageName; 3824 SourceLocation Loc = VD->getLocation(); 3825 llvm::DIFile *Unit = getOrCreateFile(Loc); 3826 llvm::DIScope *DContext = Unit; 3827 unsigned Line = getLineNumber(Loc); 3828 llvm::MDTuple *TemplateParameters = nullptr; 3829 3830 collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, TemplateParameters, 3831 DContext); 3832 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 3833 auto *GV = DBuilder.createTempGlobalVariableFwdDecl( 3834 DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit), 3835 !VD->isExternallyVisible(), nullptr, TemplateParameters, Align); 3836 FwdDeclReplaceMap.emplace_back( 3837 std::piecewise_construct, 3838 std::make_tuple(cast<VarDecl>(VD->getCanonicalDecl())), 3839 std::make_tuple(static_cast<llvm::Metadata *>(GV))); 3840 return GV; 3841 } 3842 3843 llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) { 3844 // We only need a declaration (not a definition) of the type - so use whatever 3845 // we would otherwise do to get a type for a pointee. (forward declarations in 3846 // limited debug info, full definitions (if the type definition is available) 3847 // in unlimited debug info) 3848 if (const auto *TD = dyn_cast<TypeDecl>(D)) 3849 return getOrCreateType(CGM.getContext().getTypeDeclType(TD), 3850 getOrCreateFile(TD->getLocation())); 3851 auto I = DeclCache.find(D->getCanonicalDecl()); 3852 3853 if (I != DeclCache.end()) { 3854 auto N = I->second; 3855 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(N)) 3856 return GVE->getVariable(); 3857 return cast<llvm::DINode>(N); 3858 } 3859 3860 // Search imported declaration cache if it is already defined 3861 // as imported declaration. 3862 auto IE = ImportedDeclCache.find(D->getCanonicalDecl()); 3863 3864 if (IE != ImportedDeclCache.end()) { 3865 auto N = IE->second; 3866 if (auto *GVE = dyn_cast_or_null<llvm::DIImportedEntity>(N)) 3867 return cast<llvm::DINode>(GVE); 3868 return dyn_cast_or_null<llvm::DINode>(N); 3869 } 3870 3871 // No definition for now. Emit a forward definition that might be 3872 // merged with a potential upcoming definition. 3873 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 3874 return getFunctionForwardDeclaration(FD); 3875 else if (const auto *VD = dyn_cast<VarDecl>(D)) 3876 return getGlobalVariableForwardDeclaration(VD); 3877 3878 return nullptr; 3879 } 3880 3881 llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) { 3882 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) 3883 return nullptr; 3884 3885 const auto *FD = dyn_cast<FunctionDecl>(D); 3886 if (!FD) 3887 return nullptr; 3888 3889 // Setup context. 3890 auto *S = getDeclContextDescriptor(D); 3891 3892 auto MI = SPCache.find(FD->getCanonicalDecl()); 3893 if (MI == SPCache.end()) { 3894 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD->getCanonicalDecl())) { 3895 return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()), 3896 cast<llvm::DICompositeType>(S)); 3897 } 3898 } 3899 if (MI != SPCache.end()) { 3900 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); 3901 if (SP && !SP->isDefinition()) 3902 return SP; 3903 } 3904 3905 for (auto NextFD : FD->redecls()) { 3906 auto MI = SPCache.find(NextFD->getCanonicalDecl()); 3907 if (MI != SPCache.end()) { 3908 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second); 3909 if (SP && !SP->isDefinition()) 3910 return SP; 3911 } 3912 } 3913 return nullptr; 3914 } 3915 3916 llvm::DISubprogram *CGDebugInfo::getObjCMethodDeclaration( 3917 const Decl *D, llvm::DISubroutineType *FnType, unsigned LineNo, 3918 llvm::DINode::DIFlags Flags, llvm::DISubprogram::DISPFlags SPFlags) { 3919 if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly) 3920 return nullptr; 3921 3922 const auto *OMD = dyn_cast<ObjCMethodDecl>(D); 3923 if (!OMD) 3924 return nullptr; 3925 3926 if (CGM.getCodeGenOpts().DwarfVersion < 5 && !OMD->isDirectMethod()) 3927 return nullptr; 3928 3929 if (OMD->isDirectMethod()) 3930 SPFlags |= llvm::DISubprogram::SPFlagObjCDirect; 3931 3932 // Starting with DWARF V5 method declarations are emitted as children of 3933 // the interface type. 3934 auto *ID = dyn_cast_or_null<ObjCInterfaceDecl>(D->getDeclContext()); 3935 if (!ID) 3936 ID = OMD->getClassInterface(); 3937 if (!ID) 3938 return nullptr; 3939 QualType QTy(ID->getTypeForDecl(), 0); 3940 auto It = TypeCache.find(QTy.getAsOpaquePtr()); 3941 if (It == TypeCache.end()) 3942 return nullptr; 3943 auto *InterfaceType = cast<llvm::DICompositeType>(It->second); 3944 llvm::DISubprogram *FD = DBuilder.createFunction( 3945 InterfaceType, getObjCMethodName(OMD), StringRef(), 3946 InterfaceType->getFile(), LineNo, FnType, LineNo, Flags, SPFlags); 3947 DBuilder.finalizeSubprogram(FD); 3948 ObjCMethodCache[ID].push_back({FD, OMD->isDirectMethod()}); 3949 return FD; 3950 } 3951 3952 // getOrCreateFunctionType - Construct type. If it is a c++ method, include 3953 // implicit parameter "this". 3954 llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D, 3955 QualType FnType, 3956 llvm::DIFile *F) { 3957 // In CodeView, we emit the function types in line tables only because the 3958 // only way to distinguish between functions is by display name and type. 3959 if (!D || (DebugKind <= codegenoptions::DebugLineTablesOnly && 3960 !CGM.getCodeGenOpts().EmitCodeView)) 3961 // Create fake but valid subroutine type. Otherwise -verify would fail, and 3962 // subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields. 3963 return DBuilder.createSubroutineType(DBuilder.getOrCreateTypeArray(None)); 3964 3965 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) 3966 return getOrCreateMethodType(Method, F, false); 3967 3968 const auto *FTy = FnType->getAs<FunctionType>(); 3969 CallingConv CC = FTy ? FTy->getCallConv() : CallingConv::CC_C; 3970 3971 if (const auto *OMethod = dyn_cast<ObjCMethodDecl>(D)) { 3972 // Add "self" and "_cmd" 3973 SmallVector<llvm::Metadata *, 16> Elts; 3974 3975 // First element is always return type. For 'void' functions it is NULL. 3976 QualType ResultTy = OMethod->getReturnType(); 3977 3978 // Replace the instancetype keyword with the actual type. 3979 if (ResultTy == CGM.getContext().getObjCInstanceType()) 3980 ResultTy = CGM.getContext().getPointerType( 3981 QualType(OMethod->getClassInterface()->getTypeForDecl(), 0)); 3982 3983 Elts.push_back(getOrCreateType(ResultTy, F)); 3984 // "self" pointer is always first argument. 3985 QualType SelfDeclTy; 3986 if (auto *SelfDecl = OMethod->getSelfDecl()) 3987 SelfDeclTy = SelfDecl->getType(); 3988 else if (auto *FPT = dyn_cast<FunctionProtoType>(FnType)) 3989 if (FPT->getNumParams() > 1) 3990 SelfDeclTy = FPT->getParamType(0); 3991 if (!SelfDeclTy.isNull()) 3992 Elts.push_back( 3993 CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F))); 3994 // "_cmd" pointer is always second argument. 3995 Elts.push_back(DBuilder.createArtificialType( 3996 getOrCreateType(CGM.getContext().getObjCSelType(), F))); 3997 // Get rest of the arguments. 3998 for (const auto *PI : OMethod->parameters()) 3999 Elts.push_back(getOrCreateType(PI->getType(), F)); 4000 // Variadic methods need a special marker at the end of the type list. 4001 if (OMethod->isVariadic()) 4002 Elts.push_back(DBuilder.createUnspecifiedParameter()); 4003 4004 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); 4005 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, 4006 getDwarfCC(CC)); 4007 } 4008 4009 // Handle variadic function types; they need an additional 4010 // unspecified parameter. 4011 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 4012 if (FD->isVariadic()) { 4013 SmallVector<llvm::Metadata *, 16> EltTys; 4014 EltTys.push_back(getOrCreateType(FD->getReturnType(), F)); 4015 if (const auto *FPT = dyn_cast<FunctionProtoType>(FnType)) 4016 for (QualType ParamType : FPT->param_types()) 4017 EltTys.push_back(getOrCreateType(ParamType, F)); 4018 EltTys.push_back(DBuilder.createUnspecifiedParameter()); 4019 llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); 4020 return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, 4021 getDwarfCC(CC)); 4022 } 4023 4024 return cast<llvm::DISubroutineType>(getOrCreateType(FnType, F)); 4025 } 4026 4027 QualType 4028 CGDebugInfo::getFunctionType(const FunctionDecl *FD, QualType RetTy, 4029 const SmallVectorImpl<const VarDecl *> &Args) { 4030 CallingConv CC = CallingConv::CC_C; 4031 if (FD) 4032 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 4033 CC = SrcFnTy->getCallConv(); 4034 SmallVector<QualType, 16> ArgTypes; 4035 for (const VarDecl *VD : Args) 4036 ArgTypes.push_back(VD->getType()); 4037 return CGM.getContext().getFunctionType(RetTy, ArgTypes, 4038 FunctionProtoType::ExtProtoInfo(CC)); 4039 } 4040 4041 void CGDebugInfo::emitFunctionStart(GlobalDecl GD, SourceLocation Loc, 4042 SourceLocation ScopeLoc, QualType FnType, 4043 llvm::Function *Fn, bool CurFuncIsThunk) { 4044 StringRef Name; 4045 StringRef LinkageName; 4046 4047 FnBeginRegionCount.push_back(LexicalBlockStack.size()); 4048 4049 const Decl *D = GD.getDecl(); 4050 bool HasDecl = (D != nullptr); 4051 4052 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4053 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 4054 llvm::DIFile *Unit = getOrCreateFile(Loc); 4055 llvm::DIScope *FDContext = Unit; 4056 llvm::DINodeArray TParamsArray; 4057 if (!HasDecl) { 4058 // Use llvm function name. 4059 LinkageName = Fn->getName(); 4060 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4061 // If there is a subprogram for this function available then use it. 4062 auto FI = SPCache.find(FD->getCanonicalDecl()); 4063 if (FI != SPCache.end()) { 4064 auto *SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second); 4065 if (SP && SP->isDefinition()) { 4066 LexicalBlockStack.emplace_back(SP); 4067 RegionMap[D].reset(SP); 4068 return; 4069 } 4070 } 4071 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, 4072 TParamsArray, Flags); 4073 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) { 4074 Name = getObjCMethodName(OMD); 4075 Flags |= llvm::DINode::FlagPrototyped; 4076 } else if (isa<VarDecl>(D) && 4077 GD.getDynamicInitKind() != DynamicInitKind::NoStub) { 4078 // This is a global initializer or atexit destructor for a global variable. 4079 Name = getDynamicInitializerName(cast<VarDecl>(D), GD.getDynamicInitKind(), 4080 Fn); 4081 } else { 4082 Name = Fn->getName(); 4083 4084 if (isa<BlockDecl>(D)) 4085 LinkageName = Name; 4086 4087 Flags |= llvm::DINode::FlagPrototyped; 4088 } 4089 if (Name.startswith("\01")) 4090 Name = Name.substr(1); 4091 4092 if (!HasDecl || D->isImplicit() || D->hasAttr<ArtificialAttr>() || 4093 (isa<VarDecl>(D) && GD.getDynamicInitKind() != DynamicInitKind::NoStub)) { 4094 Flags |= llvm::DINode::FlagArtificial; 4095 // Artificial functions should not silently reuse CurLoc. 4096 CurLoc = SourceLocation(); 4097 } 4098 4099 if (CurFuncIsThunk) 4100 Flags |= llvm::DINode::FlagThunk; 4101 4102 if (Fn->hasLocalLinkage()) 4103 SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; 4104 if (CGM.getLangOpts().Optimize) 4105 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 4106 4107 llvm::DINode::DIFlags FlagsForDef = Flags | getCallSiteRelatedAttrs(); 4108 llvm::DISubprogram::DISPFlags SPFlagsForDef = 4109 SPFlags | llvm::DISubprogram::SPFlagDefinition; 4110 4111 const unsigned LineNo = getLineNumber(Loc.isValid() ? Loc : CurLoc); 4112 unsigned ScopeLine = getLineNumber(ScopeLoc); 4113 llvm::DISubroutineType *DIFnType = getOrCreateFunctionType(D, FnType, Unit); 4114 llvm::DISubprogram *Decl = nullptr; 4115 llvm::DINodeArray Annotations = nullptr; 4116 if (D) { 4117 Decl = isa<ObjCMethodDecl>(D) 4118 ? getObjCMethodDeclaration(D, DIFnType, LineNo, Flags, SPFlags) 4119 : getFunctionDeclaration(D); 4120 Annotations = CollectBTFDeclTagAnnotations(D); 4121 } 4122 4123 // FIXME: The function declaration we're constructing here is mostly reusing 4124 // declarations from CXXMethodDecl and not constructing new ones for arbitrary 4125 // FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for 4126 // all subprograms instead of the actual context since subprogram definitions 4127 // are emitted as CU level entities by the backend. 4128 llvm::DISubprogram *SP = DBuilder.createFunction( 4129 FDContext, Name, LinkageName, Unit, LineNo, DIFnType, ScopeLine, 4130 FlagsForDef, SPFlagsForDef, TParamsArray.get(), Decl, nullptr, 4131 Annotations); 4132 Fn->setSubprogram(SP); 4133 // We might get here with a VarDecl in the case we're generating 4134 // code for the initialization of globals. Do not record these decls 4135 // as they will overwrite the actual VarDecl Decl in the cache. 4136 if (HasDecl && isa<FunctionDecl>(D)) 4137 DeclCache[D->getCanonicalDecl()].reset(SP); 4138 4139 // Push the function onto the lexical block stack. 4140 LexicalBlockStack.emplace_back(SP); 4141 4142 if (HasDecl) 4143 RegionMap[D].reset(SP); 4144 } 4145 4146 void CGDebugInfo::EmitFunctionDecl(GlobalDecl GD, SourceLocation Loc, 4147 QualType FnType, llvm::Function *Fn) { 4148 StringRef Name; 4149 StringRef LinkageName; 4150 4151 const Decl *D = GD.getDecl(); 4152 if (!D) 4153 return; 4154 4155 llvm::TimeTraceScope TimeScope("DebugFunction", [&]() { 4156 return GetName(D, true); 4157 }); 4158 4159 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4160 llvm::DIFile *Unit = getOrCreateFile(Loc); 4161 bool IsDeclForCallSite = Fn ? true : false; 4162 llvm::DIScope *FDContext = 4163 IsDeclForCallSite ? Unit : getDeclContextDescriptor(D); 4164 llvm::DINodeArray TParamsArray; 4165 if (isa<FunctionDecl>(D)) { 4166 // If there is a DISubprogram for this function available then use it. 4167 collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, 4168 TParamsArray, Flags); 4169 } else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) { 4170 Name = getObjCMethodName(OMD); 4171 Flags |= llvm::DINode::FlagPrototyped; 4172 } else { 4173 llvm_unreachable("not a function or ObjC method"); 4174 } 4175 if (!Name.empty() && Name[0] == '\01') 4176 Name = Name.substr(1); 4177 4178 if (D->isImplicit()) { 4179 Flags |= llvm::DINode::FlagArtificial; 4180 // Artificial functions without a location should not silently reuse CurLoc. 4181 if (Loc.isInvalid()) 4182 CurLoc = SourceLocation(); 4183 } 4184 unsigned LineNo = getLineNumber(Loc); 4185 unsigned ScopeLine = 0; 4186 llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; 4187 if (CGM.getLangOpts().Optimize) 4188 SPFlags |= llvm::DISubprogram::SPFlagOptimized; 4189 4190 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 4191 llvm::DISubprogram *SP = DBuilder.createFunction( 4192 FDContext, Name, LinkageName, Unit, LineNo, 4193 getOrCreateFunctionType(D, FnType, Unit), ScopeLine, Flags, SPFlags, 4194 TParamsArray.get(), getFunctionDeclaration(D), nullptr, Annotations); 4195 4196 if (IsDeclForCallSite) 4197 Fn->setSubprogram(SP); 4198 4199 DBuilder.finalizeSubprogram(SP); 4200 } 4201 4202 void CGDebugInfo::EmitFuncDeclForCallSite(llvm::CallBase *CallOrInvoke, 4203 QualType CalleeType, 4204 const FunctionDecl *CalleeDecl) { 4205 if (!CallOrInvoke) 4206 return; 4207 auto *Func = CallOrInvoke->getCalledFunction(); 4208 if (!Func) 4209 return; 4210 if (Func->getSubprogram()) 4211 return; 4212 4213 // Do not emit a declaration subprogram for a builtin, a function with nodebug 4214 // attribute, or if call site info isn't required. Also, elide declarations 4215 // for functions with reserved names, as call site-related features aren't 4216 // interesting in this case (& also, the compiler may emit calls to these 4217 // functions without debug locations, which makes the verifier complain). 4218 if (CalleeDecl->getBuiltinID() != 0 || CalleeDecl->hasAttr<NoDebugAttr>() || 4219 getCallSiteRelatedAttrs() == llvm::DINode::FlagZero) 4220 return; 4221 if (CalleeDecl->isReserved(CGM.getLangOpts()) != 4222 ReservedIdentifierStatus::NotReserved) 4223 return; 4224 4225 // If there is no DISubprogram attached to the function being called, 4226 // create the one describing the function in order to have complete 4227 // call site debug info. 4228 if (!CalleeDecl->isStatic() && !CalleeDecl->isInlined()) 4229 EmitFunctionDecl(CalleeDecl, CalleeDecl->getLocation(), CalleeType, Func); 4230 } 4231 4232 void CGDebugInfo::EmitInlineFunctionStart(CGBuilderTy &Builder, GlobalDecl GD) { 4233 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4234 // If there is a subprogram for this function available then use it. 4235 auto FI = SPCache.find(FD->getCanonicalDecl()); 4236 llvm::DISubprogram *SP = nullptr; 4237 if (FI != SPCache.end()) 4238 SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second); 4239 if (!SP || !SP->isDefinition()) 4240 SP = getFunctionStub(GD); 4241 FnBeginRegionCount.push_back(LexicalBlockStack.size()); 4242 LexicalBlockStack.emplace_back(SP); 4243 setInlinedAt(Builder.getCurrentDebugLocation()); 4244 EmitLocation(Builder, FD->getLocation()); 4245 } 4246 4247 void CGDebugInfo::EmitInlineFunctionEnd(CGBuilderTy &Builder) { 4248 assert(CurInlinedAt && "unbalanced inline scope stack"); 4249 EmitFunctionEnd(Builder, nullptr); 4250 setInlinedAt(llvm::DebugLoc(CurInlinedAt).getInlinedAt()); 4251 } 4252 4253 void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) { 4254 // Update our current location 4255 setLocation(Loc); 4256 4257 if (CurLoc.isInvalid() || CurLoc.isMacroID() || LexicalBlockStack.empty()) 4258 return; 4259 4260 llvm::MDNode *Scope = LexicalBlockStack.back(); 4261 Builder.SetCurrentDebugLocation( 4262 llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(CurLoc), 4263 getColumnNumber(CurLoc), Scope, CurInlinedAt)); 4264 } 4265 4266 void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) { 4267 llvm::MDNode *Back = nullptr; 4268 if (!LexicalBlockStack.empty()) 4269 Back = LexicalBlockStack.back().get(); 4270 LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock( 4271 cast<llvm::DIScope>(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc), 4272 getColumnNumber(CurLoc))); 4273 } 4274 4275 void CGDebugInfo::AppendAddressSpaceXDeref( 4276 unsigned AddressSpace, SmallVectorImpl<uint64_t> &Expr) const { 4277 Optional<unsigned> DWARFAddressSpace = 4278 CGM.getTarget().getDWARFAddressSpace(AddressSpace); 4279 if (!DWARFAddressSpace) 4280 return; 4281 4282 Expr.push_back(llvm::dwarf::DW_OP_constu); 4283 Expr.push_back(DWARFAddressSpace.getValue()); 4284 Expr.push_back(llvm::dwarf::DW_OP_swap); 4285 Expr.push_back(llvm::dwarf::DW_OP_xderef); 4286 } 4287 4288 void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder, 4289 SourceLocation Loc) { 4290 // Set our current location. 4291 setLocation(Loc); 4292 4293 // Emit a line table change for the current location inside the new scope. 4294 Builder.SetCurrentDebugLocation(llvm::DILocation::get( 4295 CGM.getLLVMContext(), getLineNumber(Loc), getColumnNumber(Loc), 4296 LexicalBlockStack.back(), CurInlinedAt)); 4297 4298 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 4299 return; 4300 4301 // Create a new lexical block and push it on the stack. 4302 CreateLexicalBlock(Loc); 4303 } 4304 4305 void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder, 4306 SourceLocation Loc) { 4307 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4308 4309 // Provide an entry in the line table for the end of the block. 4310 EmitLocation(Builder, Loc); 4311 4312 if (DebugKind <= codegenoptions::DebugLineTablesOnly) 4313 return; 4314 4315 LexicalBlockStack.pop_back(); 4316 } 4317 4318 void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder, llvm::Function *Fn) { 4319 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4320 unsigned RCount = FnBeginRegionCount.back(); 4321 assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch"); 4322 4323 // Pop all regions for this function. 4324 while (LexicalBlockStack.size() != RCount) { 4325 // Provide an entry in the line table for the end of the block. 4326 EmitLocation(Builder, CurLoc); 4327 LexicalBlockStack.pop_back(); 4328 } 4329 FnBeginRegionCount.pop_back(); 4330 4331 if (Fn && Fn->getSubprogram()) 4332 DBuilder.finalizeSubprogram(Fn->getSubprogram()); 4333 } 4334 4335 CGDebugInfo::BlockByRefType 4336 CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD, 4337 uint64_t *XOffset) { 4338 SmallVector<llvm::Metadata *, 5> EltTys; 4339 QualType FType; 4340 uint64_t FieldSize, FieldOffset; 4341 uint32_t FieldAlign; 4342 4343 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 4344 QualType Type = VD->getType(); 4345 4346 FieldOffset = 0; 4347 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4348 EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); 4349 EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset)); 4350 FType = CGM.getContext().IntTy; 4351 EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); 4352 EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); 4353 4354 bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD); 4355 if (HasCopyAndDispose) { 4356 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4357 EltTys.push_back( 4358 CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset)); 4359 EltTys.push_back( 4360 CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset)); 4361 } 4362 bool HasByrefExtendedLayout; 4363 Qualifiers::ObjCLifetime Lifetime; 4364 if (CGM.getContext().getByrefLifetime(Type, Lifetime, 4365 HasByrefExtendedLayout) && 4366 HasByrefExtendedLayout) { 4367 FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); 4368 EltTys.push_back( 4369 CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset)); 4370 } 4371 4372 CharUnits Align = CGM.getContext().getDeclAlign(VD); 4373 if (Align > CGM.getContext().toCharUnitsFromBits( 4374 CGM.getTarget().getPointerAlign(0))) { 4375 CharUnits FieldOffsetInBytes = 4376 CGM.getContext().toCharUnitsFromBits(FieldOffset); 4377 CharUnits AlignedOffsetInBytes = FieldOffsetInBytes.alignTo(Align); 4378 CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes; 4379 4380 if (NumPaddingBytes.isPositive()) { 4381 llvm::APInt pad(32, NumPaddingBytes.getQuantity()); 4382 FType = CGM.getContext().getConstantArrayType( 4383 CGM.getContext().CharTy, pad, nullptr, ArrayType::Normal, 0); 4384 EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset)); 4385 } 4386 } 4387 4388 FType = Type; 4389 llvm::DIType *WrappedTy = getOrCreateType(FType, Unit); 4390 FieldSize = CGM.getContext().getTypeSize(FType); 4391 FieldAlign = CGM.getContext().toBits(Align); 4392 4393 *XOffset = FieldOffset; 4394 llvm::DIType *FieldTy = DBuilder.createMemberType( 4395 Unit, VD->getName(), Unit, 0, FieldSize, FieldAlign, FieldOffset, 4396 llvm::DINode::FlagZero, WrappedTy); 4397 EltTys.push_back(FieldTy); 4398 FieldOffset += FieldSize; 4399 4400 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 4401 return {DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0, 4402 llvm::DINode::FlagZero, nullptr, Elements), 4403 WrappedTy}; 4404 } 4405 4406 llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const VarDecl *VD, 4407 llvm::Value *Storage, 4408 llvm::Optional<unsigned> ArgNo, 4409 CGBuilderTy &Builder, 4410 const bool UsePointerValue) { 4411 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4412 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4413 if (VD->hasAttr<NoDebugAttr>()) 4414 return nullptr; 4415 4416 bool Unwritten = 4417 VD->isImplicit() || (isa<Decl>(VD->getDeclContext()) && 4418 cast<Decl>(VD->getDeclContext())->isImplicit()); 4419 llvm::DIFile *Unit = nullptr; 4420 if (!Unwritten) 4421 Unit = getOrCreateFile(VD->getLocation()); 4422 llvm::DIType *Ty; 4423 uint64_t XOffset = 0; 4424 if (VD->hasAttr<BlocksAttr>()) 4425 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; 4426 else 4427 Ty = getOrCreateType(VD->getType(), Unit); 4428 4429 // If there is no debug info for this type then do not emit debug info 4430 // for this variable. 4431 if (!Ty) 4432 return nullptr; 4433 4434 // Get location information. 4435 unsigned Line = 0; 4436 unsigned Column = 0; 4437 if (!Unwritten) { 4438 Line = getLineNumber(VD->getLocation()); 4439 Column = getColumnNumber(VD->getLocation()); 4440 } 4441 SmallVector<uint64_t, 13> Expr; 4442 llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; 4443 if (VD->isImplicit()) 4444 Flags |= llvm::DINode::FlagArtificial; 4445 4446 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 4447 4448 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(VD->getType()); 4449 AppendAddressSpaceXDeref(AddressSpace, Expr); 4450 4451 // If this is implicit parameter of CXXThis or ObjCSelf kind, then give it an 4452 // object pointer flag. 4453 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) { 4454 if (IPD->getParameterKind() == ImplicitParamDecl::CXXThis || 4455 IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf) 4456 Flags |= llvm::DINode::FlagObjectPointer; 4457 } 4458 4459 // Note: Older versions of clang used to emit byval references with an extra 4460 // DW_OP_deref, because they referenced the IR arg directly instead of 4461 // referencing an alloca. Newer versions of LLVM don't treat allocas 4462 // differently from other function arguments when used in a dbg.declare. 4463 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4464 StringRef Name = VD->getName(); 4465 if (!Name.empty()) { 4466 // __block vars are stored on the heap if they are captured by a block that 4467 // can escape the local scope. 4468 if (VD->isEscapingByref()) { 4469 // Here, we need an offset *into* the alloca. 4470 CharUnits offset = CharUnits::fromQuantity(32); 4471 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4472 // offset of __forwarding field 4473 offset = CGM.getContext().toCharUnitsFromBits( 4474 CGM.getTarget().getPointerWidth(0)); 4475 Expr.push_back(offset.getQuantity()); 4476 Expr.push_back(llvm::dwarf::DW_OP_deref); 4477 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4478 // offset of x field 4479 offset = CGM.getContext().toCharUnitsFromBits(XOffset); 4480 Expr.push_back(offset.getQuantity()); 4481 } 4482 } else if (const auto *RT = dyn_cast<RecordType>(VD->getType())) { 4483 // If VD is an anonymous union then Storage represents value for 4484 // all union fields. 4485 const RecordDecl *RD = RT->getDecl(); 4486 if (RD->isUnion() && RD->isAnonymousStructOrUnion()) { 4487 // GDB has trouble finding local variables in anonymous unions, so we emit 4488 // artificial local variables for each of the members. 4489 // 4490 // FIXME: Remove this code as soon as GDB supports this. 4491 // The debug info verifier in LLVM operates based on the assumption that a 4492 // variable has the same size as its storage and we had to disable the 4493 // check for artificial variables. 4494 for (const auto *Field : RD->fields()) { 4495 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 4496 StringRef FieldName = Field->getName(); 4497 4498 // Ignore unnamed fields. Do not ignore unnamed records. 4499 if (FieldName.empty() && !isa<RecordType>(Field->getType())) 4500 continue; 4501 4502 // Use VarDecl's Tag, Scope and Line number. 4503 auto FieldAlign = getDeclAlignIfRequired(Field, CGM.getContext()); 4504 auto *D = DBuilder.createAutoVariable( 4505 Scope, FieldName, Unit, Line, FieldTy, CGM.getLangOpts().Optimize, 4506 Flags | llvm::DINode::FlagArtificial, FieldAlign); 4507 4508 // Insert an llvm.dbg.declare into the current block. 4509 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4510 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4511 Column, Scope, 4512 CurInlinedAt), 4513 Builder.GetInsertBlock()); 4514 } 4515 } 4516 } 4517 4518 // Clang stores the sret pointer provided by the caller in a static alloca. 4519 // Use DW_OP_deref to tell the debugger to load the pointer and treat it as 4520 // the address of the variable. 4521 if (UsePointerValue) { 4522 assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) && 4523 "Debug info already contains DW_OP_deref."); 4524 Expr.push_back(llvm::dwarf::DW_OP_deref); 4525 } 4526 4527 // Create the descriptor for the variable. 4528 llvm::DILocalVariable *D = nullptr; 4529 if (ArgNo) { 4530 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(VD); 4531 D = DBuilder.createParameterVariable(Scope, Name, *ArgNo, Unit, Line, Ty, 4532 CGM.getLangOpts().Optimize, Flags, 4533 Annotations); 4534 } else { 4535 // For normal local variable, we will try to find out whether 'VD' is the 4536 // copy parameter of coroutine. 4537 // If yes, we are going to use DIVariable of the origin parameter instead 4538 // of creating the new one. 4539 // If no, it might be a normal alloc, we just create a new one for it. 4540 4541 // Check whether the VD is move parameters. 4542 auto RemapCoroArgToLocalVar = [&]() -> llvm::DILocalVariable * { 4543 // The scope of parameter and move-parameter should be distinct 4544 // DISubprogram. 4545 if (!isa<llvm::DISubprogram>(Scope) || !Scope->isDistinct()) 4546 return nullptr; 4547 4548 auto Iter = llvm::find_if(CoroutineParameterMappings, [&](auto &Pair) { 4549 Stmt *StmtPtr = const_cast<Stmt *>(Pair.second); 4550 if (DeclStmt *DeclStmtPtr = dyn_cast<DeclStmt>(StmtPtr)) { 4551 DeclGroupRef DeclGroup = DeclStmtPtr->getDeclGroup(); 4552 Decl *Decl = DeclGroup.getSingleDecl(); 4553 if (VD == dyn_cast_or_null<VarDecl>(Decl)) 4554 return true; 4555 } 4556 return false; 4557 }); 4558 4559 if (Iter != CoroutineParameterMappings.end()) { 4560 ParmVarDecl *PD = const_cast<ParmVarDecl *>(Iter->first); 4561 auto Iter2 = llvm::find_if(ParamDbgMappings, [&](auto &DbgPair) { 4562 return DbgPair.first == PD && DbgPair.second->getScope() == Scope; 4563 }); 4564 if (Iter2 != ParamDbgMappings.end()) 4565 return const_cast<llvm::DILocalVariable *>(Iter2->second); 4566 } 4567 return nullptr; 4568 }; 4569 4570 // If we couldn't find a move param DIVariable, create a new one. 4571 D = RemapCoroArgToLocalVar(); 4572 // Or we will create a new DIVariable for this Decl if D dose not exists. 4573 if (!D) 4574 D = DBuilder.createAutoVariable(Scope, Name, Unit, Line, Ty, 4575 CGM.getLangOpts().Optimize, Flags, Align); 4576 } 4577 // Insert an llvm.dbg.declare into the current block. 4578 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4579 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4580 Column, Scope, CurInlinedAt), 4581 Builder.GetInsertBlock()); 4582 4583 return D; 4584 } 4585 4586 llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const BindingDecl *BD, 4587 llvm::Value *Storage, 4588 llvm::Optional<unsigned> ArgNo, 4589 CGBuilderTy &Builder, 4590 const bool UsePointerValue) { 4591 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4592 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4593 if (BD->hasAttr<NoDebugAttr>()) 4594 return nullptr; 4595 4596 // Skip the tuple like case, we don't handle that here 4597 if (isa<DeclRefExpr>(BD->getBinding())) 4598 return nullptr; 4599 4600 llvm::DIFile *Unit = getOrCreateFile(BD->getLocation()); 4601 llvm::DIType *Ty = getOrCreateType(BD->getType(), Unit); 4602 4603 // If there is no debug info for this type then do not emit debug info 4604 // for this variable. 4605 if (!Ty) 4606 return nullptr; 4607 4608 auto Align = getDeclAlignIfRequired(BD, CGM.getContext()); 4609 unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(BD->getType()); 4610 4611 SmallVector<uint64_t, 3> Expr; 4612 AppendAddressSpaceXDeref(AddressSpace, Expr); 4613 4614 // Clang stores the sret pointer provided by the caller in a static alloca. 4615 // Use DW_OP_deref to tell the debugger to load the pointer and treat it as 4616 // the address of the variable. 4617 if (UsePointerValue) { 4618 assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) && 4619 "Debug info already contains DW_OP_deref."); 4620 Expr.push_back(llvm::dwarf::DW_OP_deref); 4621 } 4622 4623 unsigned Line = getLineNumber(BD->getLocation()); 4624 unsigned Column = getColumnNumber(BD->getLocation()); 4625 StringRef Name = BD->getName(); 4626 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4627 // Create the descriptor for the variable. 4628 llvm::DILocalVariable *D = DBuilder.createAutoVariable( 4629 Scope, Name, Unit, Line, Ty, CGM.getLangOpts().Optimize, 4630 llvm::DINode::FlagZero, Align); 4631 4632 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BD->getBinding())) { 4633 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 4634 const unsigned fieldIndex = FD->getFieldIndex(); 4635 const clang::CXXRecordDecl *parent = 4636 (const CXXRecordDecl *)FD->getParent(); 4637 const ASTRecordLayout &layout = 4638 CGM.getContext().getASTRecordLayout(parent); 4639 const uint64_t fieldOffset = layout.getFieldOffset(fieldIndex); 4640 4641 if (fieldOffset != 0) { 4642 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4643 Expr.push_back( 4644 CGM.getContext().toCharUnitsFromBits(fieldOffset).getQuantity()); 4645 } 4646 } 4647 } else if (const ArraySubscriptExpr *ASE = 4648 dyn_cast<ArraySubscriptExpr>(BD->getBinding())) { 4649 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ASE->getIdx())) { 4650 const uint64_t value = IL->getValue().getZExtValue(); 4651 const uint64_t typeSize = CGM.getContext().getTypeSize(BD->getType()); 4652 4653 if (value != 0) { 4654 Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4655 Expr.push_back(CGM.getContext() 4656 .toCharUnitsFromBits(value * typeSize) 4657 .getQuantity()); 4658 } 4659 } 4660 } 4661 4662 // Insert an llvm.dbg.declare into the current block. 4663 DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), 4664 llvm::DILocation::get(CGM.getLLVMContext(), Line, 4665 Column, Scope, CurInlinedAt), 4666 Builder.GetInsertBlock()); 4667 4668 return D; 4669 } 4670 4671 llvm::DILocalVariable * 4672 CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD, llvm::Value *Storage, 4673 CGBuilderTy &Builder, 4674 const bool UsePointerValue) { 4675 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4676 4677 if (auto *DD = dyn_cast<DecompositionDecl>(VD)) 4678 for (auto *B : DD->bindings()) { 4679 EmitDeclare(B, Storage, llvm::None, Builder, 4680 VD->getType()->isReferenceType()); 4681 } 4682 4683 return EmitDeclare(VD, Storage, llvm::None, Builder, UsePointerValue); 4684 } 4685 4686 void CGDebugInfo::EmitLabel(const LabelDecl *D, CGBuilderTy &Builder) { 4687 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4688 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4689 4690 if (D->hasAttr<NoDebugAttr>()) 4691 return; 4692 4693 auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back()); 4694 llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); 4695 4696 // Get location information. 4697 unsigned Line = getLineNumber(D->getLocation()); 4698 unsigned Column = getColumnNumber(D->getLocation()); 4699 4700 StringRef Name = D->getName(); 4701 4702 // Create the descriptor for the label. 4703 auto *L = 4704 DBuilder.createLabel(Scope, Name, Unit, Line, CGM.getLangOpts().Optimize); 4705 4706 // Insert an llvm.dbg.label into the current block. 4707 DBuilder.insertLabel(L, 4708 llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, 4709 Scope, CurInlinedAt), 4710 Builder.GetInsertBlock()); 4711 } 4712 4713 llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy, 4714 llvm::DIType *Ty) { 4715 llvm::DIType *CachedTy = getTypeOrNull(QualTy); 4716 if (CachedTy) 4717 Ty = CachedTy; 4718 return DBuilder.createObjectPointerType(Ty); 4719 } 4720 4721 void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable( 4722 const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder, 4723 const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) { 4724 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4725 assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); 4726 4727 if (Builder.GetInsertBlock() == nullptr) 4728 return; 4729 if (VD->hasAttr<NoDebugAttr>()) 4730 return; 4731 4732 bool isByRef = VD->hasAttr<BlocksAttr>(); 4733 4734 uint64_t XOffset = 0; 4735 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 4736 llvm::DIType *Ty; 4737 if (isByRef) 4738 Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; 4739 else 4740 Ty = getOrCreateType(VD->getType(), Unit); 4741 4742 // Self is passed along as an implicit non-arg variable in a 4743 // block. Mark it as the object pointer. 4744 if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) 4745 if (IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf) 4746 Ty = CreateSelfType(VD->getType(), Ty); 4747 4748 // Get location information. 4749 const unsigned Line = 4750 getLineNumber(VD->getLocation().isValid() ? VD->getLocation() : CurLoc); 4751 unsigned Column = getColumnNumber(VD->getLocation()); 4752 4753 const llvm::DataLayout &target = CGM.getDataLayout(); 4754 4755 CharUnits offset = CharUnits::fromQuantity( 4756 target.getStructLayout(blockInfo.StructureType) 4757 ->getElementOffset(blockInfo.getCapture(VD).getIndex())); 4758 4759 SmallVector<uint64_t, 9> addr; 4760 addr.push_back(llvm::dwarf::DW_OP_deref); 4761 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4762 addr.push_back(offset.getQuantity()); 4763 if (isByRef) { 4764 addr.push_back(llvm::dwarf::DW_OP_deref); 4765 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4766 // offset of __forwarding field 4767 offset = 4768 CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0)); 4769 addr.push_back(offset.getQuantity()); 4770 addr.push_back(llvm::dwarf::DW_OP_deref); 4771 addr.push_back(llvm::dwarf::DW_OP_plus_uconst); 4772 // offset of x field 4773 offset = CGM.getContext().toCharUnitsFromBits(XOffset); 4774 addr.push_back(offset.getQuantity()); 4775 } 4776 4777 // Create the descriptor for the variable. 4778 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 4779 auto *D = DBuilder.createAutoVariable( 4780 cast<llvm::DILocalScope>(LexicalBlockStack.back()), VD->getName(), Unit, 4781 Line, Ty, false, llvm::DINode::FlagZero, Align); 4782 4783 // Insert an llvm.dbg.declare into the current block. 4784 auto DL = llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, 4785 LexicalBlockStack.back(), CurInlinedAt); 4786 auto *Expr = DBuilder.createExpression(addr); 4787 if (InsertPoint) 4788 DBuilder.insertDeclare(Storage, D, Expr, DL, InsertPoint); 4789 else 4790 DBuilder.insertDeclare(Storage, D, Expr, DL, Builder.GetInsertBlock()); 4791 } 4792 4793 llvm::DILocalVariable * 4794 CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI, 4795 unsigned ArgNo, CGBuilderTy &Builder) { 4796 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4797 return EmitDeclare(VD, AI, ArgNo, Builder); 4798 } 4799 4800 namespace { 4801 struct BlockLayoutChunk { 4802 uint64_t OffsetInBits; 4803 const BlockDecl::Capture *Capture; 4804 }; 4805 bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) { 4806 return l.OffsetInBits < r.OffsetInBits; 4807 } 4808 } // namespace 4809 4810 void CGDebugInfo::collectDefaultFieldsForBlockLiteralDeclare( 4811 const CGBlockInfo &Block, const ASTContext &Context, SourceLocation Loc, 4812 const llvm::StructLayout &BlockLayout, llvm::DIFile *Unit, 4813 SmallVectorImpl<llvm::Metadata *> &Fields) { 4814 // Blocks in OpenCL have unique constraints which make the standard fields 4815 // redundant while requiring size and align fields for enqueue_kernel. See 4816 // initializeForBlockHeader in CGBlocks.cpp 4817 if (CGM.getLangOpts().OpenCL) { 4818 Fields.push_back(createFieldType("__size", Context.IntTy, Loc, AS_public, 4819 BlockLayout.getElementOffsetInBits(0), 4820 Unit, Unit)); 4821 Fields.push_back(createFieldType("__align", Context.IntTy, Loc, AS_public, 4822 BlockLayout.getElementOffsetInBits(1), 4823 Unit, Unit)); 4824 } else { 4825 Fields.push_back(createFieldType("__isa", Context.VoidPtrTy, Loc, AS_public, 4826 BlockLayout.getElementOffsetInBits(0), 4827 Unit, Unit)); 4828 Fields.push_back(createFieldType("__flags", Context.IntTy, Loc, AS_public, 4829 BlockLayout.getElementOffsetInBits(1), 4830 Unit, Unit)); 4831 Fields.push_back( 4832 createFieldType("__reserved", Context.IntTy, Loc, AS_public, 4833 BlockLayout.getElementOffsetInBits(2), Unit, Unit)); 4834 auto *FnTy = Block.getBlockExpr()->getFunctionType(); 4835 auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar()); 4836 Fields.push_back(createFieldType("__FuncPtr", FnPtrType, Loc, AS_public, 4837 BlockLayout.getElementOffsetInBits(3), 4838 Unit, Unit)); 4839 Fields.push_back(createFieldType( 4840 "__descriptor", 4841 Context.getPointerType(Block.NeedsCopyDispose 4842 ? Context.getBlockDescriptorExtendedType() 4843 : Context.getBlockDescriptorType()), 4844 Loc, AS_public, BlockLayout.getElementOffsetInBits(4), Unit, Unit)); 4845 } 4846 } 4847 4848 void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block, 4849 StringRef Name, 4850 unsigned ArgNo, 4851 llvm::AllocaInst *Alloca, 4852 CGBuilderTy &Builder) { 4853 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 4854 ASTContext &C = CGM.getContext(); 4855 const BlockDecl *blockDecl = block.getBlockDecl(); 4856 4857 // Collect some general information about the block's location. 4858 SourceLocation loc = blockDecl->getCaretLocation(); 4859 llvm::DIFile *tunit = getOrCreateFile(loc); 4860 unsigned line = getLineNumber(loc); 4861 unsigned column = getColumnNumber(loc); 4862 4863 // Build the debug-info type for the block literal. 4864 getDeclContextDescriptor(blockDecl); 4865 4866 const llvm::StructLayout *blockLayout = 4867 CGM.getDataLayout().getStructLayout(block.StructureType); 4868 4869 SmallVector<llvm::Metadata *, 16> fields; 4870 collectDefaultFieldsForBlockLiteralDeclare(block, C, loc, *blockLayout, tunit, 4871 fields); 4872 4873 // We want to sort the captures by offset, not because DWARF 4874 // requires this, but because we're paranoid about debuggers. 4875 SmallVector<BlockLayoutChunk, 8> chunks; 4876 4877 // 'this' capture. 4878 if (blockDecl->capturesCXXThis()) { 4879 BlockLayoutChunk chunk; 4880 chunk.OffsetInBits = 4881 blockLayout->getElementOffsetInBits(block.CXXThisIndex); 4882 chunk.Capture = nullptr; 4883 chunks.push_back(chunk); 4884 } 4885 4886 // Variable captures. 4887 for (const auto &capture : blockDecl->captures()) { 4888 const VarDecl *variable = capture.getVariable(); 4889 const CGBlockInfo::Capture &captureInfo = block.getCapture(variable); 4890 4891 // Ignore constant captures. 4892 if (captureInfo.isConstant()) 4893 continue; 4894 4895 BlockLayoutChunk chunk; 4896 chunk.OffsetInBits = 4897 blockLayout->getElementOffsetInBits(captureInfo.getIndex()); 4898 chunk.Capture = &capture; 4899 chunks.push_back(chunk); 4900 } 4901 4902 // Sort by offset. 4903 llvm::array_pod_sort(chunks.begin(), chunks.end()); 4904 4905 for (const BlockLayoutChunk &Chunk : chunks) { 4906 uint64_t offsetInBits = Chunk.OffsetInBits; 4907 const BlockDecl::Capture *capture = Chunk.Capture; 4908 4909 // If we have a null capture, this must be the C++ 'this' capture. 4910 if (!capture) { 4911 QualType type; 4912 if (auto *Method = 4913 cast_or_null<CXXMethodDecl>(blockDecl->getNonClosureContext())) 4914 type = Method->getThisType(); 4915 else if (auto *RDecl = dyn_cast<CXXRecordDecl>(blockDecl->getParent())) 4916 type = QualType(RDecl->getTypeForDecl(), 0); 4917 else 4918 llvm_unreachable("unexpected block declcontext"); 4919 4920 fields.push_back(createFieldType("this", type, loc, AS_public, 4921 offsetInBits, tunit, tunit)); 4922 continue; 4923 } 4924 4925 const VarDecl *variable = capture->getVariable(); 4926 StringRef name = variable->getName(); 4927 4928 llvm::DIType *fieldType; 4929 if (capture->isByRef()) { 4930 TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy); 4931 auto Align = PtrInfo.isAlignRequired() ? PtrInfo.Align : 0; 4932 // FIXME: This recomputes the layout of the BlockByRefWrapper. 4933 uint64_t xoffset; 4934 fieldType = 4935 EmitTypeForVarWithBlocksAttr(variable, &xoffset).BlockByRefWrapper; 4936 fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width); 4937 fieldType = DBuilder.createMemberType(tunit, name, tunit, line, 4938 PtrInfo.Width, Align, offsetInBits, 4939 llvm::DINode::FlagZero, fieldType); 4940 } else { 4941 auto Align = getDeclAlignIfRequired(variable, CGM.getContext()); 4942 fieldType = createFieldType(name, variable->getType(), loc, AS_public, 4943 offsetInBits, Align, tunit, tunit); 4944 } 4945 fields.push_back(fieldType); 4946 } 4947 4948 SmallString<36> typeName; 4949 llvm::raw_svector_ostream(typeName) 4950 << "__block_literal_" << CGM.getUniqueBlockCount(); 4951 4952 llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields); 4953 4954 llvm::DIType *type = 4955 DBuilder.createStructType(tunit, typeName.str(), tunit, line, 4956 CGM.getContext().toBits(block.BlockSize), 0, 4957 llvm::DINode::FlagZero, nullptr, fieldsArray); 4958 type = DBuilder.createPointerType(type, CGM.PointerWidthInBits); 4959 4960 // Get overall information about the block. 4961 llvm::DINode::DIFlags flags = llvm::DINode::FlagArtificial; 4962 auto *scope = cast<llvm::DILocalScope>(LexicalBlockStack.back()); 4963 4964 // Create the descriptor for the parameter. 4965 auto *debugVar = DBuilder.createParameterVariable( 4966 scope, Name, ArgNo, tunit, line, type, CGM.getLangOpts().Optimize, flags); 4967 4968 // Insert an llvm.dbg.declare into the current block. 4969 DBuilder.insertDeclare(Alloca, debugVar, DBuilder.createExpression(), 4970 llvm::DILocation::get(CGM.getLLVMContext(), line, 4971 column, scope, CurInlinedAt), 4972 Builder.GetInsertBlock()); 4973 } 4974 4975 llvm::DIDerivedType * 4976 CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) { 4977 if (!D || !D->isStaticDataMember()) 4978 return nullptr; 4979 4980 auto MI = StaticDataMemberCache.find(D->getCanonicalDecl()); 4981 if (MI != StaticDataMemberCache.end()) { 4982 assert(MI->second && "Static data member declaration should still exist"); 4983 return MI->second; 4984 } 4985 4986 // If the member wasn't found in the cache, lazily construct and add it to the 4987 // type (used when a limited form of the type is emitted). 4988 auto DC = D->getDeclContext(); 4989 auto *Ctxt = cast<llvm::DICompositeType>(getDeclContextDescriptor(D)); 4990 return CreateRecordStaticField(D, Ctxt, cast<RecordDecl>(DC)); 4991 } 4992 4993 llvm::DIGlobalVariableExpression *CGDebugInfo::CollectAnonRecordDecls( 4994 const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo, 4995 StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) { 4996 llvm::DIGlobalVariableExpression *GVE = nullptr; 4997 4998 for (const auto *Field : RD->fields()) { 4999 llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); 5000 StringRef FieldName = Field->getName(); 5001 5002 // Ignore unnamed fields, but recurse into anonymous records. 5003 if (FieldName.empty()) { 5004 if (const auto *RT = dyn_cast<RecordType>(Field->getType())) 5005 GVE = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName, 5006 Var, DContext); 5007 continue; 5008 } 5009 // Use VarDecl's Tag, Scope and Line number. 5010 GVE = DBuilder.createGlobalVariableExpression( 5011 DContext, FieldName, LinkageName, Unit, LineNo, FieldTy, 5012 Var->hasLocalLinkage()); 5013 Var->addDebugInfo(GVE); 5014 } 5015 return GVE; 5016 } 5017 5018 static bool ReferencesAnonymousEntity(ArrayRef<TemplateArgument> Args); 5019 static bool ReferencesAnonymousEntity(RecordType *RT) { 5020 // Unnamed classes/lambdas can't be reconstituted due to a lack of column 5021 // info we produce in the DWARF, so we can't get Clang's full name back. 5022 // But so long as it's not one of those, it doesn't matter if some sub-type 5023 // of the record (a template parameter) can't be reconstituted - because the 5024 // un-reconstitutable type itself will carry its own name. 5025 const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 5026 if (!RD) 5027 return false; 5028 if (!RD->getIdentifier()) 5029 return true; 5030 auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD); 5031 if (!TSpecial) 5032 return false; 5033 return ReferencesAnonymousEntity(TSpecial->getTemplateArgs().asArray()); 5034 } 5035 static bool ReferencesAnonymousEntity(ArrayRef<TemplateArgument> Args) { 5036 return llvm::any_of(Args, [&](const TemplateArgument &TA) { 5037 switch (TA.getKind()) { 5038 case TemplateArgument::Pack: 5039 return ReferencesAnonymousEntity(TA.getPackAsArray()); 5040 case TemplateArgument::Type: { 5041 struct ReferencesAnonymous 5042 : public RecursiveASTVisitor<ReferencesAnonymous> { 5043 bool RefAnon = false; 5044 bool VisitRecordType(RecordType *RT) { 5045 if (ReferencesAnonymousEntity(RT)) { 5046 RefAnon = true; 5047 return false; 5048 } 5049 return true; 5050 } 5051 }; 5052 ReferencesAnonymous RT; 5053 RT.TraverseType(TA.getAsType()); 5054 if (RT.RefAnon) 5055 return true; 5056 break; 5057 } 5058 default: 5059 break; 5060 } 5061 return false; 5062 }); 5063 } 5064 namespace { 5065 struct ReconstitutableType : public RecursiveASTVisitor<ReconstitutableType> { 5066 bool Reconstitutable = true; 5067 bool VisitVectorType(VectorType *FT) { 5068 Reconstitutable = false; 5069 return false; 5070 } 5071 bool VisitAtomicType(AtomicType *FT) { 5072 Reconstitutable = false; 5073 return false; 5074 } 5075 bool VisitType(Type *T) { 5076 // _BitInt(N) isn't reconstitutable because the bit width isn't encoded in 5077 // the DWARF, only the byte width. 5078 if (T->isBitIntType()) { 5079 Reconstitutable = false; 5080 return false; 5081 } 5082 return true; 5083 } 5084 bool TraverseEnumType(EnumType *ET) { 5085 // Unnamed enums can't be reconstituted due to a lack of column info we 5086 // produce in the DWARF, so we can't get Clang's full name back. 5087 if (const auto *ED = dyn_cast<EnumDecl>(ET->getDecl())) { 5088 if (!ED->getIdentifier()) { 5089 Reconstitutable = false; 5090 return false; 5091 } 5092 if (!ED->isExternallyVisible()) { 5093 Reconstitutable = false; 5094 return false; 5095 } 5096 } 5097 return true; 5098 } 5099 bool VisitFunctionProtoType(FunctionProtoType *FT) { 5100 // noexcept is not encoded in DWARF, so the reversi 5101 Reconstitutable &= !isNoexceptExceptionSpec(FT->getExceptionSpecType()); 5102 Reconstitutable &= !FT->getNoReturnAttr(); 5103 return Reconstitutable; 5104 } 5105 bool VisitRecordType(RecordType *RT) { 5106 if (ReferencesAnonymousEntity(RT)) { 5107 Reconstitutable = false; 5108 return false; 5109 } 5110 return true; 5111 } 5112 }; 5113 } // anonymous namespace 5114 5115 // Test whether a type name could be rebuilt from emitted debug info. 5116 static bool IsReconstitutableType(QualType QT) { 5117 ReconstitutableType T; 5118 T.TraverseType(QT); 5119 return T.Reconstitutable; 5120 } 5121 5122 std::string CGDebugInfo::GetName(const Decl *D, bool Qualified) const { 5123 std::string Name; 5124 llvm::raw_string_ostream OS(Name); 5125 const NamedDecl *ND = dyn_cast<NamedDecl>(D); 5126 if (!ND) 5127 return Name; 5128 codegenoptions::DebugTemplateNamesKind TemplateNamesKind = 5129 CGM.getCodeGenOpts().getDebugSimpleTemplateNames(); 5130 5131 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5132 TemplateNamesKind = codegenoptions::DebugTemplateNamesKind::Full; 5133 5134 Optional<TemplateArgs> Args; 5135 5136 bool IsOperatorOverload = false; // isa<CXXConversionDecl>(ND); 5137 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 5138 Args = GetTemplateArgs(RD); 5139 } else if (auto *FD = dyn_cast<FunctionDecl>(ND)) { 5140 Args = GetTemplateArgs(FD); 5141 auto NameKind = ND->getDeclName().getNameKind(); 5142 IsOperatorOverload |= 5143 NameKind == DeclarationName::CXXOperatorName || 5144 NameKind == DeclarationName::CXXConversionFunctionName; 5145 } else if (auto *VD = dyn_cast<VarDecl>(ND)) { 5146 Args = GetTemplateArgs(VD); 5147 } 5148 std::function<bool(ArrayRef<TemplateArgument>)> HasReconstitutableArgs = 5149 [&](ArrayRef<TemplateArgument> Args) { 5150 return llvm::all_of(Args, [&](const TemplateArgument &TA) { 5151 switch (TA.getKind()) { 5152 case TemplateArgument::Template: 5153 // Easy to reconstitute - the value of the parameter in the debug 5154 // info is the string name of the template. (so the template name 5155 // itself won't benefit from any name rebuilding, but that's a 5156 // representational limitation - maybe DWARF could be 5157 // changed/improved to use some more structural representation) 5158 return true; 5159 case TemplateArgument::Declaration: 5160 // Reference and pointer non-type template parameters point to 5161 // variables, functions, etc and their value is, at best (for 5162 // variables) represented as an address - not a reference to the 5163 // DWARF describing the variable/function/etc. This makes it hard, 5164 // possibly impossible to rebuild the original name - looking up the 5165 // address in the executable file's symbol table would be needed. 5166 return false; 5167 case TemplateArgument::NullPtr: 5168 // These could be rebuilt, but figured they're close enough to the 5169 // declaration case, and not worth rebuilding. 5170 return false; 5171 case TemplateArgument::Pack: 5172 // A pack is invalid if any of the elements of the pack are invalid. 5173 return HasReconstitutableArgs(TA.getPackAsArray()); 5174 case TemplateArgument::Integral: 5175 // Larger integers get encoded as DWARF blocks which are a bit 5176 // harder to parse back into a large integer, etc - so punting on 5177 // this for now. Re-parsing the integers back into APInt is probably 5178 // feasible some day. 5179 return TA.getAsIntegral().getBitWidth() <= 64 && 5180 IsReconstitutableType(TA.getIntegralType()); 5181 case TemplateArgument::Type: 5182 return IsReconstitutableType(TA.getAsType()); 5183 default: 5184 llvm_unreachable("Other, unresolved, template arguments should " 5185 "not be seen here"); 5186 } 5187 }); 5188 }; 5189 // A conversion operator presents complications/ambiguity if there's a 5190 // conversion to class template that is itself a template, eg: 5191 // template<typename T> 5192 // operator ns::t1<T, int>(); 5193 // This should be named, eg: "operator ns::t1<float, int><float>" 5194 // (ignoring clang bug that means this is currently "operator t1<float>") 5195 // but if the arguments were stripped, the consumer couldn't differentiate 5196 // whether the template argument list for the conversion type was the 5197 // function's argument list (& no reconstitution was needed) or not. 5198 // This could be handled if reconstitutable names had a separate attribute 5199 // annotating them as such - this would remove the ambiguity. 5200 // 5201 // Alternatively the template argument list could be parsed enough to check 5202 // whether there's one list or two, then compare that with the DWARF 5203 // description of the return type and the template argument lists to determine 5204 // how many lists there should be and if one is missing it could be assumed(?) 5205 // to be the function's template argument list & then be rebuilt. 5206 // 5207 // Other operator overloads that aren't conversion operators could be 5208 // reconstituted but would require a bit more nuance about detecting the 5209 // difference between these different operators during that rebuilding. 5210 bool Reconstitutable = 5211 Args && HasReconstitutableArgs(Args->Args) && !IsOperatorOverload; 5212 5213 PrintingPolicy PP = getPrintingPolicy(); 5214 5215 if (TemplateNamesKind == codegenoptions::DebugTemplateNamesKind::Full || 5216 !Reconstitutable) { 5217 ND->getNameForDiagnostic(OS, PP, Qualified); 5218 } else { 5219 bool Mangled = 5220 TemplateNamesKind == codegenoptions::DebugTemplateNamesKind::Mangled; 5221 // check if it's a template 5222 if (Mangled) 5223 OS << "_STN|"; 5224 5225 OS << ND->getDeclName(); 5226 std::string EncodedOriginalName; 5227 llvm::raw_string_ostream EncodedOriginalNameOS(EncodedOriginalName); 5228 EncodedOriginalNameOS << ND->getDeclName(); 5229 5230 if (Mangled) { 5231 OS << "|"; 5232 printTemplateArgumentList(OS, Args->Args, PP); 5233 printTemplateArgumentList(EncodedOriginalNameOS, Args->Args, PP); 5234 #ifndef NDEBUG 5235 std::string CanonicalOriginalName; 5236 llvm::raw_string_ostream OriginalOS(CanonicalOriginalName); 5237 ND->getNameForDiagnostic(OriginalOS, PP, Qualified); 5238 assert(EncodedOriginalNameOS.str() == OriginalOS.str()); 5239 #endif 5240 } 5241 } 5242 return Name; 5243 } 5244 5245 void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var, 5246 const VarDecl *D) { 5247 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5248 if (D->hasAttr<NoDebugAttr>()) 5249 return; 5250 5251 llvm::TimeTraceScope TimeScope("DebugGlobalVariable", [&]() { 5252 return GetName(D, true); 5253 }); 5254 5255 // If we already created a DIGlobalVariable for this declaration, just attach 5256 // it to the llvm::GlobalVariable. 5257 auto Cached = DeclCache.find(D->getCanonicalDecl()); 5258 if (Cached != DeclCache.end()) 5259 return Var->addDebugInfo( 5260 cast<llvm::DIGlobalVariableExpression>(Cached->second)); 5261 5262 // Create global variable debug descriptor. 5263 llvm::DIFile *Unit = nullptr; 5264 llvm::DIScope *DContext = nullptr; 5265 unsigned LineNo; 5266 StringRef DeclName, LinkageName; 5267 QualType T; 5268 llvm::MDTuple *TemplateParameters = nullptr; 5269 collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName, 5270 TemplateParameters, DContext); 5271 5272 // Attempt to store one global variable for the declaration - even if we 5273 // emit a lot of fields. 5274 llvm::DIGlobalVariableExpression *GVE = nullptr; 5275 5276 // If this is an anonymous union then we'll want to emit a global 5277 // variable for each member of the anonymous union so that it's possible 5278 // to find the name of any field in the union. 5279 if (T->isUnionType() && DeclName.empty()) { 5280 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 5281 assert(RD->isAnonymousStructOrUnion() && 5282 "unnamed non-anonymous struct or union?"); 5283 GVE = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext); 5284 } else { 5285 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 5286 5287 SmallVector<uint64_t, 4> Expr; 5288 unsigned AddressSpace = 5289 CGM.getContext().getTargetAddressSpace(D->getType()); 5290 if (CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) { 5291 if (D->hasAttr<CUDASharedAttr>()) 5292 AddressSpace = 5293 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared); 5294 else if (D->hasAttr<CUDAConstantAttr>()) 5295 AddressSpace = 5296 CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant); 5297 } 5298 AppendAddressSpaceXDeref(AddressSpace, Expr); 5299 5300 llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); 5301 GVE = DBuilder.createGlobalVariableExpression( 5302 DContext, DeclName, LinkageName, Unit, LineNo, getOrCreateType(T, Unit), 5303 Var->hasLocalLinkage(), true, 5304 Expr.empty() ? nullptr : DBuilder.createExpression(Expr), 5305 getOrCreateStaticDataMemberDeclarationOrNull(D), TemplateParameters, 5306 Align, Annotations); 5307 Var->addDebugInfo(GVE); 5308 } 5309 DeclCache[D->getCanonicalDecl()].reset(GVE); 5310 } 5311 5312 void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD, const APValue &Init) { 5313 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5314 if (VD->hasAttr<NoDebugAttr>()) 5315 return; 5316 llvm::TimeTraceScope TimeScope("DebugConstGlobalVariable", [&]() { 5317 return GetName(VD, true); 5318 }); 5319 5320 auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); 5321 // Create the descriptor for the variable. 5322 llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); 5323 StringRef Name = VD->getName(); 5324 llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit); 5325 5326 if (const auto *ECD = dyn_cast<EnumConstantDecl>(VD)) { 5327 const auto *ED = cast<EnumDecl>(ECD->getDeclContext()); 5328 assert(isa<EnumType>(ED->getTypeForDecl()) && "Enum without EnumType?"); 5329 5330 if (CGM.getCodeGenOpts().EmitCodeView) { 5331 // If CodeView, emit enums as global variables, unless they are defined 5332 // inside a class. We do this because MSVC doesn't emit S_CONSTANTs for 5333 // enums in classes, and because it is difficult to attach this scope 5334 // information to the global variable. 5335 if (isa<RecordDecl>(ED->getDeclContext())) 5336 return; 5337 } else { 5338 // If not CodeView, emit DW_TAG_enumeration_type if necessary. For 5339 // example: for "enum { ZERO };", a DW_TAG_enumeration_type is created the 5340 // first time `ZERO` is referenced in a function. 5341 llvm::DIType *EDTy = 5342 getOrCreateType(QualType(ED->getTypeForDecl(), 0), Unit); 5343 assert (EDTy->getTag() == llvm::dwarf::DW_TAG_enumeration_type); 5344 (void)EDTy; 5345 return; 5346 } 5347 } 5348 5349 // Do not emit separate definitions for function local consts. 5350 if (isa<FunctionDecl>(VD->getDeclContext())) 5351 return; 5352 5353 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 5354 auto *VarD = dyn_cast<VarDecl>(VD); 5355 if (VarD && VarD->isStaticDataMember()) { 5356 auto *RD = cast<RecordDecl>(VarD->getDeclContext()); 5357 getDeclContextDescriptor(VarD); 5358 // Ensure that the type is retained even though it's otherwise unreferenced. 5359 // 5360 // FIXME: This is probably unnecessary, since Ty should reference RD 5361 // through its scope. 5362 RetainedTypes.push_back( 5363 CGM.getContext().getRecordType(RD).getAsOpaquePtr()); 5364 5365 return; 5366 } 5367 llvm::DIScope *DContext = getDeclContextDescriptor(VD); 5368 5369 auto &GV = DeclCache[VD]; 5370 if (GV) 5371 return; 5372 llvm::DIExpression *InitExpr = nullptr; 5373 if (CGM.getContext().getTypeSize(VD->getType()) <= 64) { 5374 // FIXME: Add a representation for integer constants wider than 64 bits. 5375 if (Init.isInt()) 5376 InitExpr = 5377 DBuilder.createConstantValueExpression(Init.getInt().getExtValue()); 5378 else if (Init.isFloat()) 5379 InitExpr = DBuilder.createConstantValueExpression( 5380 Init.getFloat().bitcastToAPInt().getZExtValue()); 5381 } 5382 5383 llvm::MDTuple *TemplateParameters = nullptr; 5384 5385 if (isa<VarTemplateSpecializationDecl>(VD)) 5386 if (VarD) { 5387 llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VarD, &*Unit); 5388 TemplateParameters = parameterNodes.get(); 5389 } 5390 5391 GV.reset(DBuilder.createGlobalVariableExpression( 5392 DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty, 5393 true, true, InitExpr, getOrCreateStaticDataMemberDeclarationOrNull(VarD), 5394 TemplateParameters, Align)); 5395 } 5396 5397 void CGDebugInfo::EmitExternalVariable(llvm::GlobalVariable *Var, 5398 const VarDecl *D) { 5399 assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); 5400 if (D->hasAttr<NoDebugAttr>()) 5401 return; 5402 5403 auto Align = getDeclAlignIfRequired(D, CGM.getContext()); 5404 llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); 5405 StringRef Name = D->getName(); 5406 llvm::DIType *Ty = getOrCreateType(D->getType(), Unit); 5407 5408 llvm::DIScope *DContext = getDeclContextDescriptor(D); 5409 llvm::DIGlobalVariableExpression *GVE = 5410 DBuilder.createGlobalVariableExpression( 5411 DContext, Name, StringRef(), Unit, getLineNumber(D->getLocation()), 5412 Ty, false, false, nullptr, nullptr, nullptr, Align); 5413 Var->addDebugInfo(GVE); 5414 } 5415 5416 void CGDebugInfo::EmitGlobalAlias(const llvm::GlobalValue *GV, 5417 const GlobalDecl GD) { 5418 5419 assert(GV); 5420 5421 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5422 return; 5423 5424 const auto *D = cast<ValueDecl>(GD.getDecl()); 5425 if (D->hasAttr<NoDebugAttr>()) 5426 return; 5427 5428 auto AliaseeDecl = CGM.getMangledNameDecl(GV->getName()); 5429 llvm::DINode *DI; 5430 5431 if (!AliaseeDecl) 5432 // FIXME: Aliasee not declared yet - possibly declared later 5433 // For example, 5434 // 5435 // 1 extern int newname __attribute__((alias("oldname"))); 5436 // 2 int oldname = 1; 5437 // 5438 // No debug info would be generated for 'newname' in this case. 5439 // 5440 // Fix compiler to generate "newname" as imported_declaration 5441 // pointing to the DIE of "oldname". 5442 return; 5443 if (!(DI = getDeclarationOrDefinition( 5444 AliaseeDecl.getCanonicalDecl().getDecl()))) 5445 return; 5446 5447 llvm::DIScope *DContext = getDeclContextDescriptor(D); 5448 auto Loc = D->getLocation(); 5449 5450 llvm::DIImportedEntity *ImportDI = DBuilder.createImportedDeclaration( 5451 DContext, DI, getOrCreateFile(Loc), getLineNumber(Loc), D->getName()); 5452 5453 // Record this DIE in the cache for nested declaration reference. 5454 ImportedDeclCache[GD.getCanonicalDecl().getDecl()].reset(ImportDI); 5455 } 5456 5457 llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) { 5458 if (!LexicalBlockStack.empty()) 5459 return LexicalBlockStack.back(); 5460 llvm::DIScope *Mod = getParentModuleOrNull(D); 5461 return getContextDescriptor(D, Mod ? Mod : TheCU); 5462 } 5463 5464 void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) { 5465 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5466 return; 5467 const NamespaceDecl *NSDecl = UD.getNominatedNamespace(); 5468 if (!NSDecl->isAnonymousNamespace() || 5469 CGM.getCodeGenOpts().DebugExplicitImport) { 5470 auto Loc = UD.getLocation(); 5471 if (!Loc.isValid()) 5472 Loc = CurLoc; 5473 DBuilder.createImportedModule( 5474 getCurrentContextDescriptor(cast<Decl>(UD.getDeclContext())), 5475 getOrCreateNamespace(NSDecl), getOrCreateFile(Loc), getLineNumber(Loc)); 5476 } 5477 } 5478 5479 void CGDebugInfo::EmitUsingShadowDecl(const UsingShadowDecl &USD) { 5480 if (llvm::DINode *Target = 5481 getDeclarationOrDefinition(USD.getUnderlyingDecl())) { 5482 auto Loc = USD.getLocation(); 5483 DBuilder.createImportedDeclaration( 5484 getCurrentContextDescriptor(cast<Decl>(USD.getDeclContext())), Target, 5485 getOrCreateFile(Loc), getLineNumber(Loc)); 5486 } 5487 } 5488 5489 void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) { 5490 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5491 return; 5492 assert(UD.shadow_size() && 5493 "We shouldn't be codegening an invalid UsingDecl containing no decls"); 5494 5495 for (const auto *USD : UD.shadows()) { 5496 // FIXME: Skip functions with undeduced auto return type for now since we 5497 // don't currently have the plumbing for separate declarations & definitions 5498 // of free functions and mismatched types (auto in the declaration, concrete 5499 // return type in the definition) 5500 if (const auto *FD = dyn_cast<FunctionDecl>(USD->getUnderlyingDecl())) 5501 if (const auto *AT = FD->getType() 5502 ->castAs<FunctionProtoType>() 5503 ->getContainedAutoType()) 5504 if (AT->getDeducedType().isNull()) 5505 continue; 5506 5507 EmitUsingShadowDecl(*USD); 5508 // Emitting one decl is sufficient - debuggers can detect that this is an 5509 // overloaded name & provide lookup for all the overloads. 5510 break; 5511 } 5512 } 5513 5514 void CGDebugInfo::EmitUsingEnumDecl(const UsingEnumDecl &UD) { 5515 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5516 return; 5517 assert(UD.shadow_size() && 5518 "We shouldn't be codegening an invalid UsingEnumDecl" 5519 " containing no decls"); 5520 5521 for (const auto *USD : UD.shadows()) 5522 EmitUsingShadowDecl(*USD); 5523 } 5524 5525 void CGDebugInfo::EmitImportDecl(const ImportDecl &ID) { 5526 if (CGM.getCodeGenOpts().getDebuggerTuning() != llvm::DebuggerKind::LLDB) 5527 return; 5528 if (Module *M = ID.getImportedModule()) { 5529 auto Info = ASTSourceDescriptor(*M); 5530 auto Loc = ID.getLocation(); 5531 DBuilder.createImportedDeclaration( 5532 getCurrentContextDescriptor(cast<Decl>(ID.getDeclContext())), 5533 getOrCreateModuleRef(Info, DebugTypeExtRefs), getOrCreateFile(Loc), 5534 getLineNumber(Loc)); 5535 } 5536 } 5537 5538 llvm::DIImportedEntity * 5539 CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) { 5540 if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) 5541 return nullptr; 5542 auto &VH = NamespaceAliasCache[&NA]; 5543 if (VH) 5544 return cast<llvm::DIImportedEntity>(VH); 5545 llvm::DIImportedEntity *R; 5546 auto Loc = NA.getLocation(); 5547 if (const auto *Underlying = 5548 dyn_cast<NamespaceAliasDecl>(NA.getAliasedNamespace())) 5549 // This could cache & dedup here rather than relying on metadata deduping. 5550 R = DBuilder.createImportedDeclaration( 5551 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), 5552 EmitNamespaceAlias(*Underlying), getOrCreateFile(Loc), 5553 getLineNumber(Loc), NA.getName()); 5554 else 5555 R = DBuilder.createImportedDeclaration( 5556 getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())), 5557 getOrCreateNamespace(cast<NamespaceDecl>(NA.getAliasedNamespace())), 5558 getOrCreateFile(Loc), getLineNumber(Loc), NA.getName()); 5559 VH.reset(R); 5560 return R; 5561 } 5562 5563 llvm::DINamespace * 5564 CGDebugInfo::getOrCreateNamespace(const NamespaceDecl *NSDecl) { 5565 // Don't canonicalize the NamespaceDecl here: The DINamespace will be uniqued 5566 // if necessary, and this way multiple declarations of the same namespace in 5567 // different parent modules stay distinct. 5568 auto I = NamespaceCache.find(NSDecl); 5569 if (I != NamespaceCache.end()) 5570 return cast<llvm::DINamespace>(I->second); 5571 5572 llvm::DIScope *Context = getDeclContextDescriptor(NSDecl); 5573 // Don't trust the context if it is a DIModule (see comment above). 5574 llvm::DINamespace *NS = 5575 DBuilder.createNameSpace(Context, NSDecl->getName(), NSDecl->isInline()); 5576 NamespaceCache[NSDecl].reset(NS); 5577 return NS; 5578 } 5579 5580 void CGDebugInfo::setDwoId(uint64_t Signature) { 5581 assert(TheCU && "no main compile unit"); 5582 TheCU->setDWOId(Signature); 5583 } 5584 5585 void CGDebugInfo::finalize() { 5586 // Creating types might create further types - invalidating the current 5587 // element and the size(), so don't cache/reference them. 5588 for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) { 5589 ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i]; 5590 llvm::DIType *Ty = E.Type->getDecl()->getDefinition() 5591 ? CreateTypeDefinition(E.Type, E.Unit) 5592 : E.Decl; 5593 DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty); 5594 } 5595 5596 // Add methods to interface. 5597 for (const auto &P : ObjCMethodCache) { 5598 if (P.second.empty()) 5599 continue; 5600 5601 QualType QTy(P.first->getTypeForDecl(), 0); 5602 auto It = TypeCache.find(QTy.getAsOpaquePtr()); 5603 assert(It != TypeCache.end()); 5604 5605 llvm::DICompositeType *InterfaceDecl = 5606 cast<llvm::DICompositeType>(It->second); 5607 5608 auto CurElts = InterfaceDecl->getElements(); 5609 SmallVector<llvm::Metadata *, 16> EltTys(CurElts.begin(), CurElts.end()); 5610 5611 // For DWARF v4 or earlier, only add objc_direct methods. 5612 for (auto &SubprogramDirect : P.second) 5613 if (CGM.getCodeGenOpts().DwarfVersion >= 5 || SubprogramDirect.getInt()) 5614 EltTys.push_back(SubprogramDirect.getPointer()); 5615 5616 llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); 5617 DBuilder.replaceArrays(InterfaceDecl, Elements); 5618 } 5619 5620 for (const auto &P : ReplaceMap) { 5621 assert(P.second); 5622 auto *Ty = cast<llvm::DIType>(P.second); 5623 assert(Ty->isForwardDecl()); 5624 5625 auto It = TypeCache.find(P.first); 5626 assert(It != TypeCache.end()); 5627 assert(It->second); 5628 5629 DBuilder.replaceTemporary(llvm::TempDIType(Ty), 5630 cast<llvm::DIType>(It->second)); 5631 } 5632 5633 for (const auto &P : FwdDeclReplaceMap) { 5634 assert(P.second); 5635 llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(P.second)); 5636 llvm::Metadata *Repl; 5637 5638 auto It = DeclCache.find(P.first); 5639 // If there has been no definition for the declaration, call RAUW 5640 // with ourselves, that will destroy the temporary MDNode and 5641 // replace it with a standard one, avoiding leaking memory. 5642 if (It == DeclCache.end()) 5643 Repl = P.second; 5644 else 5645 Repl = It->second; 5646 5647 if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(Repl)) 5648 Repl = GVE->getVariable(); 5649 DBuilder.replaceTemporary(std::move(FwdDecl), cast<llvm::MDNode>(Repl)); 5650 } 5651 5652 // We keep our own list of retained types, because we need to look 5653 // up the final type in the type cache. 5654 for (auto &RT : RetainedTypes) 5655 if (auto MD = TypeCache[RT]) 5656 DBuilder.retainType(cast<llvm::DIType>(MD)); 5657 5658 DBuilder.finalize(); 5659 } 5660 5661 // Don't ignore in case of explicit cast where it is referenced indirectly. 5662 void CGDebugInfo::EmitExplicitCastType(QualType Ty) { 5663 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 5664 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) 5665 DBuilder.retainType(DieTy); 5666 } 5667 5668 void CGDebugInfo::EmitAndRetainType(QualType Ty) { 5669 if (CGM.getCodeGenOpts().hasMaybeUnusedDebugInfo()) 5670 if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) 5671 DBuilder.retainType(DieTy); 5672 } 5673 5674 llvm::DebugLoc CGDebugInfo::SourceLocToDebugLoc(SourceLocation Loc) { 5675 if (LexicalBlockStack.empty()) 5676 return llvm::DebugLoc(); 5677 5678 llvm::MDNode *Scope = LexicalBlockStack.back(); 5679 return llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(Loc), 5680 getColumnNumber(Loc), Scope); 5681 } 5682 5683 llvm::DINode::DIFlags CGDebugInfo::getCallSiteRelatedAttrs() const { 5684 // Call site-related attributes are only useful in optimized programs, and 5685 // when there's a possibility of debugging backtraces. 5686 if (!CGM.getLangOpts().Optimize || DebugKind == codegenoptions::NoDebugInfo || 5687 DebugKind == codegenoptions::LocTrackingOnly) 5688 return llvm::DINode::FlagZero; 5689 5690 // Call site-related attributes are available in DWARF v5. Some debuggers, 5691 // while not fully DWARF v5-compliant, may accept these attributes as if they 5692 // were part of DWARF v4. 5693 bool SupportsDWARFv4Ext = 5694 CGM.getCodeGenOpts().DwarfVersion == 4 && 5695 (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB || 5696 CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::GDB); 5697 5698 if (!SupportsDWARFv4Ext && CGM.getCodeGenOpts().DwarfVersion < 5) 5699 return llvm::DINode::FlagZero; 5700 5701 return llvm::DINode::FlagAllCallsDescribed; 5702 } 5703