1 //===--- CGCleanup.cpp - Bookkeeping and code emission for cleanups -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains code dealing with the IR generation for cleanups 10 // and related information. 11 // 12 // A "cleanup" is a piece of code which needs to be executed whenever 13 // control transfers out of a particular scope. This can be 14 // conditionalized to occur only on exceptional control flow, only on 15 // normal control flow, or both. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "llvm/Support/SaveAndRestore.h" 22 23 using namespace clang; 24 using namespace CodeGen; 25 26 bool DominatingValue<RValue>::saved_type::needsSaving(RValue rv) { 27 if (rv.isScalar()) 28 return DominatingLLVMValue::needsSaving(rv.getScalarVal()); 29 if (rv.isAggregate()) 30 return DominatingLLVMValue::needsSaving(rv.getAggregatePointer()); 31 return true; 32 } 33 34 DominatingValue<RValue>::saved_type 35 DominatingValue<RValue>::saved_type::save(CodeGenFunction &CGF, RValue rv) { 36 if (rv.isScalar()) { 37 llvm::Value *V = rv.getScalarVal(); 38 39 // These automatically dominate and don't need to be saved. 40 if (!DominatingLLVMValue::needsSaving(V)) 41 return saved_type(V, ScalarLiteral); 42 43 // Everything else needs an alloca. 44 Address addr = 45 CGF.CreateDefaultAlignTempAlloca(V->getType(), "saved-rvalue"); 46 CGF.Builder.CreateStore(V, addr); 47 return saved_type(addr.getPointer(), ScalarAddress); 48 } 49 50 if (rv.isComplex()) { 51 CodeGenFunction::ComplexPairTy V = rv.getComplexVal(); 52 llvm::Type *ComplexTy = 53 llvm::StructType::get(V.first->getType(), V.second->getType()); 54 Address addr = CGF.CreateDefaultAlignTempAlloca(ComplexTy, "saved-complex"); 55 CGF.Builder.CreateStore(V.first, CGF.Builder.CreateStructGEP(addr, 0)); 56 CGF.Builder.CreateStore(V.second, CGF.Builder.CreateStructGEP(addr, 1)); 57 return saved_type(addr.getPointer(), ComplexAddress); 58 } 59 60 assert(rv.isAggregate()); 61 Address V = rv.getAggregateAddress(); // TODO: volatile? 62 if (!DominatingLLVMValue::needsSaving(V.getPointer())) 63 return saved_type(V.getPointer(), AggregateLiteral, 64 V.getAlignment().getQuantity()); 65 66 Address addr = 67 CGF.CreateTempAlloca(V.getType(), CGF.getPointerAlign(), "saved-rvalue"); 68 CGF.Builder.CreateStore(V.getPointer(), addr); 69 return saved_type(addr.getPointer(), AggregateAddress, 70 V.getAlignment().getQuantity()); 71 } 72 73 /// Given a saved r-value produced by SaveRValue, perform the code 74 /// necessary to restore it to usability at the current insertion 75 /// point. 76 RValue DominatingValue<RValue>::saved_type::restore(CodeGenFunction &CGF) { 77 auto getSavingAddress = [&](llvm::Value *value) { 78 auto alignment = cast<llvm::AllocaInst>(value)->getAlignment(); 79 return Address(value, CharUnits::fromQuantity(alignment)); 80 }; 81 switch (K) { 82 case ScalarLiteral: 83 return RValue::get(Value); 84 case ScalarAddress: 85 return RValue::get(CGF.Builder.CreateLoad(getSavingAddress(Value))); 86 case AggregateLiteral: 87 return RValue::getAggregate(Address(Value, CharUnits::fromQuantity(Align))); 88 case AggregateAddress: { 89 auto addr = CGF.Builder.CreateLoad(getSavingAddress(Value)); 90 return RValue::getAggregate(Address(addr, CharUnits::fromQuantity(Align))); 91 } 92 case ComplexAddress: { 93 Address address = getSavingAddress(Value); 94 llvm::Value *real = 95 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(address, 0)); 96 llvm::Value *imag = 97 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(address, 1)); 98 return RValue::getComplex(real, imag); 99 } 100 } 101 102 llvm_unreachable("bad saved r-value kind"); 103 } 104 105 /// Push an entry of the given size onto this protected-scope stack. 106 char *EHScopeStack::allocate(size_t Size) { 107 Size = llvm::alignTo(Size, ScopeStackAlignment); 108 if (!StartOfBuffer) { 109 unsigned Capacity = 1024; 110 while (Capacity < Size) Capacity *= 2; 111 StartOfBuffer = new char[Capacity]; 112 StartOfData = EndOfBuffer = StartOfBuffer + Capacity; 113 } else if (static_cast<size_t>(StartOfData - StartOfBuffer) < Size) { 114 unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer; 115 unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer); 116 117 unsigned NewCapacity = CurrentCapacity; 118 do { 119 NewCapacity *= 2; 120 } while (NewCapacity < UsedCapacity + Size); 121 122 char *NewStartOfBuffer = new char[NewCapacity]; 123 char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity; 124 char *NewStartOfData = NewEndOfBuffer - UsedCapacity; 125 memcpy(NewStartOfData, StartOfData, UsedCapacity); 126 delete [] StartOfBuffer; 127 StartOfBuffer = NewStartOfBuffer; 128 EndOfBuffer = NewEndOfBuffer; 129 StartOfData = NewStartOfData; 130 } 131 132 assert(StartOfBuffer + Size <= StartOfData); 133 StartOfData -= Size; 134 return StartOfData; 135 } 136 137 void EHScopeStack::deallocate(size_t Size) { 138 StartOfData += llvm::alignTo(Size, ScopeStackAlignment); 139 } 140 141 bool EHScopeStack::containsOnlyLifetimeMarkers( 142 EHScopeStack::stable_iterator Old) const { 143 for (EHScopeStack::iterator it = begin(); stabilize(it) != Old; it++) { 144 EHCleanupScope *cleanup = dyn_cast<EHCleanupScope>(&*it); 145 if (!cleanup || !cleanup->isLifetimeMarker()) 146 return false; 147 } 148 149 return true; 150 } 151 152 bool EHScopeStack::requiresLandingPad() const { 153 for (stable_iterator si = getInnermostEHScope(); si != stable_end(); ) { 154 // Skip lifetime markers. 155 if (auto *cleanup = dyn_cast<EHCleanupScope>(&*find(si))) 156 if (cleanup->isLifetimeMarker()) { 157 si = cleanup->getEnclosingEHScope(); 158 continue; 159 } 160 return true; 161 } 162 163 return false; 164 } 165 166 EHScopeStack::stable_iterator 167 EHScopeStack::getInnermostActiveNormalCleanup() const { 168 for (stable_iterator si = getInnermostNormalCleanup(), se = stable_end(); 169 si != se; ) { 170 EHCleanupScope &cleanup = cast<EHCleanupScope>(*find(si)); 171 if (cleanup.isActive()) return si; 172 si = cleanup.getEnclosingNormalCleanup(); 173 } 174 return stable_end(); 175 } 176 177 178 void *EHScopeStack::pushCleanup(CleanupKind Kind, size_t Size) { 179 char *Buffer = allocate(EHCleanupScope::getSizeForCleanupSize(Size)); 180 bool IsNormalCleanup = Kind & NormalCleanup; 181 bool IsEHCleanup = Kind & EHCleanup; 182 bool IsActive = !(Kind & InactiveCleanup); 183 bool IsLifetimeMarker = Kind & LifetimeMarker; 184 EHCleanupScope *Scope = 185 new (Buffer) EHCleanupScope(IsNormalCleanup, 186 IsEHCleanup, 187 IsActive, 188 Size, 189 BranchFixups.size(), 190 InnermostNormalCleanup, 191 InnermostEHScope); 192 if (IsNormalCleanup) 193 InnermostNormalCleanup = stable_begin(); 194 if (IsEHCleanup) 195 InnermostEHScope = stable_begin(); 196 if (IsLifetimeMarker) 197 Scope->setLifetimeMarker(); 198 199 return Scope->getCleanupBuffer(); 200 } 201 202 void EHScopeStack::popCleanup() { 203 assert(!empty() && "popping exception stack when not empty"); 204 205 assert(isa<EHCleanupScope>(*begin())); 206 EHCleanupScope &Cleanup = cast<EHCleanupScope>(*begin()); 207 InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup(); 208 InnermostEHScope = Cleanup.getEnclosingEHScope(); 209 deallocate(Cleanup.getAllocatedSize()); 210 211 // Destroy the cleanup. 212 Cleanup.Destroy(); 213 214 // Check whether we can shrink the branch-fixups stack. 215 if (!BranchFixups.empty()) { 216 // If we no longer have any normal cleanups, all the fixups are 217 // complete. 218 if (!hasNormalCleanups()) 219 BranchFixups.clear(); 220 221 // Otherwise we can still trim out unnecessary nulls. 222 else 223 popNullFixups(); 224 } 225 } 226 227 EHFilterScope *EHScopeStack::pushFilter(unsigned numFilters) { 228 assert(getInnermostEHScope() == stable_end()); 229 char *buffer = allocate(EHFilterScope::getSizeForNumFilters(numFilters)); 230 EHFilterScope *filter = new (buffer) EHFilterScope(numFilters); 231 InnermostEHScope = stable_begin(); 232 return filter; 233 } 234 235 void EHScopeStack::popFilter() { 236 assert(!empty() && "popping exception stack when not empty"); 237 238 EHFilterScope &filter = cast<EHFilterScope>(*begin()); 239 deallocate(EHFilterScope::getSizeForNumFilters(filter.getNumFilters())); 240 241 InnermostEHScope = filter.getEnclosingEHScope(); 242 } 243 244 EHCatchScope *EHScopeStack::pushCatch(unsigned numHandlers) { 245 char *buffer = allocate(EHCatchScope::getSizeForNumHandlers(numHandlers)); 246 EHCatchScope *scope = 247 new (buffer) EHCatchScope(numHandlers, InnermostEHScope); 248 InnermostEHScope = stable_begin(); 249 return scope; 250 } 251 252 void EHScopeStack::pushTerminate() { 253 char *Buffer = allocate(EHTerminateScope::getSize()); 254 new (Buffer) EHTerminateScope(InnermostEHScope); 255 InnermostEHScope = stable_begin(); 256 } 257 258 /// Remove any 'null' fixups on the stack. However, we can't pop more 259 /// fixups than the fixup depth on the innermost normal cleanup, or 260 /// else fixups that we try to add to that cleanup will end up in the 261 /// wrong place. We *could* try to shrink fixup depths, but that's 262 /// actually a lot of work for little benefit. 263 void EHScopeStack::popNullFixups() { 264 // We expect this to only be called when there's still an innermost 265 // normal cleanup; otherwise there really shouldn't be any fixups. 266 assert(hasNormalCleanups()); 267 268 EHScopeStack::iterator it = find(InnermostNormalCleanup); 269 unsigned MinSize = cast<EHCleanupScope>(*it).getFixupDepth(); 270 assert(BranchFixups.size() >= MinSize && "fixup stack out of order"); 271 272 while (BranchFixups.size() > MinSize && 273 BranchFixups.back().Destination == nullptr) 274 BranchFixups.pop_back(); 275 } 276 277 Address CodeGenFunction::createCleanupActiveFlag() { 278 // Create a variable to decide whether the cleanup needs to be run. 279 Address active = CreateTempAllocaWithoutCast( 280 Builder.getInt1Ty(), CharUnits::One(), "cleanup.cond"); 281 282 // Initialize it to false at a site that's guaranteed to be run 283 // before each evaluation. 284 setBeforeOutermostConditional(Builder.getFalse(), active); 285 286 // Initialize it to true at the current location. 287 Builder.CreateStore(Builder.getTrue(), active); 288 289 return active; 290 } 291 292 void CodeGenFunction::initFullExprCleanupWithFlag(Address ActiveFlag) { 293 // Set that as the active flag in the cleanup. 294 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin()); 295 assert(!cleanup.hasActiveFlag() && "cleanup already has active flag?"); 296 cleanup.setActiveFlag(ActiveFlag); 297 298 if (cleanup.isNormalCleanup()) cleanup.setTestFlagInNormalCleanup(); 299 if (cleanup.isEHCleanup()) cleanup.setTestFlagInEHCleanup(); 300 } 301 302 void EHScopeStack::Cleanup::anchor() {} 303 304 static void createStoreInstBefore(llvm::Value *value, Address addr, 305 llvm::Instruction *beforeInst) { 306 auto store = new llvm::StoreInst(value, addr.getPointer(), beforeInst); 307 store->setAlignment(addr.getAlignment().getAsAlign()); 308 } 309 310 static llvm::LoadInst *createLoadInstBefore(Address addr, const Twine &name, 311 llvm::Instruction *beforeInst) { 312 auto load = new llvm::LoadInst(addr.getElementType(), addr.getPointer(), name, 313 beforeInst); 314 load->setAlignment(addr.getAlignment().getAsAlign()); 315 return load; 316 } 317 318 /// All the branch fixups on the EH stack have propagated out past the 319 /// outermost normal cleanup; resolve them all by adding cases to the 320 /// given switch instruction. 321 static void ResolveAllBranchFixups(CodeGenFunction &CGF, 322 llvm::SwitchInst *Switch, 323 llvm::BasicBlock *CleanupEntry) { 324 llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded; 325 326 for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) { 327 // Skip this fixup if its destination isn't set. 328 BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); 329 if (Fixup.Destination == nullptr) continue; 330 331 // If there isn't an OptimisticBranchBlock, then InitialBranch is 332 // still pointing directly to its destination; forward it to the 333 // appropriate cleanup entry. This is required in the specific 334 // case of 335 // { std::string s; goto lbl; } 336 // lbl: 337 // i.e. where there's an unresolved fixup inside a single cleanup 338 // entry which we're currently popping. 339 if (Fixup.OptimisticBranchBlock == nullptr) { 340 createStoreInstBefore(CGF.Builder.getInt32(Fixup.DestinationIndex), 341 CGF.getNormalCleanupDestSlot(), 342 Fixup.InitialBranch); 343 Fixup.InitialBranch->setSuccessor(0, CleanupEntry); 344 } 345 346 // Don't add this case to the switch statement twice. 347 if (!CasesAdded.insert(Fixup.Destination).second) 348 continue; 349 350 Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex), 351 Fixup.Destination); 352 } 353 354 CGF.EHStack.clearFixups(); 355 } 356 357 /// Transitions the terminator of the given exit-block of a cleanup to 358 /// be a cleanup switch. 359 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF, 360 llvm::BasicBlock *Block) { 361 // If it's a branch, turn it into a switch whose default 362 // destination is its original target. 363 llvm::Instruction *Term = Block->getTerminator(); 364 assert(Term && "can't transition block without terminator"); 365 366 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 367 assert(Br->isUnconditional()); 368 auto Load = createLoadInstBefore(CGF.getNormalCleanupDestSlot(), 369 "cleanup.dest", Term); 370 llvm::SwitchInst *Switch = 371 llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block); 372 Br->eraseFromParent(); 373 return Switch; 374 } else { 375 return cast<llvm::SwitchInst>(Term); 376 } 377 } 378 379 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) { 380 assert(Block && "resolving a null target block"); 381 if (!EHStack.getNumBranchFixups()) return; 382 383 assert(EHStack.hasNormalCleanups() && 384 "branch fixups exist with no normal cleanups on stack"); 385 386 llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks; 387 bool ResolvedAny = false; 388 389 for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) { 390 // Skip this fixup if its destination doesn't match. 391 BranchFixup &Fixup = EHStack.getBranchFixup(I); 392 if (Fixup.Destination != Block) continue; 393 394 Fixup.Destination = nullptr; 395 ResolvedAny = true; 396 397 // If it doesn't have an optimistic branch block, LatestBranch is 398 // already pointing to the right place. 399 llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock; 400 if (!BranchBB) 401 continue; 402 403 // Don't process the same optimistic branch block twice. 404 if (!ModifiedOptimisticBlocks.insert(BranchBB).second) 405 continue; 406 407 llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB); 408 409 // Add a case to the switch. 410 Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block); 411 } 412 413 if (ResolvedAny) 414 EHStack.popNullFixups(); 415 } 416 417 /// Pops cleanup blocks until the given savepoint is reached. 418 void CodeGenFunction::PopCleanupBlocks( 419 EHScopeStack::stable_iterator Old, 420 std::initializer_list<llvm::Value **> ValuesToReload) { 421 assert(Old.isValid()); 422 423 bool HadBranches = false; 424 while (EHStack.stable_begin() != Old) { 425 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 426 HadBranches |= Scope.hasBranches(); 427 428 // As long as Old strictly encloses the scope's enclosing normal 429 // cleanup, we're going to emit another normal cleanup which 430 // fallthrough can propagate through. 431 bool FallThroughIsBranchThrough = 432 Old.strictlyEncloses(Scope.getEnclosingNormalCleanup()); 433 434 PopCleanupBlock(FallThroughIsBranchThrough); 435 } 436 437 // If we didn't have any branches, the insertion point before cleanups must 438 // dominate the current insertion point and we don't need to reload any 439 // values. 440 if (!HadBranches) 441 return; 442 443 // Spill and reload all values that the caller wants to be live at the current 444 // insertion point. 445 for (llvm::Value **ReloadedValue : ValuesToReload) { 446 auto *Inst = dyn_cast_or_null<llvm::Instruction>(*ReloadedValue); 447 if (!Inst) 448 continue; 449 450 // Don't spill static allocas, they dominate all cleanups. These are created 451 // by binding a reference to a local variable or temporary. 452 auto *AI = dyn_cast<llvm::AllocaInst>(Inst); 453 if (AI && AI->isStaticAlloca()) 454 continue; 455 456 Address Tmp = 457 CreateDefaultAlignTempAlloca(Inst->getType(), "tmp.exprcleanup"); 458 459 // Find an insertion point after Inst and spill it to the temporary. 460 llvm::BasicBlock::iterator InsertBefore; 461 if (auto *Invoke = dyn_cast<llvm::InvokeInst>(Inst)) 462 InsertBefore = Invoke->getNormalDest()->getFirstInsertionPt(); 463 else 464 InsertBefore = std::next(Inst->getIterator()); 465 CGBuilderTy(CGM, &*InsertBefore).CreateStore(Inst, Tmp); 466 467 // Reload the value at the current insertion point. 468 *ReloadedValue = Builder.CreateLoad(Tmp); 469 } 470 } 471 472 /// Pops cleanup blocks until the given savepoint is reached, then add the 473 /// cleanups from the given savepoint in the lifetime-extended cleanups stack. 474 void CodeGenFunction::PopCleanupBlocks( 475 EHScopeStack::stable_iterator Old, size_t OldLifetimeExtendedSize, 476 std::initializer_list<llvm::Value **> ValuesToReload) { 477 PopCleanupBlocks(Old, ValuesToReload); 478 479 // Move our deferred cleanups onto the EH stack. 480 for (size_t I = OldLifetimeExtendedSize, 481 E = LifetimeExtendedCleanupStack.size(); I != E; /**/) { 482 // Alignment should be guaranteed by the vptrs in the individual cleanups. 483 assert((I % alignof(LifetimeExtendedCleanupHeader) == 0) && 484 "misaligned cleanup stack entry"); 485 486 LifetimeExtendedCleanupHeader &Header = 487 reinterpret_cast<LifetimeExtendedCleanupHeader&>( 488 LifetimeExtendedCleanupStack[I]); 489 I += sizeof(Header); 490 491 EHStack.pushCopyOfCleanup(Header.getKind(), 492 &LifetimeExtendedCleanupStack[I], 493 Header.getSize()); 494 I += Header.getSize(); 495 496 if (Header.isConditional()) { 497 Address ActiveFlag = 498 reinterpret_cast<Address &>(LifetimeExtendedCleanupStack[I]); 499 initFullExprCleanupWithFlag(ActiveFlag); 500 I += sizeof(ActiveFlag); 501 } 502 } 503 LifetimeExtendedCleanupStack.resize(OldLifetimeExtendedSize); 504 } 505 506 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF, 507 EHCleanupScope &Scope) { 508 assert(Scope.isNormalCleanup()); 509 llvm::BasicBlock *Entry = Scope.getNormalBlock(); 510 if (!Entry) { 511 Entry = CGF.createBasicBlock("cleanup"); 512 Scope.setNormalBlock(Entry); 513 } 514 return Entry; 515 } 516 517 /// Attempts to reduce a cleanup's entry block to a fallthrough. This 518 /// is basically llvm::MergeBlockIntoPredecessor, except 519 /// simplified/optimized for the tighter constraints on cleanup blocks. 520 /// 521 /// Returns the new block, whatever it is. 522 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF, 523 llvm::BasicBlock *Entry) { 524 llvm::BasicBlock *Pred = Entry->getSinglePredecessor(); 525 if (!Pred) return Entry; 526 527 llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator()); 528 if (!Br || Br->isConditional()) return Entry; 529 assert(Br->getSuccessor(0) == Entry); 530 531 // If we were previously inserting at the end of the cleanup entry 532 // block, we'll need to continue inserting at the end of the 533 // predecessor. 534 bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry; 535 assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end()); 536 537 // Kill the branch. 538 Br->eraseFromParent(); 539 540 // Replace all uses of the entry with the predecessor, in case there 541 // are phis in the cleanup. 542 Entry->replaceAllUsesWith(Pred); 543 544 // Merge the blocks. 545 Pred->getInstList().splice(Pred->end(), Entry->getInstList()); 546 547 // Kill the entry block. 548 Entry->eraseFromParent(); 549 550 if (WasInsertBlock) 551 CGF.Builder.SetInsertPoint(Pred); 552 553 return Pred; 554 } 555 556 static void EmitCleanup(CodeGenFunction &CGF, 557 EHScopeStack::Cleanup *Fn, 558 EHScopeStack::Cleanup::Flags flags, 559 Address ActiveFlag) { 560 // If there's an active flag, load it and skip the cleanup if it's 561 // false. 562 llvm::BasicBlock *ContBB = nullptr; 563 if (ActiveFlag.isValid()) { 564 ContBB = CGF.createBasicBlock("cleanup.done"); 565 llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action"); 566 llvm::Value *IsActive 567 = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active"); 568 CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB); 569 CGF.EmitBlock(CleanupBB); 570 } 571 572 // Ask the cleanup to emit itself. 573 Fn->Emit(CGF, flags); 574 assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?"); 575 576 // Emit the continuation block if there was an active flag. 577 if (ActiveFlag.isValid()) 578 CGF.EmitBlock(ContBB); 579 } 580 581 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit, 582 llvm::BasicBlock *From, 583 llvm::BasicBlock *To) { 584 // Exit is the exit block of a cleanup, so it always terminates in 585 // an unconditional branch or a switch. 586 llvm::Instruction *Term = Exit->getTerminator(); 587 588 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) { 589 assert(Br->isUnconditional() && Br->getSuccessor(0) == From); 590 Br->setSuccessor(0, To); 591 } else { 592 llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term); 593 for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I) 594 if (Switch->getSuccessor(I) == From) 595 Switch->setSuccessor(I, To); 596 } 597 } 598 599 /// We don't need a normal entry block for the given cleanup. 600 /// Optimistic fixup branches can cause these blocks to come into 601 /// existence anyway; if so, destroy it. 602 /// 603 /// The validity of this transformation is very much specific to the 604 /// exact ways in which we form branches to cleanup entries. 605 static void destroyOptimisticNormalEntry(CodeGenFunction &CGF, 606 EHCleanupScope &scope) { 607 llvm::BasicBlock *entry = scope.getNormalBlock(); 608 if (!entry) return; 609 610 // Replace all the uses with unreachable. 611 llvm::BasicBlock *unreachableBB = CGF.getUnreachableBlock(); 612 for (llvm::BasicBlock::use_iterator 613 i = entry->use_begin(), e = entry->use_end(); i != e; ) { 614 llvm::Use &use = *i; 615 ++i; 616 617 use.set(unreachableBB); 618 619 // The only uses should be fixup switches. 620 llvm::SwitchInst *si = cast<llvm::SwitchInst>(use.getUser()); 621 if (si->getNumCases() == 1 && si->getDefaultDest() == unreachableBB) { 622 // Replace the switch with a branch. 623 llvm::BranchInst::Create(si->case_begin()->getCaseSuccessor(), si); 624 625 // The switch operand is a load from the cleanup-dest alloca. 626 llvm::LoadInst *condition = cast<llvm::LoadInst>(si->getCondition()); 627 628 // Destroy the switch. 629 si->eraseFromParent(); 630 631 // Destroy the load. 632 assert(condition->getOperand(0) == CGF.NormalCleanupDest.getPointer()); 633 assert(condition->use_empty()); 634 condition->eraseFromParent(); 635 } 636 } 637 638 assert(entry->use_empty()); 639 delete entry; 640 } 641 642 /// Pops a cleanup block. If the block includes a normal cleanup, the 643 /// current insertion point is threaded through the cleanup, as are 644 /// any branch fixups on the cleanup. 645 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) { 646 assert(!EHStack.empty() && "cleanup stack is empty!"); 647 assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!"); 648 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin()); 649 assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups()); 650 651 // Remember activation information. 652 bool IsActive = Scope.isActive(); 653 Address NormalActiveFlag = 654 Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() 655 : Address::invalid(); 656 Address EHActiveFlag = 657 Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() 658 : Address::invalid(); 659 660 // Check whether we need an EH cleanup. This is only true if we've 661 // generated a lazy EH cleanup block. 662 llvm::BasicBlock *EHEntry = Scope.getCachedEHDispatchBlock(); 663 assert(Scope.hasEHBranches() == (EHEntry != nullptr)); 664 bool RequiresEHCleanup = (EHEntry != nullptr); 665 EHScopeStack::stable_iterator EHParent = Scope.getEnclosingEHScope(); 666 667 // Check the three conditions which might require a normal cleanup: 668 669 // - whether there are branch fix-ups through this cleanup 670 unsigned FixupDepth = Scope.getFixupDepth(); 671 bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth; 672 673 // - whether there are branch-throughs or branch-afters 674 bool HasExistingBranches = Scope.hasBranches(); 675 676 // - whether there's a fallthrough 677 llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock(); 678 bool HasFallthrough = (FallthroughSource != nullptr && IsActive); 679 680 // Branch-through fall-throughs leave the insertion point set to the 681 // end of the last cleanup, which points to the current scope. The 682 // rest of IR gen doesn't need to worry about this; it only happens 683 // during the execution of PopCleanupBlocks(). 684 bool HasPrebranchedFallthrough = 685 (FallthroughSource && FallthroughSource->getTerminator()); 686 687 // If this is a normal cleanup, then having a prebranched 688 // fallthrough implies that the fallthrough source unconditionally 689 // jumps here. 690 assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough || 691 (Scope.getNormalBlock() && 692 FallthroughSource->getTerminator()->getSuccessor(0) 693 == Scope.getNormalBlock())); 694 695 bool RequiresNormalCleanup = false; 696 if (Scope.isNormalCleanup() && 697 (HasFixups || HasExistingBranches || HasFallthrough)) { 698 RequiresNormalCleanup = true; 699 } 700 701 // If we have a prebranched fallthrough into an inactive normal 702 // cleanup, rewrite it so that it leads to the appropriate place. 703 if (Scope.isNormalCleanup() && HasPrebranchedFallthrough && !IsActive) { 704 llvm::BasicBlock *prebranchDest; 705 706 // If the prebranch is semantically branching through the next 707 // cleanup, just forward it to the next block, leaving the 708 // insertion point in the prebranched block. 709 if (FallthroughIsBranchThrough) { 710 EHScope &enclosing = *EHStack.find(Scope.getEnclosingNormalCleanup()); 711 prebranchDest = CreateNormalEntry(*this, cast<EHCleanupScope>(enclosing)); 712 713 // Otherwise, we need to make a new block. If the normal cleanup 714 // isn't being used at all, we could actually reuse the normal 715 // entry block, but this is simpler, and it avoids conflicts with 716 // dead optimistic fixup branches. 717 } else { 718 prebranchDest = createBasicBlock("forwarded-prebranch"); 719 EmitBlock(prebranchDest); 720 } 721 722 llvm::BasicBlock *normalEntry = Scope.getNormalBlock(); 723 assert(normalEntry && !normalEntry->use_empty()); 724 725 ForwardPrebranchedFallthrough(FallthroughSource, 726 normalEntry, prebranchDest); 727 } 728 729 // If we don't need the cleanup at all, we're done. 730 if (!RequiresNormalCleanup && !RequiresEHCleanup) { 731 destroyOptimisticNormalEntry(*this, Scope); 732 EHStack.popCleanup(); // safe because there are no fixups 733 assert(EHStack.getNumBranchFixups() == 0 || 734 EHStack.hasNormalCleanups()); 735 return; 736 } 737 738 // Copy the cleanup emission data out. This uses either a stack 739 // array or malloc'd memory, depending on the size, which is 740 // behavior that SmallVector would provide, if we could use it 741 // here. Unfortunately, if you ask for a SmallVector<char>, the 742 // alignment isn't sufficient. 743 auto *CleanupSource = reinterpret_cast<char *>(Scope.getCleanupBuffer()); 744 alignas(EHScopeStack::ScopeStackAlignment) char 745 CleanupBufferStack[8 * sizeof(void *)]; 746 std::unique_ptr<char[]> CleanupBufferHeap; 747 size_t CleanupSize = Scope.getCleanupSize(); 748 EHScopeStack::Cleanup *Fn; 749 750 if (CleanupSize <= sizeof(CleanupBufferStack)) { 751 memcpy(CleanupBufferStack, CleanupSource, CleanupSize); 752 Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferStack); 753 } else { 754 CleanupBufferHeap.reset(new char[CleanupSize]); 755 memcpy(CleanupBufferHeap.get(), CleanupSource, CleanupSize); 756 Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferHeap.get()); 757 } 758 759 EHScopeStack::Cleanup::Flags cleanupFlags; 760 if (Scope.isNormalCleanup()) 761 cleanupFlags.setIsNormalCleanupKind(); 762 if (Scope.isEHCleanup()) 763 cleanupFlags.setIsEHCleanupKind(); 764 765 if (!RequiresNormalCleanup) { 766 destroyOptimisticNormalEntry(*this, Scope); 767 EHStack.popCleanup(); 768 } else { 769 // If we have a fallthrough and no other need for the cleanup, 770 // emit it directly. 771 if (HasFallthrough && !HasPrebranchedFallthrough && 772 !HasFixups && !HasExistingBranches) { 773 774 destroyOptimisticNormalEntry(*this, Scope); 775 EHStack.popCleanup(); 776 777 EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag); 778 779 // Otherwise, the best approach is to thread everything through 780 // the cleanup block and then try to clean up after ourselves. 781 } else { 782 // Force the entry block to exist. 783 llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope); 784 785 // I. Set up the fallthrough edge in. 786 787 CGBuilderTy::InsertPoint savedInactiveFallthroughIP; 788 789 // If there's a fallthrough, we need to store the cleanup 790 // destination index. For fall-throughs this is always zero. 791 if (HasFallthrough) { 792 if (!HasPrebranchedFallthrough) 793 Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot()); 794 795 // Otherwise, save and clear the IP if we don't have fallthrough 796 // because the cleanup is inactive. 797 } else if (FallthroughSource) { 798 assert(!IsActive && "source without fallthrough for active cleanup"); 799 savedInactiveFallthroughIP = Builder.saveAndClearIP(); 800 } 801 802 // II. Emit the entry block. This implicitly branches to it if 803 // we have fallthrough. All the fixups and existing branches 804 // should already be branched to it. 805 EmitBlock(NormalEntry); 806 807 // III. Figure out where we're going and build the cleanup 808 // epilogue. 809 810 bool HasEnclosingCleanups = 811 (Scope.getEnclosingNormalCleanup() != EHStack.stable_end()); 812 813 // Compute the branch-through dest if we need it: 814 // - if there are branch-throughs threaded through the scope 815 // - if fall-through is a branch-through 816 // - if there are fixups that will be optimistically forwarded 817 // to the enclosing cleanup 818 llvm::BasicBlock *BranchThroughDest = nullptr; 819 if (Scope.hasBranchThroughs() || 820 (FallthroughSource && FallthroughIsBranchThrough) || 821 (HasFixups && HasEnclosingCleanups)) { 822 assert(HasEnclosingCleanups); 823 EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); 824 BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S)); 825 } 826 827 llvm::BasicBlock *FallthroughDest = nullptr; 828 SmallVector<llvm::Instruction*, 2> InstsToAppend; 829 830 // If there's exactly one branch-after and no other threads, 831 // we can route it without a switch. 832 if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough && 833 Scope.getNumBranchAfters() == 1) { 834 assert(!BranchThroughDest || !IsActive); 835 836 // Clean up the possibly dead store to the cleanup dest slot. 837 llvm::Instruction *NormalCleanupDestSlot = 838 cast<llvm::Instruction>(getNormalCleanupDestSlot().getPointer()); 839 if (NormalCleanupDestSlot->hasOneUse()) { 840 NormalCleanupDestSlot->user_back()->eraseFromParent(); 841 NormalCleanupDestSlot->eraseFromParent(); 842 NormalCleanupDest = Address::invalid(); 843 } 844 845 llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0); 846 InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter)); 847 848 // Build a switch-out if we need it: 849 // - if there are branch-afters threaded through the scope 850 // - if fall-through is a branch-after 851 // - if there are fixups that have nowhere left to go and 852 // so must be immediately resolved 853 } else if (Scope.getNumBranchAfters() || 854 (HasFallthrough && !FallthroughIsBranchThrough) || 855 (HasFixups && !HasEnclosingCleanups)) { 856 857 llvm::BasicBlock *Default = 858 (BranchThroughDest ? BranchThroughDest : getUnreachableBlock()); 859 860 // TODO: base this on the number of branch-afters and fixups 861 const unsigned SwitchCapacity = 10; 862 863 // pass the abnormal exit flag to Fn (SEH cleanup) 864 cleanupFlags.setHasExitSwitch(); 865 866 llvm::LoadInst *Load = 867 createLoadInstBefore(getNormalCleanupDestSlot(), "cleanup.dest", 868 nullptr); 869 llvm::SwitchInst *Switch = 870 llvm::SwitchInst::Create(Load, Default, SwitchCapacity); 871 872 InstsToAppend.push_back(Load); 873 InstsToAppend.push_back(Switch); 874 875 // Branch-after fallthrough. 876 if (FallthroughSource && !FallthroughIsBranchThrough) { 877 FallthroughDest = createBasicBlock("cleanup.cont"); 878 if (HasFallthrough) 879 Switch->addCase(Builder.getInt32(0), FallthroughDest); 880 } 881 882 for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) { 883 Switch->addCase(Scope.getBranchAfterIndex(I), 884 Scope.getBranchAfterBlock(I)); 885 } 886 887 // If there aren't any enclosing cleanups, we can resolve all 888 // the fixups now. 889 if (HasFixups && !HasEnclosingCleanups) 890 ResolveAllBranchFixups(*this, Switch, NormalEntry); 891 } else { 892 // We should always have a branch-through destination in this case. 893 assert(BranchThroughDest); 894 InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest)); 895 } 896 897 // IV. Pop the cleanup and emit it. 898 EHStack.popCleanup(); 899 assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups); 900 901 EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag); 902 903 // Append the prepared cleanup prologue from above. 904 llvm::BasicBlock *NormalExit = Builder.GetInsertBlock(); 905 for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I) 906 NormalExit->getInstList().push_back(InstsToAppend[I]); 907 908 // Optimistically hope that any fixups will continue falling through. 909 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 910 I < E; ++I) { 911 BranchFixup &Fixup = EHStack.getBranchFixup(I); 912 if (!Fixup.Destination) continue; 913 if (!Fixup.OptimisticBranchBlock) { 914 createStoreInstBefore(Builder.getInt32(Fixup.DestinationIndex), 915 getNormalCleanupDestSlot(), 916 Fixup.InitialBranch); 917 Fixup.InitialBranch->setSuccessor(0, NormalEntry); 918 } 919 Fixup.OptimisticBranchBlock = NormalExit; 920 } 921 922 // V. Set up the fallthrough edge out. 923 924 // Case 1: a fallthrough source exists but doesn't branch to the 925 // cleanup because the cleanup is inactive. 926 if (!HasFallthrough && FallthroughSource) { 927 // Prebranched fallthrough was forwarded earlier. 928 // Non-prebranched fallthrough doesn't need to be forwarded. 929 // Either way, all we need to do is restore the IP we cleared before. 930 assert(!IsActive); 931 Builder.restoreIP(savedInactiveFallthroughIP); 932 933 // Case 2: a fallthrough source exists and should branch to the 934 // cleanup, but we're not supposed to branch through to the next 935 // cleanup. 936 } else if (HasFallthrough && FallthroughDest) { 937 assert(!FallthroughIsBranchThrough); 938 EmitBlock(FallthroughDest); 939 940 // Case 3: a fallthrough source exists and should branch to the 941 // cleanup and then through to the next. 942 } else if (HasFallthrough) { 943 // Everything is already set up for this. 944 945 // Case 4: no fallthrough source exists. 946 } else { 947 Builder.ClearInsertionPoint(); 948 } 949 950 // VI. Assorted cleaning. 951 952 // Check whether we can merge NormalEntry into a single predecessor. 953 // This might invalidate (non-IR) pointers to NormalEntry. 954 llvm::BasicBlock *NewNormalEntry = 955 SimplifyCleanupEntry(*this, NormalEntry); 956 957 // If it did invalidate those pointers, and NormalEntry was the same 958 // as NormalExit, go back and patch up the fixups. 959 if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit) 960 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); 961 I < E; ++I) 962 EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry; 963 } 964 } 965 966 assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0); 967 968 // Emit the EH cleanup if required. 969 if (RequiresEHCleanup) { 970 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 971 972 EmitBlock(EHEntry); 973 974 llvm::BasicBlock *NextAction = getEHDispatchBlock(EHParent); 975 976 // Push a terminate scope or cleanupendpad scope around the potentially 977 // throwing cleanups. For funclet EH personalities, the cleanupendpad models 978 // program termination when cleanups throw. 979 bool PushedTerminate = false; 980 SaveAndRestore<llvm::Instruction *> RestoreCurrentFuncletPad( 981 CurrentFuncletPad); 982 llvm::CleanupPadInst *CPI = nullptr; 983 984 const EHPersonality &Personality = EHPersonality::get(*this); 985 if (Personality.usesFuncletPads()) { 986 llvm::Value *ParentPad = CurrentFuncletPad; 987 if (!ParentPad) 988 ParentPad = llvm::ConstantTokenNone::get(CGM.getLLVMContext()); 989 CurrentFuncletPad = CPI = Builder.CreateCleanupPad(ParentPad); 990 } 991 992 // Non-MSVC personalities need to terminate when an EH cleanup throws. 993 if (!Personality.isMSVCPersonality()) { 994 EHStack.pushTerminate(); 995 PushedTerminate = true; 996 } 997 998 // We only actually emit the cleanup code if the cleanup is either 999 // active or was used before it was deactivated. 1000 if (EHActiveFlag.isValid() || IsActive) { 1001 cleanupFlags.setIsForEHCleanup(); 1002 EmitCleanup(*this, Fn, cleanupFlags, EHActiveFlag); 1003 } 1004 1005 if (CPI) 1006 Builder.CreateCleanupRet(CPI, NextAction); 1007 else 1008 Builder.CreateBr(NextAction); 1009 1010 // Leave the terminate scope. 1011 if (PushedTerminate) 1012 EHStack.popTerminate(); 1013 1014 Builder.restoreIP(SavedIP); 1015 1016 SimplifyCleanupEntry(*this, EHEntry); 1017 } 1018 } 1019 1020 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1021 /// specified destination obviously has no cleanups to run. 'false' is always 1022 /// a conservatively correct answer for this method. 1023 bool CodeGenFunction::isObviouslyBranchWithoutCleanups(JumpDest Dest) const { 1024 assert(Dest.getScopeDepth().encloses(EHStack.stable_begin()) 1025 && "stale jump destination"); 1026 1027 // Calculate the innermost active normal cleanup. 1028 EHScopeStack::stable_iterator TopCleanup = 1029 EHStack.getInnermostActiveNormalCleanup(); 1030 1031 // If we're not in an active normal cleanup scope, or if the 1032 // destination scope is within the innermost active normal cleanup 1033 // scope, we don't need to worry about fixups. 1034 if (TopCleanup == EHStack.stable_end() || 1035 TopCleanup.encloses(Dest.getScopeDepth())) // works for invalid 1036 return true; 1037 1038 // Otherwise, we might need some cleanups. 1039 return false; 1040 } 1041 1042 1043 /// Terminate the current block by emitting a branch which might leave 1044 /// the current cleanup-protected scope. The target scope may not yet 1045 /// be known, in which case this will require a fixup. 1046 /// 1047 /// As a side-effect, this method clears the insertion point. 1048 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) { 1049 assert(Dest.getScopeDepth().encloses(EHStack.stable_begin()) 1050 && "stale jump destination"); 1051 1052 if (!HaveInsertPoint()) 1053 return; 1054 1055 // Create the branch. 1056 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); 1057 1058 // Calculate the innermost active normal cleanup. 1059 EHScopeStack::stable_iterator 1060 TopCleanup = EHStack.getInnermostActiveNormalCleanup(); 1061 1062 // If we're not in an active normal cleanup scope, or if the 1063 // destination scope is within the innermost active normal cleanup 1064 // scope, we don't need to worry about fixups. 1065 if (TopCleanup == EHStack.stable_end() || 1066 TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid 1067 Builder.ClearInsertionPoint(); 1068 return; 1069 } 1070 1071 // If we can't resolve the destination cleanup scope, just add this 1072 // to the current cleanup scope as a branch fixup. 1073 if (!Dest.getScopeDepth().isValid()) { 1074 BranchFixup &Fixup = EHStack.addBranchFixup(); 1075 Fixup.Destination = Dest.getBlock(); 1076 Fixup.DestinationIndex = Dest.getDestIndex(); 1077 Fixup.InitialBranch = BI; 1078 Fixup.OptimisticBranchBlock = nullptr; 1079 1080 Builder.ClearInsertionPoint(); 1081 return; 1082 } 1083 1084 // Otherwise, thread through all the normal cleanups in scope. 1085 1086 // Store the index at the start. 1087 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); 1088 createStoreInstBefore(Index, getNormalCleanupDestSlot(), BI); 1089 1090 // Adjust BI to point to the first cleanup block. 1091 { 1092 EHCleanupScope &Scope = 1093 cast<EHCleanupScope>(*EHStack.find(TopCleanup)); 1094 BI->setSuccessor(0, CreateNormalEntry(*this, Scope)); 1095 } 1096 1097 // Add this destination to all the scopes involved. 1098 EHScopeStack::stable_iterator I = TopCleanup; 1099 EHScopeStack::stable_iterator E = Dest.getScopeDepth(); 1100 if (E.strictlyEncloses(I)) { 1101 while (true) { 1102 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I)); 1103 assert(Scope.isNormalCleanup()); 1104 I = Scope.getEnclosingNormalCleanup(); 1105 1106 // If this is the last cleanup we're propagating through, tell it 1107 // that there's a resolved jump moving through it. 1108 if (!E.strictlyEncloses(I)) { 1109 Scope.addBranchAfter(Index, Dest.getBlock()); 1110 break; 1111 } 1112 1113 // Otherwise, tell the scope that there's a jump propagating 1114 // through it. If this isn't new information, all the rest of 1115 // the work has been done before. 1116 if (!Scope.addBranchThrough(Dest.getBlock())) 1117 break; 1118 } 1119 } 1120 1121 Builder.ClearInsertionPoint(); 1122 } 1123 1124 static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack, 1125 EHScopeStack::stable_iterator C) { 1126 // If we needed a normal block for any reason, that counts. 1127 if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock()) 1128 return true; 1129 1130 // Check whether any enclosed cleanups were needed. 1131 for (EHScopeStack::stable_iterator 1132 I = EHStack.getInnermostNormalCleanup(); 1133 I != C; ) { 1134 assert(C.strictlyEncloses(I)); 1135 EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I)); 1136 if (S.getNormalBlock()) return true; 1137 I = S.getEnclosingNormalCleanup(); 1138 } 1139 1140 return false; 1141 } 1142 1143 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack, 1144 EHScopeStack::stable_iterator cleanup) { 1145 // If we needed an EH block for any reason, that counts. 1146 if (EHStack.find(cleanup)->hasEHBranches()) 1147 return true; 1148 1149 // Check whether any enclosed cleanups were needed. 1150 for (EHScopeStack::stable_iterator 1151 i = EHStack.getInnermostEHScope(); i != cleanup; ) { 1152 assert(cleanup.strictlyEncloses(i)); 1153 1154 EHScope &scope = *EHStack.find(i); 1155 if (scope.hasEHBranches()) 1156 return true; 1157 1158 i = scope.getEnclosingEHScope(); 1159 } 1160 1161 return false; 1162 } 1163 1164 enum ForActivation_t { 1165 ForActivation, 1166 ForDeactivation 1167 }; 1168 1169 /// The given cleanup block is changing activation state. Configure a 1170 /// cleanup variable if necessary. 1171 /// 1172 /// It would be good if we had some way of determining if there were 1173 /// extra uses *after* the change-over point. 1174 static void SetupCleanupBlockActivation(CodeGenFunction &CGF, 1175 EHScopeStack::stable_iterator C, 1176 ForActivation_t kind, 1177 llvm::Instruction *dominatingIP) { 1178 EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C)); 1179 1180 // We always need the flag if we're activating the cleanup in a 1181 // conditional context, because we have to assume that the current 1182 // location doesn't necessarily dominate the cleanup's code. 1183 bool isActivatedInConditional = 1184 (kind == ForActivation && CGF.isInConditionalBranch()); 1185 1186 bool needFlag = false; 1187 1188 // Calculate whether the cleanup was used: 1189 1190 // - as a normal cleanup 1191 if (Scope.isNormalCleanup() && 1192 (isActivatedInConditional || IsUsedAsNormalCleanup(CGF.EHStack, C))) { 1193 Scope.setTestFlagInNormalCleanup(); 1194 needFlag = true; 1195 } 1196 1197 // - as an EH cleanup 1198 if (Scope.isEHCleanup() && 1199 (isActivatedInConditional || IsUsedAsEHCleanup(CGF.EHStack, C))) { 1200 Scope.setTestFlagInEHCleanup(); 1201 needFlag = true; 1202 } 1203 1204 // If it hasn't yet been used as either, we're done. 1205 if (!needFlag) return; 1206 1207 Address var = Scope.getActiveFlag(); 1208 if (!var.isValid()) { 1209 var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), CharUnits::One(), 1210 "cleanup.isactive"); 1211 Scope.setActiveFlag(var); 1212 1213 assert(dominatingIP && "no existing variable and no dominating IP!"); 1214 1215 // Initialize to true or false depending on whether it was 1216 // active up to this point. 1217 llvm::Constant *value = CGF.Builder.getInt1(kind == ForDeactivation); 1218 1219 // If we're in a conditional block, ignore the dominating IP and 1220 // use the outermost conditional branch. 1221 if (CGF.isInConditionalBranch()) { 1222 CGF.setBeforeOutermostConditional(value, var); 1223 } else { 1224 createStoreInstBefore(value, var, dominatingIP); 1225 } 1226 } 1227 1228 CGF.Builder.CreateStore(CGF.Builder.getInt1(kind == ForActivation), var); 1229 } 1230 1231 /// Activate a cleanup that was created in an inactivated state. 1232 void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C, 1233 llvm::Instruction *dominatingIP) { 1234 assert(C != EHStack.stable_end() && "activating bottom of stack?"); 1235 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 1236 assert(!Scope.isActive() && "double activation"); 1237 1238 SetupCleanupBlockActivation(*this, C, ForActivation, dominatingIP); 1239 1240 Scope.setActive(true); 1241 } 1242 1243 /// Deactive a cleanup that was created in an active state. 1244 void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C, 1245 llvm::Instruction *dominatingIP) { 1246 assert(C != EHStack.stable_end() && "deactivating bottom of stack?"); 1247 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C)); 1248 assert(Scope.isActive() && "double deactivation"); 1249 1250 // If it's the top of the stack, just pop it, but do so only if it belongs 1251 // to the current RunCleanupsScope. 1252 if (C == EHStack.stable_begin() && 1253 CurrentCleanupScopeDepth.strictlyEncloses(C)) { 1254 // If it's a normal cleanup, we need to pretend that the 1255 // fallthrough is unreachable. 1256 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1257 PopCleanupBlock(); 1258 Builder.restoreIP(SavedIP); 1259 return; 1260 } 1261 1262 // Otherwise, follow the general case. 1263 SetupCleanupBlockActivation(*this, C, ForDeactivation, dominatingIP); 1264 1265 Scope.setActive(false); 1266 } 1267 1268 Address CodeGenFunction::getNormalCleanupDestSlot() { 1269 if (!NormalCleanupDest.isValid()) 1270 NormalCleanupDest = 1271 CreateDefaultAlignTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot"); 1272 return NormalCleanupDest; 1273 } 1274 1275 /// Emits all the code to cause the given temporary to be cleaned up. 1276 void CodeGenFunction::EmitCXXTemporary(const CXXTemporary *Temporary, 1277 QualType TempType, 1278 Address Ptr) { 1279 pushDestroy(NormalAndEHCleanup, Ptr, TempType, destroyCXXObject, 1280 /*useEHCleanup*/ true); 1281 } 1282